Original scientific article UDC 574.4:633.2.032(497.4-14) Received: 2008-08-07 FUNCTIONAL COMPARISION OF THE SUB-MEDITERRANEAN ILLYRIAN MEADOWS FROM TWO DISTINCTIVE GEOLOGICAL SUBSTRATES Natasa PIPENBAHER, Mitja KALIGARIC & Sonja SKORNIK Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Koroska 160, Slovenia E-mail: natasa.pipenbaher@uni-mb.si ABSTRACT In this paper, floristic and functional approaches to the classification of different types of sub-Mediterranean Illy-rian grasslands of the association Danthonio-Scorzoneretum villose (alliance Scorzonerion villosae, order Scor-zoneretalia villosae, class Festuco-Brometea) are compared. The data set includes table with 30 relevés from SWSlovenia, sampled in two contrasting geological bedrocks - flysch and limestone - and matrix with 18 traits determined for 119 plant species. We also tested an impact of different geological bedrock on the relative proportions of C-S-R plant strategies in the relevés. With DCA ordination, relevés from limestone and flysch were clearly divided in two groups. First DCA axis suggested a gradient of soil humidity and pH. On the basis of selected traits, 5 Plant Functional Types were clustered and interpreted with Twinspan analysis. PCA ordination of relevés on the basis of plant functional traits revealed that samples from limestone could be separated from those taken on flysch substrate also with functional approach. Relevés from limestone tend to have bigger shares of species, which propagate by seed and vegetatively, and competitors and herbs. Nevertheless, it could be concluded that there are no major functional differences between meadows from both geological substrates. The positions of all relevés in standard C-S-R ternary diagram showed that that the relative proportions of C-S-R functional types were not influenced by different geological bedrock. Key words: dry grasslands, plant functional types, Festuco-Brometea, vegetation, C-S-R plant strategy, SW Slovenia CONFRONTO FUNZIONALE DI PRATERIE SUB-MEDITERRANEE ILLIRICHE DI DUE SUBSTRATI GEOLOGICI DISTINTI SINTESI Nell'articolo vengono confrontati l'approccio floristico e quello funzionale alla classificazione di differenti tipi di vegetazione, sull'esempio di praterie illiriche sub-mediterranee dell'associazione Danthonio-Scorzoneretum villose (alleanza Scorzonerion villosae, ordine Scorzoneretalia villosae, classe Festuco-Brometea). I dati comprendono una tabella con 30 relevé della Slovenia sud-occidentale, campionati su due substrati geologici contrastanti - flysch e calcare - e una matrice con 18 tratti funzionali determinati da 119 specie vegetali. Gli autori verificano inoltre l'impatto di diversi tipi di substrato geologico sui rapporti relativi delle strategie ecologiche C-S-R delle piante rin-venute nei relevé. Con l'ordinamento DCA, i relevé su calcare e su flysch vengono chiaramente divisi in due gruppi. Il primo asse DCA suggerisce un gradiente di umidita del suolo e del pH. In base ai tratti funzionali selezionati sono stati raggruppati cinque Tipi Funzionali Vegetali ed interpretati con l'analisi Twinspan. L'ordinamento PCA dei relevé, basato sui tratti vegetali funzionali, ha evidenziato che i campioni provenienti dal substrato calcareo potreb-bero venir separati da quelli provenienti dal flysch anche con l'approccio funzionale. I relevé del calcare tendono ad avere una porzione piu grande di specie, che si riproducono sia vegetativamente che per via sessuata tramite semi, competitori e piante erbacee. Tuttavia gli autori concludono che non ci sono maggiori differenze funzionali tra le praterie di entrambi i substrati geologici. Le posizioni di tutti i relevé nel diagramma ternario standard C-S-R indicano che i rapporti relativi dei tipi funzionali C-S-R non vengono influenzati da substrati geologici differenti. Parole chiave: praterie secche, tipi vegetali funzionali, Festuco-Brometea, vegetazione, C-S-R strategie vegetali, Slovenia SO INTRODUCTION Classifying plants according to morphology and reproductive attributes has a long history in botany and plant geography (Kleyer, 1999). The renewed interest in classifying species into groups relating to function rather than to taxonomy (e.g. Keddy, 1992; Lavorel ef a/., 1997; Westoby, 1998; Weiher ef a/., 1999) has triggered the search for traits that express meaningful differences in ecological behaviour among plant species. There has been an increasing interest in using non-phylogenetic based classifications when the focus is turned on predicting the dynamics of vegetation rather than their taxonomic identity (Gitay, 1999; Cornelissen ef a/., 2003). Classifying plant species according to their taxo-nomic and phylogenetic relationships has strong limitations when it comes to answering important ecological questions at the scale of ecosystems, landscapes or bi-omes (Woodward & Diament, 1991; Keddy, 1992; Korner, 1993). These questions include those on responses of vegetation to atmospheric chemistry, land use and natural disturbance regimes. A promising way for answering such questions (and many other ecological questions) is by classifying plant species on functional grounds (Diaz ef a/., 2002). These alternative classes are often referred to as plant functional types (PFTs) or groups (Grime ef a/., 1988; Leishman & Westoby, 1992; Gitay & Noble, 1997). Plant functional types are non-phylogenetic and non-taxonomic groupings of species and can be defined as groups of plant species sharing similar functioning at the organismic level, similar responses to environmental factors (e.g. temperature, water availability, nutrients, fire and grazing), and/or similar roles in (or effects on) ecosystems or biomes (e.g. productivity, nutrient cycling, flammability and resilience) (Walker, 1992; Chapin ef a/., 1996; Noble & Gitay, 1996; Diaz & Cabido, 19997; Lavorel ef a/., 1997; Grime, 2001). The first step in defining PFTs is to choose a list of key traits that are believed to be important for both understanding and prediction of phenomena relevant for our research. The set of traits or types differ among applications (Woodward & Cramer, 1996). Plant traits can be obtained by measurements in the filed, laboratory, or from the literature. They usually refer to life-history (life span, life cycle), morphology (plant height, lateral spread, life form, spinescence, species leaf area (SLA), and regeneration (e.g. ability to reproduce vegetative, flowering period...) (Kaligarič ef a/., 2005). In order to get insights into functional traits, the C-S-R strategy should be considered as well. The C-S-R scheme takes into account a number of different plant traits (Grime ef a/., 1997; Grime, 2001; Hodgson ef a/., 1999). The C-S-R plant strategy scheme proposed by Grime (1974) has been widely recognised as a highly developed plant strategy scheme (e.g. Mclntyre ef a/., 1995; Lavorel ef a/., 1997; Westoby, 1998). It is built on the assertion that three major determinations of species exist, namely competition (C), stress (S) and disturbance (R). The competitors exploit conditions of low stress and low disturbance, the stress-tolerators are species that occupy habitats with high stress and low disturbance, and the ruderals are adapted to low stress and high disturbance (Grime, 2002). In this paper we aim to identify different types of sub-Mediterranean Illyrian grasslands of the association Danfhon/'o-Scorzonerefum w'//osae (alliance Scorzon-er/on w'//osae, order Scorzonerefa/La w'//osae, class Fes-fuco-Bromefea) on the basis of species composition and plant functional traits. The data set includes table with 30 relevés from SW Slovenia, sampled in two contrasting geological bedrocks - flysch and limestone - and matrix with 43 traits determined for 119 plant species. The first objective was to reveal how the classification of the relevés from limestone and flysch, based on species composition, match with functional classification, based on plant traits. The second objective was to test if different geological bedrock has any impact on C-S-R strategies. MATERIALS AND METHODS Study area Study areas are the Primorski kras (Littoral Karst) and Slovenian part of Istria, both within the sub-Mediterranean phytogeographic area (Wraber, 1969) with sub-Mediterranean climate (Ogrin, 1996). Precipitation varies from 900 mm and up to 2,500 mm in the High Karst. The strong "bora" wind causes desiccation and erosion. The mean annual temperature is 12"C to 8"C, minimum is -15"C and maximum 34"C (Kaligaric ef a/., 2006). The Littoral Karst consists of calcareous limestone, which is penetrable to water, dryer and with more or less alkaline pH reaction. On the other hand, Slovenian Istria is a typical flysch (calcareous sandstone) area. In contrast to calcareous limestone, flysch is a substrate with considerably higher water retention. The soil is humus and moisture rich, pH is neutral or slightly acid (Kaligaric, 1997). Hence, the soil is more fertile. Vegetation survey We analysed 30 vegetation relevés of association Danfhon/'o-Scorzonerefum v///osae, which were collected in SW Slovenia from both flysch (18 relevés) and limestone (12 relevés) substrates. Relevés were collected using standard procedure of the Braun-Blanquet approach (Bran-Blanquet, 1964; Westhoff & van der Ma-arel, 1973; Dierschke, 1994). Tab. 1: Plant traits, recorded on 119 vascular plant species of sub-Mediterranean lllyrian meadows (SW Slovenia) from two distinct geological substrates, limestone and flysch. Scales of measurement were originally categorical (cat), continuous (cont) or binary (bin). Tab. 1: Rastlinski funkcionalni znaki za 119 rastlinskih vrst submediteranskih ilirskih travnikov (JZ Slovenija) na dveh različnih geoloških podlagah, apnencu in flišu. Podatki so bili v originalu kategorični (cat), zvezni (cont) ali binarni (bin). Traits Abbreviation and description Data source Life form cat Ch = chamaephytes Ge = geophytes He = hemicryptophytes Th = therophytes Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Martincic et a/. (2007) Life cycle cat Ann = annual Bien = biennial Peren = perennial Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Martincic et a/. (2007) Growth form cat Tuss = tussocks Rose = rosette Lea_st = leafy stem Ro lea = rosette and leafy stem Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1987); Martincic et a/. (2007); Rothmaler (1995) Vegetation propagation cat VegPro_0 = absent Stol = stolons Rhiz = rhizomes Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1987); Martincic et a/. (2007); Rothmaler (1995) Storage organs cat Tube = tuber StorOrg 0 = absent Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Martincic et a/. (2007) Spinescence bin Spin_1 = present Spin 0 = none Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Martincic et a/. (2007) Hairiness cat HairLow = low HairHigh = high HairNo = no Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Poldini (1991); Martincic et a/. (2007) Plant height cont Heightl = < 5 cm Height2 = 5-25 cm Height3 = 25-75cm Height4 = 75-125 cm Height5 = 125-150 cm Height6 = > 150 cm own measurements Specific leaf area (SLA) cont SLA1 = < 10 mm2/mg SLA2 = 10-13 mm2/mg SLA3 = 13-16 mm2/mg SLA4 = 16-19 mm2/mg SLA5 = 19-22 mm2/mg SLA6 = > 22 mm2/mg own measurements; LEDA database (Kleyer et a/., 2008) Leaf dry matter co n-tent (LDMC) cont LDMC1 = < 5 mg/g LDMC2 = 5-5.29 mg/g LDMC3 = 5.30-5.59 mg/g LDMC4 = 5.60-5.89 mg/g LDMC5 = > 6 mg/g own measurements; LEDA database (Kleyer et a/., 2008) C-S-R strategy cat C = competitors S = stress-tolerators R = ruderals own measurements; BiolFlor database (Klotz et a/., 2002) Flowering start Flow_St = months Hegi( 1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Poldini (1991); Martincic et a/. (2007) Flowering end cat Flow_End = months Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Poldini (1991); Martincic et a/. (2007) Flowering period cat Flow_Per = months Hegi (1958, 1963, 1 964, 1 965, 1 966, 1 974, 1 987); Poldini (1991); Martincic et a/. (2007) Leaf persistence cat LP_2 = summer green LP 4 = persistent green own measurements; BiolFlor database (Klotz et a/., 2002) Leaf anatomy cat Scler = scleromorphic Meso = mesomorphic own measurements; BiolFlor database (Klotz et a/., 2002) Type of reproduction cat Rep1 = by seed/by spore Rep2 = mostly by seed, rarely veget atively Rep3 = by seed and veget atively Rep4 = mostly vegetatively, rarely by seed own measurements; BiolFlor database (Klotz et a/., 2002) Guild cat Gpoa = grass Gsedge = sedge Gwood = woody plant Gherb = herb Gfab = fabaceae own measurements; BiolFlor database (Klotz et a/., 2002) Selection and measurements of plant traits While selecting most significant or informative traits, we followed different literature sources (Hodgson et a/., 1999; Kahmen et a/., 2002; Cornelissen et a/., 2003). We selected 18 traits for each species. Traits were chosen from our own database (protocol standardized by Cornelissen et a/., 2003). Information on species traits was also taken from two existing trait databases BiolFlor (Klotz et a/., 2002) and LEDA (Kleyer et a/., 2008). Species was characterized by basic traits as well as composite traits (such as C-S-R strategy). Due to the different species sets, we focused on traits that were easy to measure. The traits selected were: "life form", "life cycle", "growth form", "vegetation propagation", "storage organs", "spinescence", "hairiness", "plant height", "specific leaf area (SLA)", "leaf dry matter content (LDMC)", "CSR strategy", "flowering start", "flowering end", "flowering period", "leaf persistence", "leaf anatomy", "type of reproduction" and "guilds". The scale of measurement of plant traits was originally continuous or categorical, but they were all transformed into categorical scales for analyses. The list of traits with description of classes in matrix and the sources of information are presented in Table 1. Allocating a C-S-R plant functional type to plant species and vegetation samples (relevés) The C-S-R scheme takes into account a number of different plant traits (canopy height, dry matter content, flowering period, flowering start, lateral spread, leaf dry weight, SLA). To determine the one of 19 C-S-R functional types (Hodgson et a/., 1999) for 119 plant species recorded in 30 analysed vegetation relevés of sub-Mediterranean Illyrian meadows (association DantKo-n/o-Scorzoneretum v/7/osae), we used data from look-up table with C-S-R types for 1000 European species (source J. G. Hodgson, UCPE Sheffield). For species of unknown type we used a rapid method for attribution of C-S-R type from simple measurements and data published by Hodgson et a/. (1999). A functional signature can be derived for a sample of vegetation. The signature is a numerical index which concisely represents the total balance between the different functional attributes that are present among the component species (Hodgson et a/., 1999). Using the methodology of Hunt et a/. (2004), the relative proportions of C-S-R functional types for our 30 samples (relevés) of vegetation were calculated and plotted in C-S-R space. Classification and ordination analysis To classify the relevés according to their species composition, we built a 119 species x 30 relevés matrix (all matrices available by authors on request). Braun-Blanquet cover-abundance data for the species were converted into a 1 to 9 scale (van der Maarel, 1979). This matrix was then subjected to ordination methods -Detrended Correspondence Analysis (DCA) (Hill & Gauch Jr., 1980). The DCA with detrending by segments was used to estimate the heterogeneity in the species data. Gradient length for the first DCA axis was 3.0, indicating that both the linear and unimodal ordination methods are suitable for the analysis. We decided to use the unimodal (DCA) ordination method (Leps & Smi-lauer, 2003). In order to identify groups of species with similar traits, we built a 43 traits x 119 species matrix. The scales of measurements of plant attributes were originally continuous, categorical or binary, but they were all transformed into categorical or binary scales prior to the analysis. The number of traits in the matrix increased from 18 to 43 due to the fact that the categorical variables were all re-coded into different numbers of dummy variables - one for each possible level of the factor (Tab. 1). Example: trait "life cycle" has three levels of the factor (1) annual; (2) biennial and (3) perennial species. We submitted the matrix to divisive clustering -Two Way INdicator SPecies ANalysis (TWINSPAN) (Hill, 1979). It was run using the TWINSPAN for Windows version 2.3 (Hill & Smilauer, 2005). In order to identify the predominant plant traits for studied meadows, the matrix of 43 traits by 119 species was multiplied by the matrix of 119 species x 30 relevés. The result was a matrix of 43 traits x 30 relevés that was analysed by the means of Principal Component Analysis (PCA) (Goodall, 1954). The values of the traits data were log-transformed prior to PCA analysis. The ordination methods (PCA, DCA) and visualization of their results were carried out using the Canoco and CanoDraw programs (ter Braak & Smilauer, 2002). Nomenclature Taxonomic nomenclature is in agreement with Mar-tincic et a/. (2007), while for the names of the syntaxa we follow Kaligaric (1997). RESULTS AND DISCUSSION Species composition analysis The total number of vascular plant species recorded in 30 relevés of studied species rich grasslands was 119 with 88 on limestone (mean = 30 + 5.3 s. d. per plot, N=12) and 105 (mean = 34 + 4.5 s.d. per plot, N = 18) on grasslands from flysch. All species are listed in Appendix 1. There are 74 common species, 14 species exclusive to the limestone grasslands and 31 exclusive to the grasslands on the flysch. Higher species diversity of ANNALES • Ser. hist. nat. • 18 • 2008 • 2 Nataša PIPENBAHER et al.: FUNCTIONAL COMPARISION OF THE SUB-MEDITERRANEAN ILLYRIAN MEADOWS ..., 247-258 PlanArge FestRupi LeonCris OnobAren CareHumi CoyHwb TTjesDifs Me&Pros .¡ScabGram ""^"Msii lf» IS SanguMur 17 ^fWad SelrL • HBKM SafiPraf arsPann ErynAmst l<> 34 ChryGryl ii| oSiyLel TeucChom OnoMpfn „ ? --¿ííúw^íí Oí] 2SL. 3 TrMœt BrMuïïç fDaclGlom Buplsaii EvphCypa i O plenLsniÇf Knaullly lnulH"1 • — T3SL» ^ CentWold FeruGalb LeonH/sp AnacPyra PoteAlba TrifRube GemTinc GaliLuci LeucLibu PeucCerv DoryGerm •2 5 Fig. 1: DCA ordination diagram of relevés (N = 30, 119 species) of sub-Mediterranean lllyrian meadows from two distinctive geological substrates. Eigenvalues: axis 1 = 0.382; axis 2 = 0.181; 21.3% of variance in species explained by both axes. Shown species have the highest weight. Relevés are divided in two groups according to the geological substrate: • - relevés from flysch; O - relevés from limestone. Abbreviations of species explained in Appendix 1. Relevés numbers correspond to those in Appendix 1. Sl. 1: DCA-ordinacija popisov (N = 30, 119 vrst) submediteranskih ilirskih travnikov z dveh različnih geoloških podlag. Lastne vrednosti: os 1 = 0,382; os 2 = 0,181; obe osi razložita 21,3% variabilnosti v vrstni sestavi. Prikazane vrste imajo najvišji vpliv. Popisi so ločeni v dve skupini glede na geološko podlago: • - popisi na flišu; O -popisi na apnencu. Razlage okrajšav za vrste so v Prilogi 1. Številke popisov ustrezajo številkam popisov v Prilogi 1. grasslands from flysch is probably connected with higher species pool in this area, which is closer to the Adriatic Sea and milder climate, which contribute a share of Eu-Mediterranean species, lacking on the limestone, being slightly distant from the sea. To support this statement, we refer to e.g. Poldini (1991): in the atlas of regional flora, one of the richest areas was in lower altitudes, near the sea. Differences in floristic composition were first analysed with DCA analysis of the 119 species x 30 relevés matrix. DCA ordination is shown in figure 1. Eigenvalues for first two DCA axes are 0.382 and 0.181. First two axes explain together 21.3% variability in the species composition. Relevés are rather continuously arranged along the DCA Axis 1 (Fig. 1). Environmental gradient could be interpreted on the basis of the species ordination. The spe- cies with the lowest scores (-X) are those characteristically found on deeper soil, with more humus and moisture and neutral to slightly acid pH: Peucedanum cervaria, Dorycnium germanicum, Teucrium chamaedrys, Galium lucidum, Trifolium rubens, Chrysopogon gryllus and Carex flacca. Potentilla alba, Hypochoeris macu-lata, Carex humilis, Inula hirta were some of the species receiving the highest scores in the first DCA, i.e. they are associated with sites with more warm, dry and basiphi-lous conditions. Dispersion of relevés along the first axis of the DCA suggested a gradient of soil humidity and soil pH. Relevés of the most humid and neutral to slightly acid soil on the flysch (Nos. 1 to 18) are positioned on the left side, and relevés of the very dry shallow limestone soils with high pH (No. 19-30) are positioned on the right side of the DCA ordination biplot. Plant functional types On the basis of Twinspan analysis of the 43 traits x 119 species matrix (Fig. 2), we distinguished five groups (clusters) that could be interpreted as plant functional types (PFT). and hemirosette (Rojea) plants: Car//na acau//s, Eryn-g/um amefhysf/num, C/obu/ar/a punctata, Hypochoer/s macu/afa, /eonfoGon K/sp/Gus, P/anfago spp., Pofenf///a a/ba, 7ragopogon or/enfa//s and 7>/Yo//um monfanum. The last two groups, D and E, were separated from others already at the first cut level. 8 species from group D were mainly chamaephytes (Cham) with leafy stem: Chamaes-parf/um sag/ffa/e, 7eucr/um chamaeGrys anG Thymus /ong/cau//s. In comparison to others, this group included significantly higher share of late flowering species. The most homogenous was group E with 17 species, where we could find tussock-forming species, with scleromor-phic leaves and high LDMC values. All this information indicated that this group was rich on grasses (fam. Fig. 2: Simplified TWINSPAN classification tree (dendrogram) of 119 species. For each division number of group, numbers of species (in brackets) in group and indicator traits are shown. Abbreviations of plant traits are explained in Table 1. Sl. 2: Poenostavljen diagram TWINSPAN-klasifikacije (dendrogram) za 119 vrst. Za vsako delitev so prikazani število skupine, število vrst v skupini (v oklepaju) in indikatorski funkcionalni znaki. Okrajšave za funkcionalne znake so razložene v Tabeli 1. Group A included 10 species. They were all annual species (therophytes) (Ann, Th) with relatively high values for SLA (SLA6). Height values of SLA tend to correspond with relatively low investments in leaf "defences" and short leaf lifespan. Species in resource-rich environments tend to have larger SLA than those in environments with resource stress (Cornelissen ef a/., 2003). Species from group A reproduce by seeds (Rep1), they do not have storage organs (StorOrgO) and they do not propagate vegetatively (VegProO). We could find here B/acN-sfon/a pertb//afa/ L/num cafKarf/cum, RK/nanfKus spp., TnTb//um campesfre and Cenfaur/um eryfKrea. Groups B and C represented perennial species (Peren), hemicryp-tophytes (He) with rhizomes (Rhi) and with higher values for LDMC (LDMC 5). Species from group B were mostly tall hemicryptophytes (He) with leafy stem (Least), like $cK///ea cb///na, BupKfKa/mum sa//c//b//um/ Cenfaurea fr/umleff/ subsp. adscendens and C. pannbn/ca, Leucan-fKemum //burn/cum, D/anfKus fergesf/nus and Onbbry-cK/s arenar/a. Group C is characterized by rosette (Rose) Fig. 3: PCA ordination diagram of matrix 3 with 30 relevés and 43 traits. Eigenvalues: axis 1 = 0.30; axis 2 = 0.18; 42.6% of variance in species explained by both axes. Shown traits (21) have the highest weight. Relevés divided in two groups according to the geological bedrock: • - relevés from flysch; O - relevés from limestone. Abbreviations of plant traits explained in Table 1. Relevés numbers correspond to those in the Appendix 1. Sl. 3: PCA-ordinacija matrike 3 s 30 popisi in 43 rastlinskimi funkcionalnimi znaki. Lastne vrednosti: os 1 = 0,30; os 2 = 0,18; obe osi razložita 42,6% variabilnosti v vrstni sestavi. Prikazani funkcionalni znaki (21) imajo najvišji vpliv. Popisi ločeni v dve skupini glede na geološko podlago: • - popisi na flišu; O - popisi na apnencu. Razlage okrajšav za funkcionalne znake so v Prilogi 1. Številke popisov ustrezajo številkam popisov v Prilogi 1. Poaceae) and grass-like plants (fam. Cyperaceae) (e.g. $nthoxanthum oGoratum, Bothr/'och/oa /scKaemum, BrachypoG/'um rupestre, Br/'za meG/a, Bromops/'s erecta, Carex I/acca and C. Kum///s, CKyrsopogon gry//us, Dan-tKon/a a/p/na and D. Gecumbens, Festuca pratens/s and F. rubra, .oe/er/a pyram/Gata, Poa pratens/s...). A PCA ordination of matrix 3 with 43 traits x 30 relevés was performed in order to differentiate the analyzed sub-Mediterranean Illyrian meadows on the basis of five PFT according to the two distinct geological substrates. Ordination graph is presented in figure 3. Only 21 traits with the highest weight (most significant) are shown in the ordination diagram. The angles between arrows indicate correlations between traits. Relevés with high proportion of species reproducing by seeds and vegetatively (Rep3) had also high shares of herbaceous plants (Gherb) plants and competitors (C). Relevés with high proportion of hemicryptophytes (He) had also many perennial (Peren) and tall species (Height). Traits the most correlated with relevés scores of PCA axis 1 (eigenvalue = 0.30) were tuber (Tube) and chamaephytes (Ch). In the PCA ordination of all relevés on the basis of plant traits (Fig. 3), relevés from limestone were grouped in the lower right side of the ordination biplot. Those relevés had bigger shares of species, which propagate by seed and vegetatively (Rep3), competitors (C) and herbs (Gherb). Nevertheless, it could be concluded that there are no major functional differences between meadows from both geological substrates. CSR strategies In figure 4, the positions of all calculated signatures for 30 relevés of sub-Mediterranean Illyrian meadows from two contrasting geological substrates are presented in standard C-S-R ternary diagram. Relevés are grouped in the upper part of the triangle, showing relative im- portance of C component (competition). The second objective was to test if different geological bedrock resulted in significant differences in C-S-R strategies. No significant differences was found, except for the two relevés from limestone: they show influence of stress-tolerators (wind-exposed positions, dryer calcareous substrate), and a few relevés from flysch have higher impact of C component (consisted of typical competitors in fertile soil and favourable climate). Unless it could be concluded that the relative proportions of C-S-R functional types are not influenced by different geological bedrock. c Fig. 4: C-S-R ordination of vegetation of relevés (N = 30, 119 species) of sub-Mediterranean Illyrian meadows from two contrasting geological substrates. • -relevés from flysch; O - relevés from limestone. Sl. 4: C-S-R-ordinacija popisov (N = 30, 119 vrst) sub-mediteranskih ilirskih travnikov iz dveh različnih geoloških podlag. • - popisi na flišu; O - popisi na apnencu. FUNKCIONALNA PRIMERJAVA SUBMEDITERANSKIH ILIRSKIH TRAVNIKOV Z DVEH RAZLIČNIH GEOLOŠKIH PODLAG Nataša P/PENBA+ER, 0/t/a .$L/G$R/Č & Sonja Š.ORN/. Oddelek za biologijo, Fakulteta za naravoslovje in matematiko, Univerza v Mariboru, SI-2000 Maribor, Koroška 160, Slovenija E-mail: natasa.pipenbaher@uni-mb.si POVZETE. 9 pr/cu/ocem č/anNu smo pr/mer/a// I/or/st/cn/ /n /unNc/ona/n/ pr/stop pr/ N/as/I/Nac/// t/pov vegetac//'e na pr/meru sub-med/teransN/K ///rsN/K trav/šc asoc/ac//e Danthonio-Scorzoneretum villose (zveze Scorzonerion villosae, reda Scorzoneretalia villosae, razreda Festuco-Brometeaj. Baza podatNov /e obsega/a tabe/o s 30 pop/s/ trav/šc /z SZ S/oven//e, zbran/K na dveh raz//cn/K geo/ošN/K pod/agah - /7/šu /n apnencu - /n matr/Ne z 78 /unNc/ona/n/m/ znaN/, N/ smo //K do/oc/// za 7 79 rast//nsN/K vrst. Naš c/// /e b// tud/ ugotov/t/, a// raz//cna geo/ošNa pod/aga vp//va na de/eže posamezn/K C-S-R-eNo/ošN/K strateg// rast//n v pop/s/h. Na/pre/ smo ana//z/ra// razno//Nost //or/st/cne sestave z /nG/reNtno ana//zo graG/entov (DC$j /n na poG/ag/ orG/-nac//e pop/sov /n vrst ugotov///, Ga so se pop/s/ razporeG/// sorazmerno zvezno vzGo/ž graG/enta v/ažnost/ (oz. sušnost/j ter Nem//sNe reaNc//e (p+j ta/. Pop/s/ z raz//cn/K geo/ošN/K poG/ag so b/// meG sabo /asno /ocen/. S N/as///-Nac//sNo ana//zo 7z/nspan matr/Ne 43 /unNc/ona/n/K znaNov x 119 rast//nsN/K vrst smo Go/oc/// 5 sNup/n vrst, N/ smo //K /nterpret/ra// Not /unNc/ona/n/ t/p/, N/ se po/av//a/o na obravnavan/K suK/K trav/šc/K. Za ugotav//an/e raz//Ne meG pop/s/ na apnencu /n ///šu na poG/ag/ /zbran/K /unNc/ona/n/K znaNov rast//n smo matr/No 43 /unNc/ona/n/K znaNov x 119 vrst pomnož/// z matr/No 119 vrst x 30 pop/sov. .ot rezu/tat smo Gob/// matr/No 43 /unNc/ona/n/K znaNov x 30 pop/sov, N/ smo /o nato ana//z/ra// z /nG/reNtno orG/nac//sNo metoGo g/avn/K Nompo-nent (ana//zo PC$j. Na gra/u se /e na poG/ag/ /unNc/ona/n/K znaNov rast//n ob//Nova/o Nar neNa/ man/š/K sNup/n pop/sov. 7uG/ toNrat so se pop/s/ /z apnenca razporeG/// sNupa/, /n s/cer Gesno spoGa/ v gra/u. 7o pomen/, Ga so meG zbran/m/ /unNc/ona/n/m/ znaN/ tuG/ taNšn/, N/ /ma/o vec/e Ge/eže vrst (npr. Nompet/tor// (Cj, ze//šca (CKerbj, razmnoževan/e s semen/ /n vegetat/vno (Rep3jj a// pa man/še Ge/eže vrst (npr. /esne vrste (CzooGjj v pop/s/K na apnencu v pr/mer/av/ s pop/s/ na ///šu. VenGar pa po ana//z/ teK znaNov ugotav/zamo, Ga /e-t/ n/ma/o vec/ega pomena /n zaN//uču/emo/ Ga n/ znač//n/K raz//N meG trav/šc/ na apnencu /n ///šu g/eGe na /unNc/ona/ne znaNe /n t/pe rast//n. 7uG/ razporeG/tev pop/sov v tr/Notn/Nu C-S-R na poG/ag/ re/at/vn/K Ge/ežev posamezn/K C-S-R-eNo/ošN/K strateg// rast//n v pop/s/K ne GoNazu/e znač//n/K raz//N meG pop/s/ na apnencu /n ///šu. Ključne besede: suhi travniki, rastlinski funkcionalni tipi, Festuco-Brometea, vegetacija, C-S-R strategije rastlin, JZ Slovenija REFERENCES Braun-Blanquet, J. (1964): Pflanzensoziologie. Grundzuge der Vegetationskunde. Springer Verlag, Wien, 865 p. Chapin, F. S. I., M. S. Bret-Harte, S. E. Hobbie & H. Zhong (1996): Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci., 7, 347-358. Cornelissen, J. H. C., S. Lavorel, E. Gernier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas & H. Poorter (2003): A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380. Diaz, S. & M. Cabido (1997): Plant functional types and ecosystem function in relation to global change. J. Veg. Sci., 8, 63-474. Diaz, S., S. Mclntyre, S. Lavorel & J. G. Pausas (2002): Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytol., 154, 7-9. Dierschke, H. (1994): Pflanzensoziologie: Grundlage und Methode. Ulmer, Stuttgart. Gitay, H. (1999): Deriving functional types for rain-forest trees. J. Veg. Sci., 10, 641-650. Gitay, H. & I. R. Noble (1997): What are plant functional types and how should we seek them? In: Smith, T. M, H. H. Shugart & F. I. Woodwart (eds.): Plant functional types. Cambridge University Press, Cambridge, pp. 3-19. Goodall, D. W. (1954): Objective methods for the classification of vegetation. II. An essay in the use of factor analysis. Aust. J. Bot., 2, 304-324. Grime, J. P. (1974): Vegetation classification by reference to strategies. Nature, 250, 26-31. Grime, J. P. (2001): Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, Chichester. Grime, J. P. (2002): Declining plant diversity: empty niches or functional shifts? J. Veg. Sci., 13, 457-460. Grime, J. P., J. G. Hodgson & R. Hunt (1988): Comparative plant ecology: a functional approach to common British species. Unwin Hyman Ltd., London. Grime, J. P., K. Thompson, R. Hunt, J. C. Hodgson, J. H. C. Cornelissen & ISP team (1997): Integrated screening validates primary axes of specialization in plants. Oikos, 79, 259-281. Hegi, G. (1958): Illustrierte Flora von Mittel-Europa, Band IV, 1. Teil. Carl Hanser Verlag, München. Hegi, G. (1963): Illustrierte Flora von Mittel-Europa, Band III, 1. Teil. Carl Hanser Verlag, München. Hegi, G. (1964): Illustrierte Flora von Mittel-Europa, Band V, 4. Teil. Paul Parey Verlag, Berlin, Hamburg. Hegi, G. (1965): Illustrierte Flora von Mittel-Europa, Band I. Carl Hanser Verlag, München. Hegi, G. (1966): Illustrierte Flora von Mittel-Europa, Band IV, 2. Teil. Carl Hanser Verlag, München. Hegi, G. (1974): Illustrierte Flora von Mittel-Europa. Band VI, 3.Teil. Verlag Paul Parey, Berlin, Hamburg. Hegi, G. (1987): Illustrierte Flora von Mittel-Europa, Band VI, 3. Teil. Paul Parey Verlag, Berlin, Hamburg. Hill, M. O. (1979): DECORANA: A fortran program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, NY. Hill, M. O. & H. G. Gauch Jr. (1980): Detrended Correspondence Analysis: an improved ordination technique. Vegetatio, 42, 47-58. Hill, M. O. & P. Šmilauer (2005): TWINSPAN for Windows version 2.3. Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice. Hodgson, J. G., P. J. Wilson, R. Hunt, J. P. Grime & K. Thompson (1999): Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85, 282-294. Hunt, R., J. G. Hodgson, K. Thompson, P. Bungener, N. P. Dunnett & A. P. Askew (2004): A new practical tool for deriving a functional signature for herbaceous vegetation. Appl. Veg. Sci., 7, 163-170. Kähmen, S., P. Poschlod & K. Schreiber (2002): Conservation management calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol. Conserv., 104, 319-328. Kaligaric, M. (1997): Rastlinstvo Primorskega krasa in Slovenske Istre: travniki in pašniki. Zgodovinsko društvo za južno Primorsko, ZRS Koper, 111 str. Kaligaric, M., N. Šajna & S. Škornik (2005): Is variety of species-rich semi-natural Mesobromion grasslands detectable with functional approach? Annales, Ser. Hist. Nat., 15(2), 239-248. Kaligaric, M., M. Culiberg & B. Kramberger (2006): Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobot., 41, 241-258. Keddy, P. A. (1992): A pragmatic approach to functional ecology. Funct. Ecol., 6, 621-626. Kleyer, M. (1999): Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. J. Veg. Sci., 10, 697-708. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. van Groenendael, L. Klimes, J. Klimesova, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, P. Endels, L. Götzenberger, J. G. Hodgson, A. K. Jackel, A. Dannemann, I. Kühn, D. Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steen-dam, O. Tackenberg, B. Wilmann, J. H. C. Cornelissen, O. Eriksson, E. Garnier, A. Fitter & B. Peco (2008): The LEDA Traitbase: A database of plant life-history traits of North West Europe. (http://www.leda-traitbase.org/LEDA portal/) Klotz, S., I. Kuhn & W. Durka (2002): BIOLFLOR - Eine Datenbank mit biologisch-okologischen Merkmalen zur Flora von Deutschland. Schriftenr. Vegetationsk., 38, 1334. Körner, C. (1993): Scaling from species to vegetation: the usefulness of functional groups. In: Schulze, E. D. & H. A. Mooney (eds.): Biodiversity and Ecosystem Function. Ecological Studies. Springer Verlag, Berlin, pp. 116-140. Lavorel, S., S. McIntyre, J. Landsberg & T. D. A. Forbes (1997): Plant functional classification: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol., 12, 474-478. Leishman, M. R. & M. Westoby (1992): Classifying plants into groups on the basis of associations of individual traits - evidence from Australian semi-arid woodlands. J. Ecol., 80, 417-424. Lepš, J. & P. Šmilauer (2003): Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, 269 p. Martincic, A., T. Wraber, N. Jogan, A. Podobnik, B. Turk & B. Vreš (2007): Mala flora Slovenije: kjuč za določanje praprotnic in semenk. 4. izdaja. Tehniška založba Slovenije, Ljubljana, 967 str. McIntyre, S., S. Lavorel & R. M. Tremont (1995): Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol., 83, 31-44. Noble, I. R. & H. Gitay (1996): A functional classification for predicting the dynamics of landscapes. J. Veg. Sci., 7, 329-336. Ogrin, D. (1996): Podnebje Slovenske Istre. Knjižnica Annales, vol. 11. Zgodovinsko društvo za južno Primorsko, ZRS Koper, 320 str. Poldini, L. (1991): Atlante corologico delle piante vasco-lari nel Friuli-Venezia Giulia: inventario floristico regionale. Regione Autonoma Friuli-Venezia Giulia, Udine. Rothmaler, W. (1995): Exkursionsflora von Deutschland. Gustav Fischer Verlag, Jena, Stuttgart. ter Braak, C. J. F. & P. Šmilauer (2002): CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, 500 p. van der Maarel, E. (1979): Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio, 39, 97-114. Walker, B. H. (1992): Biodiversity and ecological redundancy. Conserv. Biol., 6, 18-23. Weiher, E., A. van der Werf, K. Thompson, M. Roderick, E. Garnier & O. Eriksson (1999): Challenging Theophrastus: a common core list of plant traits for functional ecology. J. Veg. Sci., 10, 609-620. Westhoff, V. & E. van der Maarel (1973): The Braun-Blanquet approach. Handb.Veg. Sci., 5, 156-172. Westoby, M. (1998): A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil, 199, 213-227. Woodward, F. I. & A. D. Diament (1991): Functional approaches to predicting the ecological effects of global change. Funct. Ecol., 5, 202-212. Woodward, F. I. & W. Cramer (1996): Plant functional types and climatic changes: Introduction. J. Veg. Sci., 7, 306-308. Wraber, M. (1969): Pflanzengeographische Stellung und Gliederung Sloweniens. Vegetatio, 17, 176-199. Appendix 1: 30 relevés of sub-Mediterranean Illyrian grasslands of the association Danthon/'o-Scorzoneretum w'//o-sae (alliance Scorzoner/on v///osae, order Scorzonereta//a v///osa, class Festuco-Brometeaj. Relevés were sampled in S: Slovenia in two contrasting geological bedrocks - flysch and limestone. Priloga 1: 30 popisov submediteranskih ilirskih travnikov asociacije Danthon/'o-Scorzoneretum w'//osae (zveza Scorzoner/on v///osae, red Scorzonereta//a v///osae, razred Festuco-Srometeaj. Popisi so bili zbrani v JZ Sloveniji na dveh različnih geoloških podlagah - fliša in apnenca. Flysch Limestome Species Ach///ea co///na Anacampf/s pyram/da//s Anfher/cum ramosum Anfhoxanfhum odorafum Anfhy///s vu/nerar/a subsp. po/yphy//a Asperu/a cynanch/ca Asperu/a purpurea ßefon/ca serof/na ß/acNsfon/a perfo//'afa ßofryoch/oa /schaemum ßrachypod/um rupesfre ßr/za med/a ßromops/s erecfa ßuphfha/mum sa//'c/7b//'um Campanu/a g/omerafa Campanu/a rapuncu/us Carex flacca Carex hum///s Carex monfana Car//na acau//s Car//na corymbosa Cenfaurea fr/umfeff// subsp. adscendens Cenfaurea pannon/ca Cenfaur/um eryfhrea Chamaesparf/um sag/ffa/e Chrysopogon gry//us C/rs/um pannon/cum Dacfy//'s g/omerafa Danfhon/'a a/p/na Danfhon/'a decumbens Daucus carofa D/'anfhus fergesf/nus Dorycn/'um german/cum Dorycn/'um herbaceum (ryng/um amefhysf/num (uphorb/a cypar/ss/as ± ± ± ± ± ± 1 1 ± ± ± ± r ± ± ± ± iii ±1112311 1 1 3 ± 2 212 1 2 2 ± 1 1 1 1 ± 1 ±±± iii ± ± ± ± 234222423222324333 ± ± ± i i i ± ± ± 1 1 1 ± 2 1 2 1 1212±121 11 1 i 2 2 1 3 2 2 3 1 ± ±±± ±±1±± ± ±± Relevé number 1 2 3 4 5 6 7 S 9 10111213141516171S 1920212223242526272S29 30 Number °f species per 2g443231 3S353735322g2S31 2S3730403536 2726 26 242S2S242g41 3S30 33 relevé_ Species abbreviations AcK/Co// ± ± ± ± ± AnacPyra ± ± ± ± ± ± ± ± AntKRamo ± ± 1 AntKOdor AntKPo/yp ± ± ± ± AspeCynan ± ± ± ± ± 1 ± AspePurp ßetoSero 2±± ±± ±±±±1 ß/acPerl ßotr/scK ßracRupe ßr/zMed/ ßromErec ßuptSa//c CampC/om Camp5apu CareF/ac Care+um/ CareMont Car/Acau Car/Cory CentAGsc CentWe/d CentEryt CKamSag/ CKryCry/ C/rsPann DactC/om DantA/p/ DantDecu 1 1 DaucCaro D/anTerg DoryCerm DoryHerb ErynAmet EupKCypa ± ± ± ± ± ±± ±21±±±± ±± ±± 1 1 1 1 ± ± ± ± ± ±± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 32242 1 3343±1 1 2332 ±1 ± ± 1±1± 11 ±±1 ±±±1 1 1 ±23 1 ± 2 2 2 ± ±±± 1 1 1 ± ± ± ± ± 2 1 ± 1 3 2 2 11 3 ± ±1 ± 1 1 ± 1 3 2 3 ± ± ± 1 1 ± 2 11 + 112 ±2 r 1 ± ± ± 1 ± ±±± ± ± ± 1 2 ± 1 1 ± ± ± 1 1 ± ± ± ± 1 ANNALES • Ser. hist. nat. • 18 • 2008 • 2 Natasa PIPENBAHER et a/.: FUNCTIONAL COMPARISION OF THE SUB-MEDITERRANEAN ILLYRIAN MEADOWS ..., 247-258 Flysch Limestome Relevé number 1 2 3 4 5 e 7 8 9101112131415iei718 19202122 23 2425 2e272829 30 Number of species per relevé 29 44323138 35 3735 32 29 283128373040 35 36 2726 26242828242941 38 30 33 Species Species abbreviations Euphorbia n/caeens/s EuphN/ca 1 1 + ++ + Euphorbia verrucosa EuphVerr 1 + 1 + 1 + + + + 11 Eeru/ago ga/ban/Tera EeruCa/b + + r1 1 1 + + + 1 2 Eesfuca rubra EesfRubr 1 2 1 Eesfuca rup/co/a EesfRup/ + ++ 2 2 2 + + E///pendu/a vu/gar/s E///Vu/g + + + 1 + 1 + + + + 21 2 Eupana procupbens EupaProc r+ Ca//up /uc/dup Ca///uc/ 1 + + + + 1 +2 1+ 1 Ca//up verup Ca//Veru 2 + +22 2 + + + + + 1 1 1 2 Cen/sfa gerpan/ca Cen/Cerp r + + 1 + Cen/sfa f/ncfor/a Cen/T/nc + + + ++ + 1 + Ceran/up sangu/neup CeraSang + 1 C/ad/o/us ///yr/cus C/ad,//y + + C/obu/ar/a puncfafa C/obPunc + + ++ Cypnaden/a conopsea He//anfhepup ovafup CypnCono He//Ovaf 1 + + + + + +++ 11 1 + + + + 1 + + H/erac/up p//ose//a H/erP//o + + +1 + H/ppocrep/s coposa H/ppCopo +1 + + Hyper/cup perforafup Hypochoer/s pacu/afa HypePerl HypoMacu + + + + + + 1 2 3 1 /nu/a h/rfa /nu/H/rf 2 1 2 + + ++ + + + + .nauf/a ///yr/ca .nau///y + 2 + + + + + ++++ + + ++ + + + + 1 1 1 + .oe/er/a pyrap/dafa .oe/Pyra + + 1 2 + ++ + + + + 2 2 .oe/er/a sp/endens .oe/Sp/e + 2 + 1 1 + + /afhyrus /af/To//us /afhy/afy + r + +++ 1 + + + + 1 + /afhyrus prafens/s /afhPraf + + + + +1 /epbofrop/s n/gr/cans /epbN/gr + ++ ++ /eonfodon cr/spus EeonCr/s + + + + + + 1 /eonfodon h/sp/dus EeonH/sp + 1 1 + 1 + 1 1 1 1 /eucanfhepup //burn/cup /euc//bu + + + + r 2 + + + + + + //nup cafarfh/cup /unCafh + + + + + + + //nup flavup //nuE/av + 2 //nup fenu/fo//up //nuTenu + + + + + + + /ofus corn/cu/afus subsp. h/rsufus /ofuCorn + + + + + 1 + + 1 + + +++ + + 1 + + + + 1 + 0ed/cago Ta/cafa 0ed/Ea/c + ++ + 0ed/cago prosfrafa Med/Prosf + + + 1 1 112 + + + ++ Odonf/fes /ufea Odon/ufe + + + Onobrych/s arenar/a OnobAren 1 1 + 1 1 + 1 + + 2 Onon/s sp/nosa OnonSp/n + + 1 2 1 2 + + 2 1 + + 1 + + + + 1 1 Pasf/naca saf/va PasfSaf/ r+ Peucedanup cervar/a PeucCerv 2 3 + + 2 + 2 2 Peucedanup oreose//nup PeucOreo + 1 1 + +3 P/cr/s h/erac/o/des P/crH/er ++ + + + P/pp/ne//a sax/Traga P/ppSax/ 1 + Flysch Limestome Relevé number 1 2 3 4 5 6 7 8 9 101112131415161718 1920212223242526272829 30 Number of species per 29443231 3835373532292831 283730403536 2726 26 242828 242941 3830 33 relevé Species P/anfago argenfea P/anfago ho/osfeum P/anfago /anceo/afa P/anfago med/a Poa prafens/s Po/yga/a n/caeens/s subsp. med/ferranea Pofenf///a a/ba Pofenf///a ausfra//s Pofenf///a erecfa Prune//a grand/I/ora Prune//a /ac/n/afa Ranuncu/us bu/bosus Ranuncu/us nemorosus Rh/nanfhus g/ac/a//s Rh/nanfhus Ireyn// Rh/nanfhus m/nor Rumex acefosa Sa/v/a prafens/s agg. Sangu/sorba mur/cafa Safurey'a monfana subsp. var/egafa Scab/osa grammunf/a Scorp/orus subv///osus Scorzonera v///osa Senec/o y'acobaea Serrafu/a /ycop/fo//a Sfachys recfa agg. Teucr/um chamaedrys Teucr/um monfanum Tha//cfrum m/nus Thes/um d/var/cafum Thymus /ong/cau//s Tragopogon prafens/s subsp. or/enfa//s Tragopogon fommas/n// Tr/fo//um campesfre Tr/fo//um monfanum Tr/fo//um prafense Tr/fo//um rubens Veron/ca barre//er/ V/c/a cracca Species abbreviations P/anArge P/anHo/o P/an/anc P/anMed/ PoaPraf Po/yN/cae PofeA/ba PofeAusf Pofefrec PrunCrand Prun/ac/ RanuBu/b RanuNemo Rh/nAr/s Rh/nFrey Rh/nM/no RumeAcef Sa/vPraf SanguMur/ SafuVar/ ScabCram ScorSubv ScorV///o Sene-aco Serr/yco SfacRecf TeucCham TeucMonf Tha/M/nu ThesD/Va Thym/ong TragOr/e TragTomm Tr/TCamp Tr/TMonf Tr/IPraf Tr/IRube VeroBarr V/c/Crac + 22 + + 1 + + + + 1 + + + 1 +11 11 ++ 11 + + 1 + 1 + + + + + 1 2 + + + + + + + + + + + + + 11 + + +++ + + + + + + + + 2 111 + 12 1+11 + ++ 1 2 3 1 + + + + + + + + + + 1 + + + + + 1 1 + + +++ ++ + 1 + + + + + ++ + ++ ++ ++ + + + 2 2 2 2 + + 2 + + 2 ++ 1 + + + 1 + + + + + + 2 1 + + + + + + + + ++ ++ + 1 1 + + + + 1 + ++ ++ + 1 1 + + 1 + 1 + + + 2 + + + r + + + + + + + + + + + ++ ++ 3+ 232 + 112 + ++ 111 +21 + ++ + + + + +12 2 + 1 ++ + Relevés numbers in Table 1 correspond to the following relevés from the original table: No. 1-30: Kaligarc, 1997: Tab. 1, relevés No. 1, 2, 5, 7, 10, 12, 14, 16, 18, 19, 20, 21, 23, 24, 25, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 and 43.