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The paper presents the topology and standard sizes optimization of a single-storey industrial steel 

building, made from standard hot rolled I sections. The structure consists of main portal frames, 
connected with purlins. The structural optimization is performed by the Mixed-Integer Non-linear 
programming approach (MINLP). The MINLP performs a discrete topology and standard dimension 
optimization simultaneously with continuous parameters. Since the discrete/continuous optimization 
problem of the industrial building is non-convex and highly non-linear, the Modified Outer-
Approximation/Equality-Relaxation (OA/ER) algorithm has been used for the optimization. Alongside the 
optimum structure mass, the optimum topology with the optimum number of portal frames and purlins as 
well as all standard cross-section sizes have been obtained. The paper includes the theoretical basis and 
a practical example with the results of the optimization. 
© 2008 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 
Single-storey frame structures are 

extensively used for industrial, leisure and 
commercial buildings. In order to obtain efficient 
frame designs, researchers have introduced 
various optimization techniques, suitable either 
for continuous or discrete optimization. O’Brien 
and Dixon [1] have proposed a linear 
programming approach for the optimum design of 
pitched roof frames. Guerlement et al. [2] have 
introduced a practical method for single-storey 
steel structures, based on a discrete minimum 
weight design and Eurocode 3 [3] design 
constraints. Recently, Saka [4] has considered an 
optimum design of pitched roof steel frames with 
haunched rafters by using a genetic algorithm. 
One of the latest researches reported in this field 
is the work of Hernández et al. [5], where the 
authors have considered a minimum weight 
design of the steel portal frames with software 
developed for the structural optimization. It 
should be noted that all the mentioned authors 
deal with the discrete sizes optimization only at 
fixed structural topologies.  

This paper discusses the simultaneous 
topology, standard sizes and continuous 
parameter optimization of an unbraced single-

storey industrial steel building. The optimization 
of the portal frames and purlins was performed by 
the Mixed-Integer Non-linear Programming 
approach (MINLP). The MINLP is a combined 
discrete and continuous optimization technique. 
In this way, the MINLP performs the discrete 
topology (i.e. the number of frames and purlins) 
and the standard dimension (i.e. the standard 
cross-section sizes of the columns, beams and 
purlins) optimization simultaneously with the 
continuous optimization of the parameters (e.g. 
the structure mass, internal forces, deflections, 
etc.). 

The MINLP discrete/continuous 
optimization problems of frame structures are in 
most cases comprehensive, non-convex and 
highly non-linear. The optimization is proposed 
to be performed through three steps. The first one 
includes the generation of a mechanical 
superstructure of different topology and standard 
dimension alternatives, the second one involves 
the development of an MINLP model formulation 
and the last one consists of a solution for the 
defined MINLP optimization problem. 

The objective of the optimization is to 
minimize the mass of the single-storey industrial 
building. The mass objective function is subjected 
to the set of equality and inequality constraints 
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known from the structural analysis and 
dimensioning. The dimensioning of steel 
members is performed in accordance with 
Eurocode 3. 

The Modified Outer-Approximation 
/Equality-Relaxation algorithm is used to perform 
the optimization, see Kravanja and Grossmann 
[6], Kravanja et al. [7] and [8]. The two-phase 
MINLP optimization is proposed. It starts with 
the topology optimization, while the standard 
dimensions are temporarily relaxed into 
continuous parameters. When the optimum 
topology is found, the standard dimensions of the 
cross-sections are reestablished and the 
simultaneous discrete topology and standard 
dimension optimization of the beams, columns 
and purlins is then continued until the optimum 
solution is found. 
 
1 SINGLE-STOREY INDUSTRIAL BUILDING 

 
The paper presents the topology and 

standard sizes optimization of unbraced rigid 
single-storey industrial building steel structures, 
Fig. 1. The columns, beams and purlins are 
proposed to be built up of standard hot rolled 
steel I sections. 

The considered portal frame structures are 
optimized under the combined effects of the self-

weight of the frame members, a uniformly 
distributed surface variable load (snow and wind), 
a concentrated horizontal variable load (wind) 
and an initial frame imperfection. The purlins are 
designed to transfer the permanent load (the self-
weight of the purlins and the weight of the roof) 
and the variable load (snow and wind). The 
internal forces are calculated by the elastic first-
order method. The dimensioning of the steel 
members is performed in accordance with 
Eurocode 3 for the conditions of both the ultimate 
limit state (ULS) and the serviceability limit state 
(SLS). 

When the ULS is considered, the elements 
are checked for the axial, shear and bending 
moment resistance, for the interaction between 
the bending moment and the axial force, the 
interaction between the axial 
compression/buckling and the buckling resistance 
moment. 

The total deflection δmax subject to the 
overall load and the deflections δ2 subjected to the 
variable imposed load are calculated to be smaller 
than the limited maximum values: span/200 and 
span/250, respectively. The frame horizontal 
deflections are also checked for the recommended 
limits: the relative horizontal deflection of the 
portal frame should be smaller then the frame 
height/150.

 
 
 

LL

L
fe

fe
fe

fe
fe

fe

P

P

P

H

ep

 
 

Fig. 1. Single-storey industrial steel building 
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2 MINLP MODEL FORMULATION FOR 
 MECHANICAL SUPERSTRUCTURES 

 
It is assumed that a non-convex and non-

linear discrete/continuous optimization problem 
can be formulated as a general MINLP problem 
(MINLP-G) in the form: 

 min      ( )xyc fT +=z  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  (MINLP-G) 

 bCxBy ≤+  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

 y ∈ Y ={0,1}
m
 

where x is a vector of continuous variables 
specified in the compact set X and y is a vector of 
discrete, mostly binary 0-1 variables. Functions 
f(x), h(x) and g(x) are non-linear functions 
involved in the objective function z, the equality 
and inequality constraints, respectively. All 
functions f(x), h(x) and g(x) must be continuous 
and differentiable. All functions f(x), h(x) and 
g(x) must be continuous and differentiable. 
Finally, By+Cx≤b represents a subset of mixed 
linear equality/inequality constraints. 

The above general MINLP-G model 
formulation has been adapted for the optimization 
of mechanical superstructures. The resulting 
MINLP formulation for mechanical 
superstructures (MINLP-MS) that is more 
specific, particularly in variables and constraints, 
can be used also for the modelling the steel 
industrial buildings. It is given in the following 
form: 

 min   ( )T fz c y x= +  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  
 ( ) axA ≤  
 Ey ≤ e (MINLP-MS) 
 ( )eDy R x r+ ≤  

 ( )e cnKy L d k+ ≤  

 ( )stPy S d s+ ≤  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

 y ∈ Y ={0,1}
m
 

The MINLP model formulation for mechanical 
superstructures is proposed to be described as 
follows: 
- Included are continuous variables x={d, p} 

and discrete binary variables y={ye, yst}. 
Continuous variables are partitioned into 
design variables d={dcn, dst} and into 
performance (non-design) variables p, where 
subvectors dcn and dst stand for continuous 
and standard dimensions, respectively. 
Subvectors of the binary variables ye and yst 
denote the potential existence of structural 
elements inside the superstructure (the 
topology determination) and the potential 
selection of standard dimension alternatives, 
respectively. 

- The mass or economical objective function z 
involves fixed mass or cost charges in the 
linear term cTy and dimension dependant 
mass or costs in the term f(x). 

- Parameter non-linear and linear constraints 
h(x)=0, g(x) ≤ 0 and A(x) ≤ a  represent a 
rigorous system of the design, loading, 
resistance, stress, deflection, etc. constraints 
known from the structural analysis. 

- Integer linear constraints Ey ≤ e are proposed 
to describe the relations between binary 
variables. 

- Mixed linear constraints Dye+R(x) ≤ r restore 
interconnection relations between currently 
selected or existing structural elements 
(corresponding ye=1) and cancel relations for 
currently disappearing or nonexisting 
elements (corresponding ye=0). 

- Mixed linear constraints Kye+L(dcn) ≤ k are 
proposed to define the continuous design 
variables for each existing structural element. 
The space is defined only when the 
corresponding structure element exists 
(ye=1), otherwise it is empty. 

- Mixed linear constraints Py+S(dst) ≤ s define 
standard design variables dst. Each standard 
dimension dst is determined as a scalar 
product between its vector of i, i∈I, discrete 
standard dimension constants q={q1, q2, q3,..., 
qi} and its vector of subjected binary 
variables yst={yst

1, yst
2, yst

3,..., yst
i}, see Eq. (1). 

Only one discrete value can be selected for 
each standard dimension since the sum of the 
binary variables must be equal to 1 Eq. (2): 
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st st
i i

i I 

d q y
∈

=∑  
(1)

st
i

i I

1
 

y
∈

=∑  
(2)

 
3 OPTIMIZATION MODEL FRAMEOPT 

 
The MINLP optimization model 

FRAMEOPT (FRAME OPTimization) for the 
optimization of the single storey industrial steel 
buildings has been developed with relating to the 
above MINLP model formulation for mechanical 
structures. 

The following assumptions and 
simplifications have been defined in the model 
FRAMEOPT and considered in the optimization: 
- Considered was a single load case only, 

where the partial safety factors and 
combination of actions were defined 
according to Eurocodes. The optimization of 
the structure was performed under the 
combined effects of: 
- the self-weight of the structure (the line 

uniform load of columns, beams and  
purlins) and the weight of the roof (the 
vertical surface load)  plus 

- snow and vertical wind (the uniformly 
distributed vertical surface variable load) 
plus 

- horizontal wind (the horizontal force at 
the top of the columns). 

- Equal steel portal frames and equal purlins 
were proposed to compose the structure. 

- Steel members were proposed to be made 
from standard hot rolled European wide 
flange I sections (HEA sections). 

- The global portal frame geometry including 
the span, height and the beam inclination was 
proposed to be fix through the optimization. 

- Vertical and horizontal bracing systems as 
well as wall sheeting rails were not included 
in this calculation/optimization. 

- The internal forces and deflections were 
calculated by the elastic first-order method. 

- The portal frames were classified as non-
sway steel portal frames. The ratio between 
the design value of the total vertical load NSd 
and the elastic critical value for failure in a 
sway mode Ncr was constrained: NSd/Ncr≤ 0.1. 

- The portal frame was calculated as a laterally 
supported frame. Hereby, the steel members 

were checked only for the in-plane 
instability. Columns were designed for the 
compression/buckling resistance plus the 
lateral torsional buckling. Beams were 
checked for the in-plane bending moment 
resistance. 

- Buckling lengths of columns were calculated 
as the in-plane buckling lengths for the non-
sway mode. 

As an interface for mathematical 
modelling and data inputs/outputs GAMS 
(General Algebraic Modeling System), i.e. a high 
level language, was used [9]. The proposed 
optimization model includes the structure’s mass 
objective function, parameter structural non-
linear and linear constraints, integer and mixed 
integer logical constraints, sets, input data 
(constants) and variables. 

 
3.1. Mass objective function 

 
The mass objective function of the 

industrial building structure is defined by Eq. (3). 
The mass of the structure MASS comprises the 
masses of columns, beams and purlins. AC, AB and 
AP represent the cross-section areas of the 
column, beam and purlins, respectively. h denotes 
the height of the column, LB is the length of the 
frame beam and LL is the length of the industrial 
building (and purlins). NOFRAME represents the 
number of portal frames and NOPURLIN denotes 
the number of purlins. Each portal frame is 
constructed from two columns and two beams, 
see Fig. 2. 

( )
( )

( )

C

B B

p L

2

2

MASS A h NOFRAME

             A L NOFRAME

             A L NOPURLIN

ρ

ρ

ρ

= ⋅ ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅

 

(3)

 
3.2. Parameter structural non-linear and 
linear constraints 

 
The first constraints of the model represent 

the constraints (4) to (7) which determine the 
relations between the continuous cross-sectional 
dimensions and the cross-sectional height of the 
column hC. These equations accelerate the 
convergence of the optimization when standard 
dimensions are re-established. They define the 
section breadth bC, the flange thickness tf,C, the 
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Fig. 2. Portal frame and cross-sections of elements 

 
web thickness tw,C and the cross-section area AC     
(see Fig. 2) for the column. The second moments 
of the area about the y-y and z–z axis, Iy, C and 
Iz,C, the torsional constant It, C and the warping 

constant Iω, C for the frame column are given by 
Eqs. (8) to (11). Similar cross-sectional constraints 
are defined for the frame beam, Eqs. (12) to (16), 
and for the purlins, see Eqs. (17) to (24).

 

12 7 9 6 7 ¸5 6 4 3 3
C C C C C C8.7681 10 3.5913 10 5.9883 10 5.1897 10 2.4578 10b h h h h h− − − − −=− ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ +  

 2 2
C C6.007 10 5.8757 29.294h h−+ ⋅ ⋅ − ⋅ +   (4) 

8 4 6 3 4 2 3
f, C C C C C1.5801 10 3.4958 10 2.3488 10 1.9322 10 0.76681t h h h h− − − −= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ +  (5) 

5 2 3
w, C C C1.0598 10 2.4652 10 0.23804t h h− −=− ⋅ ⋅ + ⋅ ⋅ +  (6) 

( )C C f, C C f, C w, C2 2A b t h t t= ⋅ ⋅ + − ⋅ ⋅  (7) 

( )3 23
w, C C f, CC f, C f, CC

y, C C f, C

22 t
2

12 12 2 2
t h tb t hI b t

⎛ ⎞⋅ − ⋅⋅ ⋅ ⎟⎜ ⎟= + + ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (8) 

( ) 33
C f, C w, Cf, C C

z, C

22
12 12

h t tt b
I

− ⋅ ⋅⋅ ⋅
= +  (9) 

( ) ( )3 3
t, C C f, C C f, C w, C

1 12 2
3 3

I b t h t t= ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅  (10) 

( )2z, C
ω, C C f, C2

4
I

I h t= ⋅ − ⋅  (11) 

12 7 9 6 7 ¸5 6 4
B B B B B8.7681 10 3.5913 10 5.9883 10 5.1897 10b h h h h− − − −=− ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ −  

 3 3 2 2
B B B2.4578 10 6.007 10 5.8757 29.294h h h− −− ⋅ ⋅ + ⋅ ⋅ − ⋅ +  (12) 

8 4 6 3 4 2 3
f, B B B B B1.5801 10 3.4958 10 2.3488 10 1.9322 10 0.76681t h h h h− − − −= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ +  (13) 

5 2 3
w, B B B1.0598 10 2.4652 10 0.23804t h h− −=− ⋅ ⋅ + ⋅ ⋅ +  (14) 

( )B B f, B B f, B w, B2 2A b t h t t= ⋅ ⋅ + − ⋅ ⋅  (15) 
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( )3 23
w, B B f, BB f, B f, BB

y, B B f, B

22
2

12 12 2 2
t h tb t thI b t

⎛ ⎞⋅ − ⋅⋅ ⋅ ⎟⎜ ⎟= + + ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (16) 

12 7 9 6 7 ¸5 6 4
P P P P P8.7681 10 3.5913 10 5.9883 10 5.1897 10b h h h h− − − −=− ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ −  

 3 3 2 2
P P P2.4578 10 6.007 10 5.8757 29.294h h h− −− ⋅ ⋅ + ⋅ ⋅ − ⋅ +  (17) 

8 4 6 3 4 2 3
f, P P P P P1.5801 10 3.4958 10 2.3488 10 1.9322 10 0.76681t h h h h− − − −= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ +  (18) 

5 2 3
w, P P P1.0598 10 2.4652 10 0.23804t h h− −=− ⋅ ⋅ + ⋅ ⋅ +  (19) 

( )P P f, P P f, P w, P2 2A b t b t t= ⋅ ⋅ + − ⋅ ⋅  (20) 

( )3 23
w, P P f, PC f, P f, PP

y, P P f, P

22
2

12 12 2 2
t h tb t thI b t

⎛ ⎞⋅ − ⋅⋅ ⋅ ⎟⎜ ⎟= + + ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (21) 

( ) 33
P f, P w, Pf, P P

z, P

22
12 12

b t tt b
I

− ⋅ ⋅⋅ ⋅
= +  (22) 

( ) ( )3 3
t, P P f, P P f, P w, P

1 12 2
3 3

I b t h t t= ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅  (23) 

( )2z, P
ω,P P f, P2

4
I

I h t= ⋅ − ⋅  (24) 

 

The length of the frame beam LB is 
calculated according to Eq. (25) and the angle of 
the inclination of the beam α is defined by Eq. 
(26). L represents the frame span and f denotes 
the overheight of the frame beam: 

 

( )2 2
B 2L L f= +  (25) 

( )( )2arctan Lf=α  (26) 
 

The uniformly distributed vertical surface 
variable load qz, the uniformly distributed 
horizontal surface variable load qy, the self-
weight per unit length of the portal frame g, the 
concentrated design horizontal variable wind load 
P (for the ULS) and wind load Pw (for the SLS) 
are defined by Eqs. (27) to (31): 

 

( )2
z v fcos ( )q s w eα= ⋅ + ⋅  (27) 

y fcos( ) sin( )q s eα α= ⋅ ⋅ ⋅  (28) 

( )B P f pg A A e eρ ρ= ⋅ + ⋅ ⋅  (29) 

q h f 2P w e hγ= ⋅ ⋅ ⋅  (30) 

w h f 2P w e h= ⋅ ⋅  (31) 
 

Where s, wv and wh represent snow, the 
vertical and horizontal wind per m2 (the variable 
imposed load); ef stands for the intermediate 
distance between the portal frames, ρ is the 
density of steel, γq is the partial safety factor for 
the variable load and h represents the height of 
the columns. The number of the portal frames 
NOFRAME, the number of purlins NOPURLIN 
and the maximal intermediate distance between 
the purlins ep are determined by Eqs. (32) to (38), 
where LL represents the length of the industrial 
building, MINNOframe and MAXNOframe denote the 
minimal and maximal number of defined portal 
frames, and MINNOpurlin and MAXNOpurlin stand 
for the minimal and maximal number of purlins. 

 

L f 1NOFRAME L e= +  (32) 
frameNOFRAME MINNO≥  (33) 

frameNOFRAME MAXNO≤  (34) 

( )B2 1NOPURLIN L e= ⋅ +�
 (35) 

purlinNOPURLIN MINNO≥  (36) 
purlinNOPURLIN MAXNO≤  (37) 

[ ]p 250e cm≤  (38) 
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Eqs. (39) to (45) represent the constraints 
which determine the portal frames to be non-sway 
frames. The column stiffness coefficient KC, the 
effective beam stiffness coefficient KB, the 
distribution factor of the column for the sway 
frame S

1η , and the plane buckling length of the 
column for a sway frame mode βsway are 
calculated by Eqs. (39) to (42). The value of the 
distribution factor 2η  is taken to be 1 because of 
the pinned connection of the columns. 

 

C
C

IK
h

=  (39) 

B
B

IK
s

=  (40) 

S C
1

C B1.5
K

K K
η =

+ ⋅
 (41) 

 

( )
( )

S S
1 2 1 2

sway S S
1 2 1 1 2

1 0.2 0.12

1 0.8 0.6

η η η η
β

η η η η

− ⋅ + − ⋅ ⋅
=

− ⋅ + + ⋅ ⋅
 (42) 

 

Eq. (43) represents the elastic critical load 
ratio (Nsd/Ncr) which defines the steel portal frame 
to be a non-sway frame. The distribution factor of 
the column for the non-sway frame NS

1η  and the 
plane buckling length of the column for the non-
sway frame mode β non-sway  are given by Eqs. (44) 
to (45): 

 

( )
( )

2
q z g y, C

2

sway

0.1
2

q g L E IP h
L h

γ γ π

β

⎡ ⎤⎡ ⎤⋅ + ⋅ ⋅ ⋅ ⋅⎢ ⎥⋅⎢ ⎥+ ≤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦

 (43) 

NS C
1

C B0.5
K

K K
η =

+ ⋅
 (44) 

 

( ) ( )
1 1

2NS NS
non-sway 2 20.5 0.14 0.055β η η η η= + ⋅ + + ⋅ +  (45) 

 

The ULS constraints for the frame 
columns are defined by Eqs. (46)-(52). Eq. (46) 
represents the condition for the design bending 
moment resistance of the column (Msd<Mel,Rd), 
where the substituted expressions A, B and C are 
given by Eqs. (46 a,b,c). fy is the yield strength of 
the structural steel, γg is the partial safety factor 
for the permanent load, γq is the partial safety 
factor for the variable load and γM0 is the 
resistance partial safety factor. The design shear 

resistance (Vsd<Vpl,Rd) and the design axial 
resistance (Nsd<Npl,Rd) of the columns are checked 
by Eqs. (47) to (48). 

The reduction factor resulting from the 
flexural buckling κ, the elastic critical moment for 
lateral torsional buckling MCR and the reduction 
factor resulting from lateral torsional buckling κLT 
are determined by Eqs. (49) to (51). The 
substituted expression D in the constraint (49) is 
defined by Eq. (49 a). C1 and C2 are the 
equivalent uniform moment factors, E is the 
elastic modulus of steel, G is the shear modulus 
of steel, k and kw are effective length factors, π is 
the Ludolf's number, λ1 is slenderness, and αb and 
αLT are the imperfection factors. The requirement 
for the interaction between axial 
compression/buckling and bending moment 
lateral-torsional buckling is handled by the 
constraint in Eq. (52). 

Eqs. (53) to (56) represent the ULS 
constraints for beams of the portal frames. The 
design bending moment resistance of the beam 
(Msd<Mel,Rd), the design shear resistance 
(Vsd<Vpl,Rd) and the design axial resistance 
(Nsd<Npl,Rd) are determined by Eqs. (53) to (55). 
The interaction between axial compression and 
bending moment is checked by Eq. (56). 

Purlins run continuously over the portal 
frames. The design bending moment resistance 
about the y-y axis (My,sd<Mel,Rd), and the design 
bending moment resistance about the z-z axis 
(Mz,sd<Mel,Rd) of the purlins are calculated by Eqs. 
(57) to (58). The requirement for the interaction 
between both the mentioned bending moments is 
handled by the constraint in Eq. (59) The design 
shear resistance (Vsd<Vpl,Rd) of the purlins are 
checked by Eq. (60). 

The SLS constraints for the portal frames 
and the purlins are defined by Eqs. (61) to (65). 
The horizontal deflection of the portal frame Δ 
and its maximal value are defined by Eqs. (61) to 
(62). The substituted expressions U and V in 
constraint (61) are determined by Eqs. (61 a,b).  

The vertical deflection of the portal frame 
δF is defined by Eq. (63). This deflection must be 
smaller than the recommended upper value: the 
frame span L/250, see Eq. (64). The vertical 
deflection of the purlins is also checked, see Eq. 
(65). 
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( ) ( )
( )

( )
( )

2
q z g y, C y

C M0

3 5 2
16 2
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3.3. Integer and mixed integer logical  
constraints 

 
The logical constraint in Eq. (66) defines 

the number of portal frames, where yn denotes the 
binary variable which is subjected to each portal 
frame. Eq. (67) defines only one possible vector 
of binary variables for each frame topology. Eq. 
(68) calculates the even number of purlins, where 
the binary variables ym are subjected to the 
purlins. Eq. (69) defines only one possible vector 
of the binary variables for each purlin topology. 

 
n

n

NOFRAME y=∑  (66) 

n n-1y y≤  (67) 
 

m
m

2NOPURLIN y= ⋅∑  (68) 

m m-1y y≤  (69) 
 

Eqs. (70) to (79) calculate the standard 
cross-sections for the columns with their discrete 
dimensions and characteristics. The latter are 
determined as scalar products between their 
vectors of i, i∈I, the discrete standard constants 
(q CA

i , q Ch
i ,…) and their vector of subjected 

binary variables yi, see Eqs. (70) to (78). Only one 
discrete value is then selected for each standard 
section since the sum of the binary variables must 
be equal to 1, see Eq. (79). 

 
CA

C i i
i

A q y= ⋅∑  i I∈  (70) 
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Ch
C i i

i

h q y= ⋅∑  i I∈  (71) 

Cb
C i i

i

b q y= ⋅∑  i I∈  (72) 

w, Ct
w, C i i

i

t q y= ⋅∑  i I∈  (73) 

f, Ct
f, C i i

i

t q y= ⋅∑  i I∈  (74) 

y, CI
y, C i i

i

I q y= ⋅∑  i I∈  (75) 

z, CI
z, C i i

i

I q y= ⋅∑  i I∈  (76) 

t,C I
t, C i i

i

I q y= ⋅∑  i I∈  (77) 

ω,C I
ω,C i i

i

I q y= ⋅∑  i I∈  (78) 

i
i

1y=∑  (79) 

 
Similarly, Eqs. (80) to (86) determine the 

discrete values of the cross-sectional 
characteristics for the frame beams and Eqs. (87) 
to (96) for purlins. 

 
BA

B j j
j

A q y= ⋅∑  j J∈  (80) 

Bh
B j j

j

h q y= ⋅∑  j J∈  (81) 

Bb
B j j

j

b q y= ⋅∑  j J∈  (82) 

w, Bt
w, B j j

j

t q y= ⋅∑  j J∈  (83) 

f, Bt
f, B j j

j

t q y= ⋅∑  j J∈  (84) 

∑ ⋅=
j

j
I
jBy yqI By ,

,
 j J∈  (85) 

j
j

1y =∑  (86) 

 
PA

P k k
k

A q y= ⋅∑  k K∈  (87) 

Ph
P k k

k

h q y= ⋅∑  k K∈  (88) 

Pb
P k k

k

b q y= ⋅∑  k K∈  (89) 

w, Pt
w, P k k

k

t q y= ⋅∑  k K∈  (90) 

f, Pt
f, P k k

k

t q y= ⋅∑  k K∈  (91) 

y, PI
y, P k k

k

I q y= ⋅∑  k K∈  (92) 

z,PI
z, P k k

k

I q y= ⋅∑  k K∈  (93) 

t, PI
t, P k k

k

I q y= ⋅∑  k K∈  (94) 

,
ω, P k

PI
k

k

I q yω= ⋅∑  k K∈  (95) 

k
k

1y =∑  (96) 

 
3.4. Sets, input data (constants) and variables 

 
The following sets, input data (constants: 

scalars and parameters) as well as continuous and 
binary variables are involved in the optimization 
model FRAMEOPT: 

 
Sets: 
 
i set for the standard dimension alternatives 
 for columns,    i∈I 
j set for the standard dimension alternatives 
 for beams,    j∈J 
k set for the standard dimension alternatives 
 for purlins,    k∈K 
m set for the number of purlins,    m∈M 
n set for the number of portal frames (columns 
 and beams),    n∈N 
Scalars (constants, input data): 
 
f denotes the overheight of the frame beam 
 [cm] 
fy yield the strength of the structural steel 
 [kN/cm2] 
h height of the column [cm] 
k effective length factor [-] 
kw effective length factor [-] 
mr mass of the roof plates [kg/cm2] 
s snow (variable imposed load) [kN/cm2] 
wv vertical wind (variable imposed load) 
 [kN/cm2] 
wh horizontal wind (variable imposed load) 
 [kN/cm2]  
C1,C2 equivalent uniform moment factors [-] 
E elastic modulus of steel [kN/cm2] 
G shear modulus of steel [kN/cm2]  
L frame span [m] 
LL length of the industrial building [m] 
MINNOframe minimum number of defined  
 portal frames [-] 
MAXNOframe maximum number of defined  
 portal frames [-] 
MINNOpurlin minimum number of purlins [-] 
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MAXNOpurlin maximum number of purlins [-] 
αb imperfection factor [-] 
αLT imperfection factor [-] 
γq partial safety factor for the variable load [-] 
γg partial safety factor for the permanent load 
 [-] 
γM0 resistance partial safety factor [-] 
η2 distribution factor [1] 
λ1 slenderness [-] 
π Ludolf's number [-] 
ρ density of steel [kg/m3] 

 
Parameters (constants, input data): 
 
q CA

i  vector of i, i∈I, discrete standard constants 
 for cross-section area of the column 
q BA

j  vector of j, j∈J, discrete standard constants 
 for cross-section area of the beam 
q PA

k  vector of k, k∈K, discrete standard 
 constants for cross-section area of the 
 purlin 
q Cb

i  vector of i, i∈I, discrete standard constants 
 for overall breadth of the column 
q Bb

j  vector of j, j∈J, discrete standard constants 
 for overall breadth of the beam 
q Pb

k  vector of k, k∈K, discrete standard 
 constants for overall breadth of the purlin 
q f, Ct

i  vector of i, i∈I, discrete standard constants 
 for flange thickness of the column 
q f, B t

j  vector of j, j∈J, discrete standard constants 
 for flange thickness of the beam 
q f, Pt

k  vector of k, k∈K, discrete standard 
 constants for flange thickness of the purlin 
q w, Ct

i  vector of i, i∈I, discrete standard constants 
 for web thickness of the column 
q w, Bt

j  vector of j, j∈J, discrete standard constants 
 for web thickness of the beam 
q w, Pt

k  vector of k, k∈K, discrete standard 
 constants for web thickness of the purlin 
q t, CI

i  vector of i, i∈I, discrete standard constants 
 for torsional constant of the column 
q t, PI

k  vector of k, k∈K, discrete standard 
 constants for torsional constant of the 
 purlin 

q y, C I
i  vector of i, i∈I, discrete standard  

 constants for second moment of area about 
 the y – y axis of the column 
q y, BI

j  vector of j, j∈J, discrete standard 
 constants for second moment of area about 
 the y – y axis of the beam 
q y, PI

k  vector of k, k∈K, discrete standard 
 constants for second moment of area  about 
 the y – y axis of the purlin 
q z, CI

i  vector of i, i∈I, discrete standard 
 constants for moment of area about the z 
 – z axis of the column 
q z, PI

k  vector of k, k∈K, discrete standard 
 constants for moment of area about the z 
 – z axis of the purlin 
q ω, CI

i  vector of i, i∈I, discrete standard 
 constants for warping constant of the 
 column 
q ω, P I

k  vector of k, k∈K, discrete standard 
 constants for warping constant of the 
 purlin 
 
Continuous variables: 
 
bB overall breadth of the beam [cm] 
bC overall breadth of the column [cm] 
bP overall breadth of the purlin [cm] 
ef intermediate distance between the portal 
 frames [cm] 
ep intermediate distance between the purlins 
 [cm] 
g self-weight of the portal frame [kN/cm] 
hB cross-sectional height of the beam [cm] 
hC cross-sectional height of the column  [cm] 
hP cross-sectional height of the purlin [cm] 
qz uniformly distributed horizontal surface 
 variable load [kN/cm] 
qy uniformly distributed vertical surface 
 variable load [kN/cm] 
tf,B flange thickness of the beam [cm] 
tf,C flange thickness of the column [cm] 
tf,P flange thickness of the purlin [cm] 
tw,B web thickness of the beam [cm] 
tw,C web thickness of the column [cm] 
tw,P web thickness of the purlin [cm] 
AB cross section of the beam [cm2] 
AC cross section of the column [cm2] 
AP cross section of the purlin [cm2] 
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It,C torsional constant of the column [cm4] 
It,P torsional constant of the purlin [cm3] 
Iy,B second moment of area about the y – y axis 
 of the beam [cm4] 
Iy,C second moment of area about the y – y axis 
 of the column [cm4] 
Iy,P second moment of area about the y–y axis 
 of the purlin [cm4] 
Iz,C second moment of area about the z – z axis 
 of the column [cm4] 
Iz,P second moment of area about the z–z axis 
 of the purlin [cm4] 
Iω,C warping constant of the column [cm6] 
Iω,P warping constant of the purlin [cm6] 
KC stiffness coefficient of the column [m3] 
KB stiffness coefficient of the purlin [m3] 
LB length of the beam [cm] 
MCR elastic critical moment for lateral torsional 
 buckling [kNcm] 
Mel,Rd design elastic moment resistance [kNcm] 
NOFRAME number of the portal frames [-] 
NOPURLIN number of the purlins [-] 
Npl,Rd design plastic axial resistance[kN] 
Nsd design axial force [kN] 
Msd design bending moment [kNcm] 
P concentrated horizontal variable load 
 multiplied by the partial safety factor [kN] 
Pw concentrated horizontal variable load [kN] 
Vpl,Rd design plastic shear resistance [kN] 
Vsd design shear force [kN] 
α angle of the inclination of the beam [rad] 
βnon-sway plane buckling length of the column 
 for a non-sway frame [-] 
βsway plane buckling length of the column for a 
 sway frame [-] 
δF vertical deflection of the portal frame [cm] 
Δ horizontal deflection of the portal frame 
 [m] 

NS
1η  distribution factors of the column for the 

 non-sway frame [-] 
S
1η  distribution factors of the column for the

 sway frame [-] 
κ reduction factor due to the flexural 
 buckling [-] 
κLT reduction factor for lateral-torsional 
 buckling [-] 
 

Binary variables: 
 
yi binary variable assigned to the i-th, i∈I, 
 standard dimension alternative of the 
 columns 
yj binary variable assigned to the j-th, j∈J, 
 standard dimension alternative of the 
 beams 
yk binary variable assigned to the k-th, k∈K, 
 standard dimension alternative of the 
 purlins 
ym binary variable assigned to the m-th, m∈M, 
 topology alternative of the purlins 
yn binary variable assigned to the n-th, n∈N, 
 topology alternative of the frames 
 
Substituted expressions: 
 
A,B,C,D functions which are substituded in 
 Eqs. 46 a,b,c and 49 a 
U,V functions which are substituded in 
 Eqs. 61 a,b 

 
4 OPTIMIZATION 

 
The Modified Outer-Approximation 

/Equality-Relaxation (OA/ER) algorithm 
(Kravanja and Grossmann [6]) was used to 
perform the optimization. The OA/ER algorithm 
consists of solving an alternative sequence of 
Non-linear Programming optimization 
subproblems (NLP) and Mixed-Integer Linear 
Programming master problems (MILP), Fig. 3. 
The former corresponds to the optimization of 
parameters for a building structure with a fixed 
topology and standard dimensions and yields an 
upper bound to the objective to be minimized. 
The latter involve a global linear approximation 
to the superstructure of alternatives in which a 
new topology and standard sizes are identified. 
When the problem is convex the search is 
terminated when the predicted lower bound 
exceeds the upper bound, otherwise it is 
terminated when the NLP solution can be 
improved no more. The OA/ER algorithm 
guarantees the global optimality of solutions for 
convex and quasi-convex optimization problems. 

The OA/ER algorithm as well as all other 
algorithms do not generally guarantee that the 
solution found is the global optimum. This is due 
to the presence of non-convex functions in the 
models that may cut off the global optimum. In 
order to reduce undesirable effects of 
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nonconvexities, the following nonstructured and 
structured convexifications are applied for the 

MILP master problem of the OA/ER algorithm: 
the deactivation of linearizations, the

NOConvergence ?

STOP

YES

Master problem

Discrete optimization

Continuous optimization

Subproblem

Combined optimization

Superstructure

New binary 
variables

Fixed binary variables

MINLP

NLP

MILP

 
Fig. 3. Steps of the OA/ER algorithm 

 
decomposition and the deactivation of the 
objective function linearization, the use of the 
penalty function, the use of the upper bound on 
the objective function to be minimized as well as 
the global convexity test and the validation of the 
outer approximations. By the use of the 
mentioned modifications, the likelihood of 
obtaining better results by the OA/ER algorithm, 
is significantly increased. A more extended 
information about these modifications may be 
found elsewhere, see Kravanja and Grossmann 
[6], and Kravanja et al. [7]. 

The optimum solution of a complex non-
convex and non-linear MINLP problem with a 
high number of discrete decisions is in general 
very difficult to obtain. The optimization is thus 
proposed to be performed sequentially in two 
different phases to accelerate the convergence of 
the OA/ER algorithm. The optimization is 
proposed to start with the discrete topology 
optimization of the building, while the standard 

dimensions are temporarily relaxed into 
continuous parameters. Topology and continuous 
parameter optimization is soluble (a smaller 
combinatorial problem) and accumulates a good 
global linear approximation of the superstructure 
(a good starting point for the next phase overall 
optimization). When the optimum topology is 
found, the standard sizes of the cross-sections are 
re-established and the simultaneous discrete 
optimization of the topology and standard 
dimensions of the beams, columns and purlins is 
then continued until the optimum solution is 
found. 

The two-phase strategy requires that the 
binary variables should be defined in one uniform 
set. In the first phase, only the binary variables 
which are subjected to topology alternatives 
become active. Binary variables of standard 
dimension alternatives are temporarily excluded 
(set on value zero) until the beginning of the 
second phase, in which they participate in the 
simultaneous overall optimization. The same 
holds for standard dimension logical constraints. 
In the first phase they are excluded, while the 
second phase includes them into the optimization. 

The data and variables are initializated 
only once in the beginning of the optimization. 
An advantage of this strategy is also in the fact 
that binary variables for topology and standard 
dimensions need not be initialized: after the first 
NLP, the first phase always starts in the subspace 
of the topological binary variables only, while the 
second phase starts with the MILP master 
subproblem which then predicts a full set of 
binary variables for the successive NLP. Under 
the convexity condition, the two-phase strategy 
guarantees a global optimality of the solution. 

The optimization model may contain up to 
thousand binary 0-1 variables of the alternatives. 
Most of them are subjected to standard 
dimensions. Since this number of 0-1 variables is 
too high for a normal solution of the MINLP, a 
reduction procedure was developed, which 
automatically reduces the binary variables of 
alternatives into a reasonable number. The 
optimization at the second phase includes only 
those 0-1 variables which determine the topology 
and standard dimension alternatives close to the 
values, obtained at the first MINLP optimization 
phase. 
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5 NUMERICAL EXAMPLE 
 
The paper presents an example of the 

topology and standard dimension optimization of 
a single-storey industrial building. The building is 
25 meters wide (L), 75 meters long (LL) and 6 
meters height (H), see Fig. 4. The structure 
consists of equal non-sway steel portal frames 
which are mutually connected with purlins. The 
overheight of the frame beam (f) is 0.50 m. 

The portal frame is subjected to self-
weight of the structure and the roof g, and to the 
variable loads of snow and wind. The mass of the 
roof is mr = 0.20 kg/m2. The variable imposed 
loads: s = 2.00 kN/m2 (snow), wv = 0.125 kN/m2 
(vertical wind) and wh = 0.50 kN/m2 (total 
horizontal wind) are defined in the model input 
data. Both, the horizontal concentrated load at the 
top of the columns and the vertical uniformly 
distributed line load on the beams and purlins are 
calculated automatically through the optimization 

considering the calculated intermediate distance 
between the portal frames and purlins. 

The material used is steel S 355. The yield 
strength of the steel (fy) is 35.5 kN/cm2, the 
density of steel (ρ) is 7.850·10-3 kg/cm3, the 
elastic modulus of steel (E) is 210 GPa and the 
shear modulus (G) is 80.76 GPa. The partial 
safety factor for the permanent load (γg) and for 
the combined (snow plus wind) variable load (γq) 
are both 1.35. The resistance partial safety factor 
(γM0) is 1.1. The imperfection factor (αb) is 0.34, 
the imperfection factor (αLT) is 0.21, the 
distribution factor (η2) is 1, slenderness for the 
steel S 355 (λ1) is 76.4, the effective length 
factors (k and kw) are 1.0, the equivalent uniform 
moment factors for beams (C1) and (C2) are 1.879 
and 0, respectively. While the defined minimum 
and maximum numbers of portal frames 
(MINNOframe and MAXNOframe) are 1 and 30, the 
minimal and maximal numbers of purlins 
(MINNOpurlin and MAXNOpurlin) are 1 and 20. 
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Fig. 4. Global geometry of the single-storey industrial building 
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The lower and upper bounds as well as the 
activity levels (starting points) of the independent 
continuous variables are shown in Table 1. The 
bounds and starting points of other dependant 
continuous variables are defined by using 
equations from the optimization model regarding 
the independent variables. 
 
Table 1. Bounds and activity levels of the 
independent variables 
 

Variable 
x 

Lower 
bound 

xLO 

Activity 
level 

xL 

Upper 
bound 

xUP 

hC 50 cm 80 cm 99 cm 
hB 30 cm 60 cm 70 cm 
hP 10 cm 20 cm 30 cm 
NOFRAMES 1 20 30 
NOPURLINS 1 20 20 

 
An industrial building superstructure was 

generated in which all possible structures were 
embedded by 30 portal frame alternatives, 10 
various purlin alternatives and a variation of 
different standard sizes. The superstructure 
comprised 24 different standard hot rolled 
European wide flange I sections, i.e. HEA 
sections (from HEA 100 to HEA 1000) for each 
column, beam and purlin seperately. Vectors q of 
24 discrete values for different standard sections 
were defined. For example, the vectors for the 
section’s heights q Ch

i , q Bh
j , q Ph

k  and the cross-

section areas q CA
i , q BA

j , q PA
k  are for the columns, 

beams and purlins defined as follows: 
q Ch

i = q Bh
j = q Ph

k = {9.6, 11.4, 13.3, 15.2, 17.1,  

  19.0, 23.0, 25.0, 27.0, 29.0, 
   31.0, 33.0, 35.0, 39.0, 44.0, 
  49.0, 54.0, 59.0, 64.0, 69.0, 
  79.0, 89.0, 99.0} 
 

q CA
i = q BA

j = q PA
k = {21.2, 25.3, 31.4, 38.8, 45.3,  

 53.8, 64.3, 76.8, 86.8, 97.3, 
 113.0, 124.0, 133.0, 143.0, 
 159.0, 178.0, 198.0, 212.0, 
 226.0, 242.0, 260.0, 286.0,
 321.0, 347.0} 

Regarding construction alternatives, the 
superstructure consists of a n possible number of 

portal frames, n∈N, N={1,2,3,…,30}, and 10 
various even (2m) numbers of purlins, m∈M, 
M={1,2,3,…,10}, which give 30·10=300 different 
topology alternatives. Since i, j and k different 
standard sections are also defined for columns, 
beams and purlins seperately, i∈I, j∈J, k∈K, 
I=J=K={1,2,3,4,5,6,7,…….24}, there exist 
n·m·i·j·kx=x30·10·24·24·24x=x4147200 different 
discrete construction alternatives alltogether. 

The optimization was performed by the 
proposed MINLP optimization approach. The 
task of the optimization was to find the minimal 
structure mass, the optimum topology (the 
optimum number of portal frames and purlins) 
and the optimum standard sizes. 

The optimization was carried out by a 
user-friendly version of the MINLP computer 
package MIPSYN, the successor of PROSYN [6] 
and TOP [7], [8] and [10]. The Modified OA/ER 
algorithm and the two-phase optimization were 
applied, where GAMS/CONOPT2 (Generalized 
reduced-gradient method) [11] was used to solve 
the NLP subproblems and GAMS/Cplex 7.0 
(Branch and Bound) [12] was used to solve the 
MILP master problems. 

The two-phase MINLP optimization was 
applied. After the first performed continuous NLP 
(the initialization), the first phase started with the 
discrete topology optimization at the relaxed 
standard dimensions, see also the convergence of 
the Modified OA/ER algorithm in Table 2. At this 
level, only the binary variables yn and ym for 
topology optimization, parameter structural non-
linear and linear constraints, Eqs.(4) to (65), and 
the logical constraints for topology optimization, 
Eqs. (66) to (69), were included. When the 
optimum topology was reached (110.161 tons at 
the 2nd MINLP iteration, all the following 
solutions were poorer), the optimization 
proceeded with a simultaneous discrete topology 
and standard dimension optimization at the 
second level. At this phase, the binary variables 
yi, yj and yk of standard sizes for columns, beams 
and purlins, as well as the logical constraints for 
standard dimensions, Eqs. (70) to (96), were 
added into the optimization. The final optimum 
solution of 122.144 tons was obtained at the 6th 
main MINLP iteration (all the following solutions 
were not as good). 
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Table 2. Convergence of the Modified OA/ER algorithm 
Topology Cross-sections [cm2] MINLP 

Iteration 
MINLP 

Subphaze 
Result 

Mass [tons] Frames Purlins Column Beam Purlin 

Phase 1:  topology optimization 

1. Initialization 
1.NLP  107.254 11.955 12.008 283.501 212.036 39.892 
1.MILP 107.763 321.721 176.232 30.527 2. 2.NLP 110.161 13 14 276.759 206.027 32.137 
2.MILP 114.351 326.447 174.106 30.509 3. 3.NLP 111.339 14 14 270.667 200.658 28.442 

Phase 2:  topology and standard dimension optimization 
3.MILP 125.260 321.00 198.00 38.80 4. 4.NLP* 125.231 14 14 HEA 900 HEA 550 HEA 160 
4.MILP 115.708 321.00 212.00 38.80 5. 5.NLP* 115.209 12 14 HEA 900 HEA 550 HEA 160 
5.MILP 122.144 321.00 212.00 38.80 6. 6.NLP 122.144 13 14 HEA 900 HEA 550 HEA 160 
6.MILP 126.713 321.00 212.00 38.80 7. 7.NLP 126.713 13 16 HEA 900 HEA 550 HEA 160 

* Locally infeasible 
 
The optimum result represents the 

mentioned minimal structure mass of 122.144 
tons, the obtained optimum topology of 13 portal 
frames and 14 purlins, see Fig. 5, and the 
calculated optimum standard sizes of the columns 
(HEA 900), beams (HEA 550) and purlins (HEA 
160), see Fig. 6. 

At the second phase, where all the 
calculated dimensions were standard ones, a 
feasible optimum result was very difficult to be 
obtained. The optimization model contained a 
high number of 4147200 different discrete 
construction alternatives. 
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Fig. 5: Optimum design of the single-storey industrial building 
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Fig. 6: Optimum design of the portal steel frame 
 

The prescreening procedure of alternatives was 
thus applied, which automatically reduced the 
binary variables of alternatives into a reasonable 
number. The optimization at the second phase 
included only those 0-1 variables which 
determined the topology and standard dimension 
alternatives close to the (continuous) values, 
obtained at the first phase. For topology, column, 
beam and purlin only 3 binary variables were 
used (1 variables under and 2 over the continuous 
value). In this way, only 15 binary variables were 
used in the second phase instead of all 112 binary 
variables. The number of 4147200 discrete 
construction alternatives was significantly 
reduced to n·m·i·j·k = 3·3·3·3·3 = 243 alternatives, 
which considerably improved the efficiency of 
the search. 
 

6 CONCLUSIONS 
 
The paper presents the simultaneous 

topology and standard sizes optimization of a 
single-storey industrial steel building. The 
optimization is proposed to be performed by the 
Mixed-Integer Non-linear Programming 
(MINLP) approach. The Modified OA/ER 
algorithm and the two-phase MINLP optimization 
strategy were applied. The proposed two-phase 
optimization starts with the topology optimization 
of the frames and purlins, while the standard 
dimensions are temporarily relaxed into 

continuous parameters. When the optimum 
topology is found, the standard dimensions of the 
cross-sections are re-established and the 
simultaneous topology and discrete standard 
dimension optimization of beams, columns and 
purlins is then continued until the optimum 
solution is found. Without performing the two-
phase MINLP strategy and the prescreening 
procedure of alternatives no feasible optimum 
result was obtained. The proposed MINLP was 
found to be a successful optimization technique 
for solving this type of structures. 
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