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Abstract

It is a classical fact that the number of vertices of the graphical zonotope ZΓ is equal to
the number of acyclic orientations of a graph Γ. We show that the f -polynomial of ZΓ is
obtained as the principal specialization of the q-analog of the chromatic symmetric function
of Γ.
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1 Introduction
The f -polynomial of an n-dimensional polytope P is defined by f(P, q) =

∑n
i=0 fi(P )qi,

where fi(P ) is the number of i-dimensional faces of P . The f -polynomial f(ZΓ, q) of
the graphical zonotope ZΓ is a combinatorial invariant of a finite, simple graph Γ. The
vertices of ZΓ are in one-to-one correspondence with regions of the graphical hyperplane
arrangementHΓ, which are enumerated by acyclic orientations of Γ.

Stanley’s chromatic symmetric function Ψ(Γ) =
∑
fproper xf of a graph Γ = (V,E),

introduced in [7], is the enumerator function of proper colorings f : V → N, where
xf = xf(1) · · ·xf(n) and f is proper if there are no monochromatic edges. The chromatic
polynomial χ(Γ, d) of the graph Γ, which counts proper colorings with a finite number of
colors, appears as the principal specialization

χ(Γ, d) = ps(Ψ(Γ))(d) = Ψ(Γ) |x1=···=xd=1,xd+1=···=0 .

The number of acyclic orientations of Γ is determined by the value of the chromatic poly-
nomial χ(Γ, d) at d = −1, [6]

a(Γ) = (−1)|V |χ(Γ,−1). (1.1)
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There is a q-analog of the chromatic symmetric function Ψq(Γ) introduced in a wider
context of the combinatorial Hopf algebra of simplicial complexes considered in [2]. It is
a symmetric function over the field of rational functions in q. The principal specialization
of Ψq(Γ) is the q-analog of the chromatic polynomial χq(Γ, d).

The main result of this paper is the following generalization of formula (1.1):

Theorem 1.1. Let Γ = (V,E) be a simple connected graph and ZΓ the corresponding
graphical zonotope. Then the f -polynomial of ZΓ is given by

f(ZΓ, q) = (−1)|V |χ−q(Γ,−1).

The cancellation-free formula for the antipode in the Hopf algebra of graphs, obtained
by Humpert and Martin in [3], reflects the fact that f(ZΓ, q) depends only on the graphical
matroid M(Γ) associated to Γ. For instance, for any tree Tn the graphical matroid is
the uniform matroid M(Tn) = Unn and the corresponding graphical zonotope is the cube
ZTn

= In−1. Whitney’s theorem from 1933 describes how two graphs with the same
graphical matroid are related [9]. It can be used to find more interesting nonisomorphic
graphs with the same f -polynomials of corresponding graphical zonotopes.

The paper is organized as follows. In Section 2, we review the basic facts about zono-
topes. In Section 3, the q-analog of the chromatic symmetric function Ψq(Γ) of a graph
Γ is introduced. Theorem 1.1 is proved in Section 4. We present some examples and
calculations in Section 5.

2 Zonotopes
A zonotope Z = Z(v1, . . . , vm) is a convex polytope determined by a collection of vectors
{v1, . . . , vm} in Rn as the Minkowski sum of line segments

Z = [−v1, v1] + · · ·+ [−vm, vm].

It is a projection of the m-cube [−1, 1]m under the linear map t 7→ At, t ∈ [−1, 1]m,
where A = [v1 · · · vm] is an n × m-matrix whose columns are vectors v1, . . . , vm. The
zonotope Z is symmetric about the origin and all its faces are translations of zonotopes.

To a collection of vectors {v1, . . . , vm} is associated a central arrangement of hyper-
planes H = {Hv1

, . . . ,Hvm}, where Hv denotes the hyperplane perpendicular to a vector
v ∈ Rn. The zonotope Z and the corresponding arrangement of hyperplanesH are closely
related. In fact the associated fan FH of the arrangementH is the normal fan N (Z) of the
zonotope Z (see [10, Theorem 7.16]). It follows that the face lattice of FH and the reverse
face lattice of Z are isomorphic. In particular, vertices of Z correspond to regions of H
and their total numbers coincide

f0(Z) = r(H). (2.1)

The faces of the zonotope Z are encoded by covectors of the oriented matroid M
associated to the collection of vectors {v1, . . . , vm}. The covectors are sign vectors

V∗ = {sign(v) ∈ {+,−, 0}m | v ∈ Rn},

where sign(v)i =

 +, 〈v, vi〉 > 0
0, 〈v, vi〉 = 0
−, 〈v, vi〉 < 0

, i = 1, . . . ,m. The face lattice of the zonotope Z

is isomorphic to the lattice of covectors componentwise induced by +,− < 0 on V∗.
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A special class of zonotopes is determined by simple graphs. To a connected graph
Γ = (V,E), whose vertices are enumerated by integers V = {1, . . . , n}, are associated the
graphical zonotope

ZΓ = Z(ei − ej | i < j, {i, j} ∈ E)

and the graphical arrangement in Rn

HΓ = {Hei−ej | i < j, {i, j} ∈ E}.

There is a bijective correspondence between regions of HΓ and acyclic orientations of Γ,
[8, Proposition 2.5], which by (2.1) implies

f0(ZΓ) = r(HΓ) = a(Γ). (2.2)

The arrangement HΓ is refined by the braid arrangement An−1 consisting of all hyper-
planes Hei−ej , 1 ≤ i < j ≤ n. Thus ZΓ belongs to a wider class of convex polytopes
called generalized permutohedra introduced in [4]. Since arrangements HΓ and An−1 are
not essential we take their quotients by the line l : x1 = · · · = xn and without confusing
retain the same notation. Consequently dimZΓ = n− 1.

Figure 1: Permutohedron Pe3 and cube I3.

Example 2.1. (i) The permutohedron Pen−1 is represented as the graphical zonotopeZKn

corresponding to the complete graph Kn on n vertices (Figure 1).
(ii) The cube In−1 is represented as the graphical zonotope ZTn corresponding to an

arbitrary tree Tn on n vertices. This shows that the graph Γ is not determined by the
combinatorial type of the zonotope ZΓ.

3 q-analog of chromatic symmetric function of graph
Stanley’s chromatic symmetric function Ψ(Γ) can be obtained in a purely algebraic way.
A combinatorial Hopf algebra H is a graded, connected Hopf algebra equipped with the
multiplicative linear functional ζ : H → k to the ground field k. For the theory of combina-
torial Hopf algebras see [1]. Consider the combinatorial Hopf algebra of graphs G which is
linearly generated over a field k by simple finite graphs with the product defined by disjoint
union Γ1 · Γ2 = Γ1 t Γ2 and the coproduct

∆(Γ) =
∑
I⊂V

Γ |I ⊗Γ |V \I ,
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where Γ |I denotes the induced subgraph on I ⊂ V . The structure of G is completed by the
character ζ : G → k defined to be ζ(Γ) = 1 for Γ with no edges and ζ(Γ) = 0 otherwise.
Then it turns out that Ψ(Γ) is the image of the unique morphism of combinatorial Hopf
algebras to symmetric functions Ψ : G → Sym, ([1, Example 4.5]).

An important part of the structure of the Hopf algebra G is the antipode S : G → G.
The cancellation-free formula for the antipode in terms of acyclic orientations of a graph
Γ is obtained in [3]. We recall some basic definitions. Terminology comes from matroid
theory. Given a graph Γ = (V,E), for a collection of edges F ⊂ E denote by ΓV,F the
graph on V with the edge set F . A flat F of the graph Γ is a collection of its edges such that
components of ΓV,F are induced subgraphs. The rank rk(F ) is the size of spanning forests
of ΓV,F . We have that |V | = rk(F ) + c(F ), where c(F ) is the number of components of
ΓV,F . By contracting edges from a flat F we obtain the graph Γ/F . Finally, let a(Γ) be
the number of acyclic orientations of Γ. The formula of Humpert and Martin is as follows

S(Γ) =
∑

F∈F(Γ)

(−1)c(F )a(Γ/F )ΓV,F , (3.1)

where the sum is over the set of flats F(Γ).
The following modification of the character ζ is considered in [2] in a wider context of

the combinatorial Hopf algebra of simplicial complexes. Define ζq(Γ) = qrk(Γ), which de-
termines the algebra morphism ζq : G → k(q), where k(q) is the field of rational functions
in q. This character produces the unique morphism Ψq : G → QSym to quasisymmetric
functions over k(q). The expansion of Ψq(Γ) in the monomial basis of quasisymmetric
functions is determined by the universal formula [1, Theorem 4.1]

Ψq(Γ) =
∑
α|=n

(ζq)α(Γ)Mα.

The sum above is over all compositions of the integer n = |V | and the coefficient of the
expansion corresponding to the composition α = (a1, . . . , ak) |= n is given by

(ζq)α(Γ) =
∑

I1t...tIk=V

qrk(Γ|I1 )+···+rk(Γ|Ik ),

where the sum is over all set compositions of V of the type α. The coefficients (ζq)α(Γ)
depend only on the partition corresponding to a composition α, so the function Ψq(Γ) is
actually symmetric and it can be expressed in the monomial basis of symmetric functions.

The invariant Ψq(Γ) is more subtle than Ψ(Γ). Obviously Ψ0(Γ) is the chromatic
symmetric function of a graph Γ. It remains open to find two nonisomorphic graphs Γ1 and
Γ2 with the same q-chromatic symmetric functions Ψq(Γ1) = Ψq(Γ2). Let

χq(Γ, d) = ps(Ψq(Γ))(d)

be the q-analog of the chromatic polynomial χ(Γ, d). It is a consequence of a general fact
for combinatorial Hopf algebras (see [1]) that

χq(Γ,−1) = (ζq ◦ S)(Γ). (3.2)
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Example 3.1. Consider the graph Γ on four vertices with the edge setE={12, 13, 23, 34}.
We find that

Ψq(Γ) = 24m1,1,1,1 + (8q + 4)m2,1,1 + (2q2 + 4q)m2,2 + (3q2 + q)m3,1 + q3m4.

By principal specialization and taking into account that

ps(m
λ
i1
1 ,...,λ

ik
k

)(d) =
(i1 + · · ·+ ik)!

i1! · · · ik!

(
d

i1 + · · ·+ ik

)
,

we obtain

χq(Γ, d) = d(d− 1)2(d− 2) + qd(d− 1)(4d− 5) + 4q2d(d− 1) + q3d,

which by Theorem 1.1 gives

f(ZΓ, q) = 12 + 18q + 8q2 + q3.

4 Proof of Theorem 1.1
Proof. By applying (3.2) and the formula for antipode (3.1) we obtain

(−1)|V |χ−q(Γ,−1) = (−1)|V |
∑

F∈F(Γ)

(−1)c(Γ)a(Γ/F )(−q)rk(F ).

It follows that the statement of the theorem is equivalent to the following expression of the
f -polynomial

f(ZΓ, q) =
∑

F∈F(Γ)

a(Γ/F )qrk(F ). (4.1)

Therefore it should be shown that components of f -vectors are determined by

fk(ZΓ) =
∑

F∈F(Γ)
rk(F )=k

a(Γ/F ), 0 ≤ k ≤ n− 1. (4.2)

By duality between the face lattice of ZΓ and the face lattice of the fan FHΓ we have

fk(ZΓ) = fn−k−1(FHΓ).

Let L(HΓ) be the intersection lattice of the graphical arrangementHΓ. For a subspace
X ∈ L(HΓ) there is an arrangement of hyperplanes

HXΓ = {X ∩H | X * H,H ∈ HΓ}

whose intersection lattice L(HXΓ ) is isomorphic to the upper cone of X in L(HΓ). Since
HΓ is central and essential we have

fn−k−1(FHΓ
) =

∑
X∈L(HΓ)

dim(X)=n−k−1

r(HXΓ ), (4.3)

where r(HXΓ ) is the number of regions of the arrangementHXΓ , see [8, Theorem 2.6].
The intersection lattice L(HΓ) is isomorphic to the lattice of flats of the graphical ma-

troid M(Γ). By this isomorphism to a flat F of rank k corresponds the intersection sub-
space XF = ∩{i,j}∈FHei−ej of dimension n − k − 1. It is easy to see that arrangements
HXF

Γ and HΓ/F coincide, which by (2.2) and comparing formulas (4.2) and (4.3) proves
theorem.



232 Ars Math. Contemp. 13 (2017) 227–234

5 Examples
By applying Theorem 1.1 we obtain the following interpretation of identities elaborated in
[2, Propositions 17, 19].

Example 5.1. (i) For the permutohedron Pen−1 = ZKn , the f -polynomial is given by

f(ZKn , q) = An(q + 1),

where An(q) =
∑
π∈Sn

qdes(π) is the Euler polynomial. Recall that des(π) is the number
of descents of a permutation π ∈ Sn. It recovers the fact that the h-polynomial of the
permutohedron Pen−1 is the Euler polynomial An(q).

(ii) For the cube In−1 = ZTn , where Tn is a tree on n vertices, the f -polynomial is
given by

f(ZTn
, q) = (q + 2)n−1.

Figure 2: Rhombic dodecahedron ZC4 .

Proposition 5.2. The f -polynomial of the graphical zonotope ZCn
associated to the cycle

graph Cn on n vertices is given by

f(ZCn
, q) = qn + qn−1 + (q + 2)n − 2(q + 1)n.

Proof. A flat F ∈ F(Cn) is determined by the complementary set of edges. If rk(F ) =
n − k, k > 1 then the complementary set has k edges and Cn/F = Ck. Since a(Ck) =
2k − 2, k > 1, by formula (4.2), we obtain

fn−k(ZCn) = (2k − 2)

(
n

k

)
, 2 ≤ k ≤ n,

which leads to the required formula.

Specially, for n = 4 the resulting zonotope is the rhombic dodecahedron (see Figure 2).
We have

f(ZC4
, q) = 14 + 24q + 12q2 + q3.

Proposition 5.3. Let Γ = Γ1 ∨v Γ2 be the wedge of two connected graphs Γ1 and Γ2 at
the common vertex v. Then

f(ZΓ, q) = f(ZΓ1
, q)f(ZΓ2

, q).
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Proof. The graphical matroids of involving graphs are related by M(Γ) = M(Γ1) ⊕
M(Γ2). For the sets of flats it holds F(Γ) = {F1 ∪ F2 | Fi ∈ F(Γi), i = 1, 2}. For
F = F1 ∪F2 we have Γ/F = Γ1/F1 ∨[v] Γ2/F2, where [v] is the component of the vertex
v in ΓV,F . Obviously a(Γ/F ) = a(Γ1/F1)a(Γ2/F2) and rk(F ) = rk(F1) + rk(F2). The
proposition follows from formula (4.1).

The formula for cubes in Example 5.1 (ii) follows from Proposition 5.3 since any tree
is a consecutive wedge of edges and f(I1, q) = q+ 2. It also allows us to restrict ourselves
only to biconnected graphs. For a biconnected graph Γ with a disconnecting pair of vertices
{u, v}Whitney introduced the transformation called the twist around the pair {u, v}. This
transformation does not have an affect on the graphical matroid M(Γ) [9].

Figure 3: Biconnected graphs related by twist transformation.

Example 5.4. Figure 3 shows the pair of biconnected graphs on six vertices obtained one
from another by the twist transformation. The corresponding zonotopes have the same
f -polynomial

f(ZΓ1
, q) = f(ZΓ2

, q) = 126 + 348q + 358q2 + 164q3 + 30q4 + q5.

On the other hand their q-chromatic symmetric functions are different. One can check that
corresponding coefficients by m3,13 are different

[m3,13 ]Ψq(Γ1) = (11q2 + 8q + 1) · 3!,

[m3,13 ]Ψq(Γ2) = (10q2 + 10q) · 3!.

This shows that the q-analog of the chromatic symmetric function of a graph is not deter-
mined by the corresponding graphical matroid. By taking q = 0 we obtain that even the
chromatic symmetric functions are different since [m3,13 ]Ψ(Γ1) = 6 and [m3,13 ]Ψ(Γ2) =
0.

Let us now consider Stanley’s example of nonisomorphic graphs with the same chro-
matic symmetric functions, see [7]. We find that the f -polynomials of the corresponding
graphical zonotopes differ for those graphs. From these examples we conclude that chro-
matic properties of a graph and the f -vector of the corresponding graphical zonotope are
not related.

We have already noted that graphical zonotopes are generalized permutohedra. The
h-polynomials of simple generalized permutohedra are determined in [5, Theorem 4.2].
The only simple graphical zonotopes are products of permutohedra [5, Proposition 5.2].
They are characterized by graphs whose biconnected components are complete subgraphs.
Therefore Proposition 5.3 together with Example 5.1 (i) prove that the h-polynomial of a
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simple graphical zonotope is the product of Eulerian polynomials, the fact obtained in [5,
Corollary 5.4]. Example 3.1 is of this sort and represents the hexagonal prism which is the
product ZK3

×ZK2
.
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