
IMAGE ANALYSIS & STEREOLOGY 
formerly ACTA STEREOLOGICA 

Editor-in-Chief 
IDA ERŽEN (Slovenia) 

Associate Editors 
KARL-ANTON DORPH-PETERSEN (Denmark) 
stereology; bioscience 

BOŠTJAN LIKAR (Slovenia) 
image analysis; biomedicine 

WERNER NAGEL (Germany) 
stereology; stochastic geometry and 
statistics 

LESZEK WOJNAR (Poland) 
image analysis; materials science 

Editor for Statistics 
JACEK PIETRASZEK (Poland) 

Editor for English Language 
SAMO RIBARIČ (Slovenia) 
 

Editorial Board 
J. Angulo (France) 

J. Basgen (USA) 

V. Beneš (Czech Republic) 
V. Capasso (Italy) 

J.M. Chaix (France) 

E. Decenciere (France) 

P. Dockery (Ireland) 

M. García Fiñana (Spain) 

J. Grum (Slovenia) 

D. Jeulin (France) 

M. Kiderlen (Denmark) 

M. Kreft (Slovenia) 

L. Kubínová (Czech Republic) 

J. Lucocq (United Kingdom) 

T. Mayhew (United Kingdom) 

J.R. Nyengaard (Denmark) 

J. Ohser (Germany) 

D.E. Oorschot (New Zealand) 

E. Pirard (Belgium) 

K. Schladitz (Germany) 

Y. Tang (China) 

A. Tewari (India) 

G.F. Vander Voort (USA) 
 

 

Journal Mission Statement. Image Analysis & Stereology is the 
official journal of the International Society for Stereology. It pro-
motes the exchange of scientific, technical, organizational and other 
information on the quantitative analysis of data having a geometrical 
structure, including stereology, differential geometry, image analysis, 
image processing, mathematical morphology, stochastic geometry, 
statistics, pattern recognition, and related topics. The fields of appli-
cation are not restricted and range from biomedicine, materials 
sciences and physics to geology and geography. 

Publications. The journal publishes three types of papers. First, 
original research papers (full-length research papers and short co-
mmunications) pertaining to various aspects of image analysis and 
stereology and related quantitative methods for geometric structures, 
texture and patterns, from instrumentation to computational and 
statistical methods, mathematics and stochastic geometry, both 
theoretical and applied. Second, review articles written in a form 
understandable to a non-specialist. Third, book reviews, news, 
communications and notes pertaining to the life and work of ste-
reologists and their organizations. Prospective authors of the third 
type of publications should contact the Editorial Office before 
submission of a manuscript. 

This journal is regularly indexed or abstracted in: Chemical 
Abstracts, Current Contents®/Engineering Computing and Tech-
nology, Current Index to Statistics (CIS), DOAJ, EBSCO, INSPEC, 
Journal Citation Reports/Science Edition, Math Reviews, MATH-
SciNet, METADEX, Referativnyj Zhurnal, Science Citation Index 
Expanded (SciSearch®), SCOPUS, Web of Knowledge, and Zentrall-
blatt MATH. 

The Journal Impact Factor for 2012 is 0.639. 

The journal’s owner is the Slovenian Society for Stereology and  
 

Quantitative Image Analysis. The Journal is financially supported 
by the International Society for Stereology and the Slovenian Book 
Agency. 

Apart from potential supplementary material the electronic version 
of papers is identical to the printed version. In the case of any 
discrepancies the electronic version is treated as reference. 

Price and Subscription Conditions 
The journal is issued three times yearly. Annual subscription price 
(excluding bank charges) is €76 for European countries and €97 
outside Europe. The journal subscription is included in the basic, 
student or emeritus ISS membership. All payments should be 
addressed to Slovenian Society for Stereology and Quantitative 
Image Analysis, Korytkova 2, SI-1000 Ljubljana, Slovenia. Payment 
are acceptable by a bank to bank transfer to the Society’s account at 
NOVA LJUBLJANSKA BANKA, d.d., Ljubljana,  
IBAN: SI56020140015049611, S.W.I.F.T. Code: LJBASI2X  
with obligatory notification “NN for Image Analysis & Stereology”. 
Please mail a copy of the receipt for the money transfer order to 
the Editorial Office. 

Copyright/Off-prints 
Authors submitting a manuscript to Image Analysis and Stereology 
do so on the understanding that if it is accepted for publication, 
exclusive copyright of the paper shall be assigned to the journal. 
There will be no limitation on the personal freedom of the author 
to use material contained in the paper in other works. No free off-
prints are available, but they may be ordered by the authors at 
extra cost according to the special price list that will be sent to the 
authors together with an order form. 

Printed by Littera picta d.o.o., Rožna dolina, c. IV/32/34, Ljubljana, 
Slovenia. 

 

Editorial Staff 

E. Cvetko 

V. Čebašek 

M. Gaberšček 

A. Kladnik 

P. Peterlin 

T. Praprotnik 

M. Števanec 

Editorial Office 

Image Analysis and Stereology Editorial Office 
Institute of Anatomy, Medical Faculty, Korytkova 2 
SI-1000 Ljubljana, Slovenia 
Phone: +386-1-543-7300 
Fax: +386-1-543-7301 
 
IAS@mf.uni-lj.si (all inquiries) 
Editor.IAS@mf.uni-lj.si 
 

http://www.ias-iss.org 

Inquiries 

Please contact the Editorial Office for 

 general inquiries 

 subscription 

 requests for permission to reproduce 
figures, tables and articles 

 information on purchasing reprints of 
articles 

 manuscript inquiries
 

 

Image Anal Stereol is listed in the Registry of Accredited Publications under the registration number 656. Revija Image Anal Stereol je vpisana v Razvid medijev pri Ministrstvu za 
kulturo pod številko 656. Naklada: 400 izvodov 

mailto:IAS@mf.uni-lj.si
mailto:Editor.IAS@mf.uni-lj.si
http://www.wise-t.com/ias


CONTENTS 

 
Original research papers 

 
65 QUANTITATIVE CHARACTERIZATION OF MICROSTRUCTURE OF PURE COPPER 

PROCESSED BY ECAP 
Ondřej Šedivý, Viktor Beneš, Petr Ponížil, Petr Král and Václav Sklenička 

 

77 CHARACTERIZATION OF THE FORMATION OF FILTER PAPER USING THE BARTLETT 
SPECTRUM OF THE FIBER STRUCTURE 
Martin Lehmann, Jobst Eisengräber-Pabst, Joachim Ohser and Ali Moghiseh 

 

89 AUTOMATIC OBJECT DETECTION AND SEGMENTATION OF THE HISTOCYTOLOGY 
IMAGES USING RESHAPABLE AGENTS 
Mehdi Alilou and Vassili Kovalev 

 

101 EXACT SIMULATION OF A BOOLEAN MODEL 
Christian Lantuéjoul 

 

107 3D RECONSTRUCTION AND ANALYSIS OF THE FRAGMENTED GRAINS IN A COMPOSITE 
MATERIAL 
Luc Gillibert and Dominique Jeulin 

 

117 LÉVY-BASED ERROR PREDICTION IN CIRCULAR SYSTEMATIC SAMPLING 
Kristjana Ýr Jónsdóttir, Eva B. Vedel Jensen 

 

XIX FORTHCOMING MEETINGS 

 

XIX 





Image Anal Stereol 2013;32:65-75 doi:10.5566/ias.v32.p65-75
Original Research Paper

QUANTITATIVE CHARACTERIZATION OF MICROSTRUCTURE
OF PURE COPPER PROCESSED BY ECAP
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ABSTRACT

Orientation imaging microscopy (OIM) allows to measure crystallic orientations at the surface of a material.
Digitalized data representing the orientations are processed to recognize the grain structure and they are
visualized in crystal orientation maps. Analysis of the data firstly consists in recognition of grain boundaries
followed by identification of grains themselves. Knowing the grain morphology, it is possible to characterize
the grain size homogeneity and estimate structural parameters related to the physical properties of the material.
The paper describes methods of imaging and quantitative characterization of the grain boundary structure in
metals based on data from electron backscatter diffraction (EBSD). These methods are applied to samples of
copper processed by equal-channel angular pressing (ECAP).

Keywords: electron backscatter diffraction, equal-channel angular pressing, random marked sets, second-order
analysis.

INTRODUCTION

In microstructural research of metallic materials,
methods allowing direct evaluation of the grain
structure are often limited to investigation of 2D
sections. Planar quantities are used to estimate
parameters of the original 3D structure with usual
stereological methods. One general limitation is that
the estimators of the structural parameters are highly
influenced by the resolution given by the grid step of
the subsample where the measurements are provided.
On the other hand, given the experimental setting, one
has comprehensive information about the orientations
in grains and disorientations in grain boundaries
which can be further analysed with various methods.
This paper presents basic principles of processing
data from 2D scanning electron microscopy (SEM),
describes methods of quantitative characterization of
the observed microstructure based on second-order
analysis of random marked sets and demonstrates the
methods on particular samples.

To describe the structure of polycrystalline
materials, modern attitude consists in the
characterization of different types of boundaries
present in the material and their connectivity in the
grain boundary network (Rohrer, 2011). With data
from 3-dimensional electron backscatter diffraction

(EBSD; Calcagnotto et al., 2010; Wilkinson and
Britton, 2012) it is possible to explore the entire 5-
parametrical distribution of the grain boundaries where
three parameters are related to the disorientation and
the other two represent orientation of the interface
plane. Despite of limitations of 2-dimensional
observations, it still provides great potential for
statistical analysis and it allows to process greater
amount of observations than space- and time-
consuming 3D methods. It is also possible to estimate
the 3-dimensional microstructure on the basis of
statistical analyses of the data obtained from the 2-
dimensional EBSD.

Electron backscatter diffraction is a scanning
electron microscope (SEM) based technique which
has become well known as a powerful and versatile
experimental tool for materials scientists, physicists,
geologists and other scientists and engineers
(Randle, 2009). It allows the measurement of
microtexture (Jiang et al., 2008), microstructure
quantification (Bastos et al., 2006), grain and
phase boundary characterization (Randle et al.,
2008), phase identification (Perez et al., 2006) and
strain determination (Britton and Wilkinson, 2012)
in crystalline multiphase materials of any crystal
structure.
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The aim of the present paper is a systematic
characterization of Cu processed by equal-channel
angular pressing (ECAP) before creep testing. The
creep behaviour of ECAPed materials probably
belongs to the fewest examined properties of materials
processed by ECAP. Creep behaviour was usually
investigated in materials which were prepared by
severe plastic deformation (SPD) technique at room
temperature. For this reason, the creep tests were
performed at higher temperatures than the processing
temperature of SPD technique was. It is generally
accepted that tensile samples are put into the furnace
interior and then heated to the creep temperature. It is
important to note that each specimen was heated to the
testing temperature in the furnace of the creep testing
machine up to creep temperature. For this reason, the
microstructure is statically annealed and significantly
influenced by temperature-induced changes like grain
growth, recovery, recrystallization etc.

The systematic characterization of microstructure
in Cu specimens processed by ECAP before loading
can be important for better understanding of the
unusual creep behaviour of ECAPed Cu (Dvořák
et al., 2010). Despite of extensive interest in SPD
material, there is no systematic work describing real
microstructure of ECAP materials before loading
when testing temperature in the creep testing machine
was reached and stabilized.

To describe the microstructure, statistical methods
characterizing spatial distribution of the boundaries
marked by their disorientations are introduced. They
basically work with a single mark determined by
the disorientation angle θ but even more complex
information about the disorientation can be used by
distinguishing different types of “special” boundaries.
The methods are applied on samples of copper
processed by ECAP followed by annealing with
different times and temperatures. Effect of different
number of passes on the grain structure was examined
in previous studies (Ilucová et al., 2007; Král et al.,
2011).

The rest of the paper is organized as follows.
The next section describes the experimental set-
up including preparation of the samples and their
microscopical observations. The following section
introduces basics of image processing of these
observations. Further, the processed data are used
for quantitative analysis of grain boundaries and this
analysis is followed by numerical results. Conclusions
are made in the final section.

EXPERIMENTAL BACKGROUND

The microstructure of specimens was examined by
scanning electron microscope Jeol 6460 equipped with
an EBSD unit operating at an accelerating voltage of
20 kV with specimen tilted at 70◦. Results presented
in the paper come from the research of copper (99.99%
purity) processed by ECAP which involves pressing of
a sample through a die within a channel that is bent
into an L-shaped configuration (Fig. 1).

The billets in the cast state with 10mm× 10 mm
cross section and 60 mm length were processed by
ECAP at room temperature using a die with two
perpendicular channels. Each billet was processed
by a selected number of ECAP passes. The ECAP
was performed using route Bc (Furukawa et al.,
1998) in which the billet was rotated around the
longitudinal axis by 90◦ clockwise between the
passes. Each pass corresponds to an additional strain
value approximately equal to 1. After ECAP, billets
were annealed at 373K, 423K, 473K or 573K for
10 hours. The microstructure analyses were focused
on samples processed by 8 ECAP passes. The
microstructure changes of pure Cu (99.99%) processed
by 8 ECAP passes occurring during the annealing
caused considerable decrease of hardness (Fig. 2).

Fig. 1. Scheme of equal-channel angular pressing
(ECAP) facility with definitions of the directions X, Y
and Z. A sample of metallic material is pressed through
an L-shaped channel.
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Fig. 2. Hardness of Cu processed by 8 ECAP passes
and annealed at 373 K up to 10 h.

The specimens for microstructure analyses were
cut using electro spark process in an oil bath which
minimalizes the effect of deformation and temperature
on the surface. The specimens were grinded by 600–
4000 SiC paper and water was used as the lubricant
during grinding. The specimens were grinded by
600 SiC paper until their surfaces were flat. The
surfaces of grinded specimens were checked by light
microscope Neophot 32. The specimens were rotated
by 90◦ between subsequent grinding steps and grinded
perpendicular to the scratches which were created
in the former grinding step until these scratches
disappeared. Last grinding step was performed using
4000SiC paper in order to reduce time of electrolytic
polishing. It is generally accepted that electropolishing
is a widely used method for final step preparation
because it removes the strains induced by mechanical
grinding. Finally, the specimens were electropolished
using 250 ml phosphoric acid, 250 ml ethanol, 50 ml
propylalcohol and 500 ml water for 60 s at room
temperature.

All the three cross sections XY, XZ and YZ were
examined but the analyses were especially focused
on the section XZ. The area from which the EBSD
patterns is acquired with an electron beam focused
on a 70◦ tilted sample, is approximately elliptical
(Humphreys, 2001). For this reason, resolution
perpendicular and parallel to the tilt axis can be
distinguished, see Fig. 3 in Humphreys (2001). The
major axis, which is perpendicular to the tilt axis, is
about three times longer than the minor axis.

The electron beam is deflected and the orientation
data are acquired and stored in each point of selected
area. The point-to-point step size is based on the
expected microstructure and examined size region. In
the present work, the size of the image window was
selected as 128× 96 µm and the step of the EBSD
was ∼ 0.5 µm for the annealed specimens and these

parameters were 40× 30 µm and ∼ 0.07 µm for the
specimen only processed by ECAP.

Each EBSD pattern is analyzed and the solution is
found when at least 4 diffraction lines are used for its
determination. When the number of determined lines
is lower the solution is not found and non-indexed data
point is assigned. In the case that the number of non-
indexing points is low, the data can be repaired by
clean-up procedure. This procedure ensures that data
points with the probability > 0.95 of correct indexing
are retained in the analysis. The points where the
probability of correct indexing is lower (points with
low pattern quality) are re-assigned to neighbouring
regions of similar orientation. The procedure assumes
that low pattern quality points are associated with grain
boundaries or regions of high dislocation density. It
is known that EBSD lines are not always ideal and
for this reason, the standard angle difference of 2.5◦
between acquired lines and lines of the solution is
adjusted.

The quality map of EBSD patterns with the
demonstration of an EBSD pattern is in Fig. 3. The
light points denote high quality and the black points
denote non-indexable EBSD patterns. The inspection
of Fig. 3 shows that quality of EBSD patterns was
high. The number of indexable EBSD patterns was
approximately 97–98% in the annealed specimens and
79% in the specimens only processed by ECAP.

Fig. 3. EBSD pattern quality map of Cu annealed at
573 K for 10 h with the corresponding EBSD pattern.
Window size 128 × 96 µm, grid step 0.5 µm.

IMAGE PROCESSING

The main information measured by EBSD
are Euler angles ϕ1,Φ,ϕ2 representing the crystal
orientation in each grid point (Fig. 4). These three
parameters are sufficient to describe the mutual
position of a reference coordinate system and
orientation of the crystal lattice.
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Fig. 4. Definition of the Euler angles ϕ1,Φ,ϕ2. The
crystal coordinate system (red) can be superimposed
onto the sample system (blue) by three rotations:
1) rotation by ϕ1 around the Z axis of the crystal
coordinate system, 2) rotation by Φ around the new X
axis and 3) rotation by ϕ2 around the new Z axis. The
dotted lines show the positions of the axes before the
last rotation.

Fig. 5a describes the definition of a crystal
direction [uvw]. Further, it is common to denote
〈uvw〉 all crystalographically-related directions, i.e.,
the directions coincident with [uvw] with respect to
all symmetries of the crystal lattice. Supposing the
difference in orientations between two neighbouring
points which is called their misorientation, it is
common to use an angle-axis representation θ〈uvw〉
based on the fact that one orientation can be
matched to another using rotation by an angle θ

around an axis 〈uvw〉. Because of non-uniqueness
of this transformation especially in highly symmetric
systems, only the solution with the minimum angle
θ is considered and such a transformation θ〈uvw〉 is
called disorientation. Results presented in this paper
come from a research of metals with cubic crystal
systems where the upper limit for the angle θ is
about 62.8◦. Details of conversion among Euler angles,
transformation matrices and angle-axis representation
can be found in (Engler and Randle, 2010).

(a) (b)

Fig. 5. (a) Meaning of a crystal direction [uvw] in a
crystal lattice with length parameters a,b,c of a unit
cell. The direction shown here is [422]. (b) Inverse pole
figure as a colour scheme for orientation imaging.

Data obtained from EBSD can be immediately
displayed in a pixel image where each pixel
corresponds to one grid point and its colour is
related to the crystal orientation (Fig. 9 in the section
Numerical results). To represent each orientation by a
single colour, an inverse pole figure shown in Fig. 5b is
used as a colour scheme. Every orientation is located
there according to the direction of one chosen axis of a
reference coordinate system with respect to the crystal
coordinate system in the given point. For instance, pure
blue (vertex [111]) reveals that the chosen reference
axis is parallel to the body diagonal of a unit cubic
crystal cell. Because of invariance under rotations
around the reference axis, this representation is not
sufficient but still very illustrative for recognizing
differences in orientations. Grain boundaries with the
disorientation angle exceeding a limit value ∆, which
is equal to 15◦ in Fig. 9, are coloured white. Another
possibility often used is colouring the grains with
random colours in order to distinguish them easily
(Fig. 7).

(a)

(b)

Fig. 6. Grain and subgrain boundaries in a sample of
copper after 8 ECAP passes annealed for 10 hours
at 373 K, section XZ, window size 128×96 µm, grid
step 0.5 µm. (a) Darkness of a boundary corresponds
to its disorientation angle θ . Pure white for θ ≤
5◦ changes linearly to pure black for θ = 62.8◦.
(b) Boundaries are divided into two types – green
low angle boundaries (θ ≤ 15◦) and red high angle
boundaries (θ > 15◦).
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When focusing just on the grain boundaries, we
can draw them dependently on the disorientation
angle θ . In Fig. 6a the darkness of each boundary is
related to the disorientation angle; pure black colour
corresponds to the maximum angle 62.8◦. In Fig. 6b
two types of boundaries are distinguished – green
low angle boundaries with θ ≤ 15◦ and red high
angle boundaries with θ > 15◦. In a similar way it
is also possible to visualize some special boundaries
according to their coincidence site lattice (CSL) type.

QUANTITATIVE ANALYSIS OF
GRAIN BOUNDARIES

To specify a grain boundary, five parameters
are needed in general. Three of them are related
to its misorientation (e.g., Euler angles) and the
other two describe the orientation of the interface
plane (e.g., spherical angles of the plane normal).
However, characterizing the whole five-parameter
distribution requires a large population of observable
grain boundaries. In that case it is possible to
use statistical methods developed for estimating the
distribution density. For better insight, only changes
in several parameters fixing the other ones are
actually investigated which usually leads to some
discretization of the parametrical space. In what
follows, we will focus just on the misorientations of
grain boundaries, especially the disorientation angle.
This quantity represents a real-valued mark of the grain
boundary network which allows to characterize it by
the means of random marked closed sets (RMCS).
In the following, the terminology and notation from
(Ballani et al., 2012) are used.

We consider a random marked closed set (Y,Z) in
the d-dimensional Euclidean space Rd as a random
function Z defined on a random domain Y ⊂ Rd .
RMCS is stationary if its distribution is invariant under
translations and it is isotropic if its distribution is
invariant under rotations.

For any ε ≥ 0 define the random field

Zε(x) =

 max
y∈Y∩Bε (x)

Z(y) for x ∈ Y⊕ε ,

0 otherwise,

where Bε(x) denotes the Euclidean ball in Rd with
centre x and radius ε , Y⊕ε is a dilated set Y⊕ε = Y ⊕
Bε(o).

Second-order characteristics of RMCS (Y,Z) for
x,y ∈ Rd are defined as follows. Let us define

κ f (x,y) = lim
ε↓0

E[ f (Zε(x),Zε(y)) |x,y ∈ Y⊕ε ], (1)

whenever κ| f |(x,y) < ∞ and P(x,y ∈ Y⊕ε) > 0 for all
ε > 0, otherwise κ f (x,y) is undefined. Eq. 1 is a limit
of conditional expectation given the two points x,y lie
in the dilated set. Common choices of f are

e(m,n) = m , c(m,n) = mn ,
v(m,n) = m2, g(m,n) = (m−n)2.

Then define the conditional mean mark and the mark
covariance function

Eκ(x,y) = κe(x,y) , (2)
covκ(x,y) = κc(x,y)−κe(x,y)κe(y,x) . (3)

Further express the mark correlation function

corκ(x,y) =
κc(x,y)−κe(x,y)κe(y,x)√

(κv(x,y)−κe(x,y)2)(κv(y,x)−κe(y,x)2)
(4)

and the mark variogram

γκ(x,y) =
κg(x,y)

2
=

κv(x,y)+κv(y,x)
2

−κc(x,y) .
(5)

Another characteristic is the Stoyan’s kmm function
(Stoyan et al., 1995)

kmm(x,y) = m̄−2
κc(x,y) , m̄ = E[Z(x) |x ∈ Y ] .

Under the assumptions of stationarity and isotropy
of the RMCS (Y,Z), the characteristics defined in Eq. 1
are functions of the distance r = ||x−y|| only. For their
estimation on a bounded window W ⊂ Rd , choose a
finite set of test points T ⊂ W such that for a fixed
ε > 0 and for suitable interpoint distances r ∈ R+, the
sets

N(1)
ε,T (r) = {x ∈ Y⊕ε ∩T : ∃y ∈ Y⊕ε ∩T : ||x− y||= r}

N(2)
ε,T (r) = {(x,y) ∈ (Y⊕ε ∩T )2 : ||x− y||= r}

are nonempty. For κe, κv and κc we use the following
statistical estimators:

κ̂e(r) =
1

|N(1)
ε,T (r)|

∑
x∈N(1)

ε,T (r)

Z(x) (6)

κ̂v(r) =
1

|N(1)
ε,T (r)|

∑
x∈N(1)

ε,T (r)

Z(x)2 (7)

κ̂c(r) =
1

|N(2)
ε,T (r)|

∑
(x,y)∈N(2)

ε,T (r)

Z(x)Z(y) (8)

κ̂g(r) =
1

|N(2)
ε,T (r)|

∑
(x,y)∈N(2)

ε,T (r)

(Z(x)−Z(y))2 (9)
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where | · | stands for cardinality of the set. Under
some additional assumptions, these estimators are
asymptotically unbiased when ε ↓ 0.

Taking into account the grain boundary structure
with almost constant marks along its edges, it is
reasonable to consider whether a given pair of points
lies on the same edge or not. An important feature
of the estimators introduced above is that marks in a
small distance are highly correlated simply because
of the fact that the pair of points often belongs to the
same edge. However, correlations just among different
edges can give us more valuable information about the
second-order structure. In what follows, we denote by
x ∼ y the relation that the points x and y belong to ε-
neighbourhood of one edge and by x 6∼ y the opposite
case. Under stationarity and isotropy we define

Ñ(1)
ε,T (r) = {x ∈ N(1)

ε,T (r) : ∃y ∈ N(1)
ε,T (r) : x 6∼ y}

Ñ(2)
ε,T (r) = {(x,y) ∈ N(2)

ε,T (r) : x 6∼ y}

and ̂̃κe(r), ̂̃κv(r), ̂̃κc(r), ̂̃κg(r) can be defined in a
similar way like Eqs. 6-9, using non edge-related sets
Ñ(1)

ε,T (r), Ñ
(2)
ε,T (r) instead of N(1)

ε,T (r),N
(2)
ε,T (r). Benefit of

these estimators is that they suppress the effect of high
correlation of pairs of points belonging to the same
edge.

Another approach to characterizing the grain
boundary structure as a marked fibre process consists
in investigating several types of special boundaries
dominantly influencing properties of the material. Let
us suppose that each point of the grain boundary
network is given a categorical mark Z(x) ∈ Z =
{1,2, . . . ,m} which is constant for points belonging to
the same edge. For each pair of values i, j ∈ Z , we
define the cross K-function

Fig. 7. Crystal orientation map of Cu after 8 ECAP
passes with randomly coloured grains. Window size
40× 30 µm, grid step 0.07 µm.

Ki, j(r) =
1

λiλ jδ (A)
E [

∫
Y

∫
Y∩A

1[||x−y||≤r] dx dy |

Z(x) = i, Z(y) = j] , (10)

where λi is an intensity function of a fibre subprocess
of edges with the mark i ∈ Z and A ∈ B0 is an
arbitrary bounded Borel set with positive Lebesgue
measure δ (A)> 0. To estimate Eq. 10 it is necessary to
provide a segmentation of pixellated grain boundaries
(Arnould et al., 2001; Jeulin and Moreaud, 2008).
During this smoothing procedure, the grain boundaries
are identified as lines or curves separating different
phases in the image. On the segmented fibre structure
Ys we firstly define a simple intensity estimator of λi

λ̂i =
1

δ (W )

∫
Ys

1[Z(y)=i] dy .

Based on the set of test points Vi ⊂ {y ∈Ys : Z(y) = i},
an estimator of Eq. 10 can be expressed as

K̂i, j(r) =

∑
x∈Vi,	r

(
∫
Ys

1[||x−y||≤r,Z(y)= j] dy)

λ̂iλ̂ jδ (W	r)|Vi,	r|
,

where W	r = W 	Br(o) is eroded window providing
the edge effects correction and Vi,	r =Vi∩W	r.

The K-function can be useful for interpretation of
clustering of different types of grain boundaries. For
instance, higher values of Ki, j(r) indicate clustering of
edges with the mark j around edges with the mark i.

NUMERICAL RESULTS

The methods were applied to data obtained from
EBSD of copper processed by equal-channel angular

Fig. 8. Histogram of disorientation angles of Cu after
8 ECAP passes.
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373K

423K

473K

573K

Fig. 9. Crystal orientation maps of Cu after 8 ECAP
passes annealed for 10 hours at 373 K, 423 K, 473 K
or 573 K. Window size 128× 96 µm, grid step 0.5 µm.

Fig. 10. Histograms of disorientation angles of four
examined samples from Fig. 9.
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pressing. After 8 passes through the die, the samples
were annealed for 10 hours at different temperatures
– 373K, 423K, 473K and 573K (Fig. 9). It is
obvious that the temperature of annealing influences
the microstructure.

To indicate changes in the average grain size,
Table 1 summarizes the mean areas of grain profiles
and their variation coefficients, i.e., ratio of the
standard deviation and the mean area, in observed
cross section.

Table 1. Mean profile areas in µm2 and their variation
coefficients in the sample without annealing and four
annealed samples.

no annealing 373K 423K 473K 573K
0.97 4.90 3.21 7.01 10.57
0.01 0.20 0.26 0.29 0.12

Increasing tendency in average grain size also
influences the lengths of the edges of the grain
boundaries observed in the cross sections. Fig. 11
shows that the majority of them lies below 2 µm
(edges shorter than 0.5 µm were excluded during the
segmentation) but especially in the last sample even
several times longer edges are present.

Histograms of disorientation angles in Fig. 10
indicate among others a high fraction of Σ3 boundaries
with θ = 60◦, mostly being so called twin boundaries
with axis of rotation 〈1,1,1〉, and Σ9 boundaries with
θ

.
= 39◦. However, in the microstructure of copper

processed by 8 ECAP passes rather low-angle grain
boundaries (LAGB’s) and random high-angle grain
boundaries (HAGB’s) predominated. From Table 2 it
is apparent that frequency of random HAGB’s remains
about 40-50% while frequency of twin boundaries
rapidly increases when the material is annealed.

Table 2. Frequency of selected boundaries in
microstructure of pure copper processed by ECAP
and subsequent annealing at different temperatures for
10h.

specimen LAGB’s Σ3 Σ9 HAGB’s
no annealing 57.92 2.57 0.25 39.26

373K 2.50 35.83 6.75 54.92
423K 2.10 54.30 7.42 36.18
473K 2.89 41.43 6.15 49.53
573K 3.08 40.13 5.09 51.70

Observation of high frequency of twins is fully
consistent with the investigation of the role of shear
stress in formation of annealing twin boundaries in

copper (Field et al., 2006). Field et al. revealed that
the twin content in rolled copper with 92% reduction
is significantly lower than that in any copper deformed
by ECAP, regardless of the annealing temperature.
(Molodova et al., 2007) found a very low thermal
stability of pure copper processed by ECAP. They
observed that in the microstructure of pure copper
processed by 12 ECAP passes, large recrystallized
grains can be already found even after annealing at
393 K for 10 min and 423 K for 2 min. In our
study, the occurrence of large recrystallized grains was
observed at all annealed temperatures with markedly
local character.
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Fig. 11. Box plots of lengths of the grain boundaries
of four examined samples. The plots show median,
the first and the third quartile and 1.5 multiple of the
interquartile range. Outliers are not figured.

Occurrence of high frequency of twin boundaries
in the microstructure of annealed copper samples
before loading in the creep testing machine can
significantly influence creep behaviour. It was found
(Watanabe and Tsurekawa, 1999; Watanabe, 2011)
that a high fraction of strong low-Σ boundaries is a key
factor controlling intergranular brittleness. The control
of intergranular fracture and intergranular brittleness
can be achieved by reduction of random boundaries
or conversely by increasing the fraction of LAGB’s
or special low Σ coincidence boundaries resistant to
fracture.

It is generally accepted that the damage near
grain boundaries is one of the key factors controlling
creep life because many cracks are initiated at
grain boundaries and frequently major degradation
phenomena in materials are subjected to the creep
exposure. Furthermore, grain boundaries can influence
creep behaviour of ultrafine-grained materials due
to synergetic effect of additional operating creep
mechanisms like grain boundary sliding (GBS),
intergranular cavitation or more intensive grain
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boundary diffusion (Král et al., 2012). Nevertheless
the ability of GBS takes place more significantly
at a random grain boundary compared with low-Σ
boundaries (Kokawa et al., 1981; Watanabe et al.,
1984).

With the characteristics introduced in the previous
section, we aim at characterizing the microstructure
in a more complex view. The following results
show that even though the marginal distribution
of disorientation angles and the fraction of special
boundaries can be similar, their arrangement in the
grain boundary network can differ crucially. The
second-order characteristics describe these aspects on
the basis of correlations and clustering of different
grain boundary types measured in a small distance
radius. The quantities defined in Eq. 1 are estimated
using a set of test points T given by all the grid points
of the EBSD measurement and a fixed ε > 0 given by
the grid step. The cross K-function Eq. 10 is estimated
using a set of test points Vi given by midpoints of
the i-th type boundaries, i ∈ Z = {3,9,L,H}, where
the marks correspond to Σ3, Σ9, LAGB’s and random
HAGB’s.
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Fig. 12. Estimators of the mark expectation Êκ(r) =̂̃κe(r) and the mark correlation function ĉorκ(r) =̂̃κc(r)− ̂̃κe(r)2 of four examined samples.

Fig. 12 shows the estimators of the mark
expectation Êκ(r) = ̂̃κe(r) and the mark correlation
function ĉorκ(r) = ̂̃κc(r)− ̂̃κe(r)2 of four examined
samples. The first estimator is almost constant because
for every step distance r plotted there, the set Ñ(1)

ε,T (r)
contains almost every point x ∈ Y⊕ε ∩ T and in this
case the estimator equals to the unconditional mean
mark with respect to T . With increasing annealing
temperature, we can observe increasing trend of
the mark expectation and decreasing trend of the
mark correlation function. In other words, increase
in the annealing temperature leads to more random
arrangements of edges within the distance r in the
sense of their disorientation angles.

In the next we aim at localization of the dominant
Σ3 boundaries near the other boundary types. Fig. 13
shows the estimators of the cross K-functions K̂3,3(r),
K̂9,3(r), K̂L,3(r) and K̂H,3(r), which help to interpret
the occurrence of Σ3 boundaries in neighbourhoods
of Σ3, Σ9, LAGB’s or random HAGB’s. While
Table 2 shows the marginal proportions of different
boundary types, these K-functions bring an additional
information about their mutual positions in the
structure. We see that in the samples with higher
annealing temperature, values K̂3,3(r) and K̂9,3(r) are
generally lower which indicates higher regularity of
Σ3 boundaries with respect to themselves or Σ9
boundaries. On the other hand, the situation is different
in the neighbourhood of less dominant boundary
types where these functions are minimal for the low-
temperature annealed 423 K sample but any clearly
interpretable trend is missing here.

It was found (Molodova et al., 2007; Saxl et al.,
2010) that application of ECAP method could lead
to the formation of the bimodal or even multimodal
microstructures. The bimodality can depend on an
appropriate thermal or creep loading conditions. It
is widely accepted that the co-existence of larger
recrystallized grains in the bimodal structure can
improve deformation behaviour and thereby a ductility
of ultrafine-grained material by relaxation of the
stress concentration, created by GBS, through plastic
deformation inside of larger grains (Ma, 2003; Koch,
2003; Fan et al., 2006). By contrast, a very recent
report on creep ductility of ultrafine-grained materials
did not confirm general acceptance of this view
(Sklenička et al., 2012).

CONCLUSIONS

The present paper defines the grain boundary
structure as a random marked closed set which
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Fig. 13. Estimators of the cross K-functions K̂3,3(r),
K̂9,3(r), K̂L,3(r) and K̂H,3(r) of four examined samples
where the indexes 3,9,L,H represent Σ3, Σ9, LAGB’s
and random HAGB’s.

is observable in a planar section with the use of
orientation imaging microscopy. To characterize its
spatial distribution, it is useful to extend the common
attitude based on marginal distributions to the second-
order analysis. Methods of estimation of the second-
order characteristics are provided and their use on
particular specimens of metallic material is shown.
To reveal the dependency between disorientations
as a function of distance in a stationary and
isotropic structure, appropriate estimators of second-
order characteristics of the marks are defined which
suppress the effect of high correlation of the marks
along particular edges.

The methods are demonstrated on grain boundary
structures marked by the disorientation angle or
equipped with categorical marks indicating specialness
of boundaries according to their CSL type. The
subsequent annealing of the microstructure of pure
copper processed by 8 ECAP passes led to the
formation of the bimodal microstructure containing
high fraction of low-Σ coincidence boundaries. The
second-order characteristics provide an additional
information about arrangements of different boundary
types in the structure. Our results show that increasing
temperature of annealing leads to decreasing tendency
of Σ3 boundaries to form clusters but more likely
to be placed regularly or create longer paths in the
microstructure.
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Dept. Math & Nat. Sci., Schöfferstr. 3, D-64295 Darmstadt, Germany
e-mail: martin.lehmann@mann-hummel.com, jobst.eisengraeber-pabst@mann-hummel.com, jo@h-da.de,
ali.moghiseh@h-da.de
(Received December 20, 2012; revised May 22, 2013; accepted June 10, 2013)

ABSTRACT

The formation index of filter paper is one of the most important characteristics used in industrial quality
control. Its estimation is often based on subjective comparison chart rating or, more objective, on the power
spectrum of the paper structure observed on a transmission light table. It is shown that paper formation
can be modeled by means of Gaussian random fields with a well-defined class of correlation functions, and
a formation index which is derived from the density of the Bartlett spectrum estimated from image data:
the mean of the Bessel transform of the correlation function taken for wave lengths between 2 and 5mm.
Furthermore, it is shown that a considerable variation of the local grammage can be observed also in cases
where the the fibers are uniformly and independently scattered in the paper sheet.

Keywords: Bartlett spectrum, chart cloudiness, fiber system, filter paper, formation, image analysis.

INTRODUCTION

Filter papers are used in a wide variety of
fields, ranging from air to oil filters (Durst et al.,
2007). They consist of fibers, which are more or
less randomly distributed. Except the specific paper
weight (i.e., the weight per unit area, also called
the nominal grammage), the weight distribution is a
very important characteristic of paper. It influences
many properties of filter papers such as flow rate,
particle collection, efficiency, wet strength, porosity
and dust holding capability. Thus, characterization
of the weight distribution is important for industrial
quality control as well as for the development of new
filter materials and technologies of manufacture.

It is easy to get an impression of the weight
distribution when holding a sheet of paper up
against light and observing the distribution of the
optical density, known as the paper formation, chart
cloudiness or flocculation. Assuming a constant
absorption coefficient for the solid constituents of the
paper structure, the local intensity of the transmitted
light can be related to the local weight density by
Lambert-Beer’s law. As a consequence, there is a close
relationship between weight distribution and formation
and, in fact, often one does not distinguish between
both. See Van den Akker (1949), McDonald et al.

(1986) and Lien and Liu (2006) for the computation
of the grammage from the absorption of visible
light. The use of soft X-radiation is suggested in

Farrington (1988), and the influence of the choice
of radiation on transmittance is investigated for
nonwoven fabrics in Boeckerman (1992) and for paper
in Norman and Wahren (1976) and Bergeron et al.

(1988).

Usually, the formation is experimentally
determined based on two-dimensional (2D) images
of the paper structure. A transmission light table is
used in order to ensure a homogeneous illumination
and the images are acquired by a CCD-camera having
a linear transfer function, such that the pixel values
can be assumed to be approximately proportional to
the corresponding local intensities. In the simplest
case, a paper structure inspection can be based on
subjective comparison chart rating, supported by an
industrial standard consisting on well-formulated rules
for image acquisition and rating. Nevertheless, the
valid industrial norm on paper, board, pulps and
related terms gives only a rough description of the
terms ‘formation’ (manner in which the fibers are
distributed, disposed and intermixed to constitute
the paper) and ‘lock-through’ (structural appearance
of a sheet of paper observed in diffuse transmitted
light), ISO 4046(E/F), 2012. Inspection systems based
on image analysis include computation of a (more
or less objective) value for a ‘formation index’ (or
a ‘formation number’) from the image data. One
should keep in mind that such a formation index
estimated from image data is (widely) independent of
the nominal grammage as well as on the variance of the
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local paper weight. But what is exactly meant by the
‘formation index’, and is it sufficient to characterize
paper formation by only one number?

There is a huge number of publications on the
characterization of paper formation (Kallmes, 1984;
Cresson, 1988; Cherkassky, 1999; Drouin et al.,
2001), see also Waterhouse et al. (1991) and
Praast and Göttsching (1991) for a very good
survey on literature from the late 1980th and
Chinga-Carrasco (2009) for newer developments. An
intuitive characteristic for the formation is the mean
paper flock size, going back to Robertson (1956),
but until now there is no convincing method for
segmenting flocks in gray-tone images. More useful
methods are based on measuring the variance of the
pixel values or, more general, the co-occurrence matrix
of the image data (Yuhara et al., 1986; Cresson, 1988;
Cresson and Luner, 1990a;b). The approach presented
in Pourdeyhimi and Kohel (2002) is motivated by
a Poisson statistics for the centers of paper flocks
(objects). On the one hand, these centers cannot safely
be detected and, on the other hand, the computation of
the ‘uniformity intex’ of the paper formation is based
on the variation of the area fraction in a binarized
image but even not on the flock centers.

In the carefully written monograph of
Deng and Dodson (1994) a formation number n =
varr/var0 is defined as ratio of variances varr and var0
of integrated local grammage, where the integration is
over a square of edge length 1mm. In this approach,
varr is the variance for the real structure and var0 is
the variance for a reference model (a Boolean segment
process). This approach goes back to earlier works,
e.g. Norman and Wahren (1974) and is frequently
cited also in current literature, e.g., Sampson (2009).
A similar approach is used in Farnood et al. (1995),
where the fluctuation of the local grammage is
modeled as a Poisson shot noise process (or a dilution
model) of sperical flocks. I’Anson and Sampson
(2003) discussed the relationship between Farnood’s
flocculation characteristic and the spectral density of
paper formation.

Since woven textiles have a (more or less)
periodic pattern, it seems to be obvious to apply
Fourier methods for quality inspection, see e.g.,
Wang et al. (2011) and references therein, where
slight deviations from the periodicity are detected
based on the correlation function of the pattern
or, analogously, its counterpart in the inverse
space – the so-called power spectrum. The use of
Fourier transform for an identification of periodic
patterns in paper and board traces back to I’Anson
(1995). In Sara (1978), Norman (1986), Cresson
(1988), Provatas et al. (1996), Cherkassky (1998) and

Lien and Liu (2006), the correlation function and the
power spectrum are also suggested as characteristics
for cloudiness of (non-periodic but macroscopically
homogeneous) nonwovens and paper formation,
respectively (Section 2.2 in Alava and Niskanen,
2006). Sometimes the range of interaction , i.e.,
integral of the correlation function (also known as the
integral range), is used as a formation index. Instead of
a Fourier transform, Scharcanski (2006) uses a wavelet
transform to extract a spectral density from the sheet
formation.

Fig. 1. An image showing the formation of a filter

paper (left) and a realization of a macroscopically

homogeneous and isotropic GRF (right) with k(x) =

e−λ‖x‖ and λ = 0.6 mm−1; the edge length of the

images 102.4mm.

Mathematical modeling of paper structure on
a mesoscale can lead to a deeper understanding,
e.g., of the phenomenon of formation (Cresson,
1988; Cherkassky, 1998; Antoine, 2000;
Gregersen and Niskanen, 2000; Provatas et al., 2000;
Sampson, 2009), where the model parameters – so
far they can easily be estimated from image data –
serve as formation characteristics. Further approaches
are based on modeling random structures by Markow

Random Fields (MRF) and decomposing the image
of the structure into “different scales”, evaluating the
degree of homogeneity on each scale and computing
an overall degree of homogeneity. Scholz and Claus
(1999) applied this approach originally on the structure
of nonwovens (fleeces and felts), but in principle this
works also for the evaluation of paper structures, where
the degree of homogeneity can be seen as a formation
index. Notice that the “different scales” mentioned
above are also known as the Laplacian pyramid of
image data (Burt and Adelson, 1983).

In the present article we use Gaussian Random

Fields (GRFs) for modeling paper formation and,
following the suggestion made in Xu (1996) and
Lien and Liu (2006), a Fourier approach is applied
for computing characteristics of paper formation.
More precisely, we show that the formation of
the investigated filter papers can be characterized
by the density of the Bartlett spectrum, i.e., a
spectral representation of the correlation function,
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which can be estimated by the method of Koch et al.

(2003). Using a parametric approach for the Bartlett
spectrum, we introduce one of its parameters as a
characteristic for paper formation. Nevertheless, to be
independent of the fitting of a theoretical function
to the experimental data, the formation index is
determined directly from estimates of the spectral
density.

Finally, it is shown by an example that the
spectral density of the paper structure can contain
high fractions of long waves even if no flocculation
occurs, i.e., the fibers are uniformly and independently
scattered in the paper sheet.

MODELING PAPER FORMATION

BY GAUSSIAN RANDOM FIELDS

Visual inspection of Fig. 1 shows that the
formation of filter paper is surely one of the most
convincing applications for GRFs. The difference
among the real structure on the left-hand side and the
realization on the right-hand side, which is obtained
from the adapted GRF, can be recognized only by
experts. This is very important since, if formation can
really be modelled by GRFs, then the Bartlett spectrum
of a GRF uniquely specifies formation.

Fig. 2. Realizations of macroscopically homogeneous

and isotropic GFRs for constant µ and σ2 and

exponential correlation function k(x) = e−λ‖x‖ with

parameters λ = 0.1mm−1, . . . , λ = 0.4 mm−1,

lexicographic order. The edge length of the images is

102.4mm.

As it is well known, a random field Φ(x) is
a 2-dimensional, real-valued random function. The
function Φ(x) is called macroscopically homogeneous
(or stationary in the strict sense), if Φ(x) is invariant
with respect to translations, i.e., its finite-dimensional
distributions are translation invariant. Furthermore,
Φ(x) is said to be isotropic, if it is invariant with
respect to rotations around the origin. Finally, a
random field Φ(x) is a Gaussian Random Field

(GRF) if all its finite-dimensional distributions are
multivariate normal distributions (see, e.g., Adler,
1981; Abrahamsen, 1985 and Adler and Taylor, 2007
for introductions to GRFs).

A macroscopically homogeneous GRF Φ(x) is
uniquely specified by its mean µ =EΦ(x), its variance
σ2 = EΦ2(x)−µ2, and the covariance function

cov(x) = E
(

(Φ(y)−µ)(Φ(y+ x)−µ)
)

, x ∈ R
2 ,

which is independent of y ∈ R
2 and positiv definite.

The normalized function k(x) = cov(x)/σ2 is known
as the (auto-) correlation function. The expectation µ
is the first order characteristic of Φ(x) while σ2 and
k are second order characteristics. All higher order
characteristics depend only on µ , σ and k. This is a
direct consequence of the Gaussianity (Abrahamsen,
1985), which means that our attention can be payed
exclusively on the first and second order characteristics
and their estimation.

Four realizations of GRFs Φλ (x) with an

exponential correlation function k(x) = e−λ‖x‖, x ∈
R
2, are shown in Fig. 2. It turns out that the

distributional properties of Φλ (x) distinguish by the

positive scaling parameter, i.e., it holds Φλ (x)
d
=

Φ1(λx), and realizations of Φλ (x) can be obtained
from realizations of Φ1(x) by scaling.

If a GRF is well adapted to the image data
of a paper structure, then the interpretation of its
characteristics µ , σ2 and k is as follows: The mean µ is
the brightness, σ corresponds to the image dynamics,
and k is the correlation function of the pixel values.
Under some technical conditions (using of a CCD
camera allowing photometric measurements, high
gray-tone resolution, constant gain, etc.), assuming
Lambert-Beer’s law for light absorption and knowing
the initial light intensity, the nominal paper grammage
and the weight variance can roughly be estimated
from µ and σ2, respectively. As a consequence,
the correlation function k characterizes the paper
formation uniquely. Fig. 3 shows realizations of two
GRFs with the same µ and k but different σ . One
feels subjectively that the formation is the same in both
images.
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Fig. 3. Realizations of two macroscopically

homogeneous and isotropic GRFs with constant

µ and k(x) = e−λ‖x‖ with λ = 0.5mm−1; left: small

σ , right: larg σ . The edge length of the images is

102.4mm.

Finally, we remark that in the isotropic case the
correlation function k depends on only the radial
coordinate r = ‖x‖ of x, i.e., there is a function
k1 such that k(x) = k1(‖x‖) = k1(r). Clearly, the
exponential correlation function mentioned above is
such a function.

THE SPECTRAL

REPRESENTATION OF THE

CORRELATION FUNCTION

First of all, we recall Bochner’s theorem which
states that the covariance function cov = σ2k of a
macroscopically homogeneous random field Φ(x) can
be represented by a non-negative, bounded measure
ΓΦ – the so-called spectral measure or the Bartlett
spectrum of Φ(x). A proof is given e.g., in Katznelson
(2004), p. 170. This important theoretical result is
also useful in applications, since efficient Monte Carlo
techniques of generating realizations of GRFs as well
as fast algorithms for estimating their second order
characteristics are based on spectral representations. In
this article we restrict ourselves to the particular cases
in which the Bartlett spectrum ΓΦ has a density γΦ,
which is also known as the spectral density of Φ(x). If
k̂ denotes the Fourier transform of k, then γΦ = σ2k̂. In
the usual setting, k and k̂ are related to each other by

k̂(ξ ) =
1

2π

∫

R2
k(x)e−ixξ dx , ξ ∈ R

2 , (1)

and vice versa

k(x) =
1

2π

∫

R2
k̂(ξ )eixξ dξ , x ∈ R

2 . (2)

For short, we use the symbolsF and F̄ for the Fourier
transform and its co-transform, which allows to rewrite
k̂ = F k and k = F̄ k̂.

In isotropic case k̂ depends only on the
corresponding radial coordinate ρ = ‖ξ‖, and k̂1(ρ) =
k̂(ξ ) is the Fourier-Bessel transform of k1(r),

k̂1(ρ) =
1

2π

∞
∫

0

r k1(r)J0(rρ)dr , ρ ≥ 0 , (3)

where J0 is the Bessel function of the first kind
of order 0. It is well known that the Fourier-Bessel
transform of the exponential correlation function is

k̂1(ρ) =

√

2

π

λ

(λ 2+ρ2)3/2
, ρ ≥ 0 . (4)

Graphs of this function are shown in Figs. 7 to 9 (red
curves).

To be more flexible in modeling and characterizing
paper formation, we introduce a generalized version of
the exponential correlation function which depends on
an additional positive parameter: the modified Bessel
correlation function which is defined as

k1(r) =
(λ r)ν

2ν−1 Γ(ν)
Kν(λ r) , r ≥ 0 , (5)

where Γ denotes Euler’s Γ-function and Kν is the
modified Bessel function of second kind of order ν .
It is also here k1(r) → 1 as r ↓ 0, and for ν = 1/2
the exponential correlation function is obtained. The
spectral density of the modified Bessel correlation
function is

k̂1(ρ) =
1

2ν−1 Γ(ν)

λ 2ν

(λ 2+ρ2)ν+1
, ρ ≥ 0 , (6)

(Yaglom, 1986, p. 368).

A GEOMETRIC INTERPRETATION

Bochner’s theorem states that a spectral
representation exists for every continuous, positive
definite function, i.e., also for functions which are
not necessarily covariance functions of GRFs. To
give an example, we consider a macroscopically
homogeneous and isotropic 2D Boolean model Ξ
with identically distributed and pairwise independent
random segments (Stoyan et al., 1995). In fact,
Boolean segment processes may serve as models for
fiber systems of paper, where the fibers are ‘scattered
independently and uniformly’ in the paper sheet. For
example, Deng and Dodson (1994) and Provatas et al.
(2000) used a Boolean segment processes for modeling
fiber deposition.
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Fig. 4. A realization of an isotropic Boolean model

with segments of uniformly distributed directions and

exponentially distributed lengths, 1/α = 2 mm, NA =
10 mm−2; image size 20× 14.1mm2.

In the following we assume that the length of
the segments is exponentially distributed with the
parameter α , see Fig. 4 for a realization. Then the
Boolean model Ξ is uniquely characterized by the
parameter α of the exponential distribution and the
specific line length LA, i.e., the mean of the total
segment length per unit area. Notice that 1/α is the
mean fiber length, and NA = αLA is the mean number
of fibers per unit area. Then

g(r) = 1+
α

NAπr
e−αr, r > 0 ,

is the so-called pair correlation function of Ξ, defined
as the density of the reduced second moment measure
which is associated with random length measure
L of Ξ. An explanation and a general formula of
the reduced second moment measure K of Boolean
segment processes is given in Stoyan et al. (1995),
p. 186.

In order to obtain a GRF from the Boolean segment
process, Ξ is smoothed with a kernel function. Let
κ : R2 7→ R be a non-negative and bounded kernel
function with

∫

R2 κ(x)dx = 1. By κ∗(x) = κ(−x) we
denote the reflection of κ , and κ ∗ f is the convolution
of the a functions with the kernel κ . Furthermore, let
u : R 7→ R

2 be an arclength parametrization of a finite
immersed curve ϕ in R

2, that is ϕ = {u(s) : 0 ≤ s ≤
ℓ}, where u is twice continuously differentiable and
ℓ is the curve length. Similar to the convolution of
functions we consider the convolution of a function
with a measure (in our case the length measure
associated with ϕ), where the convolution ϕ ∗ κ may
be defined as

(

ϕ ∗κ
)

(x) =

ℓ
∫

0

κ
(

x−u(s)
)

ds , x ∈ R
2 ,

(Katznelson, 2004). Then Ψ(x) =
(

Ξ ∗ κ
)

(x) is
a macroscopically homogeneous random field with
EΨ(x) = LA, but Ψ(x) is of course not a GRF. (The
random field Ψ(x) forms a Poisson shot noise process
with respect to a random response function, Matérn,
1986, p. 31.)

If we choose κ such that it decreases sufficiently
fast as ‖x‖ → ∞, then from the central limit theorem
(CLT) it follows that

Φ(x) = lim
NA→∞

1

NA

(

Ξ∗κ −LA
)

(x) , x ∈ R
2 , (7)

forms a GRF with µ = 0 (Lane, 1984). The covariance
function of Φ(x) is cov(x) = α2

(

(κ ∗ κ∗) ∗ h
)

(x),
where h(x) = g(‖x‖)−1.

Let now {κε}ε>0 be a family of non-negative
kernel functions of bounded support, κε(x) = 0 for

‖x‖ ≤ 1
ε . Then it follows that cov(x)→ σ2h(x) as ε ↓ 0

for all x ∈ R
2.

In the line with the above, we are setting h1(r) =
g(r) − 1 and call h1 the correlation function of
the Boolean model Ξ. It holds that h1(r) → ∞
as r ↓ 0, i.e., h1(r) is not a correlation function
of a GRF. Nonetheless, the covariance measure
corresponding to h1(r) is positive definite (Section
6.4 in Ohser and Schladitz, 2009) and, therefore, from
Bochner’s theorem it follows that there exists a Bartlett
spectrum of Ξ. Moreover, the Bartlett spectrum has a
density, i.e., the Bessel transform

ĥ1(ρ) =
1

πNA

α
√

α2+ρ2
, ρ ≥ 0

of h1 exists, which is, up to a constant factor, the same
as k̂1 given in Eq. 6 for ν = −1

2 . This is surprising,
since the curve shape of h1 basically differs from that
of k1 given in Eg. 5, where the parameter α plays the
same role as the patameter λ of the Bessel correlation
function.

In other words, the GRF Φ(x) constructed by Eq. 7
inherits the second order properties of the Boolean
model Ξ. This shows that there is a close relationship
between ‘independent and uniform scattering’ of fibers
in the plane (observable on a microscale) and paper
formation (observable on a mesoscale), where the
fiber mean length 1/α corresponds to the formation
index. However, ‘independent and uniform scattering’
of fibers means that there is no tendency to form
fiber clusters (flocks) induced e.g., by adhesion.
Nevertheless, a significant formation is observable
even if the fibers are ‘independently and uniformly
scattered’, see Fig. 5 for an example.
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Fig. 5. A realization of a GRF based on an isotropic

Boolean model with segments of exponentially

distributed lengths, 1/α = 2 mm, where the smoothing

kernel κ is the probability density of the isotropic 2D

Gauss distribution with σ = 0.02mm. The width of the

image is 102.4mm.

Finally we remark, that the geometric model for
the fiber structure introduced above is neither the
only possible nor the most simplest one. In particular,
in Deng and Dodson (1994) one can find suggestions
for more realistic distributions of the fiber length.
However, the above model useful to derive a closed
relationship between the fiber structure and the paper
formation without any assumptions on flocculation.

MONTE CARLO SIMULATION

We follow the spectral approach developed
by Shinozuka and Jan (1972) and others where
realizations of a GRF are generated in the following
two steps:

1. Let u be a random number uniformly distributed
on the interval [0,1], and let v be a random vector
distributed with respect to the probability measure
ΓΦ/2π on R2. If u and v are independent, then

Ψx =
√
2cos(2πu+ vx) , x ∈ R

2 ,

forms a macroscopically homogeneous and
isotropic random field with mean µ = 0, variance
σ2 = 1 and correlation function k.

2. Let now Ψ
(1)
x , . . . ,Ψ

(m)
x are mutually independent

and identically distributed random fields with µ =
0, σ2 = 1 and k. Define

φ
(m)
x =

1√
m

m

∑
i=1

Ψ
(i)
x , x ∈ R

2 .

Then the CLT it yields that

Φ(x) = σ lim
m→∞

φ
(m)
x +µ , x ∈ R

2 ,

is a macroscopically homogeneous and isotropic
GRF with µ , σ2 and k.

Further details and an overview of alternative
approaches are given in Lantuéjoul (2002).

But how large must m be such that φ
(m)
x can be

accepted as a realization of Φ(x)? The usual way
for a suitable choice of m is based on the Berry-
Esseen inequality (Korolev and Shevtsova, 2010). For
the realizations of the GRFs shown in Figs. 1 to 3
the number m was empirically chosen as m = 4096,
which surely is large enough as k̂(ρ) vanishes rapidly
at infinity, see also the remark in Lantuéjoul (2002),
p. 192.

ESTIMATION OF k̂

In this section we assume that the Bartlett spectrum
ΓΦ of the observed random field Φ(x) has a density. We
start from an observation of the normalized random
field f (x) = (Φ(x) − µ)/σ having the expectation
0 and the variance 1. In applications the field f is
observed through a compact window W ⊂ R

2 with
the indicator function 1W defined as 1W (x) = 1 if
x ∈W and 1W (x) = 0 otherwise. This means that the
masked function fW (x) = f (x) · 1W (x) is considered.
One should keep in the mind that the image data
can be seen as a realization of fW , where W is the
(rectangular) image frame. Furthermore, we introduce
a window function cW of W defined as the auto-
correlation function of the function 1W , cW = 1W ∗1∗W ,
called the set covariance in Stoyan et al. (1995).

The function cW is bounded and of bounded
support, and thus its Fourier transform ĉW exists. From
the Wiener-Khintchine theorem it follows that F (cW ·
k) = 2π E| f̂W |2. The power spectrum E| f̂W |2 of fW is
integrable, and hence the inverse Fourier transform F̄
can be applied, which yields

cW · k = 2π F̄
(

E| f̂W |2
)

.

Assume now that the origin belongs toW . Then cW is
positive for all x belonging to the interior ofW , and it
follows that

2π F̄
(

| fW |2
)

(x)

cW (x)
(8)

is an unbiased estimator of k(x) for all x in the interior
ofW .

In the isotropic case the rotation average of an
estimation of k can be performed (rotation around
the origin), which gives an estimation of the radial
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function k1. This leads to an estimation of the density
k̂1 of the Bartlett-Spectrum using the 1-dimensional
Fourier-Bessel transform as defined by Eq. 3.

An overview of the whole estimation procedure is
given in Fig. 6. Clearly, kcW can also be computed by
auto-correlation (red marked path in Fig. 6).

❄

❄

✲

✲

✛

❄

F

Fourier transform

F̄

inverse Fourier
transform

Fourier-Bessel
transform

f ·1W
1W

k · cW
cW

k1

2π f̂ ∗ 1̂W
1̂W

2π E| f̂W |2
|1̂W |2

k̂1

∗∗

/cW
rotation mean

E, | · |2

Fig. 6. Scheme of the computation of the density

function k̂1(ρ). The symbol ∗∗ stands for auto-

correlation of functions (convolution with the reflected

function).

It is well known that the correlation function k can
be computed using the Fast Fourier Transform (FFT)
with a complexity in O(n logn), where n is the number
of pixels of a image of Φ(x). Notice that also the
window function can efficiently be computed via the
inverse space using cW = F̄ |F1W |2. In the rectangular
case, cW is explicitly known (Ohser and Mücklich,
2000, p. 356). Furthermore, discrete version of the
Bessel transform (necessary for computing k̂1 from
k1) can be based on numerical integration, e.g., by
Romberg’s rule.

Unfortunately, the assumption of periodicity in the
discrete Fourier transform (dFT) causes an overlapping
effect (edge effect). This effect can be eliminated by
expanding the function fW to the window 2W , where
fW is padded with zeros, that is f2W (x) = fW (x) if
x ∈W , and f2W (x) = 0 if x ∈ 2W \W . This increases
the pixel number to 4n, still the complexity of the
FFT applied to f2W belongs to O(n logn), which is
a considerable gain compared to the usual estimation
of kcW based on auto-correlation, Fig. 6 (red path),
which is of complexity O(n2). Notice that data
windowing using a 2D analogue of the Welch, Hann

(Hamming) or Bartlett window (Press et al., 2007)
avoids any window expansion, but the unbiasedness of
the estimator given by Eq. 8 gets lost.

The dFT (and its inverse) is usually based on a
modified setting of the continuous Fourier transform.
The main difference to be aware of, is that in Eqs. 1
and 2 the angular frequency ω = 2πξ substitutes the
frequency ξ . This has an impact on the scaling of the
estimated spectral density.

Finally, we remark that sampling of f on a
homogeneous point lattice induces a sampling of f̂ on
the inverse lattice, where the relationship between the
original lattice and its inverse is as follows: Let U be
a matrix of which the column vectors are forming a
basis of the original lattice. Then the column vectors
of the matrix (U ′)−1 form a basis of the inverse lattice
(Ohser and Schladitz, 2009, p. 66). In terms of a dFT
applied to a 2D image with n1 ·n2 pixels of size a1 ·a2,
the transformed image also consists of n1 ·n2 pixels but
of size â1 · â2, where â1 = 1/(n1a1) and â2 = 1/(n2a2).

EXPERIMENTAL RESULTS

The applicability of the method presented above
is now demonstrated for three filter papers produced
by wet laid cellulose fibers. The material No. 1 has a
nominal grammage of 200 g/m2 and a mean thickness
of about 0.9mm, the material No. 2 is of 90 g/m2

and about 0.25mm thick, and the material No. 3 is
of 170 g/m2 and about 0.7mm thick. The mean fiber
length in these materials was much longer than 2mm.
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k̂1 empirical
model, ν = 0.5
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Fig. 7. Images showing the formations of the filter

papers Nr 1a (top) and Nr 1b (bottom), respectively,

as well as the densities of their Bartlett spectra.

83



LEHMANN M ET AL: Characterization of formation of filter paper

In order to estimate the spectral density and to
determine a formation index, various filter papers
are scanned in the light transmission mode using a
conventional CCD camera, see Figs. 7 to 9 (left) for
examples. The 8-bit gray-tone images are of 1580×
1200 pixels with a lateral resolution of 0.177mm
per pixel and, thus, the effective image size amounts
279.66×212.40mm2. The wet laying process induces
a slight sheet inhomogeneity appearing as a long wave
shading in the corresponding images. This shading
was corrected based on a reference image which was
obtained by smoothing the image data using a large
Gaussian filter with the parameter σ = 17.4mm, and
where the reference image was subtracted from the
original one.
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Fig. 8. The filter papers Nr 2a (top) and Nr 2b

(bottom).

The function k̂1 is estimated from the image data
using the method described in the previous section.
The graphs of the estimates are shown in Figs. 7 to
9 (right), where k̂1 is given in mm2. Note that the
relative small values of the empirical k̂1 for wave
lengths 1/ρ less than 10mm might be a consequence
of the applied shading correction. Generally, it is
a hard problem to remove an unknown long wave
shading under simultaneous keeping the spectrum of
long waves in the real structure. Furthermore, because
of data windowing, the fractions of long waves are
estimated with a larger error than those of short waves.
Nonetheless, analysis of realizations of GRFs with
comparable spectral densities shows that for wave
lengths less than 10mm the function k̂1 is estimated
from the image data with sufficiently small errors.
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Fig. 9. The filter papers Nr 3a (top) and Nr 3b

(bottom).

Obviously, there is a white noise observable as an
additive constant c of k̂1,

c= lim
ρ→∞

k̂(ρ)≈ 0.33mm2

(the blue lines in Figs. 7 to 9, right). The reason for
this is not clear. Probably, a considerable fraction of
this noise comes from image acquisition.

Moreover, for fixed ν the theoretical function given
by Eq. 6 was fitted to the experimental data for ρ ≤
10mm, where the parameter λ was estimated based on
a least squares method (Figs. 7 to 9). The estimates of
λ are widely independent of ν (Tab. 1), and in the most
cases the fit for µ = 1 is better than for µ = 1

2 .

Table 1. The formation index β and the numerical

values λ for the adapted function given by Eq. 6.

material specimen β λ [mm−1]

nr. nr. [mm2] ν = 0.5 ν = 1
1 1a 2.6 0.550 0.557
1 1b 2.3 0.564 0.568

2 2a 1.9 0.689 0.694
2 2b 2.1 0.632 0.637

3 3a 2.2 0.615 0.619
3 3b 2.1 0.635 0.638

Finally, a formation index β is the determined as
the mean of the density k̂1 for wave lengths between 2
and 5mm, which are relevant for industrial application.
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DISCUSSION

Throughout this article it is assumed that the paper
structure is isotropic, but most papers produced on
papermaking machines such as those based on the
principles of the Fourdrinier Machine show a clear
anisotropic formation, see also Schaffnit and Dodson
(1993), Scharcanski and Dodson (1996, 2000) and
Sampson (2009), where the anisotropy of formation
is discussed in detail. Here we only remark
that anisotropic paper formation corresponds to an
anisotropic spectral density k̂(ξ ), and from an estimate

of k̂ one can derive two quantities β1 and β2 describing
the paper formation. Let (ρ,ϕ) denote the polar
coordinates of ξ with ρ ≥ 0 and 0 ≤ ϕ < π . Then
the formation index β1 can be computed from k̂(ρ,ϕ1),
where ϕ1 is the processing direction of paper making,
and β2 is obtained from k̂(ρ,ϕ2) for the direction ϕ2

perpendicular to ϕ1. Usually, β1 ≥ β2, and β1 = β2 in
the isotropic case.

For fixed ϕ1 and ϕ2, the functions k̂⊥1 (ρ) =

k̂(ρ,ϕ1) and k̂⊥2 (ρ) = k̂(ρ,ϕ2) can be seen as planar

sections profiles of the spectral density k̂(x). From the
projection slice theorem (Kuba and Hermann, 2008)
it immediately follows that k̂⊥1 (ρ) and k̂⊥2 (ρ) can
be obtained as a cosine transform of the orthogonal
projections k⊥1 (r) resp. k⊥2 (r) of the estimated
correlation function k(x) onto the corresponding
section planes, i.e., the rotation mean in the scheme
of Fig. 6 is replaced with the orthogonal projections
onto the two section planes, and the Fourier-Bessel
transform is now a simple cosine transform.

As pointed out in this article, there is a
‘basic formation’ related to an ‘independent and
uniform scattering’ of the paper fibers, and even this
‘basic formation’ can probably not be effected by
technological measures. This means that the possibility
to reduce paper formation by an improved paper
making technology is limited. For a paper with a
given formation, the question is as follows: What
is the difference between the given and the ‘basic’
formation? Unfortunately, the ‘basic formation’ can
be estimated only roughly from the distribution of the
fiber lengths and until now there is no safe method
to find out whether the formation of a paper can
be reduced or not. Notice that just Deng and Dodson
stated in their monograph “that the power spectrum
can give information on the flock sizes, by isolating
the variance components between two scales for
inspection zones” (Deng and Dodson, 1994, p. 107).

The computation of the formation index from
images of transmitted light via frequency space is
very efficient. However, the results from different

laboratories are comparable only under the condition
that the spectral density of the intensity of the
transmitted light is (nearly) the same as the spectral
density of the local paper grammage. Thus, when
implementing a laboratory system for industrial
quality control one should take care of the wavelength
of the applied light, the homogeneity of illumination,
the image acquisition, a possible inhomogeneity of the
paper, and the edge effects involved in the computation
of the spectral density. It is very helpful to make tests
as the following one: the increase of the paper weight
should not influence the formation and, therefore, the
paper formation of a single paper sheet must be the
same as that of a double sheet (both sheets of the
same formation and one sheet on top of the other).
Furthermore, the estimation of the spectral density
should be robust with respect to variations of the lateral
resolution, i.e., varying the pixel size (in the range from
0.05 to 0.2mm) should lead to only small changes in
the estimated spectral density. Finally, the size of the
paper sheet (i.e., the size of the window W ) should
be large enough such that the statistical errors of the
estimates are limited. From our experience we can
say that an A4-sheet is sufficient. More precisely, let
Φ(x) be a Gaussian random field with an exponential
correlation function, λ & 0.5mm−1, observed through
a rectangular window W of the size 210× 297mm2,
then simulation studies show that the relative statistical
error of estimation of k̂1(ρ) is less than 5% for all
wave lengths 1/ρ ≤ 5mm.
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ABSTRACT

The aim of this study is to suggest a method for automatic detection and segmentation of the target objects
in the microscopic histology/cytology images. The detection is carried out by rectangular shapes then
segmentation process starts utilizing flexible agents which are able to move and change their shapes according
to a cost function. The agents are rectangular at the beginning then they gradually fit to the corresponding
objects using a stochastic reshaping algorithm. The iterative reshaping process is controlled by a cost function
and it is resulted in a finer segmentation of the target objects. The cost functional of the proposed method
comprised of three terms including the prior shape, regional texture and gradient information. The experiments
were carried out using a publicly available microscopy image dataset which contains 510 manually-labeled
target cells. The segmentation performance of the proposed method is compared with another state of the art
segmentation method. The results demonstrate satisfactory detection and segmentation performance of the
proposed method.

Keywords: histocytology images, object detection, reshapable agents, segmentation.

INTRODUCTION

Automated image analysis of cells and tissues
has been an active research field in biomedical
informatics for the past three decades (Mulrane et al.,
2008; Gurcan et al., 2009). However, it has recently
attracted increased attention due to developments
in computer and microscopy hardware. Nowadays
with everlasting perfection of microscopy imaging
technology, an increasing volume of high quality
medical images becomes available. This huge volume
of images, both in routine clinical work and in research
and development, calls for an increasing degree of
automation of image analysis processes.

The aim of any segmentation method is to extract
boundary elements belonging to the same structure
and integrate these elements into a coherent and
consistent model of the structure. The recent literature
suggests that investigation for robust and practical
cell/nuclei segmentation methods, as a critical step
of automated image analysis, is still on its way.
According to Wang et al. (2007) the automated
approaches to segmentation could be categorized
generally in three different classes: supervised (model
based), unsupervised (inspired by low level image
properties) and weakly supervised approaches.

Supervised segmentation methods use
classification algorithms such as k-nearest-neighbor,

Bayes classifier, Neural Networks, and Support
Vector Machines (SVMs). These classifiers learn
models of the characteristics of different tissue types
from labeled examples and adapting the resultant
models for segmenting new images. Supervised
algorithms could be slow to train and may require a
substantial amount of manually segmented data. In
contrast, unsupervised segmentation methods divide
an image into homogeneous regions based on an
objective measure of homogeneity. Such unsupervised
techniques do not require any training data. However
they can lead to groupings that do not correspond to
the desired conceptual tissue categories. Furthermore,
their ad-hoc nature prevents them to be applied to a
wide range of microscopy images. Weakly supervised
approaches arise from the idea of using together a large
amount of unlabeled data which is often easy to obtain
and a few of labeled data which is hard to obtain, since
it requires human experts.

To overcome the segmentation problem in
histocytology images, a number of different
approaches have been proposed in context of various
biomedical applications. Thresholding approaches
with a fixed or adaptive threshold values are the
most straightforward techniques of segmentation
which have been employed in Korde et al. (2009)
for nuclei segmentation of bladder and skin tissue
images. However, the global thresholding technique
supposes that the nuclei have a range of intensities
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that is sufficiently different from the background.
This is generally not true, since the background varies
significantly. The result may be improved by adaptive
thresholding, but large intensity variations between
and within the nuclei will cause the segmentation
procedure to fail.

Moreover, there have been other approaches that
incorporate more complex segmentation techniques
such as region growing, active contours and
edge/contour based methods. Region growing methods
are based on the assumption that the objects consist
of connected regions of similar pixels. Region
growing and merging methods are commonly used
for segmentation of cells and nuclei from fluorescence
microscopy images as shown in Adiga et al. (2006).
However, large intensity variations between and within
the nuclei may cause these methods to fail.

Although active contour models or snakes are
widely used in medical image segmentation, these
methods are sensitive to initialization of a start contour
or a seed inside each object of interest. Furthermore,
they may lead to poor segmentation results if applied to
cluttered images. Several methods have been proposed
to adapt active contours to the nature of histocytology
images. For instance, a method suggested in Ali and
Madabhushi (2012) utilizes active contour algorithm
for segmentation of histopathological images of breast
and prostate tissues.

Edge/contour based methods are another class
of methods that have been used widely in medical
image segmentation. Typically they are considered as
unsupervised or automatic methods. In recent years
there have been efforts to apply these methods on
histocytology images. For instance, a gradient flow
tracking method which is used for segmentation of
touching cells is proposed in Li et al. (2008). Another
recent study that uses a contour-based cell detection
and segmentation algorithm is proposed in Wienert
et al. (2012). However, these methods can fail due
to complicated spatial and color patterns of the
histocytology images.

The aim of this paper is to develop a method
for localization and segmentation of the target objects
in histocytology images. Unlike fully automatic
(unsupervised) methods, which are suitable for very
specific kinds of microscopy images, the proposed
method is model based. That is, to achieve more
flexible and general solution the features of the
interested object samples are given to system through
a training stage. The framework of the proposed
approach is depicted in Fig. 1. The input images are
processed in five steps including preprocessing, object
detection by rectangular window, stochastic reshaping
and contour’s cost evaluation.

Fig. 1. The framework of the proposed method.

Localization of the potential objects is carried
out through scanning the whole images and matching
the rectangular regions of an image with a template
obtained from the training stage. Afterwards, the
contours of detected rectangular regions are reshaped
iteratively to achieve finer segmentation levels. An
iterative stochastic contour reshaping algorithm is
proposed to reshape the contours and to fit the objects
of the interest properly. The reshaping process is
controlled by a cost function including the prior shape,
regional texture and gradient terms. The performance
of the proposed method is evaluated in both detection
(rectangular regions) and finer segmentation levels
and compared with the well-known region growing
method. The precision and recall measures are used for
the assessment of the object localization. Furthermore,
the segmentation performance is compared against the
manually segmented ground truth using the Jaccard
and Zijdenbos similarity indices.

The reminder of this paper is organized as follows:
the next section introduces the dataset and describes
preprocessing stage. Then, rectangular detection of the
target objects will be described next. Afterwards, we
describe the stochastic contour reshaping algorithm
which is proposed to finer segmentation of the
rectangular detected objects. The results section
reports the detection and segmentation performance
results of the proposed method. Finally we conclude
with a discussion of our results.

90



Image Anal Stereol 2013;32:89-99

MATERIALS AND METHODS

As a publicly available dataset, the acute
lymphoblastic leukemia image database (ALL-IDB1)
is employed in our experiments. It is introduced
in Labati et al. (2011) and includes 109 images in
JPG format with 24 bit color depth. The images
are captured with a PowerShot G5 camera and
their resolution is 2592×1944. The dataset contains
about 39000 blood elements, where the lymphoblasts
(immature lymphocytes) as the target objects have
been labeled by the oncology experts. The number
of labeled lymphoblasts presented in the ALL-IDB1 is
510. An example image of the dataset is depicted in
Fig. 2. The target objects are identified by the yellow
dots.

Fig. 2. An example image of the ALLIDB1 dataset. The
lymphoblasts (target objects) are labeled by yellow
dots inside.

PREPROCESSING
Prior to applying the method to dataset images,

a preprocessing step is carried out. This step
includes color quantization of the images. Since the
co-occurrence matrices are used for describing the
image content, depending to intensity or color ranges,
their dimensionality could be too large. Fortunately
the stained blood smear or tissue images have
considerably limited color spectrum. As confirmed
by the sample image presented in Fig. 2, there are
few dominant colors (hues of blue, purple and pink)
in the images obtained from staining techniques.
Thus, this allows us to efficiently reduce the color
space down to k quantized colors using uniform
quantization algorithm. To avoid large and sparse
color co-occurrence matrices, which affects the time
performance of the method, the number of quantized
colors should be small. On the other hand, it should be
large enough such that different regions of the image
can be described and identified correctly. Depending
to the spatial structure and color patterns of the images

the value of k could be 16, 32 or even more quantized
colors. In this paper regarding the time efficiency
and detection performance issues we have selected 32
quantized colors experimentally.

TRAINING

A training set Sl of regions representing the
structure of the interest (lymphoblasts) is obtained
before starting of the detection procedure. Each region,
Reg ∈ Sl , of the training set consists of a set of pixels
whose texture characteristics are described by the color
co-occurrence matrices, as shown in Kovalev et al.
(2011). The texture sufficiently represented by a three
dimensional matrix W (∆i j,ci,c j) where ci and c j are
indices of suitably quantized RGB color intensities of
the pixels i and j, ∆i j is the Euclidean distance between
pixels i, i = (xi,yi) and j, j = (x j,y j) and W is the
frequency of the spatial occurrence of such elementary
image structures on the image plane.

As it can be seen from the Fig. 2 the target
objects (lymphoblasts) are similar to each other,
whereas remaining objects of the non-target classes
(i.e., any types of objects except the lymphoblasts)
are visually different from the target class. This is
confirmed by the multidimensional scaling analysis of
the texture feature vectors of the samples belonging
to the target and other non-target classes. Fig. 3
depicts an approximated 2D distance distribution of
the scaled feature vectors belonging to the mentioned
samples. The green circles in Fig. 3 represent the
scaled vectors of the target class, the red ones represent
the background of the images (red blood cells), the
black, the yellow and the pink icons represent other
types of white blood cells like basophils, eosinophils,
monocytes and non-blast lymphocytes. The target
samples are close to each other in the feature space
whereas other samples of non-target classes are spread
over. Since the lymphoblasts can be distinguished and
separated from the others by their distance in the
feature space, we considered lymphoblast as the only
class in the training set and all the remaining objects
are considered as the background.

According to the mentioned reasons, there is no
need to annotate too many objects as the training
samples. The ratio of the annotated items with regard
to the total number of the target objects is about
10% (51 annotated out of 510 manually labeled target
items). Moreover, due to homogeneity of the target
objects they can be distinguished from the others by
a proper distance threshold in the feature space as
confirmed in Fig. 3. Therefore there is no need to
employ classifiers like SVM.
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Fig. 3. The results of multidimensional scaling analysis
of the samples belonging to various classes. The
green circles represent samples of the target class
(lymphoblasts). The red, black, yellow and the pink
icons represent other types of blood cells (non-target
classes).

DETECTION OF THE TARGET
OBJECTS

The detection procedure is carried out by scanning
the images with a rectangular scanning object.
Since the size of lymphoblasts is homogeneous, the
rectangular scanning object’s size, srec, is determined
based on average size of the bounding boxes in the
training set. The detection procedure consists of 3 main
steps which are executed iteratively until complete
scanning of an image. The first step is moving the
rectangular scanning object over an image. It starts
from (0,0) coordinate of the image and moves to the
end of it row by row in 10 pixels increments. The
second step is texture feature extraction of a region
identified by the rectangular object which is carried
out by computing the co-occurrence matrix (W) of
that region. The third and most critical part is the
classification of the rectangular region. The decision
whether a region is belong to the target class or not,
is resolved by measuring the distance between feature
vectors of that region and centroid of the training set
in the feature space. Let us denote v, v ∈ Rn as the
co-occurrence matrix of an image region identified
by the rectangular scanning object during detection
process, and u, u ∈ Rn as the texture vector of the
training set’s centroid which is obtained from the
co-occurrence matrices of the training set items. To
classify the region into the proper class, the v and the
u vectors are normalized via:

v̂ =
v
‖v‖

, û =
u
‖u‖

, (1)

then the city block distance of normalized vectors is
determined by:

dc =
n

∑
i=1
|v̂i− ûi| . (2)

Having d̄c normalized to [0,1], if the value of d̄c is less
than or equal to a distance threshold tdist, tdist ∈ [0,1],
the region is regarded as a target region otherwise it
will be considered as background class. To optimize
the detection performance, a range of tdist values is
examined in our experiments and the optimum tdist
value is selected regarding the precision and recall
values of the detection procedure.

The graphical output of applying detection
procedure to an example image is depicted in Fig. 4.
The yellow rectangles show the correctly detected
target objects whereas the red ones indicate the false
alarms.

Fig. 4. The result of rectangular detection procedure
applied to an example image. The yellow rectangles
represent true positives, the red ones represent false
positives.

As a result of this phase we end up with the
localization (detection) of the target objects. The
contour pixels of a rectangular agent indicating to a
target object will be regarded as the initial set of pixels
of an reshapable agent. The agents will be reshaped in
the next phase of the method’s processing pipeline to
achieve finer segmentation of the target objects.

STOCHASTIC RESHAPING
To accomplish segmentation of the targets,

stochastic reshaping contour algorithm is proposed.
It is a customized implementation of region-, shape-
and gradient based active contours. The notion of
active contours is utilized and adapted to make it
applicable to a range of histology/cytology images.
It is known that the basic idea of active contour
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model is to evolve a curve, subject to constraints
from a given image I, in order to achieve an optimal
state and therefore to outline the object. Active
contours and level set methods have been widely
used and progressively improved for medical image
segmentation. The concept of active contours was
introduced in Kass et al. (1988) for segmentation of
objects in images using dynamic curves.

Let Ω be a bounded open subset of R2, with ∂Ω

as its boundary. Let I : Ω̄ → R be a given image.
Usually, Ω̄ is a rectangle in the plane and I takes
values between 0 and 255. Denote by C(S) : [0,1]→R2

a parameterized curve. According to Chan and Vese
(2001) the energy functional of the active contour
model is expressed as:

E(C) = E1(C)−E2(C) . (3)

The first term controls the rigidity and elasticity of the
contour and represents the internal energy of the active
contour and is defined as:

E1(C) = α

∫ 1

0

∣∣C′(s)∣∣2 ds+β

∫ 1

0

∣∣C′′(s)∣∣2 ds , (4)

where α , β are positive parameters. The second term
(E2(C)) represents external energy which attracts the
model to the target objects in the image I and is defined
as:

E2(C) = λ

∫ 1

0
|∇I(C(s))|2 ds , (5)

where λ is a positive parameter and ∇I(C(s))
represents the gradient of the contour.

Regardless of internal and external forces
implementation of an active contour based models,
the evolving curve C in Ω, as the boundary of an open
subset ω of Ω (i.e. ω ⊂Ω and C = ∂ω ) is represented
by a Lipschitz function φ : Ω→ R such that:

C = ∂ω = {(x,y) ∈Ω : φ(x,y) = 0} ,
inside(C) = ω = {(x,y) ∈Ω : φ(x,y)> 0} ,
outside(C) = Ω\ ω̄ = {(x,y) ∈Ω : φ(x,y)< 0} .

(6)
Here, inside(C) denotes the region ω , outside(C)
denotes the region Ω\ ω̄ .

In the classical form of its implementation,
the active contour model is forced to move on
locations of maxima |∇I| under limitations provided
by first two terms by minimizing the energy in
Eq. 3. The boundary-based approaches such as
geodesic/geometric active contours have become
popular on account of their reliable performance when
strong object gradients are present. However, as only
the edge information is utilized, their performance is

limited by the strength of the image gradient. These
models are typically unable to handle object occlusion
or scene clutter and as a result multiple overlapping
objects are often segmented as single object.

The basic idea behind our stochastic reshaping
approach is to change the behavior of the active
contour and make it applicable to a range of
histology/cytology images. Hence, we propose a cost
function which is used inside reshaping algorithm
and consisted of two components. The proposed cost
function is defined as:

F = F1 +F2 , (7)

where the first component (F1) represents the internal
force of the proposed cost function and it is responsible
to preserve the integrity of the contour. It controls
weather integrity of the border is kept or not due to
shrinkage or expansion actions applied to border points
Pi. It is defined as:

F1 =

{
0 , if contour is continuous ,
∞ , if contour is discontinuous .

(8)

The second component of the cost function is
defined as follows:

F2 = γ4Vtexture + ι∆Vshape−η∇I(C) , (9)

where γ , η and ι are weighting coefficients. The
first term of the F2 forces the agent’s contour toward
the regions that have similar texture to its prototype.
The prototype is the most similar training item to the
initial state of an agent in terms of internal texture
and contour’s shape. Due to homogeneity of the target
objects we chose centroid of the training set as the
prototype. Similarly, the second term of the F2 forces
the agent’s contour to get a similar shape like its
prototype’s shape. Finally, the third term encourages
the contour toward the edges. Having ū, v̄ ∈ Rn as
normalized texture feature vectors of ω (i.e. area
bordered by the contour) and its prototype respectively,
∆Vtexture is the city block distance between ū and
v̄ at any reshaping step. Similarly, having ρ,ψ as
shape feature vectors of the counter (C) and its
prototype respectively and ρ̄, ψ̄ as their normalized
forms, ∆Vshape represents the city block distance
between ρ̄ and ψ̄ at any iteration step in the reshaping
process. The final term ∇I(C) of the F2 represents the
average gradient value of the agent’s contour at any
reshaping step. Taking into account the requirements
of reasonable computational complexity, simple shape
features were utilized to shape description of the
contour in every reshaping step. The shape feature
vector is defined as follows:

ρ = (ρ1,ρ2,ρ3,ρ4) , (10)
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where ρ1 = Pc is the perimeter of contour, ρ2 = Ac
is the area limited by the contour and ρ3 = Rc is the
roundness of the contour which is defined as:

Rc =
4πAc

P2
c

. (11)

The last item of shape feature vector, ρ4 = Ec
represents the eccentricity of the contour which is
defined as:

Ec =
dmax

dmin
, (12)

where dmax, dmin are the length and the width of
contour’s bounding box respectively.

The reshaping process is described in Table 1. The
three major components of the reshaping algorithm
are: the ”compute distance to centroid”, ”Shrink”
and ”Expand” actions. The ”compute distance to
centroid” component includes extraction of shape,
texture and gradient features of the current state of
an agent and calculate the cost of its current state
using Eq. 7 in every reshaping state (initial, shrunk
or expanded). According to the algorithm a trial
shrinkage or expansion of the agent will be accepted
if the value of cost function F of Eq. 7 in every
step becomes less than its value in the previous step.
In other words, iterative changes of contour made
by Shrink and Expand actions should decrease the
value of cost function. Otherwise, the effect made by
shrinkage or expansion actions on the contour will be
rolled back.

Table 1. Reshaping procedure.
Input: C ∪ ω , contour and body pixels of the
rectangular agent.
Output: New C∪ω fitting region of the interest.
Costinitial⇐ compute rectangular agent’s distance to
centroid using cost function F
Costmin⇐Costinitial
repeat

Ct ,ωt ⇐ Shrink( C,ω )
Costt ⇐ compute shrunk agent’s distance to

centroid using cost function F
if Costt <Costmin then

Costmin⇐Costt , C,ω ⇐Ct ,ωt
end if
Ct ,ωt ⇐ Expand( C,ω )
Costt ⇐ compute expanded agent’s distance to

centroid using cost function F
if Costt <Costmin then

Costmin⇐Costt , C,ω ⇐Ct ,ωt
end if

until (Costmin < a×Costinitial )

The shrinkage action starts with selection of a
random shrink point, Pshrink, from the list of agent’s
border points. Then, the contour points which are
located in distance r of shrink point will be shrunk
in such a way that the integrity of contour is kept.
Similarly, expansion starts with selection of a random
expansion point, Pexpand , such that the Euclidean
distance between the expansion point and shrink point
is greater than a distance threshold, dt . In order to
avoid overlapping of expansion and shrinkage areas
on the contour and keep them far from each other,
Pexpand should be located on the position of contour so
that dt > 2× r. After locating the Pexpand in a proper
position, the contour points that are located in distance
r of the expand point will be expanded in such a way
that the integrity of contour is kept. Fig. 5 depicts a
schematic view of the proposed reshaping process.

Fig. 5. A schematic view of stochastic contour
reshaping process. In every expansion or shrinkage
event the state of the shrunk and expanded points are
changed according to the predefined rules applied in
3×3 neighborhood window of these points.

Fig. 6 represents a reshapable agent imposed on an
example image. The evolution of the agent’s contour is
shown from left to right.

(a) (b) (c)

Fig. 6. The contour evolution of a rectangular agent
due to stochastic reshaping process from left to right.
(a) The rectangular detected target object, (b) Agent’s
contour after 50 reshaping iterations. (c) Agent’s
contour after150 reshaping iterations.

METHOD VALIDATION
In order to evaluate the performance of the

proposed method, the accuracy of the method is
measured in both detection and segmentation steps.
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Furthermore, the segmentation quality of the method
is compared with a state of the art method. In the
detection level the accuracy is measured by calculation
of the detection precision and its recall. The precision
can be defined as the probability that detector’s signal
was recognized correctly. The recall is the probability
that all the ground truth objects are recognized. The
detection procedure is applied to the data set images
and true positive (T p), false negative (Fn) and false
positive (F p) events is determined using the ground
truth information of the target objects. The precision
and recall were computed as follows:

Precision =
T p

T p+F p
, (13)

Recall =
T p

T p+Fn
. (14)

In the segmentation level, the stochastic reshaping
algorithm is applied to the detected rectangular agents
and the segmentation similarity index or segmentation
agreement to the ground truth is measured. The
results are compared with the segmentation results
of a state of the art method (region growing based
method). Two segmentation similarity indices (the
Zijdenbos and the Jaccard) are used to measure the
segmentation performance. The Zijdenbos similarity
index, as shown by Zijdenbos et al. (1994), is a
well-known metric for performance assessment of any
region-based segmentation method. It measures the
percentage of the overlapping ratio between the two
shapes A (automatic segmented area) and M (manually
segmented area or ground truth). It is defined as:

ZSI = 2∗ |A∩M|
|A|+ |M|

, (15)

where A and M are the binary images generated by the
proposed method and manual segmentation of image
(ground truth), respectively.

In addition to ZSI similarity index, the Jaccard
similarity index is also calculated to provide
comprehensive evaluation of the method. The Jaccard
similarity index is defined as:

JSI =
|A∩M|
|A∪M|

. (16)

Furthermore, the segmentation error indices are
calculated via:

EF =
M̄∩A

M
, (17)

MF =
M∩ Ā

M
, (18)

where the EF stands for extra fraction and shows the
over segmentation fraction and the MF stands for miss
fraction and represents the under segmentation fraction
of any segmentation method.

RESULTS

The experimental results are organized into two
subsections. In the first part, we report the manner
of the parameters choice and the performance of
the rectangular detection algorithm. Afterwards, in
the second part of the results, we report the
parameters choice of the reshaping algorithm and the
segmentation quality of the proposed method using
ZSI, JSI, EF and MF indices. Then, the segmentation
results are compared to the results of a region growing
based method.

DETECTION RESULTS

Three main parameters that influence the detection
accuracy of the rectangular detection procedure are:
the number of quantized colors (k), the scanning
window size (srec) and the distance of rectangular
region to the centroid of training set in the
feature space (tdist). Considering trade-off between
the performance and computational cost, we have
run several experiments and set different values to
these parameters to find optimal combination of the
parameters experimentally. Setting fixed values to k
and tdist and changing the value of window size we
noticed that the optimal value for this parameter is
the average size of training items bounding boxes.
Similarly, having a fixed value to the window size
and changing the values of k ∈ {16,32,64} and tdist ∈
[0,1], we measured the precision and recall of the
detection procedure. Fig. 7 depicts the precision-recall
curves of the detection procedure. For each value of
the parameter k (i.e., the number of quantized colors)
there is a curve which is built up based on different tdist
values.

As it is obvious from the figure, the detection
accuracy for the curves with k = 64,32 is considerably
higher than the curve with k = 16. Taking into
account that the detection performance for k = 64
colors is slightly higher than k = 32 as well as
detection procedure for k = 64 colors needs 64× 64
co-occurrence matrices, we chose k = 32 colors due to
the following reasons. Its performance is almost the
same with the k = 64 and it needs twice less data
structures and computational time than the case with
k = 64 colors.
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Fig. 7. Precision vs. recall curves of the detection
procedure for different numbers of quantized colors
(k).

The optimal combination of the mentioned
parameters, i.e., srec = average bounding box size of
the training items, k=32 and tdist = 0.53, resulted in
acceptable detection accuracy with precision = 0.94
and recall = 0.88.

SEGMENTATION RESULTS

The main influencing parameters on segmentation
performance are the three weighting coefficients of the
Eq. 9 (γ , η and ι). Moreover, the parameter a ∈ [0,1]
of Table 1 which controls the reshaping iterations has
significant role in final segmentation quality. Again, to
find the optimal combination of parameters we have
run several experiments. Since the size of the target
objects in the current dataset are homogeneous and all
comparisons in the reshaping process are made to the
centroid of the training set, through experiments we
noticed that the influence of the size coefficient in this
specific dataset is trivial. Therefore, we set the value
of ι to zero then a range of values adaptively are set
to the texture and the gradient weighting coefficients
(γ , η) to find the their optimal values. The number
of reshaping iterations has been set to a fixed number
while investigating the optimal values of the γ and η

parameters. The curve which is shown in Fig. 8 gives
an indication of how segmentation quality changes due
to changes in the values of γ and η . The optimal
combination of the mentioned parameters, i.e., γ =

0.51, η = 0.49 and ι = 0, for a fixed number of
reshaping iterations leads to segmentation agreement
to the ground truth with ZSI = 0.83.

Fig. 8. The effect of changing the values of γ , η to final
segmentation agreement. the γ and η are weighting
coefficients in the proposed cost function and ZSI is
the segmentation similarity index.

Having the optimal values of the weighting
parameters of the cost function (γ , η and ι), regarding
time efficiency and segmentation quality, a set of
values has been assigned to a ∈ [0,1] to measure
its effect on final segmentation agreement. Table 2
represents the effect of the parameter a on the final
segmentation agreement of the proposed method.

Table 2. The effect of the parameter a on final
segmentation agreement of the proposed method
in both rectangular and reshaped levels. (ZSIrect:
average segmentation agreement of the images
segmented by the rectangular agents, ZSIreshaped:
average segmentation agreement of the images
segmented by the reshaped agents, iteration: the
number of the reshaping iterations).

a ZSIrect ZSIreshaped iteration
1 0.78 0.785 1
0.9 0.78 0.791 58
0.8 0.78 0.795 146
0.7 0.78 0.812 198
0.6 0.78 0.818 238
0.5 0.78 0.824 303
0.4 0.78 0.835 355
0.3 0.78 0.837 574
0.2 0.78 0.839 611
0.1 0.78 0.841 755

As it can be seen from the Table 2 the optimal
value of the parameter a is 0.4 since it is resulted in
final segmentation agreement of ZSIreshaped = 0.835.
Basically lower values of the ’a’ should lead to
better segmentation agreement results. Since for the
smaller values of the a (a < 0.4) the reshaping
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iterations increase dramatically at the same time the
segmentation agreement rises slightly, regarding time
efficiency, the optimal value of this parameter is set to
a = 0.4.

To enable more precise comparison in contrast
with another state of the art segmentation method,
the dataset images are segmented further with a
well-known method which is based on region growing
followed by thresholding used in Adiga et al. (2006).
Table 3 provides the segmentation results for both
rectangular and reshaped levels of the proposed
method contrasted with the results of the Adigas
method.

Table 3. The segmentation results of the proposed
method in both rectangular and reshaped levels
in contrast with Adiga’s method. (ZSI, JSI:
similarity indices, EF, MF: segmentation errors,
time: processing time per image)

Method ZSI JSI EF MF time
Proposed rect 0.78 0.60 0.18 0.14 10.1
Proposed reshaped 0.83 0.67 0.09 0.18 301.4
Adiga’s 0.78 0.56 0.15 0.13 7.03

Here, the ZSI and JSI are average similarity
indices between segmented images and the ground-
truth, the EF and MF are average segmentation errors
and time shows the mean processing time per image in
seconds.

As it can be seen from Table 3 the first two
rows of the table represent the results of the proposed
method in both rectangular and reshaped levels and
the third row represents the results of the method used
in Adiga et al. (2006). The average similarity index
(ZSI) of the mentioned method in the rectangular level
(proposed rect) is 0.78 which significantly increased
to 0.83 due to stochastic reshaping process. Similarly,
the Jaccard’s (JSI) index increased from 0.6 to 0.67.
The over segmentation error rate sank significantly by
0.09 (50%). However, there is a slight increase in under
segmentation error rate.

The performance of the proposed method in
rectangular level is almost the same with the Agida’s
methods. Whereas the proposed method in reshaped
level outperforms the Agida’s method considering
both similarity and error indices. However, stochastic
reshaping process needs more processing time to
exactly delineate the borders of the target objects.

Fig. 9 depicts an example of the binary images that
are used together for segmentation assessment of the

methods including images produced by the proposed
or Agida’s method and the ground-truth.

(a) (b)

(c) (d)

Fig. 9. Examples of the binary images produced and
used in the experiments. (a) A manually segmented
ground truth, (b) A segmentation result of the proposed
method in the rectangular detection step, (c) A
segmentation result of the proposed method obtained
from stochastic reshaping process, (d) A segmentation
result of the region growing (Agida’s) method used for
comparison of the proposed method.

Figs. 10 and 11 depict example images segmented
by proposed and Agida’s methods respectively. The
target objects are identified with white dots inside
and the final segmented objects borders are shown in
yellow.

Fig. 10. An example image segmented by proposed
method. The target objects are labeled with white
dots inside. The yellow contours represent method’s
segmentation output.
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Fig. 11. An example image segmented by region
growing based (Agida’s) method. The target objects
are labeled with white dots inside. The yellow contours
represent method’s segmentation output.

DISCUSSION

Existing bottom-up segmentation approaches like
Al-Kofahi et al. (2010) which utilize low- or mid-level
image features such as edges or gradient values, lead
to poor segmentation results once applied to occluded
and cluttered images (i.e., images that contain
complex spatial color patters). These methods are
mostly unsupervised and may present acceptable time
performance and skip training step. However, due to
their ad-hoc nature, the edge- gradient based methods
may fail even once they applied to rather similar
subcategories of a specific image type. Furthermore, in
real daily pathological routine, pathologists might be
interested to a specific subgroup of the target objects
for instance malignant cells or lymphoblasts in the
case. This confirms the need for a flexible supervised
method with the ability of being tuned and trained to
specific categories of images.

To overcome the mentioned limitations, we
proposed a supervised method which utilizes both
low- and high level image features. Since the method
utilizes content, shape and gradient information, it
is robust enough to handle various subcategories of
stained histocytology images. The processing pipeline
of the method consisted of rectangular detection and
segmentation components. The stochastic reshaping
component could be optionally activated in the cases
that there is a need for more precise delineation of the
target objects. Unlike level set methods, the proposed
method can handle segmentation of multiple regions
on a single image. Another significant property of
the method is that it can be adapted to various types
of the histocytology images. The adaption could be
carried out by adjusting weighting parameters related

to the texture, shape and gradient terms of the proposed
cost function (Eq. 8). For instance if there is no clear
borders in an image dataset and the target objects are
described mainly by their texture rather than other
features, the gradient weighting parameter (η) should
be set to a smaller value than the texture parameter
(γ). However, finding the optimal combination of the
parameters is a challenge that needs to be addressed
by experiments.

The segmentation performance of the proposed
method is compared with another state of the
art method. Although both methods including the
proposed one are not extremely precise, according to
Table 3 the proposed method demonstrated statistically
better segmentation performance than Agida’s method.
However, due to the unsupervised nature of the
Agida’s method it needs less processing time than the
proposed method. The final segmentation performance
of the proposed method is dependent to the initial
rectangular detection. Although stochastic reshaping
algorithm can converge to the object’s borders in
the cases of improper initialization, however it needs
significant amount of processing time. Hence the
proper initialization effects on both processing time
and segmentation quality. The proposed method
matched to the ground-truth with the average ZSI score
of 0.83. According to Zijdenbos et al. (1994), it is
generally accepted that a ZSI > 0.7 represents very
good agreement. Therefore, the average agreement of
the proposed method in reshaped level is appropriate.
The prototype software developed based on the
proposed method could be considered as a potential
tool for pathologists in daily diagnostic routines and it
could be also utilized in the research projects.

CONCLUSION

A new method is proposed for rectangular
detection and segmentation of the immature cells
found in peripheral blood (lymphoblasts). The method
is robust enough to be tuned and applied to the
other similar histocylogy images. It demonstrated
appropriate level of detection accuracy (precision =
0.94, recall = 0.88) and segmentation agreement
with the ground truth (ZSI = 0.83). The prototype
software developed based on the method could be
considered as a potential CAD tool for diagnosis of the
acute lymphoblastic leukemia in the clinical process.
Moreover, it can be used by the researchers who
are investigating the computer aided analysis of the
histocytology images.
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ABSTRACT

A Boolean model is a union of independent objects (compact random subsets) located at Poisson points. Two
algorithms are proposed for simulating a Boolean model with non uniformly bounded objects in a bounded
domain. The first one applies only to stationary models. It generates the objects prior to their Poisson locations.
Two examples illustrate its applicability. The second algorithm applies to stationary and non-stationary
models. It generates the Poisson points prior to the objects. Its practical difficulties of implementation are
discussed. Both algorithms are based on importance sampling techniques, and the generated objects are
weighted.

Keywords: Boolean model, importance sampling, Minkowsky functionals, Steiner formula.

INTRODUCTION

The Boolean model is certainly one of the most
currently used random set models in mathematical
morphology, stochastic geometry and spatial statistics.
It is defined as the union of a family of independent
random compact subsets (denoted for short as
“objects”) located at the points of a locally finite
Poisson process. It is stationary if the objects are
identically distributed (up to their location) and the
Poisson process is homogeneous, and non-stationary
otherwise.

Despite its widespread use, it seems that little
attention has been paid to the following problem: How
to perform exact simulations of a Boolean model in a
bounded domain?

The solution to that problem is not straightforward,
unless the objects are uniformly bounded. The
difficulty lies in that the intersection of a Boolean
model and a bounded domain is also a Boolean model,
but its parameters are different. The more remote the
object to the domain, the less chance they have to hit
it. On the other hand, the larger the objects, the more
chance they have to hit the domain.

After a brief reminder on the Boolean model,
this problem is investigated. Although most emphasis
is placed on the stationary case because of its
possible connections with stereology, the general case
is also treated in a second part of the paper. Two
examples serve to illustrate the algorithms and their
implementations.

Here is the set of notation that will be used
throughout the paper. Unless specified, the workspace
is the d-dimensional Euclidean space Rd with

Lebesgue measure vd . The origin of Rd is denoted by
o. More generally, points are denoted by lower case
letters, subsets by capital letters and family of subsets
by calligraphic letters. If x ∈ Rd and A ⊂ Rd , τxA
stands for the translation of A w.r.t. vector ~ox. The
dilation of A by another subset B is defined as

δBA = {x ∈ Rd : τxB∩A 6=∅} .

DEFINITION AND MAIN
PROPERTIES

The basic ingredients of a Boolean model are

(i) a Poisson point process P with an intensity
function θ = (θx,x ∈ Rd) that is assumed to be
locally integrable.

(ii) a family of nonempty and mutually independent
compact random subsets (Ax,x ∈ Rd). Ax is called
the object located at x. If it takes simple shapes,
then its statistical properties can be specified by
elementary descriptors (e.g., distribution of its
radius for a disk). For more intricate shapes,
the hitting functional of Ax can be considered
(Matheron, 1975). It assigns each compact subset
K of Rd (in short K ∈ K ) the probability that it
intersects with Ax,

Tx(K) = P{Ax∩K 6=∅} , K ∈K . (1)

Definition 1 A Boolean model is a union of objects
located at Poisson points,

X =
⋃

x∈P
Ax .
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Our objective is to simulate the Boolean model
in a compact domain, say Z. Insofar as this mainly
consists of simulating the objects of X that intersect
with Z, it is crucial to assume their number to be almost
surely finite. Under this assumption, it can be shown
(Lantuéjoul, 2002) that the number of objects hitting
any compact subset K of Z is Poisson distributed with
mean

ϑ(K) =
∫
Rd

θx Tx(K) dx , K ∈K (Z) . (2)

In particular, the avoiding functional of X ∩Z, defined
for each K ∈K (Z) as

QX∩Z(K) = P{(X ∩Z)∩K =∅}= P{X ∩K =∅}

is equal to

QX∩Z(K) = exp
(
−ϑ(K)

)
K ∈K (Z) . (3)

STATIONARY CASE

ALGORITHM
In this case, the intensity function is constant, say

θ , and all objects have the same hitting functional, up
to a translation

Tx(K) = To(τ−xK) . (4)

In what follows, it is convenient to write

To(K) =
∫

K
dF(A)1A∩K 6=∅ ,

where F (symbolically) denotes the distribution of the
parameters of Ao. Then we have

Tx(K) =
∫

K
dF(A)1τxA∩K 6=∅ .

Applying this formula to Eq. 2 and permuting
integrals, the mean number of objects hitting Z
becomes

ϑ(Z) = θ

∫
K

dF(A)vd
(
δAZ

)
= θE

{
vd
(
δAZ

)}
, (5)

which gives the following expression for the avoiding
functional of X ∩Z.

QX∩Z(K) = exp
(
−θ

∫
K

dF(A)vd
(
δAK

))
.

Let us write it slightly differently

QX∩Z(K) = exp
(
−ϑ(Z)

∫
K

dFZ(A)
vd(δAK)

vd(δAZ)

)
,

(6)

which involves a weighted version FZ of F

dFZ(A) =
dF(A)vd(δAZ)
E{vd(δAZ)}

. (7)

An interpretation of Eq. (6) is as follows: X ∩ Z
is the union of a Poisson number (mean ϑ(Z)) of
independent objects of the form τẋA where A is
distributed like FZ and ẋ is a uniform point over δAZ.
Hence the simulation algorithm:

Algorithm 1
(i) set X =∅;

(ii) generate n∼P
(
ϑ(Z)

)
;

(iii) if n = 0, return X ∩Z and stop;

(iv) generate A∼ dFZ;

(v) generate x∼U (δAZ);

(vi) put X = X ∪ τxA, n = n−1 and goto (iii).

The main difficulty with this algorithm is step (iv):
How to simulate the weighted distribution dFZ? The
next section shows that interesting simplifications arise
when the objects are convex.

CONVEX OBJECTS
Such algorithmic simplifications actually arise

only when the simulations are performed within a
ball-shaped domain. Accordingly, it is advantageous
to firstly extend the simulation field to a ball, then
perform the simulations in the extended domain, and
finally restrict the simulations produced to the actual
simulation field. The choice of the ball is unimportant,
as long as it encloses the simulation field. One
possibility is the ball circumscribed to the simulation
field.

In what follows, the simulation field Z is assumed
to be a ball, say B(o,ρ). Then Steiner formula applies
and shows that the mean number of objects hitting Z
depends only on the expected Minkowski functionals
of the objects:

ϑ(Z) = θ

d

∑
k=0

(
d
k

)
E{Wk(A)}ρk. (8)

Moreover, dFZ can be simulated as a mixture of
distributions of objects weighted by their Minkowski
functionals:

dFZ(A) = dF(A)
∑

d
k=0
(d

k

)
Wk(A)ρk

∑
d
k=0
(d

k

)
E{Wk(A)}ρk

=
d

∑
k=0

pk dFk(A) ,
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with

dFk(A) =
dF(A)Wk(A)
E{Wk(A)}

k = 0, ...,d, (9)

and

pk =

(d
k

)
E{Wk(A)}ρk

∑
d
l=0
(d

l

)
E{Wl(A)}ρ l

k = 0, ...,d. (10)

Using this mixture of weighted distributions, the
algorithm for simulating dFZ becomes

Algorithm 2

(i) generate k ∼ p;

(ii) generate A∼ dFk(A);

(iii) return A and stop.

The following two examples show how this algorithm
can be implemented.

Example 1

The objects are balls and their radii follow
independent exponential distributions with mean 1/a

P{R > r}= exp(−ar) .

Starting from Eq. 5, the mean number of objects hitting
Z is

ϑ(Z) = θE
{

ωd(ρ +R)d}= θd!ωd

ad

d

∑
k=0

(aρ)k

k!
,

where ωd = πd/2/Γ(d/2+ 1) is the d-volume of the
unit ball.

The next step is the simulation of dFk(A). Actually,
it can also be written dFk(r) because the only random
element of A is its radius. If A = B(o,r), then Wk(A) =
ωdrd−k and E{Wk(A)} = ωd(d − k)!/ad−k. Plugging
these values into Eq. 9, we obtain

dFk(r) =
aexp(−ar)(ar)d−k

(d− k)!
.

This is a gamma distribution with parameter d− k+1
and scale factor a. A simple way to simulate it is to
consider− ln(u1 · · ·ud−k+1)/a where u1, ...,ud−k+1 are
independent uniform values on ]0,1[.

As an illustration, Fig. 1 shows a simulation of a
Boolean model of discs with exponential radii. The
displayed simulation field is a 7× 5 rectangle. The
Poisson intensity is θ = 10 and the parameter a of the

exponential distribution has been chosen equal to 7.22
so as to provide a background proportion of 30%.

Fig. 1. Simulation of a Boolean model of discs with
exponential radii.

Example 2
Here is a somewhat more elaborate example,

even if the Boolean model considered is only two-
dimensional. The objects are typical Poisson polygons
derived from a network of Poisson lines with intensity
λ , see Fig. 2.

Fig. 2. Realization of a Poisson line process. The
polygons delimited by the lines are Poisson polygons.

These polygons have been extensively studied in
Miles (1969) and Matheron (1975). In particular their
expected Minkowski functionals are

E{W0(A)}=
1

πλ 2 E{W1(A)}=
1
λ

E{W2(A)}= π .

Using these expected values, Eq. (8) gives

ϑ(Z) =
θ

πλ 2 (1+πλρ)2 .

Not so simple is the simulation of dFZ(A)= p0F0(A)+
p1F1(A)+ p2F2(A). The explicit values for the weights
are

p0 =
1

(1+πλρ)2 , p1 =
2πλρ

(1+πλρ)2 ,

p2 =
π2λ 2ρ2

(1+πλρ)2 .

With probability p0, a polygon must be simulated
from F0. The standard procedure to do this consists
of generating Poisson lines sequentially by increasing
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distance from the origin. The procedure is continued
until the generation of additional lines no longer affects
the polygon containing the origin.

With probability p1 a polygon must be simulated
from F1. To do this, a polygon is first generated from
F0, and then split by a uniformly oriented line through
the origin. It remains to select at random one of the two
polygons thus delimited (see Fig. 3).

With probability p2 a polygon must be simulated
from F2. The algorithm proposed by Miles (1974)
consists of taking the intersection between a polygon
generated from F0 and a cone delimited by two random
rays emanating from the origin (see Fig. 3). Both rays
are uniformly oriented and separated by an angle with
p.d.f. f (ϕ) = ϕ sinϕ/π .

o o o

Fig. 3. Weighted polygons generated from distributions
F0 (left), F1 (middle) and F2 (right).

To illustrate the construction, a simulation of a
Boolean model of Poisson polygons is depicted in
Fig. 4. With a Poisson intensity θ and a Poisson
line intensity λ respectively set to 10 and 1.625, the
background proportion is close to 30%.

Fig. 4. Simulation of a Boolean model of Poisson
polygons.

NON STATIONARY CASE

ALGORITHM

Let us start again with Eq. 3 that provides the
avoiding functional of X ∩Z, and let us write it like

QX∩Z(K) = exp
(
−ϑ(Z)

ϑ(K)

ϑ(Z)

)
,

provided that ϑ(Z) > 0 (if ϑ(Z) = 0, then X ∩Z = ∅
a.s.). On the other hand, Eq. 2 can be used to derive the
following expansion

ϑ(K)

ϑ(Z)
=
∫
Rd

θxTx(Z)
ϑ(Z)

Tx(K)

Tx(Z)
dx ,

which shows that ϑ(K)/ϑ(Z) is the hitting functional
of some object of Z, say AZ . More precisely, AZ is
located according to the pdf

f (x) =
θxTx(Z)

ϑ(Z)
, x ∈ Rd . (11)

Moreover, the conditional hitting functional of AZ

given its location x is equal to

Tx(K)

Tx(Z)
= P{(Ax∩Z)∩K 6=∅ | Ax∩Z 6=∅} . (12)

AZ is called a typical object hitting Z.

The interest of typical objects lies in the following
property (Lantuéjoul, 2002):

Proposition 1 X ∩Z is the union of a Poisson number
(mean ϑ(Z)) of typical objects hitting Z.

Indeed, we can readily check that the avoiding
functional of such a union of typical objects coincides
with that of X ∩Z:

∞

∑
n=0

exp
(
−ϑ(Z)

)ϑ n(Z)
n!

(
1− ϑ(K)

ϑ(Z)

)n

= exp
(
−ϑ(K)

)
.

From this proposition, the following algorithm is
derived for simulating a Boolean model, even non
stationary, in the domain Z.

Algorithm 3

(i) set X =∅;

(ii) generate n∼P
(
ϑ(Z)

)
;

(iii) if n = 0, return X and stop;

(iv) generate a typical object AZ hitting Z;

(v) put X = X ∪AZ , n = n−1 and goto (iii).
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PRACTICAL IMPLEMENTATION

Algorithm 3 calls for several remarks. Step (ii)
assumes that ϑ(Z) is explicitly known, but this is
not always the case because the integral of θxTx(Z)
may not be mathematically tractable. Moreover, step
(iv) requires simulating the pdf (Eq. 11) that specifies
the location of the typical objects hitting Z. This
distribution may have a complicated expression. Step
(iv) also involves generating conditionally typical
objects given their locations. It is possible to generate
objects Ax sequentially till one is produced that hits
Z. This algorithm can be easily implemented but lacks
efficiency.

In order to alleviate these difficulties, rejection
and coupling methods can be resorted to. A typical
approach is to consider another Boolean model X ′ that
dominates X , in the sense that its ingredients satisfy
the following three properties:

(i) its Poisson intensity function θ ′ satisfies θ ′x ≥ θx
(at each point x)

(ii) its population of objects (A′x) satisfies A′x ⊃ Ax

(iii) there exists an algorithm to conditionally simulate
Ax given A′x.

Then the idea is firstly to generate the objects
of X ′ hitting Z. Then each generated object A′x is
saved with probability θx/θ ′x and discarded with the
complementary probability 1− θx/θ ′x. Finally, each

remaining object A′x is replaced by a new object Ax
generated using the conditional algorithm mentioned
in (iii). A simulation of X in Z is given by the union of
these new objects in Z.

Hence, a Boolean model can effectively be
generated whenever it is dominated by another
Boolean model that is numerically tractable and can
be simulated. There is no general rule for building such
a dominating model. This must be done on a case by
case basis.
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ABSTRACT

X-ray microtomography from solid propellant allows studying the microstructure of fragmented grains in
damaged samples. A new reconstruction algorithm of fragmented grains for 3D images is introduced. Based
on a watershed transform of a morphological closing of the input image, the algorithm can be used with
different sets of markers. Two of them are compared. After the grain reconstruction, a multiscale segmentation
algorithm is used to extract each fragment of the damaged grains. This allows an original quantitative study
of the fragmentation of each grain in 3D. Experimental results on X-ray microtomographic images of a solid
propellant fragmented under compression are presented and validated.

Keywords: clustering, damage, mathematical morphology, reconstruction, segmentation, solid propellant.

INTRODUCTION

Propellants are composite materials made of
linear elastic brittle grains embedded in a visco-
elastic elastomer matrix. Damage can occur in the
brittle grains of solid propellants under the action
of a mechanical shock, inducing a possible unsafe
behavior of the propellant. In order to characterize the
progression of damage in such composite materials,
it is interesting to analyze their microstructure at
different steps of the fragmentation, as initiated in
Gillibert and Jeulin (2011a).

In the present paper, specimens of this material
were fragmented under compression generated by
the impact of a mass, and examined by means
of microtomographic images obtained on a high-
resolution micro-CT system. From these 3D images,
the goal is to estimate some statistics on each grain,
that should be relevant to the progression of the 3D
damage: the specific surface area of its cracks, the
volume fraction of its cracks, the number of fragments
and the size distribution of its fragments. For this
purpose, original grains have to be reconstructed from
the image of the fragmented material. Then, each
fragment must be extracted, and must be associated to
its initial grain.

In this paper, we first introduce the type of
materials and of 3D images that are studied. Then
the original algorithm for the reconstruction of
the particles from the observed fragmented image,
based on two types of segmentation (one based
on the h-minima, and one using the K-means
clustering algorithm) is presented. Then a multiscale

segmentation based on the stochastic watershed gives a
3D images of individual fragments. Finally, 3D image
analysis measurements provide a statistical analysis of
the local damage in the material, which gives a new
approach to the local 3D study of damage in materials.
The steps of our approach are illustrated by Fig. 1.

MATERIALS AND 3D IMAGES

The studied images are obtained by X-ray
microtomography with a Skyscan 1172 high-
resolution micro-CT system at the CEA Gramat, a
public laboratory affiliated with the Atomic Energy
and Alternative Energies Commission. The material
samples are a solid propellant in three states: the initial
material, and fragmented materials with two steps of
degradation generated by mechanical impacts. For all
the studied images, a voxel is 3.6 µm. The original
diameter of the grains is 400 µm, but there are many
small fragments in the damaged specimens.

The following images ares studied:

– MAT1 is a 1014 × 1155 × 250 voxels image
(3650.4× 4158× 900 µm3). A slice of this image
is illustrated in Fig. 2. A mechanical impact is
obtained from a 2 kg mass falling 15 cm.

– MAT2 is a 1035 × 1008 × 428 voxels image
(3726× 3628.8× 1540.8 µm3). It is a reference
material without any mechanical impact (Fig. 3).
However it contains some rare cracks.

– MAT3 is a 1116 × 1104 × 424 voxels image
(4017.6× 3974.4× 1526.4 µm3). A mechanical

107



GILLIBERT L ET AL: Reconstruction of fragmented grains in a composite material

impact is obtained from a 2 kg mass falling 30 cm,
with a 9.5 cm rebound (Fig. 4).

Measuring the evolution of local damage in such
materials is a challenge, requiring to extract the crack
network in grains for their individual study. As seen in
Fig. 2 and Fig. 4, the crack network is complex and
many grains are highly fragmented, so that it is not
easy to recover the initial grains from the image. The
purpose of the algorithms developed in this paper is to
give a reliable and automatic method to provide local
estimates of the damage.

3D Images of a composite material
• Initial state
• 2 states of fragmentation

Reconstruction of grains from
fragmented images

• Cracks closing
• Watershed from h minima
• Watershed from K-means

Extraction of fragments by a
multiscale stochastic watershed

Statistical analysis of the grains
fragmentation

Damage characterization

Fig. 1. Flowchart of the study of fragmented media.

RECONSTRUCTION ALGORITHM
OF THE FRAGMENTED GRAINS

A classical approach is used for removing the
cracks: morphological closing and a volumic opening
removing connected components of the holes with
a low volume (Matheron, 1967; Serra, 1982). Then,
a watershed transform on the closed image is used.
Introduced in 1979 by S. Beucher, the watershed is
computed from a gradient image, here the inverse of
the distance map of the closed image, and from a set of
markers (Beucher and Lantuéjoul, 1979).

Two possible sets of markers for this watershed are
explored.

The first approach is topological and uses the h-
minima filter (Soille, 2003). The minima of the inverse

distance function with a depth is larger than h are used
as a sets of markers. The use of the h-minima with the
watershed on the distance map is very classical, but if
the grains are very fragmented and if the fragments are
scattered, the algorithm fails to reconstruct correctly
some grains.

The second approach is based on a method of
cluster analysis, the K-means clustering, which aims
to partition a set of observations into K clusters (Lloyd,
1982). Here, the observations are random voxels inside
the mask of the grains. The kernels of the clusters,
more precisely the center of gravity of the clusters, are
used as sets of markers for the watershed.

The number of classes for the K-means clustering
algorithm is automatically computed from the
initial image with a covariance-based approach. The
algorithm is described in Faessel and Jeulin (2010): the
authors use the covariance for estimating the average
radius of the grains, and then estimate the number of
grains in the image.

CLOSING OF THE CRACKS

The studied solid propellant has two phases:
grains and matrix. Therefore, the first step of
the reconstruction is to compute a binary mask
for the grains. The threshold is estimated via the
maximization of the interclass variance (Otsu, 1979).

After the binarization, a morphological closing
of the binary mask is used. The structuring element
is a rhombicuboctahedron of radius 3, providing a
good approximation of a sphere of small size on the
digitized image. It offers a good compromise between
performance and exactness. The size of the structuring
element used is the same for the three images but
depends on a subjective choice that is checked by
visual inspection. Results with a rhombicuboctahedron
of radius of radius 2 are also acceptable, but will lead to
a few additional errors in the final reconstruction (the
over-segmentation of a few grains).

The remaining holes inside closed grains are
removed with a volumic opening: all the connected
components of the matrix with a small volume
are removed. The threshold on the volume is the
same for the three images but also depends on a
subjective choice. This threshold is fixed to 113 voxels
(corresponding to a sphere of radius 3). Results with a
threshold corresponding to a sphere of radius 4 or 5 are
also acceptable, but will lead to a few additional errors
in the final reconstruction, generating the fusion of a
few grains.

The results of this first part of the segmentation are
illustrated in Fig. 2 and Fig. 5.
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(A) (B)

Fig. 2. (A) 3D X-ray microtomographic image of a
fragmented granular material (slice). (B) Binarization
by maximization of the interclass variance (slice).

(A) (B)

Fig. 3. (A) Original image for MAT2, the reference
material without any mechanical impact (slice). (B)
Watershed segmentation using markers computed from
the h-minima (slice).

(A) (B)

Fig. 4. (A) Original image for MAT3. An impact is
obtained from a 2 kg mass falling 30 cm (slice). (B)
Watershed segmentation using markers computed from
the h-minima (slice).

(A) (B)

Fig. 5. (A) Morphological closing of the binary
mask with a small rhombicuboctahedron (slice). (B)
Removal of the holes with a volumic filter (slice).

WATERSHED COMPUTED FROM THE
MINIMA

A first segmentation to reconstruct the grains
is provided by markers on selected minima of the
distance map.

From the morphologically closed image,
constructed in the section Closing of the cracks, a
distance map is computed. Then, the inverse of this
distance map is segmented with a watershed transform.
The use of the local minima of the distance map will
lead to an over-segmentation. Therefore, a prior h-
minima transform is used on the distance map.

The h-minima transform suppresses all minima
whose depth is less than h, reducing the number of
local minima. The difficulty is in the choice of h. Using
a trial and error approach and a visual inspection, it is
possible to achieve a good reconstruction (Fig. 6A).

(A) (B)

Fig. 6. (A) Watershed segmentation of the closed
image after a h-minima filter (slice). (B) Watershed
segmentation using markers computed from the K-
means (slice).

109



GILLIBERT L ET AL: Reconstruction of fragmented grains in a composite material

MARKERS COMPUTED FROM THE
K -MEANS

For comparison, an alternative segmentation for
the reconstruction of grains is obtained from markers
generated by the K-means clustering algorithm.

A realization of Poisson point process is generated
inside the binary mask of the image, with a low
intensity. This gives a set of voxels used for a K-means
clustering (Lloyd, 1982).

Given a set of voxels {p1, p2, . . . , pn}, K-means
clustering aims to partition the n voxels into
K ≤ n clusters, {S1,S2, . . . ,SK} so as to minimize
the following sum of squares in each cluster:
∑

K
i=1 ∑p j∈Si

∥∥p j−µi
∥∥2, where µi is the center of mass

of voxels in the cluster Si (assuming all the voxels have
the same mass).

There exists several algorithms for building the set
of clusters minimizing this sum. Here, the MacQueen
algorithm, as implemented in the software R, is used
(MacQueen, 1967).

The centers of mass µi are finally used as markers
for the watershed transform on the distance map of
the morphologically closed image constructed in the
section Closing of the cracks.

The numbers K of classes used is directly
estimated from the closed image. Considering for
simplification the closed image as a realization of a
Boolean model of spheres with a single radius R, it is
deduced from the range of the covariance C(h) equal to
2R (Faessel and Jeulin, 2010), obtained by the distance
h for which C(h) = V 2

v . Then, the number of grains is
deduced from this radius and from the Boolean model
assumption (Jeulin, 1991): the volume fraction of the
overlapping grains Vv is expressed as a function of
the average number of grains per unit volume θ , by:
Vv = 1− exp(−θ

4
3 πR3) .θ and consequently the total

number of grains (and of markers) is deduced from Vv
and R3.

The same covariance-based approach, applied
on the original thresholded image, before the
morphological closing, gives an estimation of the size
of the fragments. From this estimation, the intensity
of the Poisson point process used for the clustering
algorithm is deduced. The intensity is chosen such that
each fragments receives at least several points.

The process achieves a satisfactory reconstruction
of the grains, as illustrated in Fig. 6B.

MULTISCALE IMAGE
SEGMENTATION

In this section, the goal is to isolate each fragment
of each grain, for further morphological analysis.
For the separation of the fragments, a multiscale
stochastic watershed algorithm is used. The stochastic
watershed segmentation was first introduced in Angulo
and Jeulin (2007). The approach is based on using
a large number of realizations of random markers
to build a probability density function (pdf) of
contours, starting from a standard watershed algorithm
producing oversegmentation.

The stochastic watershed was proved to be efficient
for unsupervised segmentation (Noyel et al., 2007;
Faessel and Jeulin, 2010). For multiscale images, the
full granulometry of the image is used Gillibert and
Jeulin (2011b). Using morphological openings, this
granulometry can be automatically computed from the
image and is used as a constraint during iterations of
segmentation steps.

STOCHASTIC WATERSHED

The aim of the stochastic watershed Angulo and
Jeulin (2007) is to estimate for each point of the
contours of a standard watershed a probability (called
here probability density function of contours) of
detection from random markers.

The first method introduced for computing the
stochastic watershed is based on a large number
of realizations of random markers to estimate a
probability density function of contours, or of surface
boundaries in 3D. The random markers are generated
with a uniform distribution of their coordiantes. For
the present composite material, a constant background
marker is added to each set of random markers.
This constant background marker is extracted by
thresholding the image via the maximization of the
interclass variance.

For each set of markers, a constrained watershed
transform is computed. Then, the Parzen window
method (typically here a convolution of the probability
image by a Gaussian kernel) is used to estimate the
probability density function of contours from this finite
set of random realizations (Parzen, 1962).

A good estimation of the probability of contours
generated by the stochastic watershed requires 100 to
200 realizations (Angulo and Jeulin, 2007). However,
using λ -flat zones to smoothen the local probability of
contours, a stochastic watershed segmentation can be
achieved with only 50 realizations (Faessel and Jeulin,
2010).
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Computing a large number of watershed
transforms from simulations provides good results
but is a slow process, mainly in 3D. A more efficient
solution for computing stochastic watersheds is to use
a graph-based approach. Probability of boundaries is
directly computed with a good approximation without
the use of any realization (Jeulin, 2008).

As an example, the computation of the stochastic
watershed with 50 realizations of watershed
transforms takes 163 minutes and 20 seconds for the
MAT2 sample on 3.00 GHz Pentium 4. A similar result
can be achieved in 7 minutes an 8 seconds, on the same
computer, using the graph-based approach.

In Stawiaski and Meyer (2010) and Gillibert
and Jeulin (2011b), the direct computation of the
probability of the boundaries is obtained using a region
adjacency graph deduced from the watershed, each
vertex of the graph figuring a basin of attraction
of the watershed, and each edge connecting two
neigbouring basins. This graph-based approach leads
to a multiscale stochastic watershed algorithm that is
used now.

MULTISCALE STOCHASTIC
WATERSHED

The main drawback of the stochastic watershed
is that it is not well suited for the segmentation
of objects with a wide range of scale. A variant
was introduced by the authors to operate on a wide
granulometric spectrum Gillibert and Jeulin (2011b).
The multiscale image segmentation process is based
on a simple idea: estimate the full granulometry of
the image, using morphological openings, then use
multiple stochastic watersheds with different numbers
of markers for each size, and finally combine them
to get a segmentation that is correct for each size
of grains (no oversegmentation for big grains, no
undersegmentation for small grains).

Many hierarchical segmentation algorithms were
studied, such as the waterfalls (Beucher, 1994) or
the P algorithm (Beucher and Marcotegui, 2009).
Here the approach is based on the merging of the
watersheds basins using a minimum spanning tree
(Eppstein, 2000). In the merging process, a constraint
is introduced: the granulometry of the image. The
algorithm is described in Fig. 7.

Background mask (M)
Gradient-based watershed (W)
Region adjacency graph (G) from W
Minimum spanning tree (MST) from G

Graph initialization

Morphological granulometry
Compute volumetric granulometry classes: v(x)
Estimate the number of grains in each class: n(x)

Image measurements 

Main loop 
Pick the upper untreated class: C
Compute the probability density function (PDF) 
       on the graph for n(C) markers

For i in {0,1,...,100}
   Remove edges of probability i from the PDF
   Estimate the new probability of the remaining edges
   Estimate the granulometry of the resulting 
          segmented image: v(x)

Use the step i which minimises |v(C)-v(C)|
Remove segmented grains from the image

Is there any class left?

Yes

No

Combine all the grains segmented at all the steps
Return the final result

i

i

Fig. 7. The main steps of the multiscale image
segmentation process.

The first step of the approach is to estimate
the granulometry of the image, using morphological
openings. From the granulometry, a small number of
classes are chosen (3 classes in this paper). A good
approach for this choice is to maximize the interclass
variance. The total volume of the grains in each class
x will be denoted v(x). The number of grains in each
class x is deduced from v(x) and is denoted n(x). It is
used to generate the corresponding number of markers
in the calculation of the probability of the boundaries
between grains of the segmentation.

Then, the standard watershed transform is
computed from the local minima of the gradient. From
this watershed, the adjacency graph is constructed and
a minimum spanning tree is extracted.

The first class is chosen, starting from the largest
grains. The stochastic watershed is computed with
a number of markers equals to n(1). Based on this
stochastic watershed, a first hierarchy on boundaries
is computed with the merging algorithm. For each
step i of the hierarchy, the granulometry of the
corresponding segmentation is computed (vi(1)).

In the full hierarchy, there is a size step which
minimizes the difference |vi(1)− v(1)|. This step is
used for the segmentation of the grains in the first class.
All the segmented grains are removed from the image
and added to the background mask. The minimum
spanning tree is updated and the next class is chosen.
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The same process is applied to all the classes.
When no more class is left, all the segmentations are
combined together. Results are illustrated in Fig. 8.
A few fragments are missing, and a few grains are
oversegmented, but this errors have a small impact on
the results of the measurements.

(A)

(B)

Fig. 8. (A) Original image before multiscale
segmentation (slice). (B) Final multiscale stochastic
watershed segmentation (slice).

IMAGE ANALYSIS AND
MEASUREMENTS

VOLUME FRACTION AND SPECIFIC
SURFACE AREA OF DAMAGED GRAINS
From the reconstructed data, the volume fraction

of each grain is estimated before and after the
morphological closing. From this two measurement,
the volume fraction of the cracks of each grain is
estimated.

For each image, grains reconstructed with the
h-minima markers and grains reconstructed with
the K-means markers are studied for comparison.
The results for the volume fraction of the cracks,
presented as normalized histograms (namely the
proportion of grains in % with a given property),
are shown in Figs. 9, 10 and 11. The agreement
between the K-means reconstruction results and the
h-minima reconstruction results is excellent, showing
the robustness of our segmentations for the purpose of
damage measurement.

With the number of intercepts (transitions from
background to foreground) in 13 directions generated
by a voxel and its first and second neighbours on
the cubic grid, it is possible to estimate the surface
area of each grain i from the closed reconstructed
data (denoted Sc(i)). With the same process, the
surface area of each grain before the morphological
closing is estimated (denoted S f (i)). From this two

measurement, the surface area S(i) of the cracks of
each grain is estimated:

S(i) = S f (i)−Sc(i) .

Due to some imperfections on the original grains,
the surface area estimated with this process correspond
to the surface area of the cracks, the small irregularities
at the surface of the grains and the porosity.

The specific surface area Sspec measures the total
surface area per unit of volume:

Sspec(i) =
S(i)
V (i)

.

The results for the specific surface area, presented
as a normalized histogram, are shown in Fig. 12,
Figs 13 and 14. Once again, the agreement between
the K-means reconstruction results and the h-minima
reconstruction results is excellent.

The damage on the grains is quantified from both
specific surface area and volume fraction. On the
sample MAT2, the reference material without any
mechanical impact, the volume fraction of the cracks
is low (mostly between 0 and 0.2) and the volume
fraction is almost always 0. On the sample MAT3,
impacted with a 2 kg mass falling 30 cm, with a 9.5
cm rebound, there is only 6% of the grains with a
zero specific surface area of the cracks, and the volume
fraction of the cracks is mostly between 0.2 and 0.5.

The sample MAT1, impacted with a 2 kg mass
falling 15 cm, is less damaged than the sample MAT3.
This is visible on both specific surface area and volume
fraction. On the sample MAT1 there is only 8% of
the grains with a zero specific surface area of the
cracks, and the volume fraction of the cracks is mostly
between 0.1 and 0.4.
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Fig. 9. Histogram of the volume fraction of the cracks
for MAT1. HM are the grains reconstructed with the h-
minima markers and KM are the grains reconstructed
with the K-means markers.
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Fig. 10. Histogram of the volume fraction of the cracks
for MAT2. HM are the grains reconstructed with the h-
minima markers and KM are the grains reconstructed
with the K-means markers.
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Fig. 11. Histogram of the volume fraction of the cracks
for MAT3. HM are the grains reconstructed with the h-
minima markers and KM are the grains reconstructed
with the K-means markers.
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Fig. 12. Histogram of the specific surface area of the
cracks for MAT1 (given in µm−1). HM are the grains
reconstructed with the h-minima markers and KM are
the grains reconstructed with the K-means markers.
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Fig. 13. Histogram of the specific surface area of the
cracks for MAT2 (given in µm−1). HM are the grains
reconstructed with the h-minima markers and KM are
the grains reconstructed with the K-means markers.
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Fig. 14. Histogram of the specific surface area of the
cracks for MAT3 (given in µm−1). HM are the grains
reconstructed with the h-minima markers and KM are
the grains reconstructed with the K-means markers.
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Fig. 15. Histogram of the number of fragments for
MAT2 and MAT3. HM are the grains reconstructed
with the h-minima markers and KM are the grains
reconstructed with the K-means markers.
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NUMBER OF FRAGMENTS

With the multiscale stochastic watershed algorithm
introduced in the the previous section, the separation
of the fragments can be achieved. Using the labels
computed with the reconstruction algorithm, each
segmented fragment is associated to its original grain.

Therefore, it is possible to know the number of
fragments in each grain. This number includes the
grain itself and is therefore larger or equal to 1. From
this number, a normalized histogram is estimated, as
illustrated in Fig. 15 for samples MAT2 and MAT3.

For the fragmented grains (MAT3), a three scale
stochastic watershed is used. For the reference material
without any mechanical impact, a simple stochastic
watershed, without any additional steps, gives a correct
segmentation.

As for the specific surface area and volume
fraction, the damage of the grains can be quantified
from these normalized histograms, the initial material
showing almost no fragmentation, as compared to
the shocked material, MAT3. The results obtained
from the two types of segmentation are pretty close,
showing again the robustness of the used segmentation
techniques.

We can observe from the normalized histogram
that many grains are very fragmented (≥ 30 fragments
per grain, as seen in Fig. 15).

CONCLUSION

The proposed algorithm gives a satisfactory
reconstruction of the fragmented grains with both
markers sets. Visual inspection reveals that the K-
means markers give better results when the grains are
highly fragmented and if the fragments are scattered,
but the boundaries of the grains are less accurate. The
h-minima markers give correct boundaries between
grains but fail to reconstruct a few grains.

In both cases, the closing of the grains
depends on two parameters: the radius of the
rhombicuboctahedron used and the volume of the
holes. The h-minima markers require an additional
parameter: h. The number of clusters used for the
computation of the K-means is directly deduced from
the image. Therefore, the K-means depend on less
parameters and is less user-dependent.

The two algorithms require a similar time for
the reconstruction. The reconstruction of the sample
MAT2, using the K-means approach, requires 18
minutes and 12 seconds on a 3.00 GHz Pentium 4. The

reconstruction of the same sample requires 19 minutes
and 15 seconds using the h-minima approach.

Both approaches are very useful in order to
generate data on the damage of materials from a fully
automated 3D image analysis. The reproducibility
of results on fragmentation obtained from two
segmentation methods is very good. The analysis
proves that the methods provide 3D damage
measurements consistent with the mechanical impacts
applied on the materials. They will provide useful
information for the fully automatic characterization
of damage in various conditions, helping to improve
the reliability of solid propellants. A similar approach
can be followed for the quantitative analysis of the
progression of damage in materials, starting from 3D
images.
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ABSTRACT

In the present paper, Lévy-based error prediction in circular systematic sampling is developed. A model-
based statistical setting as in Hobolth and Jensen (2002) is used, but the assumption that the measurement
function is Gaussian is relaxed. The measurement function is represented as a periodic stationary stochastic
process X obtained by a kernel smoothing of a Lévy basis. The process X may have an arbitrary covariance
function. The distribution of the error predictor, based on measurements in n systematic directions is derived.
Statistical inference is developed for the model parameters in the case where the covariance function follows
the celebrated p-order covariance model.

Keywords: Fourier series, Lévy basis, planar particles, stationary stochastic processes, stereology, systematic
sampling.

INTRODUCTION

A long-standing problem in stereology is variance
estimation in systematic sampling. One class of
problems involves estimation of an integral of the form

Q =
∫ 2π

0
x(θ)dθ , (1)

where x(θ) is an integrable function on [0,2π), called
the measurement function. The estimator typically
considered is based on circular systematic sampling
and takes the form

Q̂n =
2π

n

n−1

∑
i=0

x(Θ+
2πi
n

) , n≥ 1 ,

where Θ is uniformly distributed in [0, 2π

n ). For
instance, if Y is a bounded convex planar set containing
the origin O, examples of Eq. 1 are

x(θ) =
{

1
2 r(θ)2 if Q = area of Y ,
h(θ) if Q = boundary length of Y ,

where r(θ) and h(θ) are the radial function and the
support function of Y in direction θ , respectively.
The geometric identity (Eq. 1) is in these cases a
consequence of polar decomposition in the plane and
an identity for mean width (Schneider, 1993, Eq.
5.3.12). If instead Y is a bounded convex spatial set
containing O, the volume and the surface area of
Y may be estimated by a two-step procedure which
involves circular systematic sampling in a section
through O and the use of the cubed radial function

or the squared support function (Gundersen, 1988;
Cruz-Orive, 2005). Yet another example is volume
estimation by the so-called vertical rotator (Jensen and
Gundersen, 1993).

In Gual-Arnau and Cruz-Orive (2000), a design-
based procedure of approximating the variance of Q̂n,
based on modelling the covariogram of x(θ) by a
polynomial model, is developed. Hobolth and Jensen
(2002) consider a model-based procedure, where the
measurement function is assumed to be a realization
of a periodic stationary stochastic Gaussian process
X = {X(θ) : θ ∈ [0,2π)}. It is shown in Hobolth and
Jensen (2002) that the covariogram model considered
in the paper by Gual-Arnau and Cruz-Orive (2000) is
a special case of a p-order covariance model for the
stochastic process X in the model-based set-up.

The p-order covariance model is given by

c(θ) = Cov(X(θ),X(0)) = λ0 +
∞

∑
s=2

λs cos(sθ) ,

λ
−1
s = α +β (s2p−22p) , s≥ 2 , (2)

where the model parameters satisfy p > 1/2, α,β > 0.
In Hobolth et al. (2003), this parametric covariance
function has been used in the modelling of the radial
function of a random star-shaped planar particle. In
this case, p determines the smoothness of the particles
boundary while α and β determine the ‘global’ and
the ‘local’ shape of the particle, respectively. (Note
that in Eq. 2, λ1 is set to zero which ensures that
the reference point of the particle is approximately
the centre of mass.) The model-based counterpart
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of the design-based methodology provided in Gual-
Arnau and Cruz-Orive (2000) was further developed in
Jónsdóttir et al. (2006), where the general form of the
p-order covariance model (Eq. 2) was used to obtain
a more accurate approximation of the prediction error
E(Q̂n−Q)2.

In Hobolth and Jensen (2002) and Jónsdóttir et al.
(2006), the process X is assumed to be Gaussian.
Motivated by the fact that powers of the radial function
and the support function are used in practice, we will
in this paper consider non-Gaussian models, obtained
as a kernel smoothing of a so-called Lévy basis. As
we will show, it is possible under the Lévy-based
model to derive the distribution of the error predictor
Q̂n−Q which may be markedly non-Gaussian for the
moderate sizes of n used in practice.

Lévy-based modelling has been popular in recent
years, e.g. in the modelling of turbulent flows,
spatio-temporal growth, spatial point processes and
random fields (Barndorff-Nielsen and Schmiegel,
2004; Jónsdóttir et al., 2008; Hellmund et al., 2008;
Jónsdóttir et al., 2013). More specifically, we will
consider stochastic processes of the form

X(θ) = µ +
∫ 2π

0
k(θ −φ)Z(dφ) , θ ∈ [0,2π) ,

where µ determines the mean of the process, Z
is a homogeneous and factorizable Lévy basis on
[0,2π) and k is a deterministic kernel function. In
principle, any covariance model, including the p-
order covariance model, can be induced under this
modelling framework, by assuming a specific form of
the kernel function (see the next section). Under the p-
order model, it is easy to control the local and global
fluctuations of the stochastic process X . The Lévy-
based models with p-order covariance thus constitute
a flexible and tractable model class. In particular, this
model class has more structure than the non-Gaussian
models considered in Hobolth et al. (2003) and this
allows us to derive distributional results.

The composition of the remaining part of the
paper is as follows. First, a theoretical background
for stationary periodic processes with period 2π ,
based on kernel smoothing of a Lévy basis, is given.
Then, estimation of E(Q̂n − Q)2 under the general
Lévy-based model is discussed. The distribution of
the error predictor Q̂n − Q under the Lévy-based
model is derived, and it is shown how to estimate
this distribution. An example of random particles
simulated from a Lévy-based model is given together
with the distribution of the n-point area estimator of
these particles. Finally, a discussion is provided. Some
technical derivations are deferred to an appendix.

LÉVY-BASED STOCHASTIC
PROCESSES ON THE CIRCLE

This section provides an overview of stationary
periodic processes on [0,2π) based on integration
with respect to a Lévy basis. For further details on
the general theory on Lévy bases, in particular, the
integration with respect to a Lévy basis, the reader
is referred to Barndorff-Nielsen and Schmiegel (2004)
and Hellmund et al. (2008).

Let X = {X(θ) : θ ∈ [0,2π)} be a 2π periodic
stationary stochastic process on [0,2π), given by

X(θ) = µ +
∫ 2π

0
k(θ −φ)Z(dφ) , θ ∈ [0,2π) , (3)

where µ determines the mean of the process, Z is a
homogeneous and factorizable Lévy basis on [0,2π)
and k is an even periodic kernel function with period
2π and a Fourier representation

k(θ) = ξ0 +
∞

∑
s=1

ξs cos(sθ) . (4)

The model (Eq. 3) is the continuous analogue of
the following discrete model

X(θ) = µ +∑
φ

k(θ −φ)Z(φ) ,

where the sum is over an equally spaced set of
angles and the random variables Z(φ) are independent
and identically distributed, the common distribution
being infinitely divisible. The integral in Eq. 3 is
formally defined as a limit in probability (Rajput and
Rosinski, 1989). A spatio-temporal version of Eq. 3
has previously been considered in Jónsdóttir et al.
(2008).

The Lévy basis Z is extended by Z(A+ 2πm) =
Z(A) for all m∈Z and all Borel sets A∈B([0,2π)). A
Lévy basis has the property that Z(A1), . . . ,Z(An) are
independent when A1, . . . ,An ∈B([0,2π)) are disjoint
and Z(A) is infinitely divisible for any A ∈B([0,2π)).
The assumption of homogeneity implies that all the
finite-dimensional distributions of Z are translation
invariant.

If Z is Gaussian, the integral in Eq. 3 exists if k is
L2-integrable with respect to the Lebesgue measure on
[0,2π). When Z is a so-called Lévy jump basis (e.g.,
Gamma or inverse Gaussian Lévy basis), the integral
exists if k is integrable with respect to the Lebesgue
measure on [0,2π) and if

∫
R|r|V (dr) < ∞, where V

is the Lévy measure associated with Z. These results
follow from Hellmund et al. (2008, Lemma 1).
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An important entity associated with a Lévy basis
is its spot variable Z′ which is infinitely divisible.
Without loss of generality we will in what follows
assume that the spot variable Z′ is centered, Z′ =
W −E(W ), where W is an infinitely divisible random
variable.

The following theorem characterizes the
distribution of the stochastic variable X(θ).

Theorem 1. The stochastic variable X(θ) has the
cumulant generating function

KX(t) = logE(etX(θ))

= t(µ−2πξ0E(W ))+
∫ 2π

0
KW (tk(φ))dφ ,

(5)

where KW (t) is the cumulant generating function of W.
Moreover, the derivatives of KX(t) are given by (when
they exist)

K′X(t) = µ−2πξ0E(W )+
∫ 2π

0
K′W (tk(φ))k(φ)dφ ,

K(r)
X (t) =

∫ 2π

0
K(r)

W (tk(φ))k(φ)r dφ , r ≥ 2 , (6)

where K(r)
W (t) denotes the r’th derivative of KW (t).

Proof. The result is obtained by using that the
cumulant generating function of the integral f • Z =∫ 2π

0 f (θ)Z(dθ) of a function f with respect to a
homogeneous and factorizable Lévy basis Z is given
by

K f•Z(t) =
∫ 2π

0
KZ′(t f (θ))dθ , (7)

where Z′ is the spot variable associated with Z, cf.
Hellmund et al. (2008, Eq. 10). �

It follows that the cumulants of the stochastic variable
X(θ) are given by

κ1(X(θ)) = µ,

κr(X(θ)) = κr(W )
∫ 2π

0
k(φ)r dφ , r ≥ 2 ,

where κr(W ) denotes the r-th cumulant of the
stochastic variable W . Possible choices of the
distribution of W are the Gaussian, Gamma and inverse
Gaussian distributions. When the kernel function is
proportional to an indicator function, k(θ) = c1A(θ)
for A ∈B([0,2π)), the marginal distribution of X(θ)
will be of the same type as that of W . Otherwise, the
marginal distribution will not be as simple, but the
process X will inherent the name of the distribution of

the underlying spot variable, e.g., when W is Gamma
distributed, X is called a Gamma Lévy process,
irrespectively of the choice of the kernel function.
We will typically assume that κ2(W ) = 1, i.e., the
skewness and kurtosis of W are equal to the third
and fourth cumulant, respectively. In Table 1, we give
the cumulant generating function, third and fourth
cumulants of W for the three distributions mentioned
above. Note that as W has unit variance, the Gamma
and inverse Gaussian Lévy bases are only determined
by a single parameter η > 0. The Lévy measures V of
the Gamma and inverse Gaussian Lévy bases satisfy
the condition

∫
R |r|V (dr) < ∞ for the existence of the

integral in Eq. 3, cf. Hellmund et al. (2008, Example
3).

In principle, any covariance function can be
modelled within this set-up. This can be seen, using
the theorem below.

Theorem 2. The stochastic process X has a mean
value µ and a covariance function

c(θ) = λ0 +
∞

∑
s=1

λs cos(sθ) , θ ∈ [0,2π) ,

where

λ0 = 2πξ
2
0 κ2(W ) , λs = πξ

2
s κ2(W ) , s≥ 1 . (8)

Proof. Using that

c(θ) = Cov(X(θ),X(0))

= κ2(W )
∫ 2π

0
k(θ −φ)k(−φ)dφ ,

we easily obtain Eq. 8. �

Using Theorem 2, we can construct the candidate
kernel k that induces a given covariance function c. For
instance, if c follows the p-order model (Eq. 2), then k
is of the form specified in Eq. 4 with

ξ0 =

√
λ0

2πκ2(W )
, ξ1 = 0 ,

ξs =
1√

πκ2(W )[α +β (s2p−22p)]
, s≥ 2 .

This choice of kernel will for a Gaussian Lévy basis
give a well-defined integral in Eq. 3 if p > 1/2, while
for a Gamma or an inverse Gaussian basis the integral
is well-defined if p > 1.
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Table 1. Examples of the distribution of W, together with the corresponding cumulant generating function, and
the third and fourth cumulants.

distribution Gaussian Gamma Inverse Gaussian
W N(0,1) Γ(η ,

√
η) IG(η3,η)

KW (t) t2/2 −η log(1− t/
√

η) η4(1−
√

1−2t/η2)
κ3(W ) 0 2/

√
η 3/η2

κ4(W ) 0 6/η 15/η4

ESTIMATING E(Q̂n – Q)2 UNDER
THE LÉVY-BASED MODEL

In Hobolth and Jensen (2002), the focus was on the
prediction error E(Q̂n−Q)2. If the covariance function
of X has the following Fourier expansion

c(θ) = λ0 +
∞

∑
s=1

λs cos(sθ) , θ ∈ [0,2π) ,

then it was shown in Hobolth and Jensen (2002) that

E(Q̂n−Q)2 =
∞

∑
k=1

λnk , (9)

where λnk is the Fourier coefficient of order n · k in
the Fourier expansion of the covariance function of
X . Note that in Hobolth and Jensen (2002), circular
systematic sampling on [0,1) instead of [0,2π) is
considered, so Eq. 9 represents an adjusted version of
Hobolth and Jensen (2002, Eq. 8).

In Hobolth et al. (2003), a procedure for estimating
the prediction error under a Gaussian p-order model
was developed, based on a Fourier expansion of X

X(θ)
d
= A0 +

∞

∑
s=1

(As cos(sθ)+Bs sin(sθ)) ,

θ ∈ [0,2π) ,

where d
= means equality in distribution and

A0 =
1

2π

∫ 2π

0
X(θ)dθ ,

As =
1
π

∫ 2π

0
X(θ)cos(sθ)dθ ,

Bs =
1
π

∫ 2π

0
X(θ)sin(sθ)dθ .

When X is a periodic stationary Gaussian process,
the Fourier coefficients of X become independent and
normally distributed, As∼ Bs∼N(0,λs). As suggested
in Hobolth et al. (2003), the parameters α and β

in the p-order model can then be estimated using
maximum likelihood estimation based on the first S
Fourier coefficients,

L0,S(α,β ) =
S

∏
s=2

1
2πλs(α,β )

exp
(
− (a2

s +b2
s )

2λs(α,β )

)
,

(10)
where λs(α,β ), s = 2, . . . ,S, satisfy (2) and as and bs,
s = 2, . . . ,S, denote discretized Fourier coefficients of
X .

In this section, we will show that this procedure
can be used under the general Lévy-based model. The
following theorem gives the distribution of the Fourier
coefficients and their relations under the general Lévy-
based model. In the Gaussian case, the theorem can be
found e.g., in Dufour and Roy (1976).
Theorem 3. The stationary Lévy-based stochastic
process X can be written in terms of its Fourier
coefficients as

X(θ) = A0 +
∞

∑
s=1

(As cos(sθ)+Bs sin(sθ)) ,

θ ∈ [0,2π) ,

where A0 = µ +ξ0Z([0,2π)),

As = ξs

∫ 2π

0
cos(sφ)Z(dφ)

Bs = ξs

∫ 2π

0
sin(sφ)Z(dφ) . (11)

Moreover, the Fourier coefficients are pairwise
uncorrelated and the Fourier coefficients of order s
have the same distribution which is characterized by
the cumulant generating function KAs(t) = KBs(t) =
KU(tξs), where

KU(t) =
∫ 2π

0
KW (t cos(θ))dθ .

Proof. Writing the kernel function in terms of its
Fourier representation and then calculate the Fourier
coefficients of X gives Eq. 11. The Fourier coefficients
are uncorrelated as for all r,s≥ 1,

Cov(As,Br) = κ2(W )
∫ 2π

0
cos(sφ)sin(rφ)dφ = 0 ,
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and

Cov(As,Ar) = κ2(W )
∫ 2π

0
cos(sφ)cos(rφ)dφ = 0 ,

Cov(Bs,Br) = κ2(W )
∫ 2π

0
sin(sφ)sin(rφ)dφ = 0 ,

for all r,s≥ 1,r 6= s. The cumulant generating function
of As is given by

KAs(t) =
∫ 2π

0
KZ′(tξs cos(sφ))dφ

=
1
s

∫ 2πs

0
KZ′(tξs cos(φ))dφ = KU(ξst) ,

and a similar argument shows that KBs(t) = KU(ξst).
�

The cumulant generating function of As and Bs
yield simple expressions for their cumulants, which are
given by

κ1(A0) = µ , κr(A0) = 2πξ0κr(W ) , r ≥ 2 ,

and

κr(As) = κr(Bs) = 2πξ
r
s
(r−1)!!

r!!
κr(W )1(r even) ,

for s ≥ 1 and r ≥ 1. Here and in the following, we let
for a positive integer n,

n!! =
{

2 ·4 · · ·n , if n even,
1 ·3 · · ·n , if n uneven.

This means that As and Bs have mean, variance,
skewness and kurtosis of the following form:

κ1(As) = 0 , κ2(As) = πξ
2
s κ2(W ) ,

γ1(As) = 0 , γ2(As) =
3

4π
γ2(W ) ,

where γ2(W ) is the kurtosis of W . Moreover, the
normalized Fourier coefficients of order s = 1,2, . . . ,
obtained by Ãs = As/ξs and B̃s = Bs/ξs, will all have
the same distribution characterized by the cumulant
generating function KU(t).

From Theorems 2 and 3, it follows that for a non-
Gaussian Lévy basis Z the Fourier coefficients will
be uncorrelated with variance λs(α,β ). Furthermore,
the distribution of the Fourier coefficients in the non-
Gaussian and Gaussian model only differs in even
cumulants of order four and higher. Therefore, Eq. 10
can be regarded as a pseudo-likelihood function for
(α,β ) also in the non-Gaussian case.

Fig. 1 shows the small difference in the saddlepoint
densities of the normalized Fourier coefficients and the
Gaussian density for different values of η in the case
of a Gamma Lévy basis. Furthermore, a simulation
study indicated that the estimates of (α,β ) are robust
against deviations from Gaussianity in the underlying
distribution, but the mean square error of the estimates
increases somewhat as η decreases.
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Fig. 1. The saddlepoint density of the normalized
Fourier coefficients for η = 2 (red line), η = 4 (green
line) and η = 16 (blue line). The density in a Gaussian
model is shown for comparison (black line).

THE DISTRIBUTION OF Q̂n – Q
UNDER THE LÉVY-BASED
MODEL

In the previous section, we have seen that the
method developed in Hobolth et al. (2003) for
estimating E(Q̂n −Q)2 based on a Gaussian process
is robust against departures from the distributional
assumption. In this section, we will derive the
distribution of the error predictor Q̂n−Q which may
be markedly non-Gaussian.

Theorem 4. Under the Lévy-based model, the error
predictor is distributed as

Q̂n−Q∼ 2π

∫ 2π

0
kn(φ)Z(dφ) , (12)

where

kn(φ) =
∞

∑
s=1

ξsn cos(snφ) .
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The distribution of Q̂n − Q is characterized by its
cumulant generating function

KQ̂n−Q(t) =
∫ 2π

0
KW (2tπkn(φ))dφ .

Proof. Recall that

Q̂n =
2π

n

n−1

∑
i=0

X(Θ+
2πi
n

) , (n≥ 1) ,

where Θ is uniformly distributed in [0,2π/n). Without
loss of generality we can assume that Θ = 0 as the
distribution of Q̂n does not depend on Θ. The result
given in Eq. 12 is obtained by observing that the mean
of the kernel functions is given by

1
n

n−1

∑
j=0

k(
2π j

n
−φ) = ξ0 +

∞

∑
s=1

ξsn cos(snφ) .

The expression for the cumulant generating function of
Q̂n−Q is a consequence of Eq. 7. �

As the cumulant generating function of Q̂n −Q
has a simple form, its cumulants are easily available.
In particular, it enables us to obtain a saddlepoint
approximation of its density. An alternative is to use
Theorem 4 for simulating the distribution of Q̂n−Q.

Example. Let us consider a Lévy-based model (Eq. 3)
for X with a Gamma Lévy basis Z and k chosen such
that the covariance function of X follows a p-order
model. Under this model the Fourier coefficients As,
and Bs, s≥ 1, of X(θ) have mean, variance, skewness
and kurtosis,

κ1(As) = 0 , κ2(As) = πξ
2
s = λs(α,β ) ,

γ1(As) = 0 , γ2(As) =
9

2πη
.

This model may, for instance, be used to model
the squared radial function of random star-shaped
planar particles containing the origin. Fig. 2 shows
examples of particles simulated from such a model,
using different values of η . The value of p, α and
β was p = 2, logα = 6 and logβ = −3. We used
η = 2,4,16; a low value of η corresponds to an
underlying distribution with a heavy tail. The value of
η controls the frequency and size of the irregularities
of the boundary of the particles. Small values of η will
produce particles with few large fluctuations on the
particle boundary and less smaller fluctuations. Higher
values of η will produce particles with more frequently
occurring moderate fluctuations across the boundary.

Fig. 3 shows the corresponding saddlepoint
densities of the estimated area of the particles for two
different values of n. �

η = 2 η = 4 η = 16

Fig. 2. Realizations of particles obtained by assuming
that the squared radial function is given by a Gamma
Lévy process with a p-order covariance function. The
values of p, α and β were p = 2, logα = 6 and
logβ = −3. Each column corresponds to realizations
for a fixed value of η (η = 2,4,16).
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Fig. 3. The saddlepoint density of the n-point area
estimate for n = 5 (stippled) and n = 10 (full line).
The different colours represent densities for the three
particles considered: η = 2 (red lines), η = 4 (green
lines) and η = 16 (blue lines). Densities for a
Gaussian model is shown for comparison (black lines).
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In applications, it is needed to estimate the
parameter η of the underlying Lévy basis Z, i.e.,
the parameter of the distribution of W . For a given
kernel function k, we have a simple expression for the
cumulant generating function of X and its derivatives
(when they exist), cf. Theorem 1. We suggest
estimating the parameter η determining the Lévy basis
by considering the saddlepoint approximation of the
density of X(θ). For more details on saddlepoint
approximations, cf. Jensen (1995). The first order
saddlepoint approximation of the density is given by

f̃ (x) =
1√

2πK′′X(t̂(x))
eKX (t̂(x))−t̂(x)x,

where t̂(x) is the solution to the saddlepoint equation

K′X(t) = x .

Note that the saddlepoint equation is non-linear when
Z is non-Gaussian, but can be solved numerically,
using a Newton method for a given kernel function k. A
better approximation of the density of X(θ) is obtained
by multiplying the density with the correction factor

c(t̂(x)) = 1+
K(4)

X (t̂(x))
8K′′X(t̂(x))2 −

5
24

(
K(3)

X (t̂(x))
K′′X(t̂(x))3/2

)2

.

Given an estimation of the kernel function k we can
establish a pseudo-likelihood function based on the
observations of the stochastic process X given by

L(η) =
n

∏
i=1

f̃ (x(θi)) .

Here, f̃ (x(θi)) is calculated using the approximated
kernel function

k̂S(θ) =
S

∑
s=2

ξ̂s cos(sθ) ,

where ξ̂s =

√
λs(α̂, β̂ )/π is obtained using the

estimates of (α,β ). Note that we need to normalize
the densities f̃ (xi) for each value of η , when
maximizing the likelihood function L(η). If the
estimated likelihood function is an increasing function
of η , this suggests that the underlying Lévy basis is
Gaussian.

The cumulant generating function and its
derivatives have simple analytic expressions, when
the underlying Lévy basis is a Gamma basis or Inverse
Gaussian basis. These expressions can be derived by
combining Theorem 1 and Table 1. For a Gamma Lévy

process the cumulant generating function of X(θ) and
its derivatives are given by

KX (t) = t(µ−2πξ0
√

η)−η

∫ 2π

0
log
(

1− tk(φ)
√

η

)
dφ ,

K′X (t) = µ−2πξ0
√

η +η

∫ 2π

0

k(φ)
√

η− tk(φ)
dφ ,

K(r)
X (t) = (r−1)!η

∫ 2π

0

k(φ)r

(
√

η− tk(φ))r dφ , r ≥ 2 .

For an inverse Gaussian Lévy process the cumulant
generating function of X(θ) and its derivatives are
given by

KX (t) = t(µ−2πξ0η
2)+η

4
∫ 2π

0

(
1−

√
1− 2tk(φ)

η2

)
dφ ,

K′X (t) = µ−2πξ0η
2 +η

3
∫ 2π

0

k(φ)√
η2−2tk(φ)

dφ ,

K(r)
X (t) = (2r−3)!!η3

∫ 2π

0

k(φ)r

(η2−2tk(φ))r− 1
2

dφ , r ≥ 2 .

In both cases, the saddlepoint approximation of the
density of X(θ) are easily obtainable using numerical
integration and a Newton algorithm for finding the
saddlepoint. Note that the saddlepoint approximation
of the density function for an arbitrary η can be
written in terms of the saddlepoint approximation of
the density, the cumulant generating derivatives and
saddlepoint solution for η = 1.

CONCLUSION AND
PERSPECTIVES

We have developed a Lévy-based error prediction
in circular systematic sampling. In contrast to previous
model-based methods, we consider a flexible class
of non-Gaussian measurement functions based on
kernel smoothing of a homogeneous Lévy basis. In
particular, we have derived the distribution of the
error predictor in circular systematic sampling. The
modelling framework allows us to consider in principle
any given covariance structure of the measurement
function, in particular the popular p-order covariance
model which enables controlling the local and global
fluctuations of the measurement function.

Relation to generalized p-order models. Note that
as the Lévy-based process X is strictly stationary, it can
be shown that X has a polar expansion of the form

X(θ) = µ +
√

2
∞

∑
s=0

√
Cs cos(s(θ −Ds)) ,

where the random variables

Cs =
1
2
(A2

s +B2
s ) = λsZs , Ds ∼U [0,

2π

s
] , s≥ 1 ,
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are independent, cf. the Appendix, and E(Zs) = 1.
Here, the variable Zs can be expressed as

Zs =
1

2πκ2(W )

∫ 2π

0

∫ 2π

0
cos(s(θ −φ))Z(dθ)Z(dφ) .

This shows that the Lévy-based models are closely
related to the generalized p-order models proposed
in Hobolth et al. (2003), but the Lévy-based models
have more structure that allows for derivation of
distributional results.

Modelling particles in 2D and 3D. The model
(Eq. 3) can be used directly to model the shape of
featureless two-dimensional particles by assuming that
a particle Y is a stochastic deformation of a template
particle Y0. If r0 is a radial function of a template
particle, we let the radial function of Y be of the
form R(θ) = r0(θ) +X(θ), where X is a zero mean
Lévy-based stochastic process. The strength of this
technique is two-folded. Firstly, the global and local
fluctuations of the Lévy-based stochastic process are
controlled by the variance of the Fourier coefficients
which are determined by the kernel function. Secondly,
the underlying Lévy basis determines the frequency
and size of the irregularities of the process. Finally,
the methodology presented can be extended to model
the shape of three-dimensional featureless particles, by
considering Lévy-based processes on the unit sphere
S2. Hansen et al. (2011) consider three-dimensional
Lévy particles using different covariance models. The
focus is here on the Hausdorff dimension of the
boundary of particles obtained using a Gaussian basis.

Approximations of densities. The saddlepoint
approximation was applied here to obtain an
approximation of the density of X(θ) in the
Lévy-based stochastic model. As the cumulant
generating function is easily obtainable for stochastic
convolutions of the type

X(ξ ) =
∫

f (η−ξ )Z(dη) , ξ ∈ Rn ,

where f : Rn → R and Z is a homogeneous
Lévy basis on Rn, the saddlepoint approximation
of the density is an attractive tool for studying
Lévy-based convolution models in general. For the
stochastic processes considered here, other types of
approximations of densities can also be considered
based on approximating As and Bs by differences of
variables from the same family of distributions as
W . As an example one could consider approximating
the density of the Fourier coefficients by a type II
McKay distribution (Holm and Alouini, 2004), when
the underlying Lévy basis is a Gamma Lévy basis.

Choice of kernel function. Finally, it should be
emphasized that assuming that the kernel function is

even does not affect the flexibility of the induced
covariance model. When k is not necessarily even,

k(θ) = ξ0 +
∞

∑
s=1

(ξs,1 cos(sθ)+ξs,2 sin(sθ)) ,

the covariance function of X is given by

C(θ)= 2πξ
2
0 +π

∞

∑
s=1

(ξ 2
s,1+ξ

2
s,2)cos(sθ) , θ ∈ [0,2π) .

Moreover, the Fourier coefficients of the process X
will still be uncorrelated and have the same distribution
described by the cumulant generating function

KAs(t) =
∫ 2π

0
KW (tξs,1 cosφ − tξs,2 sinφ)dφ ,

and cumulants given by

κr(As) = κr(Bs)

= 2π(ξ 2
s,1 +ξ

2
s,2)

r/2 (r−1)!!
r!!

κr(W )1(r even) .

APPENDIX: A NOTE ON POLAR
EXPANSION OF A STATIONARY
PROCESS

Consider a stationary process X = {X(θ) : θ ∈
[0,2π)} with Fourier expansion

X(θ) = A0 +
∞

∑
s=1

(As cos(sθ)+Bs sin(sθ)) ,

and Polar expansion

X(θ) = µ +
√

2
∞

∑
s=0

√
Cs cos(s(θ −Ds)) ,

where Cs =
1
2(A

2
s +B2

s ) and sDs = arctan(Bs/As), s≥ 1.
It is easily seen that

X(θ +h) = A0 +
∞

∑
s=1

(As(h)cos(sθ)+Bs(h)sin(sθ)) ,

where(
As(h)
Bs(h)

)
=

(
cos(sh) sin(sh)
−sin(sh) cos(sh)

)(
As
Bs

)
=V

(
As
Bs

)
,

and V is a rotation matrix. As for each h ∈ [0,2π),
{X(θ) : θ ∈ [0,2π)} and {X(θ +h) : θ ∈ [0,2π)} have
the same distribution,(

As
Bs

)
∼
(

As(h)
Bs(h)

)
=V

(
As
Bs

)
.
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We now have that

Es :=
(

As/
√

A2
s +B2

s
Bs/
√

A2
s +B2

s

)
∼V

(
As/
√

A2
s +B2

s
Bs/
√

A2
s +B2

s

)
=V Es ,

and consequently Es is uniformly distributed on the
unit circle, i.e., arctan(Bs/As) is uniformly distributed
on [0,2π) and Ds is uniformly distributed on [0,2π/s).
Now consider the conditional distribution of

√
2Cs =√

A2
s +B2

s given Es. As√
2Cs | Es = es ∼

√
2Cs |V Es = es ,

the conditional distribution does not depend on es and
hence

√
2Cs is independent of Es and Ds.
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THE CENTRE FOR MATHEMATICAL MORPHOLOGY (CMM) OF MINES PARISTECH 
ORGANIZES ITS 2013 SPECIALIZED TRAINING 
“Image analysis: from theory to practice”  
Paris, France 
November 25th to 29th in Paris. 

 
This course gives a comprehensive presentation of the morphological tools. Filtering and segmentation 

techniques are addressed, in 2D or 3D, for grey-tone or colour images, for still images or sequences as well as 
related techniques necessary to develop successful applications. 

The course is organised during five full days, in a single week: lectures in the morning (9h-12h30), and 
practical training in the afternoon (14h-17h30). The practical training is performed with Morph-M, a multi-
platform Mathematical Morphology software, developed and used in most CMM research projects. Demonstration 
will reinforce pedagogical aspects of the course.  

The following topics will be addressed:  

 Erosion, dilatation, opening, closing, granulometries, gradients, top-hat.  
 Morphological filtering.  
 Geodesy, connected operators, levellings.  
 Segmentation : watershed, hierarchical segmentation, ultimate opening.  
 3D images, image sequences.  
 Color processing.  

All these notions will be illustrated through many examples, chosen from different application domains: 
bio-medicine, material science, scene analysis, multimedia, etc. The manipulation of images during practical 
training in the afternoons allows a full understanding of the studied notions.  

You will find all the necessary information on our website: 

http://cmm.ensmp.fr/ES/index_eng.htm. 

 
Should you require any additional information, we are at your disposal. 
 
Yours sincerely, 
 
Catherine Moysan 
Centre de Morphologie Mathématique 
35 rue St Honoré 
77300 Fontainebleau  
Tél. 01 64 69 47 06 - Fax 01 64 69 47 07 
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ISS MEMBERSHIP APPLICATION/RENEWAL FOR 2013 

 
  

The International Society for Stereology is a non-profit organization, whose purpose is to promote the 
exchange and dissemination of information about stereology among persons of various scientific disciplines 
and countries. The members’ fees constitute the sole source of revenues of the ISS. In order to help us promote 
stereology, we would be pleased to welcome you as a member. 

 
The ISS membership fee (regular members 50 €, students 25 €) includes a subscription to the journal 

‘Image Analysis and Stereology’ 

(http://www.ias-iss.org) 

 
To renew your membership for 2013, please pay by bank transfer to the following account 

IBAN: BE69 7320 1659 9478 BICCode: CREGBEBB 

account owner International Society for Stereology 

 
To pay via PayPal or to apply for a NEW membership, please send a message to 

gemme@ulg.ac.be 

 
 

You can also contact the ISS President and secretary/treasurer at: 

gemme@ulg.ac.be 

 
 

Eric Pirard Claudia Redenbach 

ISS President  ISS Secretary/treasurer 

 

 

http://www.wise-t.com/ias/
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