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Abstract

The mixed fault diameter D(p,q)(G) is the maximum diameter among all subgraphs
obtained from graph G by deleting p vertices and q edges. A graph is (p, q)+connected if
it remains connected after removal of any p vertices and any q edges. Let F be a connected
graph with the diameter D(F ) > 1, and B be (p, q)+connected graph. Upper bounds for
the mixed fault diameter of Cartesian graph bundle G with fibre F over the base graph B
are given. We prove that if q > 0, then D(p+1,q)(G) ≤ D(F ) + D(p,q)(B), and if q = 0
and p > 0, then D(p+1,0)(G) ≤ D(F ) + max{D(p,0)(B),D(p−1,1)(B)}.
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1 Introduction
Graph products and bundles belong to a class of frequently studied interconnection net-
work topologies. For example meshes, tori, hypercubes and some of their generalizations
are Cartesian products. It is less known that some other well-known interconnection net-
work topologies are Cartesian graph bundles, for example twisted hypercubes [9, 12] and
multiplicative circulant graphs [23].
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In the design of large interconnection networks several factors have to be taken into
account. A usual constraint is that each processor can be connected to a limited number of
other processors and that the delays in communication must not be too long. Furthermore,
an interconnection network should be fault tolerant, because practical communication net-
works are exposed to failures of network components. Both failures of nodes and failures
of connections between them happen and it is desirable that a network is robust in the sense
that a limited number of failures does not break down the whole system. A lot of work has
been done on various aspects of network fault tolerance, see for example the survey [8] and
the more recent papers [16, 24, 26]. In particular the fault diameter with faulty vertices,
which was first studied in [18], and the edge fault diameter have been determined for many
important networks recently [2, 3, 4, 5, 10, 11, 19, 25]. Usually either only edge faults
or only vertex faults are considered, while the case when both edges and vertices may be
faulty is studied rarely. For example, [16, 24] consider Hamiltonian properties assuming a
combination of vertex and edge faults. In recent work on fault diameter of Cartesian graph
products and bundles [2, 3, 4, 5], analogous results were found for both fault diameter and
edge fault diameter. However, the proofs for vertex and edge faults are independent, and
our effort to see how results in one case may imply the others was not successful. A natural
question is whether it is possible to design a uniform theory that covers simultaneous faults
of vertices and edges. Some basic results on edge, vertex and mixed fault diameters for
general graphs appear in [6]. In order to study the fault diameters of graph products and
bundles under mixed faults, it is important to understand generalized connectivities. Mixed
connectivity which generalizes both vertex and edge connectivity, and some basic observa-
tions for any connected graph are given in [13]. We are not aware of any earlier work on
mixed connectivity. A closely related notion is the connectivity pairs of a graph [7], but
after Mader [20] showed the claimed proof of generalized Menger’s theorem is not valid,
work on connectivity pairs seems to be very rare.

An upper bound for the mixed fault diameter of Cartesian graph bundles is given in
[14] that in some case also improves previously known results on vertex and edge fault
diameters on these classes of Cartesian graph bundles [2, 5]. However these results address
only the number of faults given by the connectivity of the fibre (plus one vertex), while
the connectivity of the graph bundle can be much higher when the connectivity of B is
substantial. It seems obvious that the upper bound from [14] can be improved. In this
paper we provide an upper bound that takes into account the mixed connectivity of the base
graph B, i.e. the number of faults allowed is given by the connectivity of the base graph
(plus one vertex), thus complementing the result of [14]. We show by examples that the
bounds of the new result are tight. In addition, in some cases Theorem 4.6 also improves
previously known results on vertex and edge fault diameters on these classes of Cartesian
graph bundles [2, 5].

The rest of the paper is organized as follows. General definitions, in particular of the
connectivities, are given in section Preliminaries. The third section introduces graph bun-
dles and recalls relevant previous results. In Section 4, the proof of the main theorem is
given, followed by a short discussion.

2 Preliminaries

A simple graph G = (V,E) is determined by a vertex set V = V (G) and a set E = E(G)
of (unordered) pairs of vertices, called edges. As usual, we will use the short notation
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uv for edge {u, v}. For an edge e = uv we call u and v its endpoints. It is sometimes
convenient to consider the union of elements of a graph, S(G) = V (G) ∪ E(G). Given
X ⊆ S(G) then S(G) \ X is a subset of elements of G. However, note that in general
S(G) \X may not induce a graph. As we need notation for subgraphs with some missing
(faulty) elements, we formally define G \ X , the subgraph of G after deletion of X , as
follows:

Definition 2.1. LetX ⊆ S(G), andX = XE∪XV , whereXE ⊆ E(G) andXV ⊆ V (G).
Then G \X is the subgraph of (V (G), E(G) \XE) induced on vertex set V (G) \XV .

A walk between vertices x and y is a sequence of vertices and edges v0, e1, v1, e2, v2,
. . . , vk−1, ek, vk where x = v0, y = vk, and ei = vi−1vi for each i. A walk with all
vertices distinct is called a path, and the vertices v0 and vk are called the endpoints of the
path. The length of a path P , denoted by `(P ), is the number of edges in P . The distance
between vertices x and y, denoted by dG(x, y), is the length of a shortest path between x
and y in G. If there is no path between x and y we write dG(x, y) = ∞. The diameter
of a connected graph G, D(G), is the maximum distance between any two vertices in G.
A path P in G, defined by a sequence x = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = y can
alternatively be seen as a subgraph of G with V (P ) = {v0, v1, v2, . . . , vk} and E(P ) =
{e1, e2, . . . , ek}. Note that the reverse sequence gives rise to the same subgraph. Hence
we use P for a path either from x to y or from y to x. A graph is connected if there is
a path between each pair of vertices, and is disconnected otherwise. In particular, K1 is
by definition disconnected. The connectivity (or vertex connectivity) κ(G) of a connected
graph G, other than a complete graph, is the smallest number of vertices whose removal
disconnects G. For complete graphs is κ(Kn) = n − 1. We say that G is k-connected (or
k-vertex connected) for any 0 < k ≤ κ(G). The edge connectivity λ(G) of a connected
graph G, is the smallest number of edges whose removal disconnects G. A graph G is said
to be k-edge connected for any 0 < k ≤ λ(G). It is well known that (see, for example, [1],
page 224) κ(G) ≤ λ(G) ≤ δG, where δG is smallest vertex degree of G. Thus if a graph
G is k-connected, then it is also k-edge connected. The reverse does not hold in general.

Here we are interested in mixed connectivity that generalizes both vertex and edge
connectivity. Note that the definition used here slightly differs from the definition used in
a previous work [13].

Definition 2.2. Let G be any connected graph. A graph G is (p, q)+connected, if G re-
mains connected after removal of any p vertices and any q edges.

We wish to remark that the mixed connectivity studied here is closely related to con-
nectivity pairs as defined in [7]. Briefly speaking, a connectivity pair of a graph is an
ordered pair (k, `) of two integers such that there is some set of k vertices and ` edges
whose removal disconnects the graph and there is no set of k − 1 vertices and ` edges or
of k vertices and ` − 1 edges with this property. Clearly (k, `) is a connectivity pair of G
exactly when: (1) G is (k − 1, `)+connected, (2) G is (k, ` − 1)+connected, and (3) G is
not (k, `)+connected. In fact, as shown in [13], (2) implies (1), so (k, `) is a connectivity
pair exactly when (2) and (3) hold.

From the definition we easily observe that any connected graph G is (0, 0)+connected,
(p, 0)+connected for any p < κ(G) and (0, q)+connected for any q < λ(G). In our notation
(i, 0)+connected is the same as (i + 1)-connected, i.e. the graph remains connected after
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removal of any i vertices. Similarly, (0, j)+connected means (j + 1)-edge connected, i.e.
the graph remains connected after removal of any j edges.

Clearly, if G is a (p, q)+connected graph, then G is (p′, q′)+connected for any p′ ≤ p
and any q′ ≤ q. Furthermore, for any connected graph G with k < κ(G) faulty vertices,
at least k edges are not working. Roughly speaking, graph G remains connected if any
faulty vertex in G is replaced with a faulty edge. It is known [13] that if a graph G is
(p, q)+connected and p > 0, then G is (p − 1, q + 1)+connected. Hence for p > 0 we
have a chain of implications: (p, q)+connected =⇒ (p− 1, q + 1)+connected =⇒ . . . =⇒
(1, p + q − 1)+connected =⇒ (0, p + q)+connected, which generalizes the well-known
proposition that any k-connected graph is also k-edge connected. Therefore, a graph G is
(p, q)+connected if and only if p < κ(G) and p+ q < λ(G).

Note that by our definition the complete graphKn, n ≥ 2, is (n−2, 0)+connected, and
hence (i, j)+connected for any i + j ≤ n − 2. Graph K2 is (0, 0)+connected, and mixed
connectivity of K1 is not defined.

If for a graphG κ(G) = λ(G) = k, thenG is (i, j)+connected exactly when i+ j < k.
However, if 2 ≤ κ(G) < λ(G), the question whether G is (i, j)+connected for 1 ≤
i < κ(G) ≤ i + j < λ(G) is not trivial. The example below shows that in general the
knowledge of κ(G) and λ(G) is not enough to decide whether G is (i, j)+connected.

Example 2.3. For graphs on Fig. 1 we have κ(G1) = κ(G2) = 2 and λ(G1) = λ(G2) =
3. Both graphs are (1, 0)+connected =⇒ (0, 1)+connected, and (0, 2)+ connected. Graph
G1 is not (1, 1)+connected, while graph G2 is.

Figure 1: Graphs G1 and G2 from Example 2.3.

Definition 2.4. Let G be a k-edge connected graph and 0 ≤ a < k. The a-edge fault
diameter of G is

DEa (G) = max {D(G \X) | X ⊆ E(G), |X| = a}.

Definition 2.5. Let G be a k-connected graph and 0 ≤ a < k. The a-fault diameter (or
a-vertex fault diameter) of G is

DVa (G) = max {D(G \X) | X ⊆ V (G), |X| = a}.

Note that DEa (G) is the largest diameter among the diameters of subgraphs of G with
a edges deleted, and DVa (G) is the largest diameter over all subgraphs of G with a vertices
deleted. In particular, DE0 (G) = DV0 (G) = D(G), the diameter of G. For p ≥ κ(G) and
for q ≥ λ(G) we set DVp (G) =∞, DEq (G) =∞, as some of the subgraphs are not vertex
connected or edge connected, respectively.

It is known [6] that for any connected graph G the inequalities below hold.
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1. D(G) = DE0 (G) ≤ DE1 (G) ≤ DE2 (G) ≤ . . . ≤ DEλ(G)−1(G) <∞.

2. D(G) = DV0 (G) ≤ DV1 (G) ≤ DV2 (G) ≤ . . . ≤ DVκ(G)−1(G) <∞.

Definition 2.6. Let G be a (p, q)+connected graph. The (p, q)-mixed fault diameter of G
is

D(p,q)(G) = max {D(G \ (X ∪ Y )) | X ⊆ V (G), Y ⊆ E(G), |X| = p, |Y | = q}.

Note that by Definition 2.6 the endpoints of edges of set Y can be in X . In this case
we may get the same subgraph of G by deleting p vertices and fewer than q edges. It is
however not difficult to see that the diameter of such subgraph is smaller than or equal
to the diameter of some subgraph of G where exactly p vertices and exactly q edges are
deleted. So the condition that the endpoints of edges of set Y are not in X need not to
be included in Definition 2.6. The mixed fault diameter D(p,q)(G) is the largest diameter
among the diameters of all subgraphs obtained from G by deleting p vertices and q edges,
hence D(0,0)(G) = D(G), D(0,a)(G) = DEa (G) and D(a,0)(G) = DVa (G).

LetHVa = {G \X |X ⊆ V (G), |X| = a} andHEb = {G \X |X ⊆ E(G), |X| = b}.
It is easy to see that

1. max {DEb (H) | H ∈ HVa } = D(a,b)(G),

2. max {DVa (H) | H ∈ HEb } = D(a,b)(G).

In previous work [6] on vertex, edge and mixed fault diameters of connected graphs the
following theorem has been proved.

Theorem 2.7. Let G be (p, q)+connected graph and p > 0.

• If q > 0, then DEp+q(G) ≤ D(1,p+q−1)(G) ≤ · · · ≤ D(p,q)(G).

• If q = 0, then DEp (G) ≤ D(1,p−1)(G) ≤ · · · ≤ D(p−1,1)(G) ≤ DVp (G) + 1.

3 Mixed fault diameter of Cartesian graph bundles
Cartesian graph bundles are a generalization of Cartesian graph products, first studied in
[21, 22]. Let G1 and G2 be graphs. The Cartesian product of graphs G1 and G2, G =
G1�G2, is defined on the vertex set V (G1) × V (G2). Vertices (u1, v1) and (u2, v2) are
adjacent if either u1u2 ∈ E(G1) and v1 = v2 or v1v2 ∈ E(G2) and u1 = u2. For further
reading on graph products we recommend [15].

Definition 3.1. Let B and F be graphs. A graph G is a Cartesian graph bundle with fibre
F over the base graph B if there is a graph map p : G → B such that for each vertex
v ∈ V (B), p−1({v}) is isomorphic to F , and for each edge e = uv ∈ E(B), p−1({e}) is
isomorphic to F�K2.

More precisely, the mapping p : G → B maps graph elements of G to graph elements
of B, i.e. p : V (G) ∪ E(G) → V (B) ∪ E(B). In particular, here we also assume that
the vertices of G are mapped to vertices of B and the edges of G are mapped either to
vertices or to edges of B. We say an edge e ∈ E(G) is degenerate if p(e) is a vertex.
Otherwise we call it nondegenerate. The mapping p will also be called the projection (of
the bundle G to its base B). Note that each edge e = uv ∈ E(B) naturally induces an



250 Ars Math. Contemp. 8 (2015) 245–258

isomorphism ϕe : p
−1({u})→ p−1({v}) between two fibres. It may be interesting to note

that while it is well-known that a graph can have only one representation as a product (up to
isomorphism and up to the order of factors) [15], there may be many different graph bundle
representations of the same graph [29]. Here we assume that the bundle representation is
given. Note that in some cases finding a representation ofG as a graph bundle can be found
in polynomial time [17, 27, 28, 29, 30, 31]. For example, one of the easy classes are the
Cartesian graph bundles over triangle-free base [17]. Note that a graph bundle over a tree
T (as a base graph) with fibre F is isomorphic to the Cartesian product T�F (not difficult
to see, appears already in [21]), i.e. we can assume that all isomorphisms ϕe are identities.
For a later reference note that for any path P ⊆ B, p−1(P ) is a Cartesian graph bundle
over the path P , and one can define coordinates in the product P�F in a natural way.

In recent work on fault diameter of Cartesian graph products and bundles [2, 3, 4, 5],
analogous results were found for both fault diameter and edge fault diameter.

Theorem 3.2. [2] Let G be a Cartesian bundle with fibre F over the base graph B, graph
F be (a, 0)+connected and graph B be (b, 0)+connected. Then

DVa+b+1(G) ≤ DVa (F ) +DVb (B) + 1.

Theorem 3.3. [5] Let G be a Cartesian bundle with fibre F over the base graph B, graph
F be (0, a)+connected and graph B be (0, b)+connected. Then

DEa+b+1(G) ≤ DEa (F ) +DEb (B) + 1.

Before writing a theorem on bounds for the mixed fault diameter we recall a theorem
on mixed connectivity.

Theorem 3.4. [13] Let G be a Cartesian graph bundle with fibre F over the base graph
B, graph F be (pF , qF )+connected and graph B be (pB , qB)+connected. Then Cartesian
graph bundle G is (pF + pB + 1, qF + qB)+connected.

In recent work [14], an upper bound for the mixed fault diameter of Cartesian graph
bundles, D(p+1,q)(G), in terms of mixed fault diameter of the fibre and diameter of the
base graph is given. Theorem 3.5 improves results 3.2 and 3.3 for b = 0.

Theorem 3.5. [14] LetG be a Cartesian graph bundle with fibre F over the base graphB,
where graph F is (p, q)+connected, p+ q > 0, and B is a connected graph with diameter
D(B) > 1. Then we have:

• If q > 0, then D(p+1,q)(G) ≤ D(p,q)(F ) +D(B).

• If q = 0, then DVp+1(G) ≤ max{DVp (F ),D(p−1,1)(F )}+D(B).

Here we prove a similar result for an upper bound for the mixed fault diameter of
Cartesian graph bundles, D(p+1,q)(G), in terms of diameter of the fibre and mixed fault
diameter of the base graph. We consider mixed fault diameter of Cartesian graph bundle
G with connected fibre F . If the graph B is (p, q)+connected then Cartesian graph bundle
with connected fibre F over the base graph B is at least (p + 1, q)+connected. Theorem
4.6 improves results 3.2 and 3.3 for a = 0.
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4 Proof of the main theorem
Before stating and proving the main theorem, we prove several lemmas and introduce some
notation used in this section.

Let G be a Cartesian graph bundle with fibre F over the base graph B. The fibre of
vertex x ∈ V (G) is denoted by Fx, formally, Fx = p−1({p(x)}). We will also use no-
tation F (u) for the fibre of the vertex u ∈ V (B), i.e. F (u) = p−1({u}). Note that
Fx = F (p(x)). We will also use shorter notation x ∈ F (u) for x ∈ V (F (u)).
Let u, v ∈ V (B) be distinct vertices, and Q be a path from u to v in B, and x ∈ F (u).
Then the lift of the path Q to the vertex x ∈ V (G), Q̃x, is the path from x ∈ F (u) to a
vertex in F (v), such that p(Q̃x) = Q and `(Q̃x) = `(Q). Let x, x′ ∈ F (u). Then Q̃x and
Q̃x′ have different endpoints in F (v) and are disjoint paths if and only if x 6= x′. In fact,
two lifts Q̃x and Q̃x′ are either disjoint Q̃x ∩ Q̃x′ = ∅ or equal, Q̃x = Q̃x′ . We will also
use notation Q̃ for lifts of the path Q to any vertex in F (u).
Let Q be a path from u to v and e = uw ∈ E(Q). We will use notation Q \ e for the
subpath from w to v, i.e. Q \ e = Q \ {u, e} = Q \ {u}.
Let G be a graph and X ⊆ S(G) be a set of elements of G. A path P from a ver-
tex x to a vertex y avoids X in G, if S(P ) ∩ X = ∅, and it internally avoids X , if
(S(P ) \ {x, y}) ∩X = ∅.

We will use Lemma 4.1 in following proofs.

Lemma 4.1. Let F and B be connected graphs, D(F ) > 1, and let G be a Cartesian
graph bundle with fibre F over the base graph B. Let x, y ∈ V (G) be two vertices, such
that p(x) 6= p(y), and let Q be a path from p(x) to p(y) in B. Then there are (at least)
two internally vertex-disjoint paths from x to y in p−1(Q) = F�Q ⊆ G of lengths at most
D(F ) + `(Q).

Proof. Let G be a Cartesian graph bundle with connected fibre F , D(F ) > 1, over the
connected base graph B. Let x, y ∈ V (G), p(x) 6= p(y), and Q be a path from p(x) to
p(y) in B. Let x′ ∈ Fy be the endpoint of Q̃x.

• If x′ = y, then there are two paths

P1 : x
Q̃→ y, P2 : x→ s

Q̃→ s′ → y,

where s ∈ Fx and s′ ∈ Fy are neighbors of x and y, respectively. Paths P1, P2 are
internally vertex-disjoint paths from x to y in p−1(Q) and `(P1) = `(Q), `(P2) =
1 + `(Q) + 1 ≤ D(F ) + `(Q).

• If x′ 6= y, then there are two paths

P1 : x
Q̃→ x′

P→ y, P2 : x
P ′

→ y′
Q̃→ y,

where P is a path from x′ to y inside of the fibre Fy of length `(P ) ≤ D(F ),
y′ ∈ Fx is the endpoint of Q̃y and P ′ is a path inside of the fibre Fx of length
`(P ′) ≤ D(F ). Paths P1, P2 are internally vertex-disjoint paths from x to y in
p−1(Q) and `(Pi) ≤ `(Q) +D(F ), i = 1, 2.
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Lemma 4.2. Let G be a Cartesian graph bundle with fibre F over the base graph B, the
graph F be a connected graph with diameter D(F ) > 1, and the graph B be (p, 0)+con-
nected, p > 0. Then

D(p+1,0)(G) = DVp+1(G) ≤ D(F ) + max{DVp (B),D(p−1,1)(B)}.

Proof. Let F be a connected graph, D(F ) > 1, the graph B be (p, 0)+connected, p > 0,
and letG be a Cartesian graph bundle with fibre F over the base graphB. By Theorem 3.4,
the Cartesian graph bundle G is (p+ 1, 0)+connected. Let X ⊆ V (G) be a set of faulty
vertices, |X| = p + 1, and let x, y ∈ V (G) \ X be two distinct nonfaulty vertices in G.
We shall consider the distance dG\X(x, y). Note that as graph B is (p, 0)+connected and
p > 0, it is also (p− 1, 1)+connected and D(p−1,1)(B) ≥ 2.

• Suppose first that x and y are in the same fibre, i.e. p(x) = p(y).
If |X ∩ V (Fx)| = 0, then dG\X(x, y) ≤ D(F ). If |X ∩ V (Fx)| > 0, then outside of
fibre Fx there are at most p faulty vertices. As a graph B is (p, 0)+connected, there
are at least p+1 neighbors of vertex p(x) in B. Therefore there exist a neighbor v of
vertex p(x) in B, such that |X ∩ F (v)| = 0, and there is a path x → x′

P→ y′ → y,
which avoids X , where x′, y′ ∈ F (v) and `(P ) ≤ D(F ). Thus dG\X(x, y) ≤
1 +D(F ) + 1 ≤ D(F ) +D(p−1,1)(B).

• Now assume that x and y are in distinct fibres, i.e. p(x) 6= p(y).
Denote XB = {v ∈ V (B) \ {p(x), p(y)}; |X ∩ F (v)| > 0}. We distinguish two
cases.

1. If p ≤ |XB | ≤ p + 1, then let X ′B ⊆ XB be an arbitrary subset of XB

with |X ′B | = p. The subgraph B \ X ′B is a connected graph and there exist
a path Q from p(x) to p(y) with `(Q) ≤ DVp (B). In p−1(Q) there is at most
one faulty vertex. By Lemma 4.1 there are two internally vertex-disjoint paths
from x to y in p−1(Q) and at least one of them avoids the faulty element, thus
dG\X(x, y) ≤ `(Q) +D(F ) ≤ DVp (B) +D(F ).

2. If |XB | < p, then the subgraph B \XB is (at least) (1, 0)+connected, thus also
(0, 1)+connected.
If the vertex p(y) is not a neighbor of p(x), then there is a path Q from p(x)
to p(y) in B with 2 ≤ `(Q) ≤ DVp−1(B) ≤ DVp (B) that internally avoids
XB . Let v ∈ V (Q) be a neighbor of p(x), e′ = p(x)v. Then there is a path

x→ x′
P→ y′

Q̃\e′→ y, which avoids X , where x′, y′ ∈ F (v) and `(P ) ≤ D(F ).
Thus dG\X(x, y) ≤ 1 +D(F ) +DVp (B)− 1 = D(F ) +DVp (B).
If e = p(x)p(y) ∈ E(B), then B \ (XB ∪ {e}) is a connected graph and there
is a path Q′ from p(x) to p(y) with 2 ≤ `(Q′) ≤ D(p−1,1)(B) that internally
avoids XB . Similar as before dG\X(x, y) ≤ 1 + D(F ) + D(p−1,1)(B) − 1 =
D(F ) +D(p−1,1)(B).

Example 4.3. Lemma 4.2 for p = 1 reads:

DV2 (G) ≤ D(F ) + max{DV1 (B),DE1 (B)}.
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1. Let B = K4 \ {e}. Then D(B) = DV1 (B) = DE1 (B) = 2. The 2-vertex fault
diameter of Cartesian graph product P3�B is DV2 (P3�B) = D(P3) + DV1 (B) =
2 + 2 = 4.

2. The 2-vertex fault diameter of Cartesian graph product P3�K3 is DV2 (P3�K3) =
D(P3) +DE1 (K3) = 2 + 2 = 4.

In both examples the bound of Lemma 4.2 is tight.

Lemma 4.4. Let G be a Cartesian graph bundle with fibre F over the base graph B, the
graph F be a connected graph with diameter D(F ) > 1, and the graph B be (0, q)+con-
nected, q > 0. Then

D(1,q)(G) ≤ D(F ) +DEq (B) = D(F ) +D(0,q)(B).

Proof. Let F be a connected graph, D(F ) > 1, and B be (0, q)+connected graph, q > 0.
Then DEq (B) ≥ 2 and by Theorem 3.4, the Cartesian graph bundle G with fibre F over the
base graph B is (1, q)+connected. Let a ∈ V (G) be the faulty vertex and Y ⊆ E(G) be
the set of faulty edges, |Y | = q. Denote the set of degenerate edges in Y by YD, and the set
of nondegenerate edges by YN , Y = YN ∪ YD, p(YD) ⊆ V (B), p(YN ) ⊆ E(B). Denote
the set of faulty elements byX = {a}∪Y . Let x, y ∈ V (G)\{a} be two arbitrary distinct
nonfaulty vertices in G. We shall find an upper bound for the distance dG\X(x, y).

• Suppose first that x and y are in the same fibre, i.e. p(x) = p(y).
If |Fx ∩X| = 0, then dG\X(x, y) ≤ D(F ). If |Fx ∩X| > 0, then outside of fibre
Fx there are at most q faulty elements. As the graph B is (0, q)+connected, there
are at least q + 1 neighbors of vertex p(x) in B. Therefore there exist a neighbor
v of vertex p(x) in B, such that p(x)v /∈ p(YN ) and |F (v) ∩ ({a} ∪ YD)| = 0,
and there is a path x → x′

P→ y′ → y which avoids X , where x′, y′ ∈ F (v) and
`(P ) ≤ D(F ). Thus dG\X(x, y) ≤ 1 +D(F ) + 1 ≤ D(F ) +DEq (B).

• Now assume that x and y are in distinct fibres, i.e. p(x) 6= p(y).
Let B′ = B \ p(YN ). As |p(YN )| ≤ q − |YD|, the subgraph B′ is at least (0, |YD|)+
connected and p−1(B′) does not contain nondegenerate faulty edges,∣∣p−1(B′) ∩ YN ∣∣ = 0.
Let Y ′ = {p(x)v ∈ E(B′); |F (v) ∩ ({a} ∪ YD)| > 0}. We distinguish two cases.

1. Let a ∈ V (Fx) ∪ V (Fy), and without of loss of generality assume a ∈ V (Fx).
Then |Y ′| ≤ |YD| and the subgraphB′ \Y ′ = B \ (Y ′∪p(YN )) is a connected
graph. Therefore there exists a path Q from p(x) to p(y) in B of length 1 ≤
`(Q) ≤ DEq (B), that avoids p(YN ), and for the neighbor v ∈ V (Q) of the
vertex p(x), e = p(x)v, there is no faulty elements in the fibre F (v). Note that
the path Q \ e avoids p(a).
If v = p(y) there is a path x → x′

P→ y, where x′ ∈ Fy and `(P ) ≤ D(F ),
that avoids faulty elements, thus dG\X(x, y) ≤ 1 +D(F ) < D(F ) +DEq (B).

If v 6= p(y) there is a path x → x′
P→ y′

Q̃\e→ y, where x′, y′ ∈ F (v) and
`(P ) ≤ D(F ), which avoids faulty elements, thus dG\X(x, y) ≤ 1 +D(F ) +
DEq (B)− 1 = D(F ) +DEq (B).

2. If a /∈ V (Fx) ∪ V (Fy), we distinguish three cases.
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(a) Suppose |(Fx ∪ Fy) ∩ YD| = 0. There exist a path Q from p(x) to p(y)
in B′ ⊆ B of length `(Q) ≤ DEq (B), that avoids p(YN ). By Lemma 4.1
there are two internally vertex-disjoint paths from x to y in p−1(Q), that
avoid Y and at least one of them avoids faulty vertex a, thus dG\X(x, y) ≤
`(Q) +D(F ) ≤ DEq (B) +D(F ).

(b) Suppose, that exactly one of fibres Fx, Fy contains faulty edges, without of
loss of generality let |Fx ∩ YD| > 0 and |Fy ∩ YD| = 0. Then |Y ′| ≤ |YD|
and the subgraph B′ \Y ′ = B \ (Y ′∪p(YN )) is a connected graph. There
exist a path Q from p(x) to p(y) in B of length 1 ≤ `(Q) ≤ DEq (B), that
avoids p(YN ) and for the neighbor v ∈ Q of vertex p(x), e = p(x)v, there
is no faulty elements in the fibre F (v).
If v = p(y) then dG\X(x, y) ≤ 1 +D(F ) < D(F ) +DEq (B).
If v 6= p(y), let v′ ∈ F (v) be a neighbor of x. As |(F (v) ∪ Fy) ∩ YD| = 0,
similar as in (a) there is a path from v′ to y in p−1(Q \ e) of length at
most D(F )+DEq (B)− 1, that avoids faulty elements, thus dG\X(x, y) ≤
1 +D(F ) +DEq (B)− 1 = D(F ) +DEq (B).

(c) At last, suppose |Fx ∩ YD| > 0 and |Fy ∩ YD| > 0.
i. Assume dB′(p(x), p(y)) = 1. In this case p(x)p(y) ∈ Y ′, and |Y ′| ≤
|YD| as |Fx ∩ YD| > 0. Thus the subgraph B′ \ Y ′ is connected, and
there exists a path Q from p(x) to p(y) in B of length 2 ≤ `(Q) ≤
DEq (B), that avoids p(YN ), and for the neighbor v ∈ Q of vertex p(x),
e = p(x)v, there is no faulty elements in the fibre F (v).
If `(Q) = 2, then there is a path x → x′

P→ y′ → y, where x′, y′ ∈
F (v) and `(P ) ≤ D(F ), which avoids faulty elements, thus
dG\X(x, y) ≤ 1 +D(F ) + 1 ≤ D(F ) +DEq (B).

If 3 ≤ `(Q) ≤ DEq (B), then the path x → x′
P ′

→ y′ → s → y
where x′, y′ ∈ F (v), `(P ′) ≤ D(F ), and s ∈ V (Fx), avoids faulty
elements, thus dG\X(x, y) ≤ 1 +D(F ) + 1 + 1 ≤ D(F ) +DEq (B).

ii. Assume, dB′(p(x), p(y)) = 2. Then there is at least one common
neighbor of vertices p(x) and p(y) in B′. If there exist a common
neighbor v of vertices p(x) and p(y) in B′ for which there is no faulty
elements in the fibre F (v), then as before dG\X(x, y) ≤ 1 +D(F ) +
1 ≤ D(F ) + DEq (B). Otherwise suppose, there is some common
neighbor w of vertices p(x) and p(y) in B′ for which a /∈ F (w) and
|F (w) ∩ YD| > 0. As |Y ′| ≤ |YD| − 1 the subgraph B′ \ Y ′ is (at
least) (0, 1)+connected graph. If vertex p(a) is a neighbor of p(y) in
B′, e′ = p(y)p(a) ⊆ E(B′), then also B′ \ (Y ′ ∪{e′}) is a connected
graph. Therefore there exist a path Q from p(x) to p(y) in B of length
3 ≤ `(Q) ≤ DEq (B), that avoids p(YN ), and for the neighbor u ∈
V (Q) of vertex p(x), there is no faulty elements in the fibre F (u), and
for the neighbor v ∈ V (Q) of vertex p(y), v 6= p(a).
If `(Q) = 3 ≤ DEq (B), then there is a path x → x′

P→ y′ → s → y,
where x′, y′ ∈ F (u), `(P ) ≤ D(F ), s ∈ F (v), which avoids faulty
elements, thus dG\X(x, y) ≤ 1 +D(F ) + 1 + 1 ≤ D(F ) +DEq (B).

If 4 ≤ `(Q) ≤ DEq (B), then the path x → x′
P ′

→ y′ → s → s′ → y,
where x′, y′ ∈ F (u), `(P ′) ≤ D(F ), s ∈ V (Fx), s′ ∈ F (w), avoids
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faulty elements, thus dG\X(x, y) ≤ 1 + D(F ) + 1 + 2 ≤ D(F ) +
DEq (B).
The last case to consider is when p(a) is the only common neighbor
of vertices p(x) and p(y) in B′.
Let Y ′′ = {p(y)v ∈ E(B′); |F (v) ∩ ({a} ∪ YD)| > 0}. As p(a) is
the only common neighbor of vertices p(x) and p(y), |Y ′ ∪ Y ′′| ≤
|YD| and the subgraphB′ \ (Y ′∪Y ′′) is a connected graph. Therefore
there exist a path Q from p(x) to p(y) in B of length 3 ≤ `(Q) ≤
DEq (B), that avoids p(YN ), and for neighbors u ∈ V (Q) of vertex
p(x) and v ∈ V (Q) of vertex p(y), there is no faulty elements in
fibres F (u) and F (v). Let x′ ∈ F (u) be a neighbor of x and y′ ∈
F (v) be a neighbor of y. As in (a) there is a path from x′ to y′ in
p−1(Q\{p(x), p(y)} of length at mostD(F )+DEq (B)−2, that avoids
faulty elements, thus dG\X(x, y) ≤ 1 + D(F ) + DEq (B) − 2 + 1 =

D(F ) +DEq (B).
iii. Finally, suppose dB′(p(x), p(y)) ≥ 3. As there is no common neigh-

bor of vertices p(x) and p(y) in B′, |Y ′ ∪ Y ′′| ≤ |YD| − 2 + 1 =
|YD| − 1 and as before there exist a path Q from p(x) to p(y) in
B of length 3 ≤ `(Q) ≤ DEq (B), that avoids p(YN ), and for both
neighbors u ∈ V (Q) of vertex p(x) and v ∈ V (Q) of vertex p(y),
there is no faulty elements in fibres F (u) ∪ F (v), thus dG\X(x, y) ≤
1 +D(F ) +DEq (B)− 2 + 1 = D(F ) +DEq (B).

Lemma 4.5. Let G be a Cartesian graph bundle with fibre F over the base graph B, the
graph F be a connected graph with diameter D(F ) > 1, and the graph B be (p, q)+con-
nected, q > 0. Then

D(p+1,q)(G) ≤ D(F ) +D(p,q)(B).

Proof. The case when p = 0 is already proved by Lemma 4.4. So let us assume p > 0.
Let the graph F be a connected graph, D(F ) > 1, and the graph B be (p, q)+connected,
p, q > 0. Then D(p,q)(B) ≥ 2 and by Theorem 3.4, the Cartesian graph bundle G with
fibre F over the base graph B is (p+ 1, q)+connected. Let X ⊆ V (G) be the set of faulty
vertices, |X| = p+1, and Y ⊆ E(G) be the set of faulty edges, |Y | = q. Denote the set of
degenerate edges in Y by YD, and the set of nondegenerate edges by YN , Y = YN ∪ YD,
p(YD) ⊆ V (B), p(YN ) ⊆ E(B). Let x, y ∈ V (G) \X be two distinct nonfaulty vertices
in G. We shall determine an upper bound for the distance dG\(X∪Y )(x, y).

• Suppose first that x and y are in the same fibre, i.e. p(x) = p(y).
If |Fx ∩ (X ∪ YD)| = 0, then dG\(X∪Y )(x, y) ≤ D(F ). If |Fx ∩ (X ∪ YD)| > 0,
then there are at most p + q faulty elements outside of the fibre Fx. As the graph
B is (p, q)+connected, there are at least p + q + 1 neighbors of vertex p(x) in B.
Therefore there exists a neighbor v of vertex p(x) inB, such that p(x)v /∈ p(YN ) and
|F (v) ∩ (X ∪ YD)| = 0, and there is a path x→ x′

P→ y′ → y, where x′, y′ ∈ F (v)
and `(P ) ≤ D(F ), which avoids X ∪ Y . Thus dG\(X∪Y )(x, y) ≤ 1 +D(F ) + 1 ≤
D(F ) +D(p,q)(B).
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• Now assume that x and y are in distinct fibres, i.e. p(x) 6= p(y).
Let XB = {v ∈ V (B) \ {p(x), p(y)}; |F (v) ∩X| > 0}. We distinguish two cases.

1. If p ≤ |XB | ≤ p + 1, then let X ′B ⊆ XB , |X ′B | = p. The subgraph B \X ′B
is (0, q)+connected and there is at most one faulty vertex and q faulty edges
in p−1(B \ X ′B). By Lemma 4.4 there is a path from x to y in p−1(B \ X ′B)
with length at most D(F ) + DEq (B \ X ′B), that avoids faulty elements, thus
dG\(X∪Y )(x, y) ≤ D(F ) +DEq (B \X ′B) = D(F ) +D(p,q)(B).

2. Suppose |XB | < p. Let YB = {p(x)v ∈ E(B); |F (v) ∩ YD| > 0} and B′ =
B \ (XB ∪ YB ∪ p(YN )). Then the subgraph B′ is (at least) (1, 0)+connected,
thus also (0, 1)+connected.
If dB′(p(x), p(y)) ≥ 2, then there is a path Q from p(x) to p(y) in B′ ⊆ B
with 2 ≤ `(Q) ≤ D(p−1,q)(B) ≤ D(p,q)(B) that internally avoids XB , it
avoids p(YN ), and for the neighbor v ∈ V (Q) of vertex p(x), e′ = p(x)v,
there is no faulty elements in the fibre F (v). Therefore there is a path x →

x′
P→ y′

Q̃\e′→ y, where x′, y′ ∈ F (v) and `(P ) ≤ D(F ), which avoids X ∪ Y ,
thus dG\X∪Y (x, y) ≤ 1 +D(F ) +D(p,q)(B)− 1 = D(F ) +D(p,q)(B).
If dB′(p(x), p(y)) = 1, e = p(x)p(y) ∈ E(B′), then the subgraph B′ \ {e} is
a connected graph and there is a path Q′ from p(x) to p(y) with 2 ≤ `(Q′) ≤
D(p−1,q+1)(B) ≤ D(p,q)(B) that internally avoids XB , it avoids p(YN ), and
for the neighbor v ∈ V (Q) of vertex p(x), there is no faulty elements in the
fibre F (v), and as before dG\X∪Y (x, y) ≤ 1 + D(F ) + D(p,q)(B) − 1 =
D(F ) +D(p,q)(B).

Theorem 4.6. Let G be a Cartesian graph bundle with fibre F over the base graph
B, the graph F be a connected graph with diameter D(F ) > 1, and the graph B be
(p, q)+connected, p+ q > 0. Then we have:

• If q > 0, then D(p+1,q)(G) ≤ D(F ) +D(p,q)(B).

• If q = 0, then D(p+1,0)(G) = DVp+1(G) ≤ D(F ) + max{DVp (B),D(p−1,1)(B)}.

Proof. The statement of Theorem 4.6 follows from Lemma 4.2 (case q = 0), Lemma 4.4
(case p = 0), and Lemma 4.5 (for positive p and q).

Remark 4.7. Let G be a Cartesian graph bundle with fibre F over the base graph B, the
graph F be a connected graph with diameter D(F ) > 1, and the graph B be (p, 0)+con-
nected, p > 0. By Theorem 4.6 we have an upper bound for the (vertex) fault diameter
DVp+1(G) ≤ D(F )+DVp (B)+1 for any graph B. Similarly, DVp+1(G) ≤ D(F )+DVp (B)

if D(p−1,1)(B) ≤ DVp (B) holds.

Next corollary easily follows from Theorems 3.5 and 4.6.

Corollary 4.8. Let both graphs F and B be (p, q)+connected, p + q > 0, D(F ) > 1,
D(B) > 1, and let G be a Cartesian graph bundle with fibre F over the base graph B.
Then we have:

• If q > 0, then D(p+1,q)(G) ≤ max{D(F ) +D(p,q)(B),D(p,q)(F ) +D(B)},
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• If q = 0, then DVp+1(G) ≤ max{D(F ) +DVp (B),DVp (F ) +D(B)}+ 1,

andDVp+1(G) ≤ max{D(F )+DVp (B),DVp (F )+D(B)}, ifD(p−1,1)(F ) ≤ DVp (F )
and D(p−1,1)(B) ≤ DVp (B) hold.

We conclude with a conjecture. We know that a Cartesian graph bundle with fibre F
over the base graph B, where graph F is (pF , qF )+connected, pF + qF > 0, and where
graph B is (pB , qB)+connected, pB + qB > 0, is (pB + pF +1, qB + qF )+connected [13].
An upper bound for the mixed fault diameter where the number of allowed faulty elements
would be the maximal possible may be the following:

Conjecture 4.9. Let G be a Cartesian graph bundle with fibre F over the base graph
B, where the graph F is (pF , qF )+connected, pF + qF > 0, and where the graph B is
(pB , qB)+connected, pB + qB > 0. Then

D(pB+pF+1,qB+qF )(G) ≤ D(pF ,qF )(F ) +D(pB ,qB)(B) + 1.

References
[1] J. M. Aldous, R. J. Wilson, Graphs and Applications: An introductory Approach, Springer,

Berlin, 2000.
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[14] R. Erveš, J. Žerovnik, Mixed fault diameter of Cartesian graph bundles, Discrete Appl. Math.
161 (2013), 1726–1733, doi:10.1016/j.dam.2011.11.020.
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