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A B S T R A C T	   A R T I C L E   I N F O	

The	manuscript	 presents	 the	 importance	 of	 integrating	mathematical	meth‐
ods	 for	 the	 determination	 of	 due	 date	 optimization	 parameter	 for	maturity	
optimization	 in	 evolutionary	 computation	 (EC)	 methods	 in	 multi‐objective	
flexible	job	shop	scheduling	problem	(FJSSP).	The	use	of	mathematical	model‐
ling	methods	of	due	date	optimization	with	slack	(SLK)	for	low	and	total	work	
content	 (TWK)	 for	medium	 and	 high	 dimensional	 problems	 was	 presented	
with	 the	 integration	 into	 the	 multi‐objective	 heuristic	 Kalman	 algorithm	
(MOHKA).	 The	 multi‐objective	 optimization	 results	 of	 makespan,	 machine
utilization	 and	 due	 date	 scheduling	 with	 the	 MOHKA	 algorithm	 were	 com‐
pared	with	 two	 comparative	multi‐objective	 algorithms.	 The	 high	 capability	
and	dominance	of	the	EC	method	results	in	scheduling	jobs	for	FJSSP	produc‐
tion	was	demonstrated	by	comparing	the	optimization	results	with	the	results	
of	scheduling	according	to	conventional	priority	rules.	The	obtained	results	of	
randomly	 generated	 datasets	 proved	 the	 high	 level	 of	 job	 scheduling	 im‐
portance	with	respect	to	the	interdependence	of	the	optimization	parameters.	
The	ability	to	apply	the	presented	method	to	the	real‐world	environment	was	
demonstrated	by	using	a	real‐world	manufacturing	system	dataset	applied	in	
Simio	simulation	and	scheduling	software.	The	optimization	results	prove	the	
importance	of	 the	due	date	optimization	parameter	 in	highly	dynamic	FJSSP	
when	it	comes	to	achieving	low	numbers	of	tardy	jobs,	short	job	tardiness	and	
potentially	lower	tardy	jobs	costs	in	relation	to	short	makespan	of	orders	with	
highly	 utilized	 production	 capacities.	 The	 main	 findings	 prove	 that	 multi‐
objective	optimization	of	FJSSP	planning	and	scheduling,	 taking	into	account	
the	optimization	parameter	due	date,	is	the	key	to	achieving	a	financially	and	
timely	sustainable	production	system	that	is	competitive	in	the	global	market.
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1. Introduction  

The	 production	 planning	 and	 scheduling	 of	 flexible	 job	 shop	 production	 (FJSSP)	 is	 extremely	
important	 if	 a	 company	wants	 to	 ensure	 global	 competitiveness	 and	 sustainable	 business	 [1].	
Optimization	 parameters	 that	 define	 short	makespan	 of	 orders	 and	 enable	 high	 utilization	 of	
production	capacities	are	meaningless	if	the	expected	order	due	dates	are	not	guaranteed.	Ade‐
quate	planning	and	scheduling	of	due	dates,	which	are	usually	very	tight,	expresses	the	need	for	
a	detailed	discussion	of	the	scheduling	orders	 importance	from	the	point	of	due	dates.	The	re‐
search	question	presented	in	the	research	work	refers	to	the	importance	of	mathematical	mod‐
elling	of	the	due	dates	optimization	objective	in	the	multi‐objective	FJSSP	optimization	problem.	
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The	importance	of	scheduling	FJSSP	from	the	point	of	the	due	dates	has	a	significant	impact	on	
other	optimization	parameters	that	FJSSP	deals	with.	

According	to	the	literature,	the	problem	of	scheduling	orders	in	job	shop	production	has	long	
been	known,	defined	and	discussed	in	detail.	The	initially	used	scheduling	priority	rules	[2]	only	
allowed	the	theoretical	solution	of	single‐objective	optimization	problems,	which	the	developers	
transferred	 to	 dynamic	 job	 shop	 production	 environments	 by	means	 of	 simulation	modelling	
approaches	[3].	The	set	of	mathematical	methods	for	modelling	due	date	parameter	is	extensive	
[4].	 Their	 suitability	 for	 individual	 use	 is	 demonstrated	 by	 the	 specificity	 of	 the	 optimization	
problem	and	its	complexity	[5].	The	complexity	of	scheduling	is	reflected	in	several	supporting	
parameters	 that	 influence	 the	correct	assessment	of	 the	due	date	parameter	 from	the	average	
job	tardiness,	the	number	of	tardy	jobs	and	the	total	tardy	jobs	costs	leading	to	time	and	finan‐
cial	losses	of	the	company	[6].	Given	the	complexity	presented,	which	is	defined	in	FJSSP	as	NP	‐
hard,	the	use	of	evolutionary	computation	methods	(EC)	is	one	of	the	effective	ways	of	achieving	
optimal	optimization	results	[7,	8].	The	optimization	problem	of	scheduling	due	dates	in	flexible	
manufactured	systems	[9]	has	encountered	many	limitations	in	the	research	due	to	conflicting	
optimization	goals	and	the	use	of	different	mathematical	modelling	methods	[10].	The	research‐
ers	have	 limited	 it	 to	optimization	parameters	 that	define	 the	due	date	of	 jobs	 [11],	 assuming	
independence	 from	 other	 optimization	 parameters	 [12],	which	 significantly	 influence	 produc‐
tion	flexibility	[13].	The	dynamic	change	in	FJSSP	production	due	to	dynamic	customer	demand	
and	 high‐mix	 low‐volume	 production	 [14,	 15]	 cites	 Pareto‐based	 optimization	 approaches	 as	
suitable	 optimization	 approaches	 [16].	 The	 use	 of	 fuzzy	 approaches	 [17],	 which	 satisfactorily	
solve	the	optimization	problem	of	FJSSP	production,	usually	treats	the	problem	only	on	a	single‐
level	of	primary	optimization	criteria	and	limits	the	multi‐level	structure	of	the	FJSSP	problem	
[18].	 Heuristic	 methods	 [19,	 20],	 which	 allow	 a	 detailed	 devaluation	 of	 the	 optimization	 ap‐
proach	and	the	satisfactory	optimization	method,	are	usually	limited	by	the	transfer	of	the	opti‐
mization	 results	 to	 a	 real‐world	or	 simulation	environment	 [21,	22].	The	need	 for	 an	efficient	
optimization	method	that	allows	the	planning	and	scheduling	of	the	FJSSP	problem	with	the	op‐
timization	 parameter	 of	 due	 dates	 is	 the	 key	 to	 achieving	 a	 comprehensive	 optimization	 ap‐
proach	[23].	However,	the	research	results	must	allow	for	the	devaluation	of	both	test	and	real‐
istic	datasets	 for	appropriate	 integration	of	 the	proposed	methods	 into	the	real‐world	produc‐
tion	environment	[24].	

In	the	presented	research	work,	we	want	to	present	the	importance	of	integrating	mathemat‐
ical	methods	for	determining	due	dates	into	the	existing	EC	method.	The	research	work	tries	to	
overcome	the	existing	limitations	of	 the	FJSSP	research	problem,	which	does	not	deal	with	the	
optimization	 parameter	 of	 planning	 and	 scheduling	 orders	with	 the	 due	 date	 parameter.	 The	
mathematical	modelling	with	 known	 total	work	 content	 (TWK)	 and	 slack	 (SLK)	methods	 and	
their	 integration	 into	the	proposed	EC	algorithm	MOHKA	allows	to	evaluate	the	 importance	of	
the	FJSSP	multi‐objective	optimization	with	parameters	that	ensure	short	makespan,	high	utili‐
zation	of	production	capacities	and	the	achievement	of	tight	due	dates.	

2. Problem description  

In	 the	 optimization	 problem	 of	 planning	 and	 scheduling	 of	 the	 flexible	 job	 shop	 production	
(FJSSP),	the	three	most	frequent	optimization	parameters	are	shown	in	Eq.	1,	Eq.	2	and	Eq.	3:	

 Makespan	

௝ܥሼݔܽ݉	=	ܥܯ | ݆ ൌ 1,… , ݊ሽ,	 (1)

 Total	workload	of	all	machine	

	ܹܶ ൌ෍෍෍݌௜௝௞ݔ௜௝௞, ݇ ൌ 1, 2, … ,݉

௠

௞ୀଵ

௡೔

௝ୀଵ

௡

௜ୀଵ

	 (2)

and 
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 The	workload	of	the	most	loaded	machine	
	

ܹܯ ൌ ,௜௝௞ݔ௜௝௞݌෍෍ݔܽ݉ ݇ ൌ 1, 2, … ,݉

௡೔

௝ୀଵ

௡

௜ୀଵ

	 (3)

	

	
Fig.	1	Jobs	arrival	sequence	with	different	due	dates	

Where	the	Cj	 is	completion	time	of	 job	 j,	n	 represents	number	of	 jobs	and	m	 the	number	of	
machines.	 These	 three	 optimization	 parameters	 relate	 to	 the	 time	 of	 jobs	 completion	 and	 the	
achievement	of	the	highest	possible	utilization	of	the	machines.	In	the	highly	dynamic	job	shop	
production,	a	very	important	parameter	is	the	due	date	of	jobs	dj,	which	in	most	cases	are	very	
tight.	Fig.	1	shows	the	job	arrival	sequence	of	five	jobs,	where	each	job	must	be	executed	with	a	
different	due	date	in	the	production	system	defined	as	FJSSP.	The	optimization	of	the	jobs	pro‐
cess	sequence	must	be	carried	out	with	regard	to	the	multi‐objective	nature	of	FJSSP,	whereby	
three	parameters	must	be	minimized	(MC,	MW,	dj)	and	one	parameter	must	be	maximized	(TW).	

In	this	case,	each	job	j	has	a	certain	number	of	operations	Oi,	which	must	be	performed	on	the	
available	machine	m	from	the	given	set	of	machines	capable	of	performing	an	individual	opera‐
tion.	The	process	time	of	the	operation	pjk	varies	in	relation	to	the	assigned	machine	capable	of	
performing	the	individual	operation	Oi.	The	optimization	algorithm	must	arrange	the	job	process	
sequence	in	such	a	way	that	it	handles	all	four	optimization	parameters	accordingly.	Example:	If	
the	 conventional	 priority	 rule	 Earliest	 Due	 Date	 (EDD)	 was	 used,	 the	 job	 process	 sequence	
would	be	J2,	J5,	J1,	J4	and	J3.	This	job	process	execution	sequence	deals	only	with	one	optimization	
parameter	dj,	which	is	defined	as	follows:	The	due	date	of	job	j	represents	the	estimated	dispatch	
date	of	 job	 j	 (dispatch	date	promised	 to	 the	 customer).	Completion	of	 job	 j	 after	 the	due	date	
(promised	 to	 the	 customer)	 is	 allowed,	 but	 represents	 an	 additional	 financial	 penalty	 for	 the	
company.	 When	 considering	 the	 optimization	 parameter	 dj,	 important	 related	 goals	 must	 be	
specified.	The	priority	objective	is	to	reduce	the	maximum	lateness,	which	is	defined	as	in	Eq.	4:	
	

௠௔௫ܮ ൌ ,௝ܮሺݔܽ݉ … , 	,௡ሻܮ (4)

where	the	lateness	of	an	individual	job	j	defined	by	the	Eq.	5	

௝ܮ ൌ ௝ܥ – ௝݀ 	 (5)

depends	on	the	completion	time	of	the	job	j	and	the	assumed	delivery	time	of	the	job	dj. 
The	timed	Lmax	can	be	more	easily	defined	with	the	parameter	number	of	tardy	jobs.	This	op‐

timization	 parameter	 only	 defines	whether	 the	 individual	 job	 j	missed	 the	 estimated	 delivery	
time	or	not.	Tardiness	of	job	j	is	defined	as	presented	by	Eq.	6:	

௝ܶ ൌ ௝ܥሺݔܽ݉ – ௝݀, 0ሻ,	 (6)

and	the	corresponding	target	function	defined	by	Eq.	7.	
	

෍ ௝ܶ

௡

௝ୀଵ

	 (7)

Due	to	the	shortcomings	of	the	above	optimization	function,	which	refers	to	some	very	tardy	
jobs,	it	is	useful	to	determine	the	importance	weights	of	jobs	j	by	wj.	The	higher	the	weight,	the	
more	important	the	job	is.		
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The	assumption	in	the	present	research	work	refers	to:	the	given	weight	wj	refers	only	to	the	
importance	of	 an	 individual	 job	 j,	which	can	be	weighted	directly	by	 the	planning	 team	of	 the	
manufacturing	 system.	 However,	 the	 importance	 of	 the	 multi‐objective	 decision	 making	 be‐
tween	 the	 four	 optimization	 parameters	 (MC,	 TW,	MW	 and	 dj)	 does	 not	 determine	 the	 im‐
portance	of	the	correlation	between	them,	since	this	is	performed	with	the	evolutionary	compu‐
tation	method	MOHKA,	which	presents	solutions	of	the	optimization	problem	with	Pareto	opti‐
mal	solutions.	

3. Due date modelling 

To	model	due	dates	of	jobs,	a	random	dataset	is	generated	(according	to	the	FJSSP	characteris‐
tics)	and	divided	into	three	groups	with	regard	to	their	complexity	dimensions:	

 Low	dimensional	optimization	problem,	in	the	present	manuscript	the	dataset	J5,	M11,	O66	
has	been	configured	to	evaluate	MOHKA	capabilities	in	relation	to	the	optimization	results	
of	conventional	priority	rules.	

 Middle	dimensional	optimization	problems	are	represented	by	two	datasets,	a	theoretical	
dataset	J10,	M11,	O122	and	a	real‐world	dataset	J15,	M10,	O84,	which	was	used	in	the	FJSSP	case	
study	section.	

 High	dimensional	optimization	problems	are	represented	by	datasets	J15,	M11,	O176	and	J20,	
M11,	O240,	respectively.	

Due	 date	 optimization	 parameter	modelling	 is	 performed	with	 TWK	 (Total	WorK	 content)	
method	by	the	Eq.	8.	

௝݀ ൌ ௝ݐܽ ൅ ௫ܭ ൉෍ ௜,௝,௞݌
௜∈௢ೕ

	 (8)

The	tightness	coefficient	of	the	order	due	date	Kx	(allowance	factor)	determines	the	tightness	
of	the	delivery	times.	In	the	current	literature	[7]	for	the	TWK	method	and	determination	of	the	
tightness	coefficient	of	the	permissible	deviation	of	the	delivery	time	for	the	EC	method,	values	
in	the	range	of	3	≤	Kx	≤	5	are	given.	The	smaller	the	value	of	 the	tightness	coefficient,	 the	nar‐
rower	the	due	date	of	the	order	j	is.	The	experiments	in	the	manuscript	use	the	value	of	the	coef‐
ficient	Kx	=	3.	The	due	date	modelled	according	to	the	TWK	method	depends	on	the	arrival	time	
of	 the	order	 j	 (atj),	 total	 time	of	processing	of	 all	 operations	 (pijk)	 and	 the	described	 tightness	
coefficient.	The	MOHKA	algorithm	schedules	the	job	orders	according	to	four	optimization	crite‐
ria,	including	the	due	date	dj.	The	adequacy	comparison	of	the	proposed	MOHKA	method	is	per‐
formed	with	two	comparison	algorithms:	Multi‐objective	particle	swarm	optimization	(MOPSO)	
[25]	and	Bare‐bones	multi‐objective	particle	 swarm	optimization	 (BBMOPSO)	 [26].	These	 two	
algorithms	do	not	use	an	integrated	mathematical	decision	model	to	terminate	orders	according	
to	the	due	date	criterion,	this	criterion	is	calculated	numerically	in	the	experiment	at	the	end	of	
the	optimization	results.	As	stated	in	the	initial	research	question,	the	due	date	parameter	in	the	
FJSSP	 optimization	 problem	 is	 not	well	 researched,	 especially	when	 it	 comes	 to	 using	 the	 EC	
method	to	obtain	optimal	solutions.	All	algorithms	in	the	experiment	use	the	same	initialization	
parameter:	population	size	 (Ns	=	300),	maximum	number	of	archived	nondominated	solutions	
(Na	=	100),	and	maximum	number	of	algorithm	iterations	(MaxIter	=	300).	

The	optimization	parameter	for	scheduling	jobs	by	due	date	is	analysed	using	three	criteria:	
number	of	tardy	jobs,	average	job	tardiness	and	tardy	jobs	cost.	The	tardy	jobs	costs	is	modelled	
as	shown	in	Eq.	9,	where	the	initial	job	cost	(Jcost)	are	multiplied	by	the	constant	value	of	three,	
divided	by	the	value	constant	Ks,	and	multiplied	by	subtracting	the	completion	time	Cj	 and	the	
due	date	dj.		
	

௖௢௦௧ܮ ൌ
3 ൉ ௖௢௦௧ܬ
ௌܭ

൉ ൫ܥ௝ െ ௝݀൯	 (9)
	

A	constant	value	of	three	determines	three	times	the	cost	of	tardy	jobs	compared	to	the	cost	
of	 in‐time	 completed	 jobs.	 The	 value	 constant	 KS	 is	 automatically	 determined	 by	 the	 orders	



Due date optimization in multi‐objective scheduling of flexible job shop production
 

Advances in Production Engineering & Management 15(4) 2020  485
 

makespan.	The	parameter	Jcost	 is	determined	numerically	according	to	the	characteristics	of	the	
machines	performing	an	individual	job	operation.	

The	modelling	of	the	due	dates	and	the	achievement	of	the	other	three	optimization	parame‐
ters	were	carried	out	using	conventional	methods	(priority	rules)	and	the	heuristic	GSBR	meth‐
od,	with	the	aim	of	evaluating	the	efficiency	of	the	conventional	scheduling	methods	compared	
to	the	proposed	MOHKA	EC	method.	The	comparison	is	performed	in	the	software	environment	
Lekin.	As	the	Lekin	software	environment	only	allows	the	optimization	of	datasets	of	up	to	one	
hundred	operations	in	the	FJSSP	optimization	problem,	the	evaluation	is	performed	with	a	ran‐
domly	determined	dataset	classified	as	low	dimensional	optimization	problem	J5,	M11,	O66.	A	ran‐
domly	generated	dataset	does	not	contain	data	where	two	or	more	operations	are	performed	on	
the	same	machine	within	a	single	order,	limitation	of	Lekin.	

In	contrast	to	larger	datasets,	where	in	the	TWK	method	is	used	to	model	due	dates,	the	SLK	
(slack)	method	[4]	is	recommended	for	smaller	datasets,	which	can	model	due	dates	by	the	Eq.	10.	
	

	 ௝݀ ൌ ௝ݐܽ ൅෍ ௜,௝,௞݌ ൅ ௬ܭ
௜∈௢ೕ

	 (10)

The	 time	 reserve	 constant	Ky	 determines	 the	 looseness‐tightness	 of	 due	 dates,	 in	 the	 SLK	
method	the	determination	of	the	time	reserve	constant	of	the	due	date	is	given	by	the	literature	
values	4	≤	Ky	≤	16.	In	the	presented	research	work	the	value	Ky	=	8	is	used.	The	Ky	must	be	calcu‐
lated	individually	for	the	specific	optimization	problem.	

3.1 Performance testing 

To	 test	 the	 performance	 of	 the	MOHKA	algorithm	 for	 due	date	 job	 scheduling,	 four	 randomly	
generated	 benchmark	 datasets	 and	 one	 real‐world	 dataset	 all	 of	 which	 describe	 a	 multi‐
objective	FJSSP	optimization	problem	were	used.	The	datasets	were	created	using	the	interde‐
pendency	 function	between	different	parameters	describing	 the	optimization	problem.	We	di‐
vided	these	benchmark	datasets	into	three	groups	according	to	the	complexity	of	the	optimiza‐
tion	problem. 

3.2 Using TWK and SLK methods 

The	division	of	the	datasets	used	in	different	groups	according	to	their	complexity	provided	the	
basis	 for	 testing	 two	different	due	date	modelling	methods.	TWK	method	 for	middle	and	high	
dimensional	 optimization	 problems	 and	 SLK	method	 for	 low	 dimensional	 optimization	 prob‐
lems.	The	use	of	TWK	and	SLK	methods	for	different	datasets	is	supported	by	the	mathematical	
formulation	of	the	individual	methods.	With	the	presented	classification	approach,	the	complexi‐
ty	of	the	optimization	problems	can	be	evaluated	more	precisely	in	order	to	determine	the	ad‐
vantages	and	limitations	of	the	due	date	methods	capabilities.	The	proposed	MOHKA	algorithm	
performed	 the	 optimization	 of	 datasets	with	 four	 parameters	 of	 a	 flexible	 production	 system:	
makespan	(MC),	total	workload	of	all	machines	(TW),	maximum	workload	of	an	individual	ma‐
chine	 (MW)	 and	added	due	date	 (dj)	 parameter.	The	obtained	optimization	 results	were	 com‐
pared	 with	 two	 multi‐objective	 particle	 swarm	 based	 optimization	 algorithms	 MOPSO	 and	
BBMOPSO.	 The	 experiments	were	 performed	 on	 a	 personal	 computer	with	 Intel	 i7	 processor	
and	16	GB	internal	memory.	

3.3 Results for the TWK method 

The	results	in	Table	1	show	the	high	reliability	of	scheduling	jobs	with	the	TWK	method,	taking	
into	account	due	dates	with	 the	MOHKA	optimization	algorithm.	 Its	success	 in	scheduling	 jobs	
with	tight	due	dates,	low	average	job	tardiness	potentially	low	tardy	jobs	cost	and	short	orders	
makespan.		

The	middle	dimensional	dataset	 J10,	M11,	O122	caused	no	problems	 for	all	 three	evolutionary	
computation	algorithms	 in	 scheduling	orders	 for	 tight	due	dates	of	 the	TWK	method	with	 the	
tightness	coefficient	of	Kx	=	3.	No	job	has	missed	the	scheduled	due	date,	which	in	turn	did	not	
result	 in	 additional	 tardy	 jobs	 costs	 in	 the	 manufacturing	 system.	 Since	 only	 the	 referential	
MOHKA	 optimization	 algorithm	 takes	 into	 account	 the	mathematical	 architecture	 of	 the	 TWK	
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method,	we	see	that	the	results	of	the	multi‐objective	optimization	have	a	positive	effect	on	the	
achievement	of	 the	minimum	orders	makespan.	Makespan	 is	 the	shortest	 in	 the	MOHKA	algo‐
rithm	with	up	to	188	h,	in	contrast	to	MOPSO	and	BBMOPSO,	where	the	makespan	is	227	h	and	
206	h,	respectively.	

When	the	dimension	of	datasets	increases	from	middle	dimensional	to	high	dimensional	op‐
timization	problems,	 the	difference	between	the	optimization	results	of	comparison	and	refer‐
ence	algorithms	 is	more	pronounced,	presented	on	Fig.	2.	 In	dataset	 J15,	M11,	O176,	 the	MOHKA	
algorithm	terminates	orders	in	such	a	way	that	three	orders	are	late	for	the	expected	due	date	
with	an	average	job	tardiness	of	19	h,	resulting	in	a	tardy	jobs	costs	of	2272.2	EUR.	The	MOPSO	
algorithm	terminates	orders	so	that	only	two	orders	miss	the	expected	due	date,	but	with	higher	
average	 job	 tardiness	 of	 45.5	 h,	 which	means	 a	 139%	 higher	 average	 job	 tardiness	 than	 the	
MOHKA	algorithm.	A	longer	average	job	tardiness	leads	to	higher	tardy	jobs	costs,	which	amount	
to	 EUR	2966.5	 in	 the	MOPSO	 algorithm.	 The	BBMOPSO	 algorithm	had	 the	most	 difficulties	 in	
scheduling	the	J15,	M11,	O176	dataset	because	up	to	one‐third	of	the	orders	have	missed	the	sched‐
uled	due	date,	with	an	average	job	tardiness	of	20.6	h	and	high	tardy	jobs	costs	of	3558.5	EUR.	
This	corresponds	to	an	increase	of	56.6%	in	the	costs	of	tardy	jobs	compared	to	the	MOHKA	al‐
gorithm.	 The	 results	 show	 that	 the	MOHKA	 algorithm	 is	 also	most	 successful	 with	 the	 order	
makespan	parameter	 of	 289	h,	which	 is	 2.8%	shorter	 than	 the	BBMOPSO	algorithm	and	17%	
shorter	than	the	MOPSO	algorithm.	Based	on	the	optimization	results	described	above,	we	can	
assume	how	important	the	scheduling	of	the	dynamic	FJSSP	with	the	parameter	of	due	date	is,	
especially	if	the	complexity	of	the	optimization	problem	increases.	

The	hypothesis	is	confirmed	for	the	high‐dimensional	dataset	J20,	M11,	O240,	in	which	the	refer‐
ence	MOHKA	algorithm	dominates	over	the	results	of	the	two	comparison	algorithms	presented	
of	Fig.	3.	The	lowest	number	of	tardy	jobs	with	an	average	job	tardiness	of	31.1	h	compared	to	
44.4	h	and	46.8	h	for	MOPSO	and	BBMOPSO,	corresponding	to	42.8%	and	50.5%	higher	number	
of	 tardy	 jobs.	Given	 the	higher	number	of	 tardy	 jobs	and	 the	 longer	average	 job	 tardiness,	 the	
costs	of	tardy	jobs	is	also	higher	for	the	two	comparison	algorithms	than	for	the	reference	MOH‐
KA	algorithm,	which	amounts	 to	7,318.1	EUR.	With	the	MOPSO	algorithm,	 the	 tardy	 jobs	costs	
amount	to	13,585.6	EUR,	while	with	BBMOPSO	they	amount	to	33,070.1	EUR,	which	represents	
an	 increase	 of	 85.6%	 and	 351.9%,	 respectively,	 in	 the	 costs	 of	 tardy	 jobs	 that	 have	 exceeded	
their	 scheduled	 due	 date.	 The	 presented	 results	 prove	 the	 high	 importance	 of	 mathematical	
modelling	with	the	parameter	of	due	date	optimization,	as	they	have	a	decisive	influence	on	the	
makespan	and	financial	justification	of	a	highly	dynamic	manufacturing.	A	suitable	mathematical	
model	of	the	multi‐objective	optimization	problem	is	also	reflected	in	the	achievement	of	short	
order	makespan.	For	the	high	dimensional	dataset	J20,	M11,	O240	the	reference	MOHKA	algorithm	
achieved	a	makespan	of	341	h	and	the	two	comparison	algorithms	389	h	and	397	h.	Appropriate	
multi‐objective	decision	making	allows	 for	an	evenly	balanced	operation	of	 the	manufacturing	
system	 regarding	 to	 the	 makespan,	 machine	 utilization	 and	 achievement	 of	 tight	 order	 due	
dates.	

 
Fig.	2	Optimization	results	J15,	M11,	O176:	(a)	average	job	tardiness,	(b)	tardy	jobs	costs	and	(c)	orders	makespan	
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Table	1	Algorithms	optimization	results	

Algorithm	 Dataset	
Number	of	
tardy	job	

Average	job	tardiness	
(h)	

Tardy	jobs	costs	
(EUR)	

Orders	makespan
(h)	

	
MOHKA	

J10,	M11,	O122	 0	 0 0 188
J15,	M11,	O176	 3	 19 2,272.2 289
J20,	M11,	O240	 7	 31.1 7,318.1 341

	
MOPSO	

J10,	M11,	O122	 0	 0 0 227
J15,	M11,	O176	 2	 45.5 2,966.5 339
J20,	M11,	O240	 10	 44.4 13,585.6 389

	
BBMOPSO	

J10,	M11,	O122	 0	 0 0 206
J15,	M11,	O176	 5	 20.6 3,558.5 297
J20,	M11,	O240	 18	 46.8 33,070.1 397

 
Fig.	3	Optimization	results	J20,	M11,	O240:	(a)	average	job	tardiness,	(b)	tardy	jobs	costs,	and	(c)	orders	makespan	

3.4 Results for the SLK method 

With	the	aim	to	compare	the	solutions	of	the	MOHKA	algorithm	and	the	solutions	of	convention‐
al	priority	rules,	a	comparison	of	the	results	of	the	MOHKA	optimization	with	the	results	of	job	
scheduling	in	the	Lekin	software	environment	was	performed	for	the	low	dimensional	optimiza‐
tion	problem	of	J5,	M11,	O66.	

Table	2	shows	the	optimization	results	of	a	randomly	generated	J5,	M11,	O66	dataset	of	five	jobs	
with	 a	 total	 of	 sixty‐six	 operations	performed	on	 eleven	machines.	The	optimization	was	per‐
formed	with	the	MOHKA	optimization	algorithm	in	the	software	environment	MATLAB	and	sev‐
en	optimization	approaches	 in	 the	software	environment	Lekin.	Of	 the	seven	optimization	ap‐
proaches,	 six	 are	 conventional	 priority	 rules	 and	 one	 is	 a	 heuristic	 algorithm	 named	 General	
Shifting	Bottleneck	Routine	 (GSBR).	 For	 the	optimization	of	 due	dates	 the	 SLK	method	with	 a	
time	reserve	constant	of	Ky	=	8	was	used.	

The	 results	 show	a	 high	 reliability	 of	 production	 jobs	 scheduling	 by	 the	 optimization	 algo‐
rithm	MOHKA.	 In	 the	 considered	dataset	MOHKA	 terminates	 jobs	 so	 that	 two	orders	miss	 the	
scheduled	due	dates	with	an	average	job	tardiness	of	9.5	h	and	a	tardy	jobs	costs	of	2,651	EUR.	
With	the	six	priority	rules	we	see	that	the	five	priority	rules,	with	the	exception	of	the	SPT	prior‐
ity	rule,	 terminate	orders	 in	such	a	way	 that	all	 five	orders	miss	 the	scheduled	 tight	due	date.	
The	average	job	tardiness	is	higher	than	309.5%	for	the	CR	priority	rule	to	505.3%	for	the	LPT	
priority	rule	than	for	the	MOHKA	algorithm.	There	are	also	significantly	higher	tardy	jobs	costs.	
The	only	algorithm	that	has	partially	approximated	the	results	of	 the	MOHKA	algorithm	is	 the	
heuristic	GSBR	algorithm,	where	 four	orders	are	 tardy	with	an	average	 job	 tardiness	of	9.4	h.	
Due	to	two	additional	delayed	jobs,	the	tardy	job	cost	are	39.8%	higher	than	in	the	MOHKA	algo‐
rithm.	There	is	also	a	significant	difference	in	achieving	a	short	makespan	of	orders,	where	the	
MOHKA	algorithm	terminates	work	jobs	so	that	they	are	completed	in	a	makespan	of	99	h,	and	
all	other	algorithms	terminate	orders	with	makespan	between	208	h	(GSBR)	and	256	h	(CR).	

	The	 presented	 optimization	 results	 prove	 the	 high	 ability	 to	 terminate	 production	 orders	
with	 the	MOHKA	algorithm	and	 to	achieve	 tight	due	dates	 from	 low	dimensional	optimization	
cases	(with	SLK	method)	to	middle	and	high	dimensional	optimization	cases	(with	TWK	meth‐
od)	compared	to	optimization	solutions	according	to	MOSPO,	BBMOPSO	and	priority	rules.	
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Table	2	MOHKA	vs.	priority	rules	optimization	results	
Algorithm	 MOHKA	 EDD MS FCFS LPT SPT	 CR	 GSBR

Number	of	tardy	job	 2	 5 5 5 5 4	 5	 4
Average	job	tardiness	(h)	 9.5	 34.8 47.6 41.6 48 32.4	 29.4	 9.4
Tardy	jobs	costs	(EUR)	 2,651	 11,325.1 14,682.2 13,320 14,436.1 10,570.1	 8,905	 3,706.2
Orders	makespan	(h)	 99	 211 211 215 217 233	 256	 208

3.5 Real‐world case study 

With	the	proposed	method	for	modelling	the	due	date	for	FJSSP,	which	was	tested	on	randomly	
generated	benchmark	datasets,	we	proved	the	high	ability	to	solve	multi‐objective	optimization	
problems.	 The	 initial	 experiment,	which	was	 conducted	 on	 randomly	 generated	 datasets,	was	
extended	 to	 a	 real‐world	 case	 study	 for	 the	 FJSSP	manufacturing	 system	 to	 evaluate	MOHKA	
efficiency	in	determining	due	dates.	

The	 fourth	section	presents	 the	ability	 to	solve	a	multi‐objective	optimization	problem	of	a	
real‐world	manufacturing	system	(the	dataset	from	a	real‐world	environment	is	called	RW_PS).	
The	first	part	of	the	section	presents	the	input	data	of	the	manufacturing	system	that	has	been	
prepared	to	describe	FJSSP.	Working	with	the	company	to	prepare	relevant	and	credible	 input	
data	offers	the	opportunity	to	achieve	reliable	optimization	results	by	testing	the	proposed	EC	
scheduling	methods.	The	RW_PS	dataset	consists	of	 fifteen	job	orders	that	are	executed	on	ten	
machines	with	eighty‐four	operations.	The	optimization	results	obtained	with	the	MOHKA	algo‐
rithm	were	 compared	with	 the	 optimization	 results	 of	 the	MOPSO	 and	 BBMOPSO	 algorithms.	
The	proposed	integration	approach	of	transferring	the	optimization	results	to	the	conventional	
simulation	environment	was	used	to	transfer	the	optimization	results,	the	order	of	the	due	dates	
of	the	job	sequence,	to	the	simulation	model	of	the	real‐world	manufacturing	system.		

Manufacturing	system	input	data	

Selected	 data	 were	 obtained	 from	 a	 Central	 European	medium‐sized	 company	 that	 manufac‐
tures	individual	orders	for	different	customers.	Orders	received	in	the	company	by	the	customer	
must	be	performed	on	specific,	available	machine	within	the	manufacturing	system	concerning	
four	 optimization	parameters	MC,	TW,	MW	 and	dj	 (FJSSP	problem).	 The	 orders	 consist	 of	 two	
types	of	products	with	different	process	times,	machine	operating	costs	(Oc),	machine	idle	costs	
(Ic)	 and	 fix	 location	of	machine	 is	 known	by	x	 and	y	 location.	 Input	data	 are	 given	 in	Table	3.	
Compared	to	the	test	random	generated	datasets	described	in	section	3,	the	additional	complexi‐
ty	of	the	RW_PS	optimization	problem	is	added	by	two	different	product	types,	which	add	one	
dimensional	complexity	to	the	optimization	problem.	

In	a	real‐world	manufacturing	system,	machines	marked	M1	to	M10	perform	the	following	op‐
erations:	

• M1	and	M2	for	raw	material	cutting,	
• M3	to	M5	CNC	machining,	
• M6	and	M7	welding,	
• M8	and	M9	assembling	and	
• M10	final	control	operation.	

The	main	 task	of	 the	optimization	 algorithm	 is	 to	 optimally	 determine	 the	 job	 sequence	of	
operations	on	 the	 available	machine.	The	algorithm	must	determine	which	of	 the	machines	 is	
capable	of	performing	the	individual	operations	according	to	the	four	optimization	criteria.	The	
simulation	model	was	built	 in	the	Simio	software	environment,	 in	which	a	transfer	method	for	
integrating	optimization	 results	 from	 the	MOHKA	method	 to	 conventional	 simulation	decision	
logic	was	used	[18].	Using	the	MOHKA	algorithm,	we	solved	the	FJSSP	optimization	problem,	so	
we	decided	to	extend	our	existing	optimization	results	with	a	suitable	simulation	model.	Fig.	4	
shows	 a	 simulation	model	 of	 a	 real‐wold	manufacturing	 system	 running	 on	 an	 order	 job	 se‐
quence	determined	by	the	MOHKA	optimization	algorithm.	
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Table	3	Real‐world	manufacturing	system	characteristics	
Machine	 M1	 M2	 M3 M4 M5 M6 M7 M8	 M9	 M10

xloc	(m)	 8	 8	 12.5 18.5 24.5 30.5 36 36	 24.5	 19.5
yloc	(m)	 9.5	 4.5	 0 0 0 0 5.5 10.5	 16.5	 12

	

Product	1	

Processing	
time	(min)	

20	 24	 40	 45	 38	 47	 20	 25	 11	 22	

Oc	(EUR/h)	 45	 45	 35 35 35 35 52 52	 59	 43
Ic	[EUR/h]	 22.5	 22.5	 14 14 14 14 31.2 31.2	 35.4	 21.5

	

Product	2	

Processing	
time	(min)	

22	 22	 43	 43	 43	 43	 23	 23	 12	 25	

Oc	(EUR/h)	 43	 43	 36 36 36 36 53 53	 59	 45
Ic	[EUR/h]	 21.5	 21.5	 14.4 14.4 14.4 14.4 31.8 31.8	 35.4	 22.5

Fig.	4	Simulation	model	in	Simio	

Due	date	scheduling	results	

Table	4	and	Fig.	5	show	the	results	of	optimizing	the	RW_PS	dataset	according	to	the	order	due	
date	parameter.	As	shown	in	section	3,	the	TWK	method	with	a	tightness	coefficient	Kx	=	3	was	
used	when	evaluating	RW_PS	dataset.	The	optimization	results	show	that	with	the	MOHKA	op‐
timization	algorithm	only	one	 job	missed	a	 tight	due	date	with	an	average	 job	 tardiness	of	46	
min.	With	 the	BBMOPSO	optimization	 algorithm	 also,	 one	 job	missed	 the	 due	 date,	 but	 job	 is	
tardy	by	an	average	job	tardiness	of	154	min,	which	corresponds	to	a	234%	longer	tardy	time	of	
the	missed	job	than	the	tardy	job	with	the	MOHKA	algorithm.	In	the	MOPSO	algorithm,	two	jobs	
are	tardy	with	an	average	job	tardiness	of	58	minutes,	which	is	26.1%	longer	tardy	time	than	the	
delay	with	the	MOHKA	algorithm.	Since	the	value	of	tardy	jobs	costs	is	low,	the	percentage	dif‐
ference	between	 them	 is	significant.	 In	 this	case,	 the	MOHKA	algorithm	proves	 to	be	 the	most	
efficient,	since	it	is	the	only	algorithm	able	to	take	due	dates	into	account	as	a	decision	criterion	
when	determining	the	job	sequence.	

The	tardy	jobs	costs	in	the	MOPSO	algorithm	are	130.2%	higher	in	the	MOPSO	algorithm	than	
in	the	MOHKA	algorithm.	Even	if	only	one	job	with	the	BBMOPSO	algorithm	missed	the	sched‐
uled	due	date,	this	was	delayed	by	a	much	longer	time	than	the	tardy	job	with	the	MOHKA	algo‐
rithm.	 This	 is	 reflected	 in	 230.7%	higher	 tardy	 job	 costs.	 The	makespan	 of	 orders	 is	 shortest	
with	the	MOHKA	algorithm	at	392.45	min,	while	the	makespan	of	orders	is	longer	by	2.1%	long‐
er	with	MOPSO	 and	 7.6%	 longer	with	BBMOPSO.	 From	 the	 perspective	 of	 the	multi‐objective	
decision	making	process,	we	can	conclude	that	the	MOHKA	algorithm	provides	a	high	degree	of	
FJSSP	 scheduling	 capabilities	 even	 in	 real‐world	 datasets,	 considering	 the	 ability	 to	 achieve	 a	
tight	job	due	date.	
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Table	4	Optimization	results	of	real‐world	manufacturing	system	
Algorithm	 MOHKA MOPSO BBMOPSO

Number	of	tardy	job	 1 2 1	
Average	job	tardiness	(min)	 46 58 154	
Tardy	jobs	costs	(EUR) 14.9 34.3 46.3	
Orders	makespan	(min) 392.45 400.48 422.21	

 
Fig.	5	Optimization	results:	(a)	average	job	tardiness,	(b)	tardy	jobs	costs,	and	(c)	orders	makespan		

4. Discussion and conclusions 

Scheduling	 multi‐objective	 FJSSP	 optimization	 problem	 is	 defined	 as	 a	 NP‐hard	 optimization	
problem.	 The	 initial	 research	 question	 of	 scheduling	 FJSSP	 production	 with	 the	 optimization	
parameter	of	 the	due	dates	 importance	and	 taking	 into	account	 the	standard	optimization	pa‐
rameters	related	to	the	makespan	of	orders	and	machine	utilization,	was	evaluated	in	the	pre‐
sented	research	with	the	MOHKA	optimization	method	and	the	SLK	and	TWK	methods	to	model	
due	dates.	With	increasing	number	of	optimization	parameters,	the	computational	complexity	of	
the	optimization	algorithm	increases.	The	presented	research	work	presents	the	integration	of	
the	mathematical	 structure	of	 the	SLK	 (for	 low	dimensional	optimization	problems)	and	TWK	
methods	 (for	 medium	 and	 high	 dimensional	 optimization	 problems)	 into	 the	 optimization	
MOHKA	algorithm,	which	is	capable	of	scheduling	FJSSP	production.	The	proposed	MOHKA	algo‐
rithm	was	used	to	schedule	test	datasets	with	emphasis	on	achieving	a	tight	due	date	of	the	or‐
ders.	The	optimization	 results	were	 compared	with	 the	 results	of	 the	optimization	algorithms	
MOPSO	and	BBMOPSO,	which	terminate	orders	only	at	ordinary	optimization	parameters:	MC,	
TW	 and	MW.	 The	 disadvantage	 of	 the	 comparative	 optimization	 methods	 becomes	 apparent	
when	we	talk	about	medium	and	high	dimensional	optimization	problems	in	the	scheduling	of	
FJSSP.	The	limited	scheduling	capabilities	of	the	MOPSO	and	BBMOPSO	algorithms	are	reflected	
in	the	limited	mathematical	structure	of	the	algorithms,	which	do	not	consider	the	SLK	and	TWK	
methods	as	decision	parameters	in	achieving	optimally	scheduled	orders	from	the	point	of	due	
dates.	The	optimization	results	of	the	reference	MOHKA	algorithm	prove	the	high	importance	of	
the	 due	 date	 optimization	 parameter,	 since	 the	 proposed	method	 optimizes	 order	 scheduling	
with	regard	to	the	two	comparative	algorithms	for	low,	medium	and	high	dimensional	optimiza‐
tion	problems.	Since	we	are	talking	about	multi‐objective	decision	making	and	finding	compro‐
mises	between	different	(even	contradictory)	optimization	parameters,	the	results	of	the	MOH‐
KA	algorithm	prove	the	high	ability	to	reach	all	 four	optimization	parameters	equally	and	effi‐
ciently	(MC,	TW,	MW	and	dj).	As	evidenced	the	short	order	makespan,	tight	due	dates,	low	aver‐
age	order	tardiness	and	the	associated	low	associated	job	tardiness	costs	are	achieved.	The	an‐
swer	 to	 the	 question	 about	 the	 efficiency	 of	 evolutionary	methods	 in	multi‐objective	 decision	
making	compared	to	the	conventional	optimization	approach	of	priority	rules	was	given	by	the	
presented	study,	in	which	the	optimization	results	of	the	MOHKA	algorithm	are	compared	with	
the	 optimization	 results	 of	 six	 priority	 rules	 and	 an	 integrated	 heuristic	method	 in	 the	 Lekin	
software	environment.	The	obtained	results	prove	 the	high	dominance	of	 the	optimization	re‐
sults	of	 the	evolutionary	method	MOHKA,	which	terminates	the	FJSSP	production	according	to	
the	 used	 low‐dimensional	 dataset	 for	 all	 optimization	 parameters	most	 efficiently.	 Randomly	
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generated datasets were the basis for carrying out the validation of the applicability of the pro-
posed method in real-world manufacturing systems, whereby the satisfactory optimization re-
sults were demonstrated in the experiment. The scheduling of the FJSSP production to achieve 
tight due dates was carried out using the example of a dataset of a real-world manufacturing 
system. In this case, the TWK method, which is integrated into the decision logic of the MOHKA 
algorithm, proved the high ability to terminate the significance of real-world datasets im-
portance in relation to the parameter of due date optimization. 

Since the presented research work deals only with FJSSP, which is the main part of the re-
search problem of multi-objective optimization job shop production, it is necessary to further 
investigate the importance of scheduling due dates in dynamic job shop production (DJSSP). 
Where the main features are dynamic order changes during the execution of the algorithm (at 
initialization stage the whole order dataset is unknown), machine failures during the execution 
of operations and the determination of the importance of orders need to be studied. Further 
research on the research problem of DJSSP would remove the limitations of current research, 
where the FJSSP optimization problem is based on the assumption of an initially known order 
dataset, an initially empty production system, a uniform meaning of orders, and known produc-
tion capacities that do not change during operation. 
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