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Abstract. Weuse SU(2)×SU(2) algebraicmethods to calculate the energy-splitting pattern

of the K=2,3 excited states of the Y-string in two dimensions. To this purpose we use the

dynamical O(2) symmetry of the Y-string in the shape space of triangles and compare our

results with known results in three dimensions and find qualitative agreement.

1 Introduction

The three-quark confinement problem has been attacked inmanyways: 1) byway
of the harmonic oscillator models with some non-harmonic two-body potential
components [1–3]; 2) by way of Y-string three-body potentials, Refs. [4–15]; 3) by
way of the hyperspherical formalism applied to two-quark potentials, Refs. [16,
17] and 4) by way of dynamical symmetry Lie-algebraic methods, Refs. [18–23],
with some success for the low-lying bands of states (up to K ≤ 3). The higher-
lying bands (K≤ 4) have generally not been studied systematically (to our knowl-
edge), only individual states with highest values of the orbital angular momen-
tum, for purposes of Regge analyses, with one significant exception (K = 4), the
Ref. [11].

QCD seems to demand a genuine three-body confining potential: the so-
called Y-junction string three-quark potential, defined by

VY = σmin
x0

3∑

i=1

|xi − x0|, (1)

or, explicitly

Vstring = VY = σ

√
3

2
(ρ2 + λ2 + 2|ρ× λ|). (2)

The |ρ× λ| term is proportional to the area of the triangle subtended by the three
quarks. The Y-string potential was proposed as early as 1975, see Refs. [4, 5] and
the first schematic calculation (using perturbation theory) of the baryon spectrum
up to K≤ 2 followed soon thereafter, Ref. [6]. Refs. [7–9], elaborated on this. The
first non-perturbative calculations (variational approximation) of the K=3 band
with the Y-string potential were published in the early 1990’s, Ref. [10] and ex-
tended to the K=4 band later in that decade, Ref. [11]. Yet, some of the most basic
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properties of this potential, such as the ordering of the low-lying states in the
spectrum, without the “QCD hyperfine interaction” and/or relativistic kinemat-
ics remain unknown.

The first systematic attempt to solve the Y-string spectrum, albeit only up
to the K=2 band, can be found in Ref. [12]. That paper used the hyperspherical
harmonics formalism, which led to the discovery of a new dynamical O(2) sym-
metry in the Y-string potential, with the permutation group S3 ⊂ O(2) as the
subgroup of the dynamical O(2) symmetry, see Ref. [13]. That symmetry was fur-
ther elaborated in Ref. [15]. The present work is a continuation of that line, which
has also been represented in this series of workshops [14]. The three-body sum of
two-body potentials has only the permutation group S3 as its symmetry.

2 O(4) algebraic method

The existence of an additional dynamical symmetry strongly suggests an alge-
braic approach, such as those used in Refs. [18–23]. A careful perusal of Ref.
[18,19] shows, however, that an O(2) group had been used as an enveloping struc-
ture for the (discrete) permutation group S3 ⊂ O(2), but was not interpreted as
a (possible) dynamical symmetry. Refs. [20–23] did not use this symmetry, how-
ever. We start an algebraic study of Y-string-like potentials with this in mind. For
the sake of technical simplicity we confine ourselves to the two-dimensional case
here. We say here “Y-string-like potentials”, rather than the Y-string potential, be-
cause the complete Y-string potential contains “additional” two-body terms that
are valid only in certain parts of the tree-particle configuration space (a.k.a. tri-
angle “shape space”) and that do not have the O(2) dynamical symmetry. This
wider class of three-body potentials has the same dynamical O(2) symmetry in
shape space as the Y-string potential, thus making them equivalent in the alge-
braic sense. Wemust therefore first establish the basic properties of the dynamical
symmetry of the Y-string potential.

In two dimensions (2D) the non-relativistic three-body kinetic energy is a
quadratic form of the two Jacobi two-vector velocities, ρ̇, λ̇, so its “hyper-spherical
symmetry” is O(4), and the residual dynamical symmetry of the Y-string poten-
tial is O(2) ⊗ OL(2) ⊂ O(4), where OL(2) is the (orbital) angular momentum.
As the O(4) Lie group can be “factored” in two mutually commuting O(3) Lie
groups: O(4) ≃ O(3) ⊗ O(3), one may use for our purposes many of the O(3)
group results, such as the Clebsch-Gordan coefficients. The 3D case is substan-
tially more complicated than the 2D one: the three-body “hyper-spherical sym-
metry” is O(6), and the residual dynamical symmetry of the Y-string potential is
O(2) ⊗ OL(3) ⊂ O(6). The O(6) Lie group cannot be “factored” in two mutually
commuting O(3) Lie groups and one cannot simply reduce this problem to one in
the O(3) group. For these reasons we limit ourselves to the two-dimensional case
in this paper.

Thus we are looking for the “chain” of symmetries O(2) ⊗ OL(2) ⊂ O(3) ⊗
OL(2) ⊂ O(4). Rather than parametrize the energy E as a function of corre-
sponding Casimir operators, and thus calculate the spectrum, as was done in
Refs. [20–23], we reformulate the problem in terms of O(4) variables and then
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bring the potential into a form that can be (exactly) solved, i.e. we expand it in
O(4) hyperspherical harmonics. As the potential must be spherically symmetrical,
this imposes and additional constraint on the allowed hyperspherical harmonics
and one ends up with only a few (leading) terms: 1) the area-term containing the
O(4) hyperspherical harmonic Y2200 , which, in turn is related to the O(3) spher-
ical harmonic Y20(α,φ) of the shape space (hyper)spherical angles (α,φ), i.e.,
the V4 term in the notation of Richard and Taxil [16]), that is present in both the
two-body and the Y-string potentials; and 2) the O(2) symmetry-breaking term
containing Y330±3 ≃ Y3±3(α,φ), i.e., the V6 term in the notation of Richard and
Taxil [16], that is important in the two-body potential, and less so in the “com-
plete” Y-string potential and not at all in Eq. (2). The energy spectrum is a func-
tion of the O(4) hyperspherical expansion coefficients for the potential, and of the
O(4) Clebsch-Gordan coefficients, that are products of the ordinary O(3) Clebsch-
Gordan coefficients.

3 Results

Next we proceed to evaluate the K=2,3 bands’ splittings and compare them with
the 3D case:

1) At the K=2 level, there are four SU(6) multiplets (other than the hyper-
radial excitation [56, 0+]

′

of the K=0 state): [70, 0+], [56, 2+], [70, 2+], [20, 1+] in 3D.
The main difference between the 2D and 3D is that the [20, 0+] state has vanishing
orbital angular momentum in 2D, rather than unity, as in the 3D state [20, 1+].

The only difference between the 2D and 3D K=2 states’ splittings is that the
[70, 0+] and [56, 2+] states are degenerate in 2D, whereas in 3D they are split by
one half of the energy difference between [70, 2+] and [70, 0+]. This shows that
the 2D case does relate fairly closely to the 3D one.

2) The energy splittings in the K=3 band, for the Y-string potential in 3D
has not been worked out analytically, as yet, to our knowledge. Therefore, we
compare our 2D Y-string potential K=3 results with the 3D K=3 two-body poten-
tial results of Ref. [16] and find certain similarities, and a few distinctions. There
are six SU(6) multiplets in the K=3 sector (other than the hyper-radial excitation
[70, 1−]

′′

of the K=1 state): [20, 1−], [56, 1−], [70, 3−], [56, 3−], [70, 2−], [20, 3−] in 3D.
The main difference between the 2D and 3D is that the [70, 2−] state disappears
in 2D.

In 3D two-body potential the energy splittings have been divided in two
parts in Ref. [16]: a) those due to the V4 perturbation; and b) due to the V6 pertur-
bation. This corresponds to our Y20 and Y3±3 terms, respectively.

a) In the V4 6= 0, V6 → 0 limit, the states are roughly divided in two groups:
the [20, 1−], [56, 1−], [70, 3−] which are pushed down, and the [56, 3−], [70, 2−],
[20, 3−] which are pushed up by the V4 perturbation. Two pairs of states are left
degenerate: ([20, 1−], [56, 1−]) in the lower set and ([56, 3−], [20, 3−]) in the upper
set. In this limit in 2D we find complete degeneracy of all three members of the
lower- ([20, 1−], [56, 1−], [70, 3−]) and upper levels ([56, 3−], [70, 2−], [20, 3−]).

b) In the V4 6= 0, V6 6= 0 case, the remaining degeneracy of states is removed
in 3D: the [20, 1−] and the [56, 1−] are split in the “lower set” and the [56, 3−] and
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the [20, 3−] in the “upper set”. In 2D we find the same sort of splitting, and in
almost the same ratio of strengths.

So, in the K=2,3 bands, one sees similarities of dynamical symmetry-breaking
patterns in 2D and 3D. This lends credence to the belief that this similarity may
persist at higher values of K, where there are no known 3D results, at present.
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16. J. -M. Richard and P. Taxil, Nucl. Phys. B 329, 310 (1990).

17. J. -M. Richard, Phys. Rep. 212, 1-76, (1992).

18. K. C. Bowler, P. J. Corvi, A. J. G. Hey, P. D. Jarvis and R. C. King, Phys. Rev. D 24, 197

(1981).

19. K. C. Bowler and B. F. Tynemouth, Phys. Rev. D 27, 662 (1983).

20. R. Bijker, F. Iachello and A. Leviatan, Annals Phys. 236, 69 (1994) [nucl-th/9402012].

21. R. Bijker, F. Iachello and E. Santopinto, J. Phys. A 31, 9041 (1998) [nucl-th/9801051].

22. R. Bijker, F. Iachello and A. Leviatan, Phys. Rev. C 54, 1935 (1996) [nucl-th/9510001].

23. R. Bijker, F. Iachello and A. Leviatan, Annals Phys. 284, 89 (2000) [nucl-th/0004034].



BLED WORKSHOPS

IN PHYSICS

VOL. 13, NO. 1
p. 17

Proceedings of the Mini-Workshop
Hadronic Resonances

Bled, Slovenia, July 1 - 8, 2012

Exotic molecules of heavy quark hadrons

Atsushi Hosaka

Research Center for Nuclear Physics (RCNP)

Osaka University, Ibaraki, 567-0047, Japan

Abstract. We discuss hadronic molecules containing both heavy and light quarks. The

interactions are provided by meson exchanges between light quarks in the constituent

hadrons. The tensor force in the one-pion exchange potential mixes states of different spins

and angular momenta. This provides attraction and generates rich structure in exotic chan-

nels in the heavy quark sectors. The method has been applied to exotic baryons with a c̄

or b̄ quark, and exotic mesons containing bb̄ including the recently found Z ′

bs.

Recent interest in hadron physics has been largely motivated by the observations
of candidates for exotic multi-quark states which are not (easily) explained by the
conventional quark model [1–4]. Many of them appear near the threshold region
of their possible decay channels. The finding of the twin Zb’s is perhaps the most
striking in that they appear very close to the BB∗ and B∗B∗ thresholds [4–6].

Strictly, multiquarks does not make much sense for light flavors especially
for u and d quarks when the quark number is not a conserved quantity. In fact,
they interact strongly at the energy scale of ΛQCD, creating qq̄ pairs and gener-
ating massive constituent quarks. It is known that it is a consequence of sponta-
neous breaking of chiral symmetry. In the low energy region we expect that such
constituent quarks become active degrees of freedom as almost on-shell parti-
cles, forming exotic multi-quark states. Contrary to the light flavor sector heavy
quarks such as c and bwith massM≫ ΛQCD conserve their quark number. Thus
we can treat them as almost on shell particles with non-relativistic kinematics at
low energies of typical hadron resonances.

Starting from the conventional quarkmodel picture for orbitally excited states,
multiquark configurations can mix with them because the typical excitation en-
ergy of about 0.5-1 GeV is sufficient to create a (constituent) qq̄ pair. A color
singlet multiquark system of more than the minimal number (q̄q or qqq) may
form color singlet sub-systems (clusters) of hadrons. Clustering phenomena of
multiparticle systems have been extensively studied in nuclear physics for many
years [7]. Alpha particles saturate the dominant component of spin and isospin
dependent nuclear force. The spin-isospin neutral alpha particles interact rather
weakly and can form loosely bound states near the threshold regions of alpha
decay.

In QCD, the state corresponding to alpha particle is a hadron which satu-
rates the strong color dependent force. If these hadrons have sufficient amount of
attraction (but weak as compared to the color force), they may form a bound or
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resonant state, which is the hadronic molecule. it must be a rather loosely bound
state having an extending spatial structure to retain the identity of hadronic con-
stituents. We expect that the relevant energy scale of binding and resonant states
should be sufficiently small as compared to ΛQCD of some hundreds MeV.

To establish exotic states is interesting not only for its own sake, but also
because it is expected to reveal important aspects of non-perturbative dynam-
ics of QCD. In this respect, as experimental observations imply, hadrons of light
and heavy quarks are interesting, where more candidates of exotic states are ob-
served. There, heavy quark symmetry and chiral symmetry play simultaneously.
The former suppresses the spin dependent interactions, leading to degeneracy
of different spin states. On the other hand, the latter is responsible for the pion
coupling to the light quarks, which provides the source of the strong one pion
exchange potential between heavy flavor hadrons. When these two conditions
are satisfied, we expect the formation of exotic hadronic molecules. The spin and
isospin dependent nature of the pion exchange potential as well as its orientation
dependence of the tensor structure are the cause of the rich structure of hadron
spectrum.

Based on these ideas, we have studied hadronic molecular states for exotic
heavy baryons in Refs. [8–10], and for exotic heavy mesons in Ref. [11–13]. They
are exotic not only due to hadronicmolecular structure but also due to their exotic
quantum numbers which are not accessible by the minimal number of quarks. In
forming the hadronic molecular state, the following three points are important;
(1) heavy mass which suppresses kinetic energy of constituent hadrons, (2) one
pion exchange force of tensor nature which mixes the 0− and 1− states (DD∗ and
BB∗), and (3) degeneracy of 0− and 1− states which makes the wider space of
coupled channels more effective to gain more attraction.

Hadronicmolecules have been also studied forDN systems of ordinary quan-
tumnumbers [14,15]. These channels allow evenmore attraction leading to deeply
bound states of a binding energy of order a few hundred MeV with much spa-
tially compact configuration. Here qq̄ annihilation is also possible, the treatment
of which is more difficult than in the case of exotic channel without qq̄ annihila-
tion.

Turning to the exotic channels, employing an interactions between heavy
flavor hadrons in a boson exchangemodel including one pion exchange potential,
we find several bound and resonant states near the threshold regions. Many of
them with small binding energy of order ten MeV or less have a rather extended
size compatible to hadronic molecules. For baryons, we have found bound states
of JP = 1/2− states of exotic quark content c̄q-qqq and b̄q-qqq just below the
threshold of D̄N and BN, respectively. Other resonant sates are also found for
JP = 3/2−, 1/2+, 3/2+, 5/2+ with similar structure of mass spectrum for c and b
quark sectors [9, 10].

For mesons, in the hidden bottom sector, we have found ten BB̄, BB̄∗, B∗B̄∗

molecules for low lying spin J ≤ 2. In particular, the hidden bottom exotic mesons
Zb’s are well predicted [11]. Further exotic states of double heavy flavor (charm
and bottom) mesons are also found [12]. In Ref. [13], we have estimated the decay
and production rates of various states in the limit of heavy quarks which are
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characteristic to the hadronic molecular structure. These theoretical predictions
for rich structure of hadronic molecules can be studied in the facilities such as
Belle, JPARC and LHC.
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