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Abstract

A Langford sequence of order m and defect d can be identified with a labeling of the
vertices of a path of order 2m in which each label from d up to d + m − 1 appears twice
and in which the vertices that have been labeled with k are at distance k. In this paper, we
introduce two generalizations of this labeling that are related to distances. The basic idea
is to assign nonnegative integers to vertices in such a way that if n vertices (n > 1) have
been labeled with k then they are mutually at distance k. We study these labelings for some
well known families of graphs. We also study the existence of these labelings in general.
Finally, given a sequence or a set of nonnegative integers, we study the existence of graphs
that can be labeled according to this sequence or set.
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1 Introduction
For the graph terminology not introduced in this paper we refer the reader to [14, 15]. For
m ≤ n, we denote the set {m,m + 1, . . . , n} by [m,n]. A Skolem sequence [8, 12] of
order m is a sequence of 2m numbers (s1, s2, . . . , s2m) such that (i) for every k ∈ [1,m]
there exist exactly two subscripts i, j ∈ [1, 2m] with si = sj = k, (ii) the subscripts i and
j satisfy the condition |i − j| = k. The sequence (4, 2, 3, 2, 4, 3, 1, 1) is an example of a
Skolem sequence of order 4. It is well known that Skolem sequences of order m exist if
and only if m ≡ 0 or 1 (mod 4).

Skolem introduced in [13] what is now called a hooked Skolem sequence of order m,
where there exists a zero at the second to last position of the sequence containing 2m + 1
elements. Later on, in 1981, Abrham and Kotzig [1] introduced the concept of extended
Skolem sequence, where the zero is allowed to appear in any position of the sequence. An
extended Skolem sequence of order m exists for every m. The following construction was
given in [1]:

(pm, pm−2, . . . , 2, 0, 2, . . . , pm−2, pm, qm, qm−2, . . . , 3, 1, 1, 3, . . . , qm−2, qm), (1.1)

where pm and qm are the largest even and odd numbers not exceeding m, respectively. No-
tice that from every Skolem sequence we can obtain two trivial extended Skolem sequences
just by adding a zero either in the first or in the last position.

Let d be a positive integer. A Langford sequence of order m and defect d [11] is a
sequence (l1, l2, . . . , l2m) of 2m numbers such that (i) for every k ∈ [d, d + m − 1] there
exist exactly two subscripts i, j ∈ [1, 2m] with li = lj = k, (ii) the subscripts i and j
satisfy the condition |i − j| = k. Langford sequences, for d = 2, were introduced in [4]
and they are referred to as perfect Langford sequences. Notice that, a Langford sequence of
order m and defect d = 1 is a Skolem sequence of order m. Bermond, Brower and Germa
on one side [2], and Simpson on the other side [11] characterized the existence of Langford
sequences for every order m and defect d.

Theorem 1.1. [2, 11] A Langford sequence of orderm and defect d exists if and only if the
following conditions hold: (i) m ≥ 2d− 1, and (ii) m ≡ 0 or 1 (mod 4) if d is odd; m ≡ 0
or 3 (mod 4) if d is even.

For a complete survey on Skolem-type sequences we refer the reader to [3]. For differ-
ent constructions and applications of Langford type sequences we also refer the reader to
[5, 6, 7, 9, 10].

1.1 Distance labelings

Let L = (l1, l2, . . . , l2m) be a Langford sequence of order m and defect d. Consider a
path P with V (P ) = {vi : i = 1, 2, . . . , 2m} and E(P ) = {vivi+1 : i = 1, 2, 2m − 1}.
Then, we can identify L with a labeling f : V (P ) → [d, d + m − 1] in such a way that,
(i) for every k ∈ [d, d + m − 1] there exist exactly two vertices vi, vj ∈ [1, 2m] with
f(vi) = f(vj) = k, (ii) the distance d(vi, vj) = k. Motivated by this fact, we introduce
two notions of distance labelings, one of them associated with a positive integer l and the
other one associated with a set of positive integers J .

Let G be a graph and let l be a nonnegative integer. Consider any function f : V (G)→
[0, l]. We say that f is a distance labeling of length l (or distance l-labeling) of G if the
following two conditions hold, (i) either f(V (G)) = [0, l] or f(V (G)) = [1, l] and (ii)
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if there exist two vertices vi, vj with f(vi) = f(vj) = k then d(vi, vj) = k. Clearly, a
graph can have many different distance labelings. We denote by λ(G), the labeling length
of G, the minimum l for which a distance l-labeling of G exists. We say that a distance
l-labeling of G is proper if for every k ∈ [1, l] there exist at least two vertices vi, vj of G
with f(vi) = f(vj) = k. We also say that a proper distance l-labeling of G is regular of
degree r (for short r-regular) if for every k ∈ [1, l] there exist exactly r vertices vi1 , vi2 ,
. . . , vir with f(vi1) = f(vi2) = . . . = f(vir ) = k. Clearly, if a graph G admits a proper
distance l-labeling then l ≤ D(G), where D(G) is the diameter of G.

Let G be a graph and let J be a set of nonnegative integers. Consider any function
f : V (G)→ J . We say that f is a distance J-labeling of G if the following two conditions
hold, (i) f(V (G)) = J and (ii) for any pair of vertices vi, vj with f(vi) = f(vj) = k we
have that d(vi, vj) = k. We say that a distance J-labeling is proper if for every k ∈ J \{0}
there exist at least two vertices vi, vj with f(vi) = f(vj) = k. We also say that a proper
distance J-labeling ofG is regular of degree r (for short r-regular) if for every k ∈ J \{0}
there exist exactly r vertices vi1 , vi2 , . . . , vir with f(vi1) = f(vi2) = . . . = f(vir ) = k.
Clearly, a distance l-labeling is a distance J-labeling in which either J = [0, l] or J = [1, l].
Thus, the notion of a J-labeling is more general than the notion of a l-labeling.

In this paper, we provide the labeling length of some well known families of graphs.
We also study the inverse problem, that is, for a given pair of positive integers l and r we
ask for the existence of a graph of order lr with a regular l-labeling of degree r. Finally,
we study a similar question when we deal with J-labelings. The organization of the paper
is as follows. Section 2 is devoted to l-labelings; we start calculating the labeling length of
complete graphs, paths, cycles and some others families. The inverse problem is studied in
the second part of the section. Section 3 is devoted to the inverse problem in J-labelings.
There are many open problems that remain to be solved, we end the paper by presenting
some of them.

2 Distance l-labelings
We start this section by providing the labeling length of some well-known families of
graphs. By definition, λ(K1) = 0. In what follows, we only consider graphs of order
at least 2.

Proposition 2.1. Let n ≥ 2. The complete graph Kn has λ(Kn) = 1.

Proof. By assigning the label 1 to all vertices of Kn, we obtain a distance 1-labeling of
it.

Proposition 2.2. Let n ≥ 2. The path Pn has λ(Pn) = bn/2c.

Proof. By a previous comment, we know that a Skolem sequence of order m exists if
m ≡ 0 or 1 (mod 4). This fact together with (1.1) guarantees the existence of a proper
distance bn/2c-labeling when n 6≡ 4, 6 (mod 8). By removing one of the end labels of
(1.1), we obtain a (non proper) distance labeling of length bn/2c. Thus, we have that
λ(Pn) ≤ bn/2c. Since there are no three vertices in the path which are at the same distance,
this lower bound turns out to be an equality.

The sequence that appears in (1.1) also works for constructing proper distance labelings
of cycles. Thus, we obtain the next result.
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Proposition 2.3. Let n ≥ 3. The cycle Cn has

λ(Cn) =

{
(n− 2)/2, n 6= 6, n is divisible by 6,
bn/2c, otherwise.

Proof. Since, except for n divisible by 3, there are no three vertices in the cycle Cn which
are at the same distance, we have that λ(Cn) ≥ bn/2c. The sequence that appears in (1.1)
allows us to construct a (proper) distance bn/2c-labeling ofCn when n is odd. Moreover, if
n even not divisible by 3 we can obtain a distance bn/2c-labeling of Cn from the sequence
that appears in (1.1) just by removing the end odd label. Suppose now that n is divisible
by 3. If n is odd or n = 6, at least bn/2c labels are needed to obtain a distance labeling of
Cn. Thus, λ(Cn) = bn/2c.

So, in what follows we will assume that n is divisible by 6. Since there are three
vertices in the cycle which are at the same distance, we have that λ(Cn) ≥ (n− 2)/2. Let
pm and qm be the largest even and odd numbers, respectively, not exceeding (n− 2)/2. If
n ≡ 0, 4 (mod 8) then the sequence (pm, pm − 2, . . . , 2, qm, 2, . . . , pm − 2, pm, 0, qm −
2, qm − 4, . . . , 3, qm, n/3, 3, 5, . . . , qm − 2, 1, 1) defines a (proper) distance (n − 2)/2-
labeling of Cn. If n ≡ 6 (mod 8) then (pm − 2, pm − 4, . . . , 2, pm, 2, . . . , pm − 4, pm −
2, 0, qm, qm−2, . . . , 3, pm, n/3, 3, 5, . . . , qm−2, qm, 1, 1) defines a (proper) distance (n−
2)/2-labeling ofCn. Finally, if n ≡ 2 (mod 8), then the sequence (pm, pm−2, . . . , 2, n/6+
dn/12e, 2, . . . , pm, n/6 + dn/12e, qm, qm − 2, . . . , n/6 + dn/12e + 2, n/6 + dn/12e −
2, n/6+dn/12e−4, . . . , 3, 0, n/3, 3, 5, . . . , n/6+dn/12e−2, 1, 1, n/6+dn/12e+2, n/6+
dn/12e+ 4, . . . , qm) defines a (proper) distance (n− 2)/2-labeling of Cn.

Proposition 2.4. The starK1,k has λ(K1,k) = 2 when k ≥ 3, and λ(K1,k) = 1 otherwise.

Proof. For k ≥ 3, consider a labeling f that assigns the label 1 to the central vertex and to
one of its leaves, and that assigns label 2 to the other vertices. Then f is a (proper) distance
2-labeling of K1,k. For 1 ≤ k ≤ 2, the sequences 1− 1 and 0− 1− 1, where 0 is assigned
to a leaf, give a (proper) distance 1-labeling of K1,1 and K1,2, respectively.

Proposition 2.5. Let m and n be integers with 2 ≤ m ≤ n. Then, λ(Km,n) = m. In
particular, the graph Km,n admits a proper distance l-labeling if and only if m ∈ {1, 2}.

Proof. Let X and Y be the stable sets of Km,n, with |X| = m and |Y | = n. We have that
D(Km,n) = 2, however the maximum number of vertices that are mutually at distance 2
is n. Thus, by assigning label 2 to all vertices, except one, in Y , 1 to the remaining vertex
in Y and to one vertex in X , 0 to another vertex of X we still have left m − 2 vertices in
X to label.

Proposition 2.6. Let n and k be positive integers with n ≥ 2 and k ≥ 3. Let Sn
k be the

graph obtained from K1,k by replacing each edge with a path of n edges. Then

λ(Sn
k ) =

 2(n− 1), if k = n− 1,
2n− 1, if k = n,
2n, if k > n.

Moreover, for k < n − 1, the graph Sn
k admits an l-distance labeling, where 2(n − o) ≤

l ≤ 2(n− o) + 1, and b(2n− 1)/(2k + 1)c ≤ o ≤ b(2n+ 2)/(2k + 1)c.
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Proof. Suppose that Sn
k admits a distance l-labeling with l < 2n. Then, all the labels

assigned to leaves should be different and they appear at most twice. Moreover, although
each even label could appear k-times, one for each of the k paths that are joined to the
star K1,k, odd labels also appear at most twice (either in the same or in two of the original
forming paths). Thus, once we fix the labels of leaves, we still have to assign a label to at
least (k − 2)(n − 2) + 1 vertices. Thus, at least 2n − 2 labels are needed for obtaining a
distance labeling of Sn

k , when k ≥ n − 1. The following construction provides a distance
2(n − 1)-labeling of Sn

k , when k = n − 1. Suppose that we label the central vertices of
each path using the pattern 2 − 4 − . . . − 2(n − 1). Then, add odd labels to the leaves.
For the case k = n, we need to introduce a new odd label, which corresponds to 2n − 1.
Finally, when k > n, we cannot complete a distance l-labeling without using 2n labels.
Fig. 1 provides a proper 2n-labeling that can be generalized in that case.

The case k < n−1 requires a more detailed study. Consider the labeling of Sn
k obtained

by assigning the labels in the sequence 0− 2− 4− . . .− 2(n− o)− si1 − si2 − . . .− sio to
the vertices of the path P i, i = 1, . . . , k, where 0 is the label assigned to the central vertex
of Sn

k , and {sij}
j=1,...,o
i=1,...,k is the (multi)set of odd labels, if necessary, we replace some of the

even labels by the remaining odd labels. By considering the patern 1 − 1, 3 − 1 − 1 − 3,
5− 3− 1− 1− 3− 5 to the vertices of one of the paths, it can be checked that, the graph
Sn
k admits an l-distance labeling with l ∈ {2(n− o), 2(n− o) + 1} and⌊

2n− 1

2k + 1

⌋
≤ o ≤ b2n+ 2

2k + 1
c.

More specifically, if b(2n − 1)/(2k + 1)c = b(2n + 2)/(2k + 1)c then o = b(2n −
1)/(2k + 1)c and l = 2(n− o). If b(2n− 1)/(2k + 1)c+ 1 = b(2n)/(2k + 1)c then o =
b(2n)/(2k+1)c and l = 2(n−o)+1. Finally, if b(2n)/(2k+1)c+1 = b(2n+1)/(2k+1)c
then o = b(2n+ 1)/(2k + 1)c and l = 2(n− o) + 1.

Fig. 2 and Fig. 3 show proper distance labelings of S5
4 and S5

5 , respectively, that have
been obtained by using the above constructions, and then, combining pairs of paths (whose
end odd labels sum up to 8) for obtaining a proper distance 8-labeling and 9-labeling,
respectively.
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Figure 1: A proper distance 10-labeling of S5
6 .

Proposition 2.7. For n ≥ 3, let Wn be the wheel of order n+ 1. Then λ(Wn) = dn/2e.

Proof. Except for W3, all wheels have D(Wn) = 2. The maximum number of vertices
that are mutually at distance 2 is bn/2c and all of them are in the cycle. Thus, by assigning
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Figure 2: A proper distance 8-labeling of S5
4 .
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Figure 3: A proper distance 9-labeling of S5
5 .

label 2 to all these vertices, 0 to one vertex of the cycle and 1 to the central vertex and to
one vertex of the cycle, we still have to label dn/2e − 2 vertices.

Proposition 2.8. For n ≥ 2, let Fn be the fan of order n+ 1. Then λ(Fn) = bn/2c.

Proof. Except for F2, all fans have D(Fn) = 2. The maximum number of vertices that are
mutually at distance 2 is dn/2e and all of them are in the path. Thus, by assigning label 2
to all these vertices, 0 to one vertex of the path, 1 to the central vertex and to one vertex of
the path when n is even and to two vertices when n is odd, we still have to label bn/2c− 2
vertices.

2.1 The inverse problem

For every positive integer l, there exists a graph G of order l with a trivial l-labeling that
assigns a different label in [1, l] to each vertex. In this section, we are interested in the
existence of a graph G that admits a proper distance l-labeling.

We are now ready to state and prove the next result.

Theorem 2.9. For every pair of positive integers l and r, r ≥ 2, there exists a graph G of
order lr with a regular l-labeling of degree r.

Proof. We give a constructive proof. Assume first that l is odd. LetG be the graph obtained
from the complete graphKr by identifying r−1 vertices ofKr with one of the end vertices
of a path of length bl/2c and the remaining vertex ofKr with the central vertex of the graph
S
bl/2c
r+1 . That is, G is obtained from Kr by attaching 2r paths of length bl/2c to its vertices,
r+ 1 to a particular vertex v1 of Kr and exactly one path to each of the remaining vertices
F = {v2, v3, . . . , vr} of Kr. Now, consider the labeling f of G that assigns 1 to the
vertices of Kr, the sequence 1− 3− . . .− l to the vertices of the paths attached to F and
one of the paths attached to v1, and the sequence 1− 2− 4− . . .− (l− 1) to the remaining
paths. Then f is a regular l-labeling of degree r of G. Assume now that l is even. Let G
be the graph obtained in the above construction for l − 1. Then, by adding a leaf to each
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vertex of G labeled with l− 2 we obtain a new graph G′ that admits a regular l-labeling f ′

of degree r. The labeling f ′ can be obtained from the labeling f of G, defined above, just
by assigning the label l to the new vertices.
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Figure 4: A regular 5-labeling of degree 4 of a graph G.
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Figure 5: A regular 6-labeling of degree 4 of a graph G′.

Notice that, the graph provided in the proof of Theorem 2.9 also has λ(G) = l. Figs 4
and 5 show examples for the above construction. The pattern provided in the proof of the
above theorem, for r = 2, can be modified in order to obtain the following lower bound for
the size of a graph G as in Theorem 2.9.

Proposition 2.10. For every positive integer l there exists a graph of order 2l and size
(l + 2)(l + 1)/2− 2 that admits a regular distance l-labeling of degree 2.

Proof. Let G be the graph of order 2l and size (l+ 1)l/2 + l− 1, obtained from Kl+1 and
the path Pl by identifying one of the end vertices u of Pl with a vertex v of Kl+1. Let f
be the labeling of G that assigns the sequence 1− 2− 3− . . .− l to the vertices of Pl and
1 − 1 − 2 − . . . − l to the verticalces of Kl+1 in such a way that the vertex obtained by
identifying u and v is labeled 1. Then, f is a 2-regular l-labeling of G.

Thus, a natural question appears.
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Question 2.11. Can we find graphs that admit a regular distance l-labeling of degree 2
which have bigger density (where by density we refer the number of edges in relation to
the number of vertices) than the one of Proposition 2.10?

We end this section by introducing an open question related to complexity.

Question 2.12. What is the algorithmic complexity of computing λ(G) for a general graph
G? What about for a tree?

3 Distance J-labelings
It is clear from the definition that to say that a graph admits a (proper) distance l-labeling
is the same as to say that the graph admits either a (proper) distance [0, l]-labeling or a
(proper) distance [1, l]-labeling. That is, we relax the condition on the labels, the set of
labels is not necessarily a set of consecutive integers. In this section, we study which kind
of sets J can appear as the set of labels of a graph that admits a distance J-labeling.

The following easy fact is obtained from the definition.

Lemma 3.1. Let G be a graph with a proper distance J-labeling f . Then J ⊂ [0, D(G)],
where D(G) is the diameter of G.

3.1 The inverse problem: distance J-labelings obtained from sequences.

We start with a definition. Let S = (s1, s1, . . . , s1, s2, . . . , s2, . . . , sl, . . . , sl) be a se-
quence of nonnegative integers where, (i) si < sj whenever i < j and (ii) each number si
appears ki times, for i = 1, 2, . . . , l. We say that S is a δ-sequence if there is a simple graph
G that admits a partition of the vertices V (G) = ∪li=1Vi such that, for all i ∈ {1, 2, . . . , l},
|Vi| = ki, and if u, v ∈ Vi then dG(u, v) = si. The graph G is said to realize the sequence
S.

Let Σ = {s1 < s2 < . . . < sl} be a set of nonnegative integers. We say that Σ
is a δ-set with n degrees of freedom or a δn-set if there is a δ-sequence S of the form
S = (s1, s1, . . . , s1, s2, . . . , s2, . . . , sl, . . . , sl), in which the following conditions hold: (i)
all, except n numbers different from zero, appear at least twice, and (ii) if s1 = 0 then 0
appears exactly once in S. We say that any graph realizing S also realizes Σ. If n = 0
we simply say that Σ is a δ-set. Let us notice that an equivalent definition for a δ-set is the
following: Σ is a δ-set if there exists a graph G that admits a proper distance Σ-labeling.

Proposition 3.2. Let Σ = {1 = s1 < s2 < . . . < sl} be a set such that si − si−1 ≤ 2,
for i = 1, 2, . . . , l. Then Σ is a δ-set. Furthermore, there is a caterpillar of order 2l that
realizes Σ.

Proof. We claim that for each set Σ = {1 = s1 < s2 < . . . < sl} such that si − si−1 ≤ 2
there is a caterpillar of order 2l that admits a 2-regular distance Σ-labeling in which the
label sl is assigned to exactly two leaves. The proof is by induction on l. For l = 1,
the path P2 admits a 2-regular distance {1}-labeling, and for l = 2, the star K1,3 and the
path P4 admit a 2-regular distance {1, 2}-labeling and a 2-regular distance {1, 3}-labeling,
respectively. Assume that the claim is true for l and let Σ = {1 = s1 < s2 < . . . < sl+1}
such that si − si−1 ≤ 2. Let Σ′ = Σ \ {sl+1}. By the induction hypothesis, there is a
caterpillar G′ of order 2l that admits a regular distance Σ′-labeling of degree 2 in which
the label sl is assigned to leaves, namely, u1 and u2. Let u ∈ V (G′) be the (unique) vertex
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in G′ adjacent to u1. Then, if sl+1 − sl = 2, the caterpillar obtained from G′ by adding
two new vertices v1 and v2 and the edges uivi, for i = 1, 2, admits a regular distance
Σ-labeling of degree 2 in which the label sl+1 is assigned to leaves {v1, v2}. Otherwise, if
sl+1 − sl = 1 then the caterpillar obtained from G′ by adding two new vertices v1 and v2

and the edges uv1 and u2v2 admits a regular distance Σ-labeling of degree 2 in which the
label sl+1 is assigned to leaves {v1, v2}. This proves the claim. To complete the proof, we
only have to consider the vertex partition of G defined by the vertices that receive the same
label.

Proposition 3.2 provides us with a family of δ-sets, in which, if we order the elements
of each δ-set, we get that the differences between consecutive elements are at most 2. This
fact may lead us to get the idea that the differences between consecutive elements in δ-sets
cannot be too large. This is not true in general and we show it in the next result.

Theorem 3.3. Let {k1, k2, . . . , kn} be a set of positive integers. Then there exists a δ-set
Σ = {s1 < s2 < . . . < sl} and a set of indices {1 ≤ j1 < j2 < . . . < jn}, with jn < l−1,
such that

sj1+1 − sj1 = k1, sj2+1 − sj2 = k2, . . . , sjn+1 − sjn = kn.

Moreover, s1 can be chosen to be any positive integer.

Proof. Choose any number d1 ∈ N and choose any Langford sequence of defect d1 (such a
sequence exists by Theorem 1.1. We let d1 = s1. (Notice that if d1 = 1 then the sequence
is actually a Skolem sequence). Let this Langford sequence beL1. Next, choose a Langford
sequence L2 with defect maxL1 + k1. Next, choose a Langford sequence L3 with defect
maxL2 + k2. Continue this procedure until we have used all the values k1, k2, . . . , kn. At
this point create a new sequence L, where L is the concatenation of L1, L2, . . . , Ln+1 and
label the vertices of the path Pr, r =

∑n+1
i=1 |Li|, with the elements of L keeping the order

in the labeling induced by the sequence L. This shows the result.

The next result shows that there are sets that are not δ-sets.

Proposition 3.4. The set Σ = {2, 3} is not a δ-set.

Proof. The proof is by contradiction. Assume to the contrary that Σ = {2, 3} is a δ-set.
That is to say, we assume that there exists a sequence S consisting of k1 copies of 2 and k2

copies of 3 that is a δ-sequence. Let G be a graph that realizes S and V1 ∪ V2 the partition
of V (G) defined as follows: if u, v ∈ Vi then dG(u, v) = i + 1, for i = 1, 2. It is clear
that V1 must be formed by the leaves of a star with center some vertex a ∈ V . Since a is at
distance 1 of any vertex in V1, it follows that a must be in V2 and furthermore, all vertices
adjacent to a must be in V1. Thus, there are no two adjacent vertices in the neighborhood
of a. At this point, let b ∈ V2 \ {a}. Then, there is a path of the form a, u1, u2, b, where
u1 ∈ V1 and hence, u2, b ∈ V2. This contradicts the fact that dG(u2, b) = 1.

The above proof works for any set of the form Σ = {2, n}, for n ≥ 3. Thus, in fact,
Proposition 3.4 can be generalized as follows.

Proposition 3.5. The set Σ = {2, n} is not a δ-set.
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Notice that, although Σ = {2, n} is not a δ-set, it is a δ1-set, since we can consider a
star in which the center is labeled with n and the leaves with 2.

The next result gives a lower bound on the size of δ-sets in terms of the maximum of
the set.

Theorem 3.6. Let Σ be a δ-set with s = max Σ. Then, |Σ| ≥ d(s+ 1)/2e.

Proof. Let G be a graph that realizes Σ and let V (G) = ∪i∈ΣVi be the partition defined
as follows: if u, v ∈ Vi then dG(u, v) = i. Let a1, a2 ∈ Vs. At this point, let P =
b1b2 . . . bs+1 be a path of length s starting at a1 and ending at a2. We claim that there are
no three vertices in V (P ) belonging to the same set Vj , j ∈ Σ. Assume to the contrary
that there exist vertices u, v and w ∈ V (P ) such that dG(u, v) = dG(u,w) = dG(v, w).
Then, we also obtain that dP (u, v) = dP (v, w) = dP (v, w) (since they are on a shortest
path between two points), a contradiction. Hence, each set in the partition of V (G) can
contain at most two vertices of P . Since |V (P )| = s + 1, it follows that we need at least
d(s+1)/2e sets in the partition of V (G). Therefore, we obtain that |Σ| ≥ d(s+1)/2e.

It is clear that the above proof cannot be improved in general, since from Proposition 3.2
we get that the any set of the form {1, 3, 5, . . . , 2n + 1} is a δ-set and |{1, 3, 5, . . . , 2n +
1}| = d(2n+ 2)/2e. Furthermore, Proposition 3.5 for n ≥ 4 is an immediate consequence
of the above result. It is also worth to mention that there are sets which meet the bound pro-
vided in Theorem 3.6, however they are not δ-sets. For instance, the set {2, 3} considered
in Proposition 3.4. From this fact, it seems that we cannot characterize δ-sets just from a
density point of view. Next we want to propose the following open problem.

Problem 3.7. Characterize δ-sets.

Let Σ be a set. By construction, a path of order |Σ| in which each vertex receives a
different labeling of Σ defines a distance |Σ|-labeling. That is, every set is a δ|Σ|-set. So,
according to that, we propose the next problem.

Problem 3.8. Given a set Σ is there a construction that provides the minimum r such that
Σ is a δr-set?

Thus, the above problem is a bit more general than Open problem 3.7.
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