

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 16 (2019) 203–213 **https://doi.org/10.26493/1855-3974.1406.cc1** (Also available at http://amc-journal.eu)

The validity of Tutte's 3-flow conjecture for some Cayley graphs[∗]

Milad Ahanjideh , Ali Iranmanesh

Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

Received 19 May 2017, accepted 12 June 2018, published online 24 November 2018

Abstract

Tutte's 3-flow conjecture claims that every bridgeless graph with no 3-edge-cut admits a nowhere-zero 3-flow. In this paper we verify the validity of Tutte's 3-flow conjecture on Cayley graphs of certain classes of finite groups. In particular, we show that every Cayley graph of valency at least 4 on a generalized dicyclic group has a nowhere-zero 3-flow. We also show that if G is a solvable group with a cyclic Sylow 2-subgroup and the connection sequence S with $|S| > 4$ contains a central generator element, then the corresponding Cayley graph $\text{Cav}(G, S)$ admits a nowhere-zero 3-flow.

Keywords: Nowhere-zero flow, Cayley graph, Tutte's 3*-flow conjecture, connection sequence, solvable group, nilpotent group.*

Math. Subj. Class.: 05C25, 05C21, 20D10

1 Introduction

Let D be an orientation of a graph Γ and let k be a positive integer. A k-flow on a graph Γ is a pair (D, f) where f is an integer valued function

$$
f\colon E(\Gamma)\to \mathbb{Z}
$$

such that $|f(e)| < k$ for every $e \in E(\Gamma)$, and for every $v \in V(\Gamma)$,

$$
\sum_{e \in E(v)^+} f(e) = \sum_{e \in E(v)^-} f(e),
$$

[∗]The authors would like to thank Professor Martin Skoviera and Professor Saieed Akbari for their useful ˇ comments which improved the paper. Also we thank the anonymous referees for reading the paper carefully and making the useful suggestions.

E-mail addresses: ahanjidm@gmail.com (Milad Ahanjideh), iranmanesh@modares.ac.ir (Ali Iranmanesh)

where $E(v)^+$ and $E(v)^-$ are the all edges with tails at v and heads at v, respectively. A *nowhere-zero* k-flow (abbreviated a k-NZF) is a pair (D, f) such that for every $e \in E(\Gamma)$, $f(e) \neq 0.$

The following conjecture is due to Tutte and is known as Tutte's 3-flow conjecture:

Conjecture 1.1 (Tutte's 3-flow conjecture [8, 9]). *Every bridgeless graph with no* 3*-edgecut has a* 3*-NZF.*

Although Tutte's 3-flow conjecture has been studied by many authors, it is still widely open.

Let G be a finite group with identity 1 and $S = (s_1, s_2, \ldots, s_n)$ be a sequence of elements of $G \setminus \{1\}$ such that the mapping $s_i \to s_i^{-1}$ permutes the entries of S. We call S a *connection sequence* (note that all entries of S are distinct unless stated otherwise). A *Cayley graph*, denoted by $Cay(G, S)$, is a graph whose vertex set is G with adjacency defined by

$$
g \sim h
$$
 if and only if $g^{-1}h \in S$,

for every $g, h \in G$. We see at once that if S generates G, then $Cay(G, S)$ is connected.

Alspach et al. [1] conjectured that every Cayley graph of valency at least 3 has a nowhere-zero 4-flow. They also showed their conjecture to be true for solvable groups. Their result was significantly strengthened and extended by Nedela and Skoviera to a much wider class of groups [5].

By combining the fact that a k -valent Cayley graph is k -edge-connected graph with the fact that every 4-edge-connected graph has a 4-NZF [2], we deduce that every Cayley graph of valency at least 4 has a 4-NZF. Thus the question about the existence of a nowhere-zero 4-flow is interesting only for cubic Cayley graphs. Since 4-regular graphs admit a nowherezero 2-flow, the important question about flows on Cayley graphs of valency greater than 3 is whether every Cayley graph of valency at least 5 has a nowhere-zero 3-flow. In other words, it is interesting to verify whether Tutte's 3-flow conjecture holds on such Cayley graphs.

In [6], it has been proved that every abelian Cayley graph of valency k, where $k > 4$, admits a 3-NZF. Nánásiová and Škoviera [4] improved the above result to Cayley graphs on a group G whose Sylow 2-subgroup is the direct factor of G , and as a consequence, they showed that every Cayley graph of valency at least 4 on a nilpotent group has a 3-NZF. Recently, Yang and Li [11] showed the same fact for a Cayley graph on a dihedral group, and L. Li and X. Li [3] verified Tutte's 3-flow conjecture for Cayley graphs on generalized dihedral groups and generalized quaternion groups.

In this paper, we investigate Tutte's 3-flow conjecture for Cayley graphs on a solvable group with a suitable normal subgroup (Theorems 3.1 and 3.2 and Remark 3.5) and as a consequence of these theorems, we show that every Cayley graph of valency at least 4 on a generalized dicyclic group satisfies Tutte's 3-flow conjecture. By using Theorem 3.6 we can obtain the results of [3] and [11] by a different method.

In [4], the authors showed that a Cayley graph of valency at least 4 with the connection sequence containing a central involution admits a 3-NZF. In Theorem 3.6, we extend this result to the case when Sylow 2-subgroups of G are cyclic and the connection sequence of G contains a central generator element. As a consequence of this theorem, we show that if a Cayley graph of valency at least 4 on a solvable group G , with a cyclic Sylow 2-subgroup, admits a 3-NZF, then every Cayley graph of valency at least 4 on the direct product of G and a nilpotent group admits a 3-NZF.

2 Notation and preliminaries

The terminology and notation used in this paper are standard both in group theory and graph theory, see for instance [7, 10].

An element g of G is called an *involution* if g has order 2. Let $Z(G)$ be the center of a group G. We say that an element x of G is *central* if $x \in Z(G)$. The group generated by a sequence S is denoted by $\langle S \rangle$ and the element $x \in G$ is named a *generator element* of G in S if $\langle S \setminus \{x\} \rangle \neq \langle S \rangle$. For integers $m, n \geq 2$, a cycle of length n and a path of length $m-1$ are denoted by C_n and P_m , respectively. For an integer $m \geq 3$ and for $n \in \mathbb{Z}_m$, the Cayley graph $Cay(\mathbb{Z}_m, \{-1, 1, -n, n\})$ will be denoted by $C(m, n)$. Let N be a subgroup of G and x belongs to a left transversal set of N in G. The image of $Cay(N, S)$ under left translation by x is denoted by $x \text{Cay}(N, S)$. The *Cartesian product* $H_1 \square H_2$ of graphs H_1 and H_2 is a graph such that $V(H_1) \times V(H_2)$ is its vertex set and any two vertices (u, u') and (v, v') are adjacent in $H_1 \square H_2$ if and only if either $u = v$ and $u'v' \in E(H_2)$ or $u' = v'$ and $uv \in E(H_1)$. Set $L = P_n \square K_2$, where $V(P_n) = \{1, 2, ..., n\}$ and $V(K_2) = \{1, 2\}$. The *Mobius ladder* ML_n is a graph obtained by adding the edges $(12)(n1)$ and $(11)(n2)$ to L. Also, by adding the edges $(11)(n1)$ and $(12)(n2)$ to L, we obtain a graph is called the *circular ladder* CL_n . In fact $CL_n \cong C_n \square K_2$. Any graph isomorphic to either CL_n or ML_n for some n will be referred to as a *closed ladder*. It is easy to check that the circular ladder is bipartite if and only if n is even while the Möbius ladder is bipartite if and only if n is odd.

Lemma 2.1 ([4, Theorems 3.3 and 4.3]). *Let* Cay(G, S) *be a Cayley graph of valency* k , *where* $k \geq 4$ *. If* S contains a central involution, then $Cay(G, S)$ has a 3-NZF. In particular, *if* G *is nilpotent, then* $Cay(G, S)$ *has a* 3-*NZF.*

Lemma 2.2 ([4, Proposition 4.1]). *Let* G *be a group,* H *be a normal subgroup of* G *and let* S *be a connection sequence with no intersection with* H*. If* Cay(G/H, S/H) *has a* 3*-NZF, then so does* $Cay(G, S)$ *.*

Note that in Lemma 2.2, according to the paragraph before Proposition 4.1 in [4], for distinct elements $s, t \in S$, we regard sH and tH as distinct elements of S/H . So, $Cav(G/H, S/H)$ may have parallel edges even when $Cav(G, S)$ is simple and $|S/H|$ = $|S|$.

Lemma 2.3 ([6, Theorem 1.1]). *Every abelian Cayley graph of valency* k, where $k \geq 4$, *admits a* 3*-NZF.*

Lemma 2.4 ([6, Proposition 2.5]). *Let* $m, n \geq 3$ *be integers. Then the graph* $C_n \square C_m \square K_2$ *admits a* 3*-NZF.*

Lemma 2.5 ([6, Proposition 2.6]). Let $m, n \geq 3$ be two integers such that $m > n \geq 1$ and $m \geq 3$. Then the graph $C(m, n) \square K_2$ admits a 3-NZF.

Lemma 2.6 ([6, Corollary 2.2]). *A regular bipartite graph of valency at least* 2 *admits a* 3*-NZF.*

Lemma 2.7 ([10, page 308]). *A cubic graph has a* 3*-NZF if and only if it is bipartite.*

Lemma 2.8. Let G be a group and N be a subgroup of G of index 2. Then $Cay(G, S \setminus S)$ $(S \cap N)$ *is bipartite.*

Proof. Since the index of N in G is 2, there exists $d \in G \setminus N$ such that $G = N \cup dN$. So, we can consider the vertices of $Cay(G, S)$ as two partitions N and dN. Since for every $m, n \in N$, m and n are adjacent, and dm and dn are adjacent if and only if $m^{-1}n \in S\cap N$, we obtain that $Cay(G, S \setminus S \cap N)$ is a bipartite graph with partite sets N and dN. \Box

Lemma 2.9 ([10, page 308]). *A graph has a* 2*-NZF if and only if it is an even graph.*

Remark 2.10. According to the above lemma, for discussion about a nowhere-zero 3-flow in a Cayley graph with a connection sequence S , it is enough to investigate the case when $|S|$ is odd.

Remark 2.11. Let G be a group and N be a subgroup of G. Let $T = \{x_1, \ldots, x_t\}$, where $t \in \mathbb{N}$, be a left transversal set of N in G. If S is a connection sequence of N such that $Cay(N, S)$ is connected, then

$$
\{x_i \operatorname{Cay}(N, S) : 1 \le i \le t\}
$$

is the set of connected components of $Cav(G, S)$. For every x_i where $i \in \{1, \ldots, t\}$, $Cay(N, S)$ and $x_i \text{Cay}(N, S)$ are isomorphic, because for every $m, n \in N$,

$$
x_i m \sim x_i n \quad (\text{in } x_i \text{ Cay}(N, S \cap N)) \qquad \text{if and only if}
$$

$$
(x_i m)^{-1}(x_i n) \in S \cap N \qquad \text{if and only if} \qquad m^{-1} n \in S \cap N
$$

$$
\text{if and only if} \qquad m \sim n \quad (\text{in } \text{Cay}(N, S \cap N)).
$$

Thus if $Cay(N, S)$ has a 3-NZF, then $Cay(G, S)$ has a 3-NZF. Hence for finding a 3-NZF in $Cav(G, S)$, we reduce to find a 3-NZF in $Cav(N, S)$.

3 Main results

In this section we show the validity of Tutte's 3-flow conjecture for a solvable group with a suitable normal subgroup. As examples, we show the same result for Cayley graphs on generalized dicyclic groups, generalized dihedral groups and quaternion groups. We also prove that every Cayley graph $Cay(G, S)$ on a solvable group G with a cyclic Sylow 2subgroup such that the connection sequence S contains a central generator element, admits a 3-NZF.

Theorem 3.1. *Let* G *be a solvable group,* N *be a subgroup of* G *of index* 2 *and let* S *be a connection sequence of* G *such that* $|S| \geq 5$ *is odd and* $S \cap Z(N) \neq \emptyset$ *. If*

- *(1)* Cay($N, S \cap N$) *admits a* 3*-NZF and*
- *(2)* for every $d \in S \setminus N$, $d^{-1}(S \cap N)d = S \cap N$,

then $Cay(G, S)$ *has a* 3-*NZF.*

Proof. Without loss of generality, we can assume that there exists an element $d \in S \setminus N$, because otherwise $S \subset N$ and by Condition (1), we could conclude that $Cay(G, S)$ has a 3-NZF. Thus, there is $d \in S \setminus N$. Note that |S| is odd.

We continue the proof in the following two cases:

Case 1. If $|S \cap N|$ is odd, then since $|S \setminus (S \cap N)| = |S| \setminus |S \cap N|$ is even, Lemma 2.9 shows that $Cav(G, S \setminus (S \cap N))$ admits a 3-NZF. Also by Condition (1), $Cav(N, S \cap N)$ admits a 3-NZF, and so does $Cay(G, S) = Cay(G, S \setminus (S \cap N)) \cup Cay(G, S \cap N)$.

Case 2. If $|S \cap N|$ is even, then the proof will be divided into two subcases:

Subcase 1. Assume that $|S \setminus (S \cap N)| \geq 2$. By Lemma 2.8, Cay $(G, S \setminus (S \cap N))$ is bipartite. So Lemma 2.6 shows that Cay($G, S \setminus (S \cap N)$) admits a 3-NZF. Since Cay($G, S \cap N$) admits a 3-NZF, we deduce that $Cav(G, S)$ has a 3-NZF.

Subcase 2. Assume that $|S \setminus (S \cap N)| = 1$. Thus $\{S \setminus (S \cap N)\} = \{d\}$, so $O(d) = 2$ and it is not hard to check that G is the semidirect product of N and $\langle d \rangle$. We want to show that $Cav(N, S \cap N) \square Cay(\langle d \rangle, \{d\}) \cong Cay(G, S)$. For this purpose, we define $\phi\colon \mathop{\mathrm{Cay}}\nolimits(N,S\cap N) \mathop{\mathrm{Cay}}\nolimits(\langle d\rangle, \{d\}) \to \mathop{\mathrm{Cay}}\nolimits(G,S)$ such that $\phi(m,x) = mx$ for every $m \in N$ and $x \in \langle d \rangle$. Since G is the semidirect product of N and $\langle d \rangle$, it is obvious that ϕ is a bijective function. Now we will show that ϕ is homomorphism. For every $m, n \in N$ and $x, y \in \langle d \rangle$, we have:

$$
(m, x) \sim (n, y) \quad \text{(in } \text{Cay}(N, S \cap N) \square \text{Cay}(\langle d \rangle, \{d\}))\n \qquad \text{if and only if} \qquad m = n, \ x \sim y \quad \text{or} \quad n \sim m, \ x = y.
$$

We should check the following cases:

- (1) If $m = n$, $x = 1$ and $y = d$, then $(\phi(m, x))^{-1}\phi(n, y) = m^{-1}nd = d \in S$. Thus $\phi(m, x) \sim \phi(n, y)$ in Cay(G, S).
- (2) If $m = n$, $x = d$ and $y = 1$, then $(\phi(m, x))^{-1} \phi(n, y) = d^{-1} m^{-1} n = d \in S$. Thus $\phi(m, x) \sim \phi(n, y)$ in Cay(G, S).
- (3) If $m \sim n$ and $x = y = 1$, then $m^{-1}n \in S \cap N$. Thus $(\phi(m, x))^{-1} \phi(n, y) =$ $(mx)^{-1}(ny) = m^{-1}n \in N \cap S$. So $\phi(m, x) \sim \phi(n, y)$ in Cay(G, S).
- (4) If $m \sim n$ and $x = y = d$, then $m^{-1}n \in S \cap N$. Thus $(\phi(m, x))^{-1} \phi(n, y) =$ $d^{-1}(m^{-1}n)d \in d^{-1}(S \cap N)d = N \cap S \subset S$. So $\phi(m, x) \sim \phi(n, y)$ in Cay (G, S) .

Now, let $t_1 \sim t_2$ in Cay(G, S). Since G is the semidirect product of N and $\langle d \rangle$, there exist $m, n \in N$ and $x, y \in \langle d \rangle$ such that $t_1 = mx$ and $t_2 = ny$. We continue the proof in the following cases:

- (i) If $x = 1$ and $y = d$, then $m^{-1}nd = t_1^{-1}t_2 \in S \setminus (S \cap N) = \{d\}$. Therefore, $m^{-1}n =$ 1 and so $m = n$. From this, we have $\phi^{-1}(t_1) = (m, x) \sim (n, y) = \phi^{-1}(t_2)$.
- (ii) If $x = d$ and $y = 1$, the above reason shows that $\phi^{-1}(t_1) = (m, x) \sim (n, y) =$ $\phi^{-1}(t_2)$.
- (iii) If $x = y = 1$, then $m^{-1}n = t_1^{-1}t_2 \in S \cap N$. Therefore $m \sim n$ in Cay(N, S $\cap N$) and hence $\phi^{-1}(t_1) = (m, x) \sim (n, y) = \phi^{-1}(t_2)$.
- (iv) If $x = y = d$, then $d^{-1}m^{-1}nd = t_1^{-1}t_2 \in d(S \cap N)d^{-1} = S \cap N$. Therefore $m^{-1}n \in d(S \cap N)d^{-1} = S \cap N$ and hence, $\phi^{-1}(t_1) = (m, x) \sim (n, y) = \phi^{-1}(t_2)$.

These show that $Cay(N, S\cap N) \square Cay(\langle d \rangle, \{d\}) \cong Cay(G, S)$. Now, suppose that the theorem is false, and let G be the smallest group satisfying the hypothesis and $Cay(G, S)$ does not admit a 3-NZF. Note that $|S| > 5$. We examine the following possibilities:

Subcase 2.1. If there is $y \in S \cap Z(N)$ of order $n > 2$ such that $d^{-1}yd \notin \{y, y^{-1}\},$ then since $Z(N)$ is normal in G, the assumption guarantees the existence of an element $z \in S \cap Z(N)$ such that $d^{-1}yd = z$. Since $O(d) = 2$, we see that $d^{-1}zd = y$.

Thus $\langle y, y^{-1}, z, z^{-1} \rangle \trianglelefteq \langle y, y^{-1}, z, z^{-1}, d \rangle$. If $G \neq \langle y, y^{-1}, z, z^{-1}, d \rangle$, then by our assumption on G, Cay $(\langle y, y^{-1}, z, z^{-1}, d \rangle, \{y, y^{-1}, z, z^{-1}, d\})$ admits a 3-NZF. Thus since $|S \setminus \{y, y^{-1}, z, z^{-1}, d\}|$ is even, we get that $Cay(G, S)$ admits a 3-NZF. This is a contradiction. Therefore, we can assume that $G = \langle y, y^{-1}, z, z^{-1}, d \rangle$, $N = \langle y, y^{-1}, z, z^{-1} \rangle$, $S = \{y, y^{-1}, z, z^{-1}, d\}$ and $S \cap N = \{y, y^{-1}, z, z^{-1}\}$. Let K be a minimal normal subgroup of G such that $K \leq Z(N)$. If $K \cap S = \emptyset$, then $N/K \trianglelefteq G/K$ with $\lfloor G/K \rfloor$: N/K = 2 and $Z(N/K) \cap S/K \neq \emptyset$. Note that $|S/K| = 5$ and $|(S \cap N)/K| = 4$. So $\text{Cay}(N/K, (S \cap N)/K)$ admits a 3-NZF. Also $|G/K| < |G|$. Thus our assumption on G leads us to see that $Cay(G/K, S/K)$ admits a 3-NZF, and so does $Cay(G, S)$ by Lemma 2.2. This is a contradiction. Thus $K \cap S \neq \emptyset$. Without loss of generality, we can suppose that $y \in K$, so $d^{-1}yd = z \in K$. Therefore, $K = N$. This forces N to be cyclic or elementary abelian. Thus either $N = \langle y \rangle$ or $N = \langle S \cap N \rangle = \langle y \rangle \times \langle z \rangle$ and hence, either $z = y^i$ and

$$
\text{Cay}(N, N \cap S) = \text{Cay}(\langle y \rangle, \{y, y^{-1}, y^i, y^{-i}\}) \cong C(n, i) \text{ or}
$$

$$
\text{Cay}(N, N \cap S) = \text{Cay}(\langle y \rangle, \{y, y^{-1}\}) \square \text{Cay}(\langle z \rangle, \{z, z^{-1}\}) \cong C_n \square C_n.
$$

Note that $Cay(G, S) = Cay(N, S \cap N) \square K_2$. Thus $Cay(G, S)$ is isomorphic to either $C(n, i) \square K_2$ or $(C_n \square C_n) \square K_2$. So Lemmas 2.5 and 2.4 guarantee that $Cay(G, S)$ admits a 3-NZF. This is a contradiction.

Subcase 2.2. If $S \cap Z(N)$ contains an involution y such that $d^{-1}yd \neq y$, then there exists an element $z \in S \cap Z(N)$ such that $d^{-1}yd = z$. Therefore, $\langle y, z \rangle$ is an elementary abelian 2-group of order 4. So $Cay(\langle y, z, d \rangle, \{y, z, d\})$ is the circular ladder CL_4 (see Figure 1) which is bipartite and hence, it admits a 3-NZF. Also, $Cay(G, S\{y, z, d\})$ admits a 3-NZF, and so does $Cay(G, S)$. This is a contradiction.

Figure 1: The circular ladder CL_4 .

Subcase 2.3. Suppose that for every $y \in Z(N) \cap S$, $d^{-1}yd \in \{y, y^{-1}\}$. Applying the above argument shows that there exists an element $y \in Z(N) \cap S$ such that $\langle y \rangle$ is a minimal normal subgroup of G . If the order of y is 2, then y is a central involution and hence, $Cay(G, S)$ admits a 3-NZF. This is a contradiction. Thus the order of y is an odd prime number. Now if $N \cap S$ contains an element z such that $O(z) \geq 3$ and $d^{-1}zd \in \{z, z^{-1}\}\$, then applying the same argument as that of used in Subcase 2.1 leads us to get a contradiction. Now suppose that there exists an element $z \in (S \cap N) \setminus \{y, y^{-1}\}$ such that $O(z) \geq 3$ and $d^{-1}z d \notin \{z, z^{-1}\}\$. So our assumption on G allows us to assume that $S = \{y, y^{-1}, z, z^{-1}, d^{-1}z d, d^{-1}z^{-1}d, d\}$. Let K be a normal subgroup of G containing y such that $K \leq N$ and it is maximal with the property $K \cap (S \setminus \{y, y^{-1}\}) = \emptyset$. If M/K is a minimal normal subgroup of G/K such that $M/K \leq N/K$, then our assumption on K shows that $M \cap (S \setminus \{y, y^{-1}\}) \neq \emptyset$. Without loss of generality, we can assume that $z \in M$. Since M is normal in G, we deduce that $d^{-1}z d \in M$ and hence, $S - \{d\} \subseteq M$. Thus $M = N$. Set $S_1 = \{z, z^{-1}, d^{-1}zd, d^{-1}z^{-1}d, d\}$. Moreover $M/K = N/K$ is

abelian and normal in G/K of index 2 such that $S_1/K \setminus (S_1/K \cap M/K) = \{dK\}$ and $dK(S_1/K \cap M/K)dK = (S_1/K \cap M/K)$. By our assumption on G , Cay $(G/K, S_1/K)$ admits a 3-NZF. But $S_1 \cap K = \emptyset$, so Lemma 2.2 shows that Cay(G, S_1) admits a 3-NZF. In addition, since $|S \setminus S_1| = 2$, $Cay(G, S \setminus S_1)$ admits a 3-NZF and hence, $Cay(G, S)$ admits a 3-NZF. This is a contradiction. Finally, let $N \cap S$ contain an element z of order 2. Since $|S \cap N|$ is even, our assumption on G allows us to assume that there exists an involution $w \in (S \cap N) \setminus \{z\}$ such that $G = \langle y, y^{-1}, z, w, d \rangle$. Since z, w are distinct involutions, we have that either $\langle z, w \rangle$ is an elementary abelian 2-group of order 4 or a dihedral group. We can see at once that $Cay(\langle w, z, d \rangle, \{w, z, d\})$ is a circular ladder CL_k , for some even number k, which is bipartite. Therefore, $Cay(\langle w, z, d \rangle, \{w, z, d\})$ admits a 3-NZF, and so does $Cay(G, S)$. This is a contradiction.

This shows that $Cay(G, S)$ admits a 3-NZF, as desired.

Theorem 3.2. *Let* G *be a group,* N *be an abelian subgroup of* G *of index* 2 *and let* S *be a connection sequence of G such that* $|S| > 4$ *. If there exists* $d \in S \setminus (S \cap N)$ *such that* $d^{-1}(S \cap N)d = S \cap N$, then $Cay(G, S)$ admits a 3-NZF.

Proof. First, assume that $|S \cap N| \ge 4$. By Lemma 2.3, Cay(N, $S \cap N$) has a 3-NZF. Since $|G/N| = 2$, we can assume that $G/N = \langle dN \rangle$, and hence for every $y \in S \setminus (S \cap N)$, $yN \in \langle dN \rangle$. Thus there exists $t \in N$ such that $y = td$ and

for every
$$
s \in S \cap N
$$
 and $y \in S \setminus (S \cap N)$, $y^{-1}sy \in S \cap N$. (3.1)

 \Box

So the Conditions (1) and (2) of Theorem 3.1 are fulfilled and hence $Cav(G, S)$ admits a 3-NZF. Now, we assume that $|S \cap N| \leq 3$. The proof falls naturally into several parts. If $|S \cap N| = 0$, then by Lemma 2.8, $Cav(G, S)$ is bipartite, and hence Lemma 2.6 shows that Cay(G, S) admits a 3-NZF. Moreover, if $|S \cap N| = 2$, then Lemma 2.9 forces Cay(N, $S \cap N$) to admit a 3-NZF. Also by (3.1), for every $s \in S \cap N$, $y^{-1}sy = d^{-1}sd \in S \cap N$. So Theorem 3.1 completes the proof. Therefore, $|S \cap N| \in \{1,3\}$. We consider these possibilities in the following cases:

Case 1. Assume that $|S \cap N| = 1$. So $S \cap N = \{x\}$. Clearly, $O(x) = 2$ and $d^{-1}xd =$ $x^{-1} = x$. Also, for every $y \in S \setminus (S \cap N)$, we have $yN \in \langle dN \rangle$ and hence, $y = md$ for some $m \in N$. Therefore, we can see $y^{-1}xy = x$. Thus $x \in Z(\langle S \rangle)$ is of order 2. Hence by Lemma 2.1, we have $Cay(\langle S \rangle, S)$ admits a 3-NZF, and so does $Cay(G, S)$.

Case 2. Assume that $|S \cap N| = 3$. We continue the proof in two subcases:

Subcase 1. Let $S \cap N = \{x, y, y^{-1}\}\$, where $O(x) = 2$ and $O(y) \geq 3$. Since $d^{-1}xd \in$ $S \cap N$ and $O(d^{-1}xd) = 2$, the same argument as that of used in Case 1 completes the proof.

Subcase 2. Let $S \cap N = \{x, y, z\}$, where $O(x) = O(y) = O(z) = 2$. First, assume that none of the elements in $S \cap N$ generates by the other ones. Since x, y, z are of order 2 and N is abelian, we have

$$
\langle N \cap S \rangle = \{ x^i y^j z^l \mid 1 \le i, j, k \le 2 \} = \langle x \rangle \times \langle y \rangle \times \langle z \rangle \le N.
$$

It is easy to check that $\text{Cay}(\langle N \cap S \rangle, S \cap N)$ is bipartite (similar to Figure 1) and hence by Lemma 2.6, Cay(N, $S \cap N$) admits a 3-NZF. The rest of the proof runs as the case when $|S \cap N| \geq 4.$

Otherwise, without loss of generality, assume that $S \cap N = \{x, y, xy\}$. Set $S_1 =$ ${d, d⁻¹}$. Note that $|S|$ is odd. Thus $|S \setminus ((S \cap N) \cup S_1)| = 0$ or 2k where $k \in \mathbb{N}$. Set $S_2 = S \setminus ((S \cap N) \cup S_1)$ and $H = \langle (S \cap N) \cup S_1 \rangle$. In fact,

$$
Cay(G, S_2) \cup Cay(G, (S \cap N) \cup S_1) = Cay(G, S)
$$

and Cay(G, S_2) admits a 3-NZF. So it is sufficient to find a 3-NZF in Cay(G , $(S \cap N) \cup S_1$).

We know that $d^{-1}xd \in S \cap N$. If $d^{-1}xd = x$, then since N is abelian, we have $x \in Z(H)$ and its order is 2, so the proof is complete by Lemma 2.1. Now, assume that $d^{-1}xd = y$. Since $N \neq dN \in G/N$ and $|G/N| = 2$, we have $O(dN) = 2$, and hence $d^2 \in N$. It follows that $x = d^2x d^{-2} = dy d^{-1}$. Therefore,

$$
d^{-1}xyd = d^{-1}xdd^{-1}yd = yx = xy.
$$

Thus $xy \in Z(H)$ and $O(xy) = 2$. Lemma 2.1 shows that $Cay(H, (S \cap N) \cup S_1)$ admits a 3-NZF, and so does $Cay(G, (S \cap N) \cup S_1)$, as desired. The same reasoning can be applied to the case $d^{-1}xd = xy$. \Box

In the following we show that Theorem 3.2 guarantees the existence of a 3-NZF in a Cayley graph on a generalized dicyclic group.

Example 3.3. Let H be an abelian group, having a specific element $y \in H$ of order 2. A group G is called a *generalized dicyclic group*, $Dic(H, y)$, if it is generated by H and an additional element x. Moreover, we have $[G : H] = 2$, $x^2 = y$ and $x^{-1}ax = a^{-1}$ for every $a \in H$. It is easy to see that every Cayley graph of valency at least 4 on $Dic(H, y)$ has a 3-NZF by applying Theorem 3.2.

Note that in [3, 11], as the main theorems, it is showed that the graphs mentioned in Example 3.4 admit nowhere-zero 3-flows.

Example 3.4.

- (1) Let H be an abelian group. The *generalized dihedral group* D_H is a group of order $2|H|$ generated by H and an element p where $p \notin H$, $p^2 = 1$ and $p^{-1}hp = h^{-1}$ for all $h \in H$. We see at once that every Cayley graph of valency at least 4 on D_H satisfies the conditions of Theorem 3.2, and hence it admits a 3-NZF. In particular, $G = \langle x, a \mid a^n = x^2 = 1, x^{-1}ax = a^{-1} \rangle$ is a special case of D_H , where $H = \langle a \rangle$, $p = x$ and it is called a *dihedral group* and denoted by D_{2n} .
- (2) Let $G = \langle z, a \mid a^n = z^2, a^n = 1, z^{-1}az = a^{-1} \rangle$ which is called a *generalized quaternion group*, denoted by Q_{4n} . Note that G is a special case of a generalized dicyclic group where $\langle a \rangle$ and z play the roles of H and x, respectively. Thus every Cayley graph of valency at least 4 on Q_{4n} admits a 3-NZF.

Remark 3.5. Let G be a group, N be a normal subgroup of G of an odd index at least 3 and S be a connection sequence of G such that $|S| \geq 4$. Assume that $T = \{x_1, \ldots, x_{2k+1}\}\$ is a left transversal set of N in G and $Cay(N, S \cap N)$ has a 3-NZF. Note that by Remark 2.11,

$$
Cay(G, S) = \left(\bigcup_{i=1}^{2k+1} x_i \text{Cay}(N, S \cap N)\right) \cup \text{Cay}(G, S \setminus (S \cap N)).
$$

By the assumption, for every $i \in \{1, \ldots, 2k+1\}$, $x_i \text{Cay}(N, S \cap N)$ admits a 3-NZF. For finding a 3-NZF in Cay(G, S), it is enough to find a 3-NZF in Cay(G, $S \setminus (S \cap N)$). If $|S \setminus (S \cap N)|$ is odd, then there exists $y \in S \setminus (S \cap N)$ such that $O(y) = 2$ and hence $yN \in G/N$ and $O(yN) = 2$. So we have $2 |G/N|$. This is impossible. Thus $|S \setminus (S \cap N)|$ is even and hence Cay $(G, S \setminus (S \cap N))$ admits a 3-NZF by Lemma 2.9. Therefore if $Cay(N, S \cap N)$ has a 3-NZF, then so does $Cay(G, S)$.

Theorem 3.6. *Let* G *be a solvable group with a cyclic Sylow* 2*-subgroup and let* S *be a connection sequence of* G *with* $|S| > 4$ *. If there exists an element* $x \in Z(G) \cap S$ *such that* x is a generator element of G in S, then $Cay(G, S)$ admits a 3-NZF.

Proof. Suppose that G is the smallest counterexample satisfies the above conditions, but $Cay(G, S)$ does not admit a 3-NZF. Without loss of generality, we can assume that $|S| = 5$ and $x \in Z(G) \cap S$. Thus $O(x) \geq 3$ by Lemma 2.1. If there exists $u \in Z(G)$ such that $\langle u \rangle \cap S = \emptyset$, then $|S/\langle u \rangle| = |S|, x\langle u \rangle \in Z(G/\langle u \rangle) \cap S/\langle u \rangle$ and $|G/\langle u \rangle| < |G|$. If $x\langle u \rangle$ is a generator element of $G/\langle u \rangle$ in $S/\langle u \rangle$, then by our assumption, $Cay(G/\langle u \rangle, S/\langle u \rangle)$ admits a 3-NZF. Lemma 2.2 forces Cay (G, S) to admit a 3-NZF, a contradiction. Thus $x\langle u \rangle$ is not a generator element. Therefore, there exist an element $t \in \langle S \setminus \{x, x^{-1}\}\rangle$ and $i \in \mathbb{N}$ such that $xu^i = t$ and hence $t \in Z(G)$. If there exists $t_1 \in \langle t \rangle \cap S$, then as stated above, we can see that $O(t_1) \geq 3$. Thus $Z(G) \cap S = \{x, x^{-1}, t_1, t_1^{-1}\}$. Therefore $|G/Z(G)| \in \{1, 2\}$ and hence, $G/Z(G)$ is cyclic. So G is an abelian group. This forces $Cay(G, S)$ to admit a 3-NZF, a contradiction. Thus $\langle t \rangle \cap S = \emptyset$. Moreover, we can see at once that $x \langle t \rangle$ is a generator element of $G/\langle t \rangle$ in $S/\langle t \rangle$, $|S/\langle t \rangle| = |S|$ and $|G/\langle t \rangle| < |G|$. Therefore, our assumption forces $Cay(G/\langle t \rangle, S/\langle t \rangle)$ to admit a 3-NZF, and so does $Cay(G, S)$ by Lemma 2.2. This is a contradiction. So for every $u \in Z(G)$, we have $\langle u \rangle \cap S \neq \emptyset$. We continue the proof in two cases:

Case 1. Suppose that $|Z(G)|$ is even. So there exists $w \in Z(G)$ of order 2. By our assumption, $\langle w \rangle \cap S \neq \emptyset$, and hence S contains a central involution. Lemma 2.1 shows that $Cay(\langle S \rangle, S)$ admits a 3-NZF, and so does $Cay(G, S)$. This is a contradiction.

Case 2. Let $|Z(G)|$ be odd. Since $|S| = 5$, S contains an involution y. We continue the proof in three subcases:

Subcase 1. Suppose that $|S \cap Z(G)|$ is odd, so $Z(G)$ contains an involution. This is a contradiction, because $|Z(G)|$ is odd.

Subcase 2. Suppose that $|Z(G) \cap S| = 2$. So we have $Z(G) \cap S = \{x, x^{-1}\}\)$, where $O(x)$ is an odd prime number p. Therefore, $\langle x \rangle$ is a cyclic subgroup of order p. By the assumption, $x \notin \langle S \setminus \{x, x^{-1}\}\rangle$ and hence, we deduce that $G = \langle x \rangle \times M$, where $M = \langle S \setminus \{x, x^{-1}\}\rangle$ is a maximal subgroup of G. Let N be a minimal normal subgroup of G such that $N \leq M$. So N is an elementary abelian q-group, where q is a prime number. If $N \cap S = \emptyset$, then $x\langle N\rangle \in Z(G/N) \cap S/N$ is a generator element of G/N in S/N , $|G/N| < |G|$ and $|S/N| = 5$. Thus by our assumption on G, Cay(G/N, S/N) admits a 3-NZF, and so does Cay(G, S). This contradicts our assumption. If $N \cap S \neq \emptyset$, then the proof falls naturally into several parts:

(a) If $y \in N \cap S$ such that $O(y) = 2$, then $2 |N|$. Since N is elementary abelian, we get that N is an elementary abelian 2-group. Thus $|N| = 2$ by the assumption. Therefore $y \in N \leq Z(G)$, and hence $|Z(G)|$ is even. This is a contradiction.

(b) If $N \cap S = \{z, z^{-1}\}\$, where $O(z) \geq 3$, then $S \setminus \{x, x^{-1}\} = \{z, z^{-1}, y\}$. Since N is an elementary abelian q-group where q is a prime number, we get $O(z)$ = $q \neq 2$. So $y \notin N$. If $yz = zy$, then G is an abelian group and hence, Lemma 2.3 forces Cay(G, S) to admit a 3-NZF, a contradiction. If $yz \neq zy$ and $O(yz) = 2$, then we have $yzy = z^{-1}$. Thus $L = \langle x, x^{-1}, z, z^{-1} \rangle \triangleleft G = \langle x, x^{-1}, z, z^{-1}, y \rangle$. Therefore, $[G: L] = 2$ and $L \lhd G$. We thus get that $Cay(G, S)$ admits a 3-NZF by Theorem 3.1. This is a contradiction. Now, suppose that $yz \neq zy$ and $O(yz) > 3$. Since $O(z) = q$, $z \in N$ and $|M/N| = |\langle yN \rangle| = 2$, we have $|M| = 2q^t$, where $t \in \mathbb{N}$. If $O(yz) = q^n$, where $n \leq t$, then $yz \in N$. So $y \in N$, a contradiction. Suppose that $O(yz) = 2q^n$ where $n \leq t$. Since $gcd(2, q^n) = 1$, there exist $k, s \in \mathbb{Z}$ such that $2s + kq^n = 1$. So, $O((yz)^{2s}) = q^n$ and $O((yz)^{kq^n}) = 2$. Thus we have $(yz)^{2s} \in N$. Since $z \in N$ and N is abelian, we can see that $(yz)^{2s}y = y(yz)^{2s}$. Therefore $(yz)^{2s} \in Z(M) \leq Z(G)$. Thus $\langle (yz)^{2s} \rangle$ is a normal subgroup of G and $\langle (yz)^{2s} \rangle \le N$. So $z \in N = \langle (yz)^{2s} \rangle \le Z(M) \le Z(G)$ and hence $yz = zy$. This is a contradiction with the above statements.

Subcase 3. Suppose that $|S \cap Z(G)| = 4$. Since $|S| = 5$, we can see $|S| \setminus |S \cap Z(G)| = 1$. It follows that $[\langle S \rangle : \langle S \cap Z(G) \rangle] = 2$. So $\langle S \rangle / (\langle S \cap Z(G) \rangle)$ is a cyclic group. On the other hand, $\langle S \cap Z(G) \rangle \leq Z(\langle S \rangle)$. Therefore $\langle S \rangle$ is abelian, and hence Lemma 2.3 yields that $Cay(\langle S \rangle, S)$ admits a 3-NZF, and so does $Cay(G, S)$, a contradiction. □

Corollary 3.7. *Let* G *be a solvable group such that the Sylow* 2*-subgroups of* G *are cyclic and every Cayley graph of valency at least* 4 *on* G *admits a* 3*-NZF. If* H *is a nilpotent group, then every Cayley graph of valency at least* 4 *on* G × H *admits a* 3*-NZF.*

Proof. Suppose that H is the smallest nilpotent group such that $Cav(G \times H, S)$ does not admit a 3-NZF. Note that by the assumption on G, we have $H \neq 1$. If there exists $1 \neq t \in$ $Z(H)$ such that $\langle t \rangle \cap S = \emptyset$, then since $\langle t \rangle \triangleleft G \times H$, our assumption on H shows that $Cay((G \times H)/\langle t \rangle, S/\langle t \rangle)$ admits a 3-NZF. So Lemma 2.2 forces $Cay(G \times H, S)$ to admit a 3-NZF. This is a contradiction. Thus for every $t \in Z(H)$, $\langle t \rangle \cap S \neq \emptyset$. If $|H|$ is even, then S contains a central involution and hence, Lemma 2.1 shows that $Cay(G \times H, S)$ admits a 3-NZF, a contradiction. Thus |H| is odd. Let the order of $t \in Z(H) \cap S$ be odd. If $|H \cap S|$ is odd, then 2 | |H|. This is a contradiction. If $|H \cap S| = 2$, then $H \cap S = \{x, x^{-1}\}\$ and hence, $Z(H) \cap S = \{x, x^{-1}\}\$ and $O(x)$ is a prime number. Since G is solvable, we can assume that K is a normal subgroup of $G \times H$ such that $K \leq G$ and K is maximal with the property that $S \cap K = \emptyset$. If $G = K$, then $(G \times H)/G$ is nilpotent and $|S/G| = |S|$, and hence, $Cay((G \times H)/G, S/G)$ admits a 3-NZF, and so does $Cay(G \times H, S)$. This is a contradiction. Thus $G \neq K$ and for a minimal normal subgroup M/K of $(G \times H)/K$ such that $M/K \leq G/K$, we have $M \cap S \neq \emptyset$. So one of the following possibilities occurs:

- (I) Suppose that $M \cap S$ contains an involution z. Then 2 | |M/K|. Since M/K is elementary abelian and the Sylow 2-subgroups of G are cyclic, we have $M/K =$ $\langle zK \rangle$ and hence $\langle zK \rangle \leq Z((G \times H)/K)$. Therefore, Lemma 2.1 shows that $Cay((G \times H)/K, S/K)$ admits a 3-NZF, and so does $Cay(G \times H, S)$ by Lemma 2.2, a contradiction.
- (II) If $M \cap S$ does not contain any involution, then $|M \cap S|$ is an even number. Since $|S|$ is odd, we get that $S \setminus (M \cap S)$ contains an involution z. But |H| is odd, so $z \in G$. Let $S_1 = (M \cap S) \cup \{z, x, x^{-1}\}\)$. We have $\langle S_1 \rangle = \langle M \cap S, z \rangle \times \langle x \rangle$ and $|S_1| \geq 5$ is an odd number. Thus Theorem 3.6 shows that $Cay(\langle S_1 \rangle, S_1)$ admits a 3-NZF, so

does $Cay(G \times H, S_1)$. Since $|S \setminus S_1|$ is even, $Cay(G \times H, S)$ admits a 3-NZF, a contradiction.

If $|H \cap S| \ge 4$, then there exists an element $x \in S$ such that $O(x) = 2$. Since $|H|$ is odd, we have $x \notin H \cap S$ and the Sylow 2-subgroups of $G \times H$ are the Sylow 2-subgroups of G and hence, $x \in G$. Therefore $x \in C_{G \times H}(H \cap S)$, the centralizer of $H \cap S$ in $G \times H$, and hence $x \in Z(\langle H \cap S \rangle \times \langle x \rangle)$. So Lemma 2.1 forces Cay($\langle H \cap S \rangle \times \langle x \rangle$, $(H \cap S) \cup \{x\}$) to admit a 3-NZF, so does Cay $(G \times H, (H \cap S) \cup \{x\})$. But $|S \setminus ((H \cap S) \cup \{x\})|$ is even, So $Cay(G \times H, S)$ admits a 3-NZF, a contradiction. П

Corollary 3.8. If L is a nilpotent group, then for every generalized dihedral group D_H , *the Cayley graph of valency at least* 4 *on* $D_H \times L$ *admits a* 3-*NZF.*

Proof. Let D_H be the smallest generalized dihedral group such that the Cayley graph of valency at least 4 on $D_H \times L$ does not admit a 3-NZF. If |H| is odd, then the Sylow 2subgroups of D_H are cyclic, and hence Corollary 3.7 shows that $Cay(D_H \times L, S)$ admits a 3-NZF, a contradiction. If $|H|$ is even, then H contains a central involution t. If $t \in S$, then Lemma 2.1 shows that the Cayley graph of valency at least 4 on $D_H \times L$ admits a 3-NZF, a contradiction. If $t \notin S$, then by our assumption, $Cay((D_H \times L)/(t), S/(t))$ admits a 3-NZF. It follows that $Cay(D_H \times L, S)$ admits a 3-NZF by Lemma 2.2. This is impossible. These contradictions show that every Cayley graph of valency at least 4 on $D_H \times L$ admits a 3-NZF. \Box

References

- [1] B. Alspach, Y. Liu and C. Zhang, Nowhere-zero 4-flows and Cayley graphs on solvable groups, *SIAM J. Discrete Math.* 9 (1996), 151–154, doi:10.1137/s0895480193258017.
- [2] F. Jaeger, Flows and generalized coloring theorems in graphs, *J. Comb. Theory Ser. B* 26 (1979), 205–216, doi:10.1016/0095-8956(79)90057-1.
- [3] L. Li and X. Li, Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group, *Front. Math. China* 10 (2015), 293–302, doi:0.1007/ s11464-014-0378-2.
- [4] M. Nánásiová and M. Škoviera, Nowhere-zero 3-flows in Cayley graphs and Sylow 2subgroups, *J. Algebraic Combin.* 30 (2009), 103–111, doi:10.1007/s10801-008-0153-0.
- [5] R. Nedela and M. Škoviera, Cayley snarks and almost simple groups, *Combinatorica* 21 (2001), 583–590, doi:10.1007/s004930100014.
- [6] M. Potočnik, P. Škoviera and R. Škrekovski, Nowhere-zero 3-flows in abelian Cayley graphs, *Discrete Math.* 297 (2005), 119–127, doi:10.1016/j.disc.2005.04.013.
- [7] J. S. Rose, *A Course on Group Theory*, Cambridge University Press, Cambridge, 1978.
- [8] W. T. Tutte, A contribution to the theory of chromatic polynomials, *Canad. J. Math.* 6 (1954), 80–91, doi:10.4153/cjm-1954-010-9.
- [9] W. T. Tutte, On the algebraic theory of graph colorings, *J. Comb. Theory* 1 (1966), 15–50, doi:10.1016/s0021-9800(66)80004-2.
- [10] D. B. West, *Introduction to Graph Theory*, Prentice Hall, Upper Saddle River, NJ, 1996.
- [11] F. Yang and X. Li, Nowhere-zero 3-flows in dihedral Cayley graphs, *Inform. Process. Lett.* 111 (2011), 416–419, doi:10.1016/j.ipl.2011.01.017.