UDK 669.14.018.25:621.73 ISSN 1580-2949 Original scientific article/Izvirni znanstveni članek MTAEC9, 40(6)243(2006) A MICRO-MACRO ANALYSIS OF THE TOOL DAMAGE IN PRECISION FORMING MIKRO-MAKROANALIZA POŠKODB ORODJA ZA NATANČNO KOVANJE Tomaž Rodic1'3, Jože Korelc2, Anton Pristovšek3 1Naravoslovnotehniška fakulteta, Oddelek za materiale in metalurgijo, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Fakulteta za gradbeništvo in geodezijo, Jamova 2, Ljubljana, Slovenia 3C3M, d. o. o, Vandotova 55, 1000 Ljubljana, Slovenia tomaz.rodicŽc3m.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo - accepted for publication: 2006-10-05 A micro-macro finite-element model for predicting the cyclic stress-strain response and damage evolution in tool-steel materials is presented. The elasto-plastic constitutive model at the macro-scale combines isotropic and kinematic hardening with continuum damage. This permits relatively precise modelling of the critical regions in the tooling systems over a large number of loading cycles. The macroscopic stress-strain fields are coupled with representative volume elements at the micro-level, where interactions between the primary carbides (M6C, MC, V8C7) and the martensitic matrix are evaluated. This provides a detailed insight into the stress-strain fields at the micro-level and reveals the damage mechanisms at the micro-scale. The performance of the model is demonstrated on an industrial example of a tool for the cold precision forming of metals. Key words: damage, micro-macro, finite element method, tool steels, precision forming of metals Predstavljen je numerični model za analizo cikličnih napetostno-deformacijskih odzivov in razvoja poškodb orodnih jekel na različnih dimenzijskih skalah po metodi končnih elementov. Makroskopski elasto-plastični konstitutivni model povezuje izotropno in kinematično utrjevanje s poškodbami kontinuuma. To omogoča razmeroma natančno modeliranje kritičnih območij v sistemu orodij za veliko število obremenitvenih ciklov. Makroskopska napetostno-deformacijska polja so povezana z reprezentativnimi volumenskimi elementi na mikroravni, kjer analiziramo medsebojne vplive med primarnimi karbidi (M6C, MC, V8C7) in martenzitno osnovo. S tem dobimo podroben vpogled v napetostno-deformacijska polja in poškodbene mehanizme na mikroravni. Uporabnost mikro-makromodela je prikazana na industrijskem primeru orodja za natančno preoblikovanje kovin v hladnem. Ključne besede: poškodbe, mikro-makro, metoda končnih elementov, orodna jekla, natančno preoblikovanje kovin 1 INTRODUCTION The tooling systems applied in production of cold forged components are repetitively subjected to very high loads. Despite of the high strength materials and prestressing applied to die inserts, these loads often cause local plastic deformation of the dies. Even though the plastic deformations caused by each forming cycle are relatively small they accumulate during the production and can eventually lead to the initiation of fatigue cracks. Once a fatigue crack is initiated it can grow and lead to the failure of tooling system. Statistical investigations show that more than eighty percent of cold forging tools fail in this way. The designers are therefore interested in identifying and optimising those design parameters that have strong impact on the fatigue response of tooling systems. In this work the response is modeled by an elasto-plastic constitutive model, which combines isotropic and kinematic hardening with continuum damage. This permits relatively precise modelling of stress/strain response of tool steels over large number of loading cycles and estimation of accumulated damage. A method for evaluating the sensitivity 1 of damage to material parameters and optimisation 2 can be combined with this approach. MATERIALI IN TEHNOLOGIJE 40 (2006) 6 2 CONSTITUTIVE MODEL The elasto-plastic material model developed by Pedersen 3 is considered. This model takes into account simultaneous evolution of isotropic and kinematic hardening and damage. Since the strains in the tool are expected to be small (<1) an additive decomposition of the strain tensor eij into elastic and plastic parts is assumed; eij=eiej+epi j (1) The elastic stress strain relationship is given by oij=Lijkl-Łek l (2) where Lijkl is the tensor of elastic moduli. The summation convention is adopted for repeated indices. It is noted that experimental investigations of tool steel materials do not reveal significant effect of damage on their elastic response. The rate of plastic strain is derived from the normality rule ¦ep =XČ- (3) wherefis the yield surface and X is the plastic multiplier derived from the consistency condition, f = 0. The flow rule implicitly comprises damage D as follows: 243 T. RODIČ ET AL.: A MICRO-MACRO ANALYSIS OF THE TOOL DAMAGE IN PRECISION FORMING / = ct,-(Ł+*) = 0 where (4) 3 COMPUTER IMPLEMENTATION *.-J|w r 1 1-Đ do-v ,J dXtJ '' OR BD (5) (6) (7) (8) In the above equations Xij is represents kinematic hardening while the scalars R and k describe isotropic hardening. 2.1 Kinematic hardening The back stress tensor Xij is the centre of the yield surface in stress space, it is defined by the following evolution equations iV imi 2 (9) y<»>Xj"\\-D)ęt vini _ M vlH) viH) .pu a. xfy*Z and (10) (11) 2.2 Nonlinear isotropic hardening The scalar k is assumed to be constant while evolution equation for R is defined by R = bšR,(Čq)-RŮ (12) where b is a material parameter and R8(?,q) represents the limit of isotropic hardening or softening. 2.3 Continuum damage Many different evolution equations have been proposed in the literature to describe irreversible damage development. For the industrial example described in this paper the following equation has been applied where a; P(l + v) + 3