© Strojni{ki vestnik 48(2002)11,571-579 ISSN 0039-2480 UDK 678.01:620.175:534.013 Izvirni znanstveni ~lanek (1.01) © Journal of Mechanical Engineering 48(2002)11,571-579 ISSN 0039-2480 UDC 678.01:620.175:534.013 Original scientific paper (1.01) Vogalna singularnost torzije kompozitne palice The Corner Singularity of Composite Bars in Torsion George Mejak Materialna matrika kompozitov je na vsaki materialni komponenti nespremenljiva. Ta nezveznost materialne matrike omejuje regularnost rešitve elastomehanične naloge s kompozitnim materialom. Poleg materialne nezveznosti na regularnost rešitve vpliva še geometrijska oblika stične ploskve med sosednjimi materialnimi komponentami. Vsaka medmaterialna geometrična singularnost je vir singularnosti, ki se praviloma manifestira v obliki koncentracije napetosti. Pomembni podatek za izračun koncentracije napetosti je red vogalne singularnosti. V prispevku je za modelni problem torzije kompozitne prizmatične palice predstavljena metodologija določitve reda vogalne singularnosti. V prvem delu prispevka je podan model torzije s popolno in nepopolno vezjo med materialnimi komponentami. Za model popolne vezi je nato z asimptotičnim razvojem v vrsto dokazan obstoj koncentracije napetosti v vogalu. Izrecno je izračunan red vogalne singularnosti v odvisnosti od vogalnega kota in materialnih lastnosti kompozitov. Pomembna ugotovitev je, da je red singularnosti neodvisen od usmeritve materiala v vogalu. V primeru nepopolne vezi je dokazan obstoj koncentracije napetosti v vogalu za dovolj ohlapno vez. Rezultat je dokazan z regularnim asimptotičnim razvojem v okolici popolne medmaterialne nepovezanosti. © 2002 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: kompoziti, palice, problemi moeliranja, analize singularnosti) The material matrix of composite materials is constant for each individual component. This discontinuity sets regularity bounds upon the solution. Besides material discontinuities, the regularity of the solution is also affected by geometrical singularities along the material interfaces. If the interface has corners, we speak about corner singularities of the composite. Mechanical manifestations of these singularities are stress concentrations. One of the most important pieces of information about the corner singularity is the order of the singularity. In this article a method for determining the order of the singularity for the model problem of a composite bar in torsion is presented. In the first part a model of torsion for a composite bar with perfect and imperfect bonds is given. For a perfect interfacial bond the existence of the corner stress concentration is proved by the asymptotical method. The order of the singularity with respect to the angle of the corner and the material constants is explicitly computed. It is found that the order is independent of the material orientation in the corner. For the case of an imperfect bond the existence of the stress concentration is established for a weak bond. The existence is proved by the regular asymptotic perturbation of the no-material adhesion. © 2002 Journal of Mechanical Engineering. All rights reserved. (Keywords: composite, bars, modelling problems, singularity analysis) 0 UVOD V tehnični praksi so konstrukcijski elementi zaradi različnih razlogov pogosto sestavljeni iz dveh ali več različnih materialov. Takim sestavljenim elementom pravimo kompoziti. Pomemben razlog za uporabe kompozitov je doseči želene materialne lastnosti kompozita s primerno izbiro materialov posameznih komponent [1]. Materialna matrika kompozita je nespremenljiva na vsaki materialni komponenti posebej in je tako stopničasta funkcija. Komponente materialne matrike se pojavljajo kot koeficienti elastične energije. 0 INTRODUCTION Construction elements are quite often made of composite materials. The reason for using composites is to obtain a product with the desired properties composed of different materials [1]. The material matrix is constant for each material component, but has jump discontinuities across the material interfaces. As a result, the coefficients of the governing partial differential equations have jumps across the interfaces. It is well known [2] that the regularity of the solution depends upon gfin^OtJJIMISCSD 02-11 stran 571 |^BSSITIMIGC Mejak G.: Vogalna singularnost - The Corner Singularity Znano je, da nezveznost materialne matrike odločilno vpliva na regularnost rešitve [2]. Posebej to pomeni, da moremo pri kompozitih pri prehodu iz ene materialne komponente v drugo pričakovati določeno singularnost. Po drugi strani je znotraj komponent materialna matrika nespremenljiva in je potemtakem rešitev na posamezni komponenti notranje regularna. Poleg nezveznosti materialne matrike pri prehodu iz ene materialne komponente v drugo na regularnost vpliva še geometrijska oblika stične ploskve sosednjih materialnih komponent. Vsaka geometrična singularnost je vir nove singularnosti, ki se praviloma izraža v obliki koncentracije napetosti. Tej singularnosti pravimo vogalna singularnost kompozita. Znano je, da je poznavanje reda singularnosti rešitve pomembno pri numeričnem modeliranju [3], saj vpliv singularnosti na rešitev ni krajeven, temveč praviloma celovit. Uspešnost neposredne metode omejitve vpliva singularnosti, z zgostitvijo diskretizacije v okolici vira singularnosti, je omejena s povečanjem števila prostostnih stopenj in poslabšanjem numerične pogojenosti naloge. Bolj učinkovita je dekompozicija rešitve na singularni in regularni del ter lepljenje singularnega dela z diskretizacijo regularnega dela. Pomanjkljivost te metode je, da moramo singularni del rešitve poznati dovolj natančno. Preprostejša, zato pa še vedno dovolj učinkovita, je metoda dekompozicije prostora aproksimacije na singularni in regularni del. V metodi končnih elementov to pomeni uporabo singularnih elementov v okolici singularnosti rešitve. Za uporabo te metode je dovolj poznati red singularnosti rešitve [3]. V prispevku bomo določili red vogalne singularnosti za modelni problem torzije prizmatične kompozitne palice. Prispevek je razdeljen vštiri razdelke. Po uvodu sledi formulacija problema torzije kompozitne palice v variacijski obliki in v obliki robne naloge. Formulirana je naloga torzije s popolno vezjo med posameznimi materialnimi komponentami palice in nepopolno vezjo, ki dopušča na medmaterialnem stiku dislokacijo v smeri osi palice. V tretjem razdelku je obravnavana vogalna singularnost s pomočjo asimptotičnega razvoja v okolici vogala. Tu se bomo omejili na torzijo palice s popolno vezjo. Izpeljana je karakteristična enačba za lastne vrednosti in dokazan je obstoj koncentracije napetosti z izrecnim izračunom reda vogalne singularnosti. Torzija palice z nepopolnimi vezmi med materialnimi komponentami je obravnavana v četrtem razdelku. Pokazali bomo, da dislokacija ne sprosti napetosti in da ima tudi v tem primeru rešitev singularnost v vogalu. 1 TORZIJA KOMPOZITNE PALICE Napetost pri torziji homogene prizmatične palice Wx[0,l], kjer sta W prerez palice in l dolžina palice, je dana s Prandtlovo napetostno funkcijo x. V kartezičnem koordinatnem sistemu z osjo z v smeri osi palice sta tako edini neničelni komponenti napetosti t13= t31=^(dX/dy) in t23= t32=-M9(dX/dx), the regularity of the coefficients. On the other hand, coefficients are constant within the components, and the interior regularity is not affected. Besides material discontinuities, there is another possible source of the singularity: the shape of the interface boundary between the material components. Each geometric singularity of the interfacial boundary is the source of another singularity of the solution. The mechanical manifestation of these singularities is through stress concentrations. If the interfacial boundary has corners, we speak about the corner singularities of the composite. It is well known that accurate numerical modelling depends upon a firm knowledge of the order of the singularities [3], as the numerical solution is globally affected by singularities. The direct approach of the local mesh refinement is hampered by the increase in the number of degrees. Also, the condition number of the problem may be affected by the high ratio of the element sizes. A more effective method is to decompose the solution into the singular and regular parts. However, to do this, the singular part of the solution has to be known in advance. Simpler, and still good enough, is the method of decomposing the discretization space. In the case of the finite-element method this means that singular elements are used around the source of the singularity. To use singular elements one only has to know the order of the singularity [3]. In this paper the discussion is restricted to the model problem of the torsion of a composite bar with perfect and imperfect interfacial bonds. The paper has four parts. After an introduction we have the formulation of the problem. Variational, as well as distributional formulations are given. Attention is given to possible axial dislocations, which arise due to the imperfect bonding. In the next section the corner singularity of bars with a perfect bond is approached by the asymptotic expansion. A characteristic equation is derived and the existence of the stress concentration is established. It is proved that the asymptotic expansion has only one singular term, which gives the stress concentration. In the last section the torsion with the imperfect bond is considered. Stress concentration is proved in the case of the weak bond and thus the axial dislocation does not relax the stress concentrations. 1 TORSION OF COMPOSITE BARS For a homogenous prismatic bar Wx[0,l], where W is the cross section and l is the height of the bar, stress components are given by the Prandtl stress function x . In the Cartesian coordinate system with the z axis aligned with the axis of the bar the only non-zero stress components are t13= t31= fi9(dx / dy) 1 BnnBjfokJ][p)l]Olf|ifrSO | | ^SsFÜWEIK | stran 572 Mejak G.: Vogalna singularnost - The Corner Singularity kjer je m strižni modul palice, J pa je torzijski zasuk palice na dolžino palice. Potencialna energija torzije palice je vsota elastične energije in potenciala površinskih sil. Elastična energija homogene palice je: and t= t=-mJ(dx/dx) where m is the shear modulus of the bar and J is the torsion angle per unit length of the bar. The potential energy of the bar is the sum of the elastic energy and the potential of the surface traction. The elastic energy is: U = le : t dW = lm021l\Vz\2dW, potencial površinskih sil pa je: whereas the potential of the surface traction is: Ut = - r • u ldW - r • udW, JW H JS kjer je u vektor pomika, ki ima na osnovni ploskvi z=0 pomik samo v smeri osi palice, S je plašč palice. Potencial površinskih sil moremo preoblikovati v: where u is the displacement vector, which is at the base z=0, directed along the z axis. The lateral surface of the bar is denoted by S. The potential of the surface traction is rewritten as: U = - 2lmd2 \ zdW + lm&2\ %r¦ ndG -lmd2\ — dG. Potencialna energija palice je tako Up =Ue+Ut. Brezrazsežni zapis potencialne energije je U = U / lm0J2 ) , kjer je m0 referenčni strižni modul. V nadaljevanju bomo uporabljali izključno brezrazsežni zapis. Da bo pisava enostavnejša, brezrazsežnih in razsežnih strižnih modulov mi s pisavo ne bomo ločili. Potencialna energija U kompozitne palice s prerezom W= UiN= 1 W , kjer so Wi disjunktni prerezi posameznih materialnih komponent, je vsota potencialnih energij materialnih komponent palice. Potem je potencialna energija torzije enaka: The potential energy is thus Up =Ue+Ut. The corresponding non-dimensional form is U = Up / ( lm0J2 ) , where m0 is a reference shear modulus. In the following, only the non-dimensional form will be used and thus, to simplify the notation, we make no notational distinction between the dimensional and non-dimensional moduli. The potential energy U of the composite bar NWi, where W are cross with the cross section W= Ui N= i=1 i1 sections of the individual material components, is the sum of the potential energies of the individual material components. Thus: U Umi I 2I M 2b dW i=1 dW Umi l dci ds dG ,(1), kjer sta mi ter %i strižni modul in napetostna funkcija i-te komponente, ^ pa je pomik i-te komponente v smeri osi palice. Rob dWi materialne komponente je vsota robov do sosednjih materialnih komponent in zunanjega roba. Tu smo vzeli, da je prerez kompozitne palice enostavno povezano območje. V primeru, da ima prerez luknjo, lahko luknjo obravnavamo kot materialno komponento s strižnim modulom, ki limitira proti nič [4]. Zunanji rob prereza je prost, zato imajo napetostne funkcije tistih komponent, ki sestavljajo ovoj na zunanjem robu, nespremenljivo vrednost. Napetostna funkcija je določena do stalnice natančno, zato moremo te stalnice izbrati tako, da imajo napetostne funkcije na zunanjem robu vrednost nič. Na robu med dvema materialnima komponentama velja ravnovesni pogoj recipročne Cauchyjeve relacije. To v zapisu z napetostno funkcijo na skupnem robu i-te in j-te materialne komponente pomeni enakost mi (dZi / ds) = mj (d Ž j / ds). Funkciji Xi in žj se torej na skupnem robu razlikujeta le za stalnico. Pri predpostavki enostavno povezanega prereza Wi in izbire vrednosti napetostnih funkcij na zunanjem robu potem sledi enakost izrazov mi^ in mjZj na where mi and Xi are the shear modulus and the stress function of the cross section W, and i is the dislocation of the i-th component in the direction of the z axis. The boundary 3Wi of the i-th material component is the union of the boundaries between the material components and the part of the outer boundary. We assume here that the cross section of the bar is simply connected. In the opposite case, where the cross section has a hole, the hole can be treated as the limit of the material, with the shear modulus vanishing, [4]. The outer boundary is traction free, and thus the stress functions along the outer boundary are constant. The stress function is determined up to a constant factor, and thus the constants can be arranged such that the stress functions along the outer boundary are all vanishing. Across the interfacial boundary the Couchy reciprocal relation holds. In particular, along the interfacial boundary between i-th and j-th component we have mi (dZi / ds) = mj (dXj / ds). Functions X and ij thus differ along the common boundary for a constant. Due to the arrangement of the constants along the outer boundary it follows then that miZi and mjŽj are equal along the common boundary. Therefore, Mejak G.: Vogalna singularnost - The Corner Singularity skupnem robu. To pomeni, da napetostna funkcija c, katere zožitev na Wi je enaka ci, ni zvezna na W. Pri ravnovesnem pogoju na meji med različnima materialoma je druga vsota v (1) enaka nič. Potem je: N /1 function c, which equals ci on Wi is not continuous on W. It follows from the equilibrium that the second sum in (1) vanishes. Hence: i=1 W ds kjer je Gij skupni rob komponent Wi in Wj, in skok osnega pomika na meji med dvema materialoma V primeru popolne vezi med materialnimi komponentami je ta skok enak nič. Točneje, velja {f} = 0. Potemtakem je potencialna energija za popolno kompozitno palico enaka: N Če ima pomik f skok na meji med dvema Wi materialoma je vez med materialoma nepopolna. Pri nepopolni vezi se materialne komponente dislocirajo v osni smeri. Najpreprostejši model, glej [5], nepopolne vezi temelji na predpostavki, da je dislokacija v osni smeri sorazmerna napetosti. Z enačbo je \ft\ =-am(dc / ds), kjer je a pozitivna stalnica. Pripadajoča potencialna energija je: U=U(c)=Y1 mi\[-^ci - Očitno se (4) za a=0 reducira v potencial popolne vezi (3). Potencial v (4) je definiran na množici: 2 cijdW-Y.mi\f dsi dG (2), where Gij is the ij common boundary of Wi and Wj, and: is the axial dislocation at the interfacial boundary. In the case of perfect bonding there are no dislocations and thus M = 0 . Therefore, the potential energy of the composite bar with perfect bonding is: |vci | -2ci dW . (3). In the case of the axial dislocations we speak of the imperfect bonding and f has a jump across the interface. The most simple dislocation model is based on the assumption that axial dislocations are proportional to the axial stresses, [5]. Thus \ft\ =-am(dc / ds), where a is a positive proportional factor. The potential energy for the imperfect bonding is thus: 2ci dW + a2>i2J dci ds dG (4). V = \c:c\WieH1(Wi) in ds G eL2(Gij)\, Evidently, for a=0, (4) reduces to (3). The potential (4) is defined on the functional space: dc kjer je H1 (Wi) prostor Soboljeva prvega reda. Tu smo privzeli, da so robovi Gi odsekoma regularni. Napetostna funkcija c ima skok na prehodu iz enega v drugi material. Ta skok moremo s preprosto preslikavo ci= mici regularizirati. Pripadajoči regulariziran potencial je: where H1 (Wi) is the Sobolev space of the first order. In the above it was assumed that the interfacial boundaries Gij are piecewise regular. The stress function c has jumps across the material interfaces. These jumps are eliminated with a simple transformation ci = mici. The corresponding potential has the form: 1 dci ds dG (5), prostor pa: with the corresponding space: dc V = \c:c Wi^H1(Wi) in ds G eL2 (Gij)\. Prostor V je s skalarnim zmnožkom: The functional space V, equipped with the scalar product: du dv 1 JW *-