creative ARS MATHEMATICA
@commons CONTEMPORANEA

Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 13 (2017) 227-234

Counting faces of graphical zonotopes

Vladimir Gruji€ *
University of Belgrade, Faculty of Mathematics,
Studentski trg 16, Belgrade, Serbia

Received 15 June 2016, accepted 16 January 2017, published online 6 March 2017

Abstract

It is a classical fact that the number of vertices of the graphical zonotope Zr is equal to
the number of acyclic orientations of a graph I'. We show that the f-polynomial of Z is
obtained as the principal specialization of the g-analog of the chromatic symmetric function
of I.
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1 Introduction

The f-polynomial of an n-dimensional polytope P is defined by f(P,q) = Y1, fi(P)q’,
where f;(P) is the number of i-dimensional faces of P. The f-polynomial f(Zr,q) of
the graphical zonotope Zr is a combinatorial invariant of a finite, simple graph I". The
vertices of Zr are in one-to-one correspondence with regions of the graphical hyperplane
arrangement Hr, which are enumerated by acyclic orientations of I".

Stanley’s chromatic symmetric function ¥(I') = >", . xsofagraphT' = (V, E),
introduced in [7], is the enumerator function of proper colorings f: V' — N, where
Xf = Tf(1) " Tyfn) and f is proper if there are no monochromatic edges. The chromatic
polynomial (T, d) of the graph T, which counts proper colorings with a finite number of
colors, appears as the principal specialization

x(I',d) = ps(¥(D))(d) = U(T) |ay= =2y=1,2411==0 -

The number of acyclic orientations of I' is determined by the value of the chromatic poly-
nomial x(T',d) atd = —1, [6]

a(T) = (-1)VIx(r, -1). (1.1)
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There is a g-analog of the chromatic symmetric function ¥, (I") introduced in a wider
context of the combinatorial Hopf algebra of simplicial complexes considered in [2]. It is
a symmetric function over the field of rational functions in g. The principal specialization
of ¥, (T) is the g-analog of the chromatic polynomial x, (T, d).

The main result of this paper is the following generalization of formula (1.1):

Theorem 1.1. Let I' = (V, E) be a simple connected graph and Zr the corresponding
graphical zonotope. Then the f-polynomial of Zr is given by

f(Zr.q) = (=1)VIx_o(T, -1).

The cancellation-free formula for the antipode in the Hopf algebra of graphs, obtained
by Humpert and Martin in [3], reflects the fact that f(Zr, ¢) depends only on the graphical
matroid M (T") associated to I'. For instance, for any tree 7,, the graphical matroid is
the uniform matroid M (7T,,) = U and the corresponding graphical zonotope is the cube
Zp, = I""'. Whitney’s theorem from 1933 describes how two graphs with the same
graphical matroid are related [9]. It can be used to find more interesting nonisomorphic
graphs with the same f-polynomials of corresponding graphical zonotopes.

The paper is organized as follows. In Section 2, we review the basic facts about zono-
topes. In Section 3, the g-analog of the chromatic symmetric function ¥, (I") of a graph
T" is introduced. Theorem 1.1 is proved in Section 4. We present some examples and
calculations in Section 5.

2 Zonotopes

A zonotope Z = Z(v1, ..., v,,) is a convex polytope determined by a collection of vectors
{v1,...,0m,}in R™ as the Minkowski sum of line segments

Z = [*vlavl] +-- [*Um,fum]-

It is a projection of the m-cube [—1,1]™ under the linear map t — At,t € [-1,1]™,
where A = [v1 -+ vy, is an n X m-matrix whose columns are vectors vy, ..., v;,. The
zonotope Z is symmetric about the origin and all its faces are translations of zonotopes.

To a collection of vectors {v,...,v,,} is associated a central arrangement of hyper-
planes H = {H,,, ..., H,, }, where H, denotes the hyperplane perpendicular to a vector
v € R™. The zonotope Z and the corresponding arrangement of hyperplanes H are closely
related. In fact the associated fan Fy of the arrangement H is the normal fan N'(Z) of the
zonotope Z (see [10, Theorem 7.16]). It follows that the face lattice of F3 and the reverse
face lattice of Z are isomorphic. In particular, vertices of Z correspond to regions of H
and their total numbers coincide

fo(Z2) =r(H). 2.1
The faces of the zonotope Z are encoded by covectors of the oriented matroid M
associated to the collection of vectors {v1, ..., v, }. The covectors are sign vectors

V* = {sign(v) € {+,—,0}" | v € R"},

+, (v,v;) >0
where sign(v); =< 0, (v,v;) =0 ,i=1,...,m. The face lattice of the zonotope Z
] <'U, vi> <0

is isomorphic to the lattice of covectors componentwise induced by +, — < 0 on V*.
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A special class of zonotopes is determined by simple graphs. To a connected graph
I' = (V, E), whose vertices are enumerated by integers V' = {1,...,n}, are associated the
graphical zonotope
Zr=2Z(e;—e;|i<j{i,j} € E)

and the graphical arrangement in R™
Hr = {Hez—e.,' ‘ i <7, {Za]} € E}

There is a bijective correspondence between regions of Hr and acyclic orientations of I,
[8, Proposition 2.5], which by (2.1) implies

fo(Z2r) = r(Hr) = a(T). 2.2)

The arrangement Hr is refined by the braid arrangement A,,_; consisting of all hyper-
planes He, .,,1 < i < j < n. Thus Zr belongs to a wider class of convex polytopes
called generalized permutohedra introduced in [4]. Since arrangements Hr and A,,_; are
not essential we take their quotients by the line [ : z; = --- = x,, and without confusing
retain the same notation. Consequently dimZr =n — 1.

>

Figure 1: Permutohedron Pe? and cube 3.

Example 2.1. (i) The permutohedron Pe™~1 is represented as the graphical zonotope Z,
corresponding to the complete graph K, on n vertices (Figure 1).

(ii) The cube 1™~ is represented as the graphical zonotope Z7, corresponding to an
arbitrary tree 7T,, on n vertices. This shows that the graph I is not determined by the
combinatorial type of the zonotope Zr.

3 g-analog of chromatic symmetric function of graph

Stanley’s chromatic symmetric function ¥(T") can be obtained in a purely algebraic way.
A combinatorial Hopf algebra H is a graded, connected Hopf algebra equipped with the
multiplicative linear functional {: H — k to the ground field k. For the theory of combina-
torial Hopf algebras see [1]. Consider the combinatorial Hopf algebra of graphs G which is
linearly generated over a field k by simple finite graphs with the product defined by disjoint
union I'y - 'y = T'; U 'y and the coproduct

AT)=>"T|; & s,
cv
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where I |; denotes the induced subgraph on I C V. The structure of G is completed by the
character (: G — k defined to be ((I') = 1 for I" with no edges and {(I") = 0 otherwise.
Then it turns out that ¥(T") is the image of the unique morphism of combinatorial Hopf
algebras to symmetric functions ¥ : G — Sym, ([1, Example 4.5]).

An important part of the structure of the Hopf algebra G is the antipode S: G — G.
The cancellation-free formula for the antipode in terms of acyclic orientations of a graph
T" is obtained in [3]. We recall some basic definitions. Terminology comes from matroid
theory. Given a graph I' = (V, E), for a collection of edges F' C E denote by I'y, ¢ the
graph on V' with the edge set F'. A flat I of the graph I' is a collection of its edges such that
components of 'y p are induced subgraphs. The rank rk(F") is the size of spanning forests
of 'y, . We have that |V| = rk(F) + ¢(F), where ¢(F) is the number of components of
I'v,r. By contracting edges from a flat F' we obtain the graph I'/F'. Finally, let a(I") be
the number of acyclic orientations of I'. The formula of Humpert and Martin is as follows

ST = > (1) Ma(T/F)Tvp, 3.1)

FeFT)

where the sum is over the set of flats 7 (I).

The following modification of the character ¢ is considered in [2] in a wider context of
the combinatorial Hopf algebra of simplicial complexes. Define (,(I') = ¢"*(T) which de-
termines the algebra morphism (,: G — k(g), where k(q) is the field of rational functions
in g. This character produces the unique morphism ¥,: G — QSym to quasisymmetric
functions over k(g). The expansion of ¥,(T") in the monomial basis of quasisymmetric
functions is determined by the universal formula [1, Theorem 4.1]

\Ijq(l—‘) = Z (Cq)a(F)Ma-

afEn

The sum above is over all compositions of the integer n = |V/| and the coefficient of the

expansion corresponding to the composition o = (a1, ..., a;) = nis given by
(¢g)a() = Z Tl 4r(T],)
Lu. U=V

where the sum is over all set compositions of V' of the type «.. The coefficients ({;)q(T)
depend only on the partition corresponding to a composition «, so the function ¥, (T") is
actually symmetric and it can be expressed in the monomial basis of symmetric functions.

The invariant ¥, (I") is more subtle than W(I'). Obviously W((I") is the chromatic
symmetric function of a graph I'. It remains open to find two nonisomorphic graphs I'; and
I'; with the same g-chromatic symmetric functions ¥, (T'1) = ¥, (T'2). Let

Xq(I', d) = ps(¥q (1)) (d)

be the g-analog of the chromatic polynomial x(T', d). It is a consequence of a general fact
for combinatorial Hopf algebras (see [1]) that

Xq(T, =1) = (¢g 0 S)(D). (3.2)
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Example 3.1. Consider the graph I on four vertices with the edge set E={12, 13, 23, 34}.
We find that

U (1) =24my 111 + (8¢ + 4)ma 11 + (2¢° + 4q)mas + (3¢> + @)ma1 + ¢*ma.

sy ds

By principal specialization and taking into account that

ps(myn i )(d) = (h;r'—;'zk)' (z‘l + d + m)’
we obtain
Xq(T,d) = d(d —1)*(d — 2) + qd(d — 1)(4d — 5) + 4¢*d(d — 1) + ¢*d,
which by Theorem 1.1 gives
f(Zr,q) =12+ 18¢+8¢° + ¢’

4 Proof of Theorem 1.1

Proof. By applying (3.2) and the formula for antipode (3.1) we obtain
(D)o -1 = (=DM Y7 (=) Da(l/F)(—q)™ .
FeF(T)
It follows that the statement of the theorem is equivalent to the following expression of the
f-polynomial
fZr,g)= > a/F)g*". (4.1)

FeF(D)
Therefore it should be shown that components of f-vectors are determined by

fuZr)= ) al/F), 0<k<n-—1 “.2)

FeF(T)
tk(F)=k

By duality between the face lattice of Zr and the face lattice of the fan F3;. we have
fe(2r) = fa—k-1(Far)-

Let L(Hr) be the intersection lattice of the graphical arrangement Hy. For a subspace
X € L(Hr) there is an arrangement of hyperplanes

HY ={XNH|X ¢ H,Hc Hr}

whose intersection lattice L(H5¥ ) is isomorphic to the upper cone of X in L(Hr). Since
‘Hr is central and essential we have

frookr(Fr) = ) (M), 43)
X€eL(Hr)
dim(X)=n—k—1
where r(?—[ff ) is the number of regions of the arrangement ”Hff , see [8, Theorem 2.6].
The intersection lattice L(r) is isomorphic to the lattice of flats of the graphical ma-
troid M (T"). By this isomorphism to a flat F* of rank % corresponds the intersection sub-
space XT' = N{ijyerHe,—e; of dimension n — k — 1. It is easy to see that arrangements

Hff " and ‘Hr,r coincide, which by (2.2) and comparing formulas (4.2) and (4.3) proves
theorem. ]
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5 Examples

By applying Theorem 1.1 we obtain the following interpretation of identities elaborated in
[2, Propositions 17, 19].

Example 5.1. (i) For the permutohedron Pe"~! = Zx , the f-polynomial is given by

[(Zk,,q) = An(q+1),

where A, (q) = > s, q4*(™) is the Euler polynomial. Recall that des() is the number
of descents of a permutation 7 € S,,. It recovers the fact that the h-polynomial of the
permutohedron Pe™ ! is the Euler polynomial A,,(q).
(ii) For the cube I~ ! = Zr,, where T, is a tree on n vertices, the f-polynomial is
given by
f2r, q)=(g+2)" "

Figure 2: Rhombic dodecahedron Z¢,.

Proposition 5.2. The f-polynomial of the graphical zonotope Z¢, associated to the cycle
graph C., on n vertices is given by

f(Ze.a)=q"+q¢" "+ (g+2)" —2(¢+1)"

Proof. A flat F € F(C,,) is determined by the complementary set of edges. If rk(F') =
n — k,k > 1 then the complementary set has k edges and C,,/F = C}. Since a(Cy) =
ok _ 2,k > 1, by formula (4.2), we obtain

n

for(Z0,) = (28 = 2) (k) 2<k<n,

which leads to the required formula. O

Specially, for n = 4 the resulting zonotope is the rhombic dodecahedron (see Figure 2).
We have
f(Zey,q) = 14+ 24q + 12¢° + ¢°.

Proposition 5.3. Let ' = T'y V,, I's be the wedge of two connected graphs I'1 and I's at
the common vertex v. Then

f(ZFa Q) = f(ZF17Q)f(ZF27 Q>'
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Proof. The graphical matroids of involving graphs are related by M (I") = M(T';) ®
M (T'3). For the sets of flats it holds F(I') = {Fy U F» | F; € F(I';),i = 1,2}. For
F=FUF,wehave'/F =T'1/F, V[, '/ Fy, where [v] is the component of the vertex
vin Ty p. Obviously a(I'/F) = a(T'1/F1)a(Ty/Fy) and tk(F') = rk(Fy) + rk(F%). The
proposition follows from formula (4.1). O

The formula for cubes in Example 5.1 (ii) follows from Proposition 5.3 since any tree
is a consecutive wedge of edges and f(I', q) = g+ 2. It also allows us to restrict ourselves
only to biconnected graphs. For a biconnected graph I' with a disconnecting pair of vertices
{u, v} Whitney introduced the transformation called the twist around the pair {u, v}. This
transformation does not have an affect on the graphical matroid M (T") [9].

Iy Iy

Figure 3: Biconnected graphs related by twist transformation.

Example 5.4. Figure 3 shows the pair of biconnected graphs on six vertices obtained one
from another by the twist transformation. The corresponding zonotopes have the same
f-polynomial

f(Z2r,,q) = f(Z2r,,q) = 126 + 348q + 358¢> + 164¢° + 30¢* + ¢°.

On the other hand their g-chromatic symmetric functions are different. One can check that
corresponding coefficients by mg 13 are different

[m313]9,(T1) = (11¢° + 8¢ + 1) - 3,
[m3,15]¥4(T2) = (10¢* + 10g) - 3L.

This shows that the g-analog of the chromatic symmetric function of a graph is not deter-
mined by the corresponding graphical matroid. By taking ¢ = 0 we obtain that even the
chromatic symmetric functions are different since [ms 13]W(I'y) = 6 and [mg 13]¥(I'y) =
0.

Let us now consider Stanley’s example of nonisomorphic graphs with the same chro-
matic symmetric functions, see [7]. We find that the f-polynomials of the corresponding
graphical zonotopes differ for those graphs. From these examples we conclude that chro-
matic properties of a graph and the f-vector of the corresponding graphical zonotope are
not related.

We have already noted that graphical zonotopes are generalized permutohedra. The
h-polynomials of simple generalized permutohedra are determined in [5, Theorem 4.2].
The only simple graphical zonotopes are products of permutohedra [5, Proposition 5.2].
They are characterized by graphs whose biconnected components are complete subgraphs.
Therefore Proposition 5.3 together with Example 5.1 (i) prove that the h-polynomial of a
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simple graphical zonotope is the product of Eulerian polynomials, the fact obtained in [5,
Corollary 5.4]. Example 3.1 is of this sort and represents the hexagonal prism which is the
product Zg., X Zk,.
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