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This paper is concerned with a dependence analysis of returns, return
volatility and trading volume for five companies listed on the Vienna
Stock Exchange and five from the Warsaw Stock Exchange. Taking into
account high frequency data for these companies, tests based on a com-
parison of Bernstein copula densities using the Hellinger distance were
conducted. The paper presents some patterns of causal and other re-
lationships between stock returns, realized volatility and expected and
unexpected trading volume. There is a linear causality running from re-
alized volatility to expected trading volume, and a lack of nonlinear de-
pendence in the opposite direction. The authors detected strong linear
and nonlinear causality from stock returns to expected trading volume.
They did not find causality running in the opposite direction. In ad-
dition, the existence of fractional cointegration was examined. Despite
the equality of the long memory parameters of realized volatility and
trading volumes, they do not move together in the long term horizon.
Key Words: realized volatility; trading volume; dynamic interrelations;
copulas; fractional cointegration
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Introduction
Market participants usually think that a share price reflects investors’ pre-
dictions about the future performance of a company. These expectations
are based on available information about the firm. The release of new in-
formation forces investors to change their expectations about the future
performance of the company. New announcements are the main source
of price changes. Since investors evaluate the content of new information
differently, prices may remain constant even though new information is
important for themarket. This can be the case if some investors think that
the news is good, whereas others understand the same announcements as

Piotr Gurgul is a phd student in the Department of Computer
Science, agh University of Science and Technology, Cracow, Poland
Dr Robert Syrek is an Assistant Professor in the Institute of Economics
and Management, Jagiellonian University, Poland

Managing Global Transitions 11 (4): 353–373



354 Piotr Gurgul and Robert Syrek

bad news. The direction of movements of prices depends on the average
reaction of investors to news.
It is obvious that share prices can be observed if there is a positive trad-

ing volume. As with prices, trading volume and changes in it react to the
available set of important information on the market. Trading volume
reacts in a different way in comparison to stock prices. A change in in-
vestors’ expectations always leads to a rise in trading volume. The size of
trading volume reflects the sum of investors’ reactions to news.
A valid response to the question of whether the knowledge of one vari-

able (e. g. volatility) can improve short-run forecasts of other variables is
essential for analysts as well as market participants. Thus, in recent years
both researchers and investors have focused on the relationship between
trading volume, stock returns and return volatility. Most early empiri-
cal examinationswere concernedwith the contemporaneous relationship
between price changes and volume.
Both from a theoretical and practical point of view, the dynamic re-

lationship between returns, return volatility and trading volume is much
more interesting than the contemporaneous one. One of themost impor-
tant and useful topics in empirical economics is yhe examination of the
causal relationship between particular variables. The notion of causality
was introduced by Granger (1969). It is based on the idea that the past
cannot be influenced by the present or future. Thus, if one event is ob-
served before another event, causality can only take place from the first
event to the second one.
Many economic and financial time series exhibit the property of long

memory. Long-term dependence, called long memory, describes the
high-order correlation structure of a time series. If a time series pos-
sesses long memory, there is a persistent temporal dependence between
observations even when considerably separated in time. The same de-
gree of long memory of two or more time series may indicate some re-
lation between time series. This issue will be addressed in subsequent
sections.
The remainder of the paper is set out as follows. A brief review of some

aspects of causality and relevant contributions will be given in the next
section. The concepts of nonlinear causality and Bernstein copulas are
outlined in the third section. A description of the data and the method
for estimating volatility are presented in the fourth section.
The empirical results are discussed in the fifth section. Brief conclu-

sions and outlook are given in the last part of the paper.
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Literature Review

Karpoff (1987) in his survey of early research about price–volume rela-
tions cited important reasons for examining price–volume dependencies.
These relations give an insight into the structures of financial markets,
and into the information arrival process and how information is dissem-
inated amongmarket participants. This is strictly connectedwith two hy-
potheses: the mixture of distributions hypothesis (Clark 1973; Epps and
Epps 1976; Tauchen and Pitts 1983; Harris 1986), and the sequential infor-
mation arrival hypothesis from Copeland (1976) and Tauchen and Pitts
(1983).
A knowledge of price–volume relations is useful e. g. in technical anal-

ysis and is important with respect to investigations of options and futures
markets and in fashioning new contracts.
One of the most often used approaches in research into return-trading

volume interrelations is the concept of Granger causality. Causality in the
Granger sense can be understood as a kind of conditional dependency.
A serious problem with the linear approach to testing for causality is

the low power of tests necessary to detect some kinds of nonlinear causal
relations. This problemwas raised in contributions, which are concerned
with nonlinear causality tests (see e. g. Abhyankar 1998 andAsimakopou-
los, Ayling, and Mahmood 2000). The starting point for further investi-
gations was a nonparametric statistical method for uncovering nonlin-
ear causal effects presented by Baek and Brock (1992). In order to detect
causal relations the contributors used the correlation integral, an estima-
tor of spatial probabilities across time based upon the closeness of points
in hyperspace. The concept of Beak andBrockwas improved byHiemstra
and Jones (1994) and Diks and Panchenko (2005; 2006).
The linear and nonlinear causality of companies listed on the dax in-

dex was investigated by Gurgul and Lach (2009). They used daily data
at close from January 2001–November 2008. For the testing of nonlinear
causality the Diks and Panchenko test was used, while linear dependen-
cies were checked by traditional Vector Autoregressive Models and by a
model derived by Lee and Rui (2002). The contributors confirmed the
hypothesis that traditional linear causality tests often fail to detect some
kinds of nonlinear relations, while nonlinear tests do not. In many cases
the test results obtained by the use of empirical data and simulation con-
firmed a bidirectional causal relationship while linear tests did not detect
such causality at all.
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Rossi and de Magistris (2010) investigated the relationship between
volatility, measured by realized volatility, and trading volume. They
showed that trading volume and volatility exhibit long memory but that
they are not driven by the same latent factor as suggested by the fractional
cointegration analysis. They used fractional cointegration by var mod-
els as in Nielsen and Shimotsu (2007), and also extended the analysis of
Robinson andYajima (2002) for stationary and nonstationary time series.
They found that past (filtered) log-volume has a positive effect on current
filtered log-volatility and on current log-volume as well. Their analysis
was complemented by using copulas in order to measure the degree of
tail dependence.
Bouezmarni, Rombouts, and Taamouti (2012) derived a nonparamet-

ric test based on Bernstein copulas and tested using high frequency data
for causality between stock returns and trading volume. The contributors
proved that at a 5 significance level the nonparametric test clearly re-
jected the null hypothesis of non-causality from returns to volume, which
is in line with the conclusion which followed from the linear test. Further,
their nonparametric test also detected a non-linear feedback effect from
trading volume to returns at a 5 significance level.
In the next part of this paper in order to check links between the fi-

nancial variables under study, realized volatility will be used as a proxy
for volatility. Our dataset consists of five large companies listed on the
wig20 and five companies listed on the atx20. The Vienna Stock Ex-
change is an example of a well-developed small capital market and the
Warsaw Stock Exchange represents small emerging markets. The stock
markets under study exhibit similar capitalization. Both indexes cover a
similar period. atx index is quoted from 2 January 1991 and the wig
index is used from 16 April 1994.
The Vienna Stock Exchange has been in recent years a local rival of

theWarsaw Stock Exchange in Central and Eastern Europe. However re-
cently the stock markets in Vienna and Warsaw have been considering
cooperation and in the future a merger of them is possible.

Main Research Conjectures
At the very beginning of our empirical analysis we will check for the
stationarity, normality and autocorrelation of the investigated time se-
ries. Stationarity is themain assumption of most statistical causality tests,
especially of var modeling. The literature overview and a preliminary
reading of the dataset encouraged us to formulate the following:
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conjecture 1 All time series under study are stationary, non-normal
and exhibit an autocorrelation pattern.

On the basis of previous results derived by the authors for companies
listed on the dax index a linear link between stock returns and expected
trading volume may be hypothesized.
In addition, in order to check linear causality a bivariate var model is

recommended.
conjecture 2 There is linear causality running from stock returns to

expected trading volume for all selected stocks listed on the atx20 and
wig20.

However we do not expect a similar interdependence in the case of
unexpected trading volume. We predict that:
conjecture 3 There is no causality between stock returns and unex-

pected trading volume for stocks selected from atx20 and wig20.
In order to check linear dynamic links for Polish and Austrian stock

return volatility and trading volume we will check linear and nonlinear
causality between realized volatility and expected (unexpected) trading
volume. Taking into account the findings of the other contributors men-
tioned in the overview we formulate the following conjecture:
conjecture 4 There is both linear and nonlinear causality running

from realized volatility to expected trading volume.
However, in the light of the economic literature and a preliminary cor-

relation analysis there are no clear linear and nonlinear links between
stock return volatility and unexpected trading volume. The correlation
analysis does not supply evidence of such interdependencies.
Therefore our next hypothesis is as follows:
conjecture 5 There is neither linear nor nonlinear causality between

realized volatility and unexpected trading volume in either direction.
In the literature the long memory of financial time series is reported.

This property is important in the context of the Mixture of Distribution
Hypothesis, which assumes the contemporaneous arrival of random in-
formation on the stock market. In particular it is interesting to examine
the suggested existence of a latent directing variable which exhibits long
memory characteristics and is responsible for the dynamics of realized
volatility and volume. The results in previous contributions did not sup-
port mdh for daily return volatility and trading volume. Therefore, we
also conjecture for the atx20 and wig20 that:
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conjecture 6 Realized volatility and trading volume are not frac-
tionally cointegrated. There is no common long-run dependence, and
therefore mdh with long memory should be rejected for these stock
markets.

The conjectures listed above will be checked by some recent tests. The
details of the testing procedures will be shown in the following sections.
The test outcomes depend to some extent on the testingmethods applied.
After a description of the methodology in the next sections, we will give
descriptive statistics of the time series included in our sample.

Nonlinear Causality, Bernstein Copulas
and Fractional Cointegration

Now we will present an extension of the Granger causality notion taking
into account three variables X,Y and Z. Variable Z is in a causal relation
to variable Y , in the Granger sense, if the current values of variable Y
can be forecasted more precisely by means of the known past values of
variable Z, and those of auxiliary variable X, than in the case where the
values of variable Z are not involved in the forecasting process.
In the recent literature on nonlinear dependencies in the sense of

Granger causality nonparametric tests are used for the conditional in-
dependence of random variables. The conditional independence of ran-
dom variables implies a lack of causality in the Granger sense. Linton
and Gozalo (1997) tested conditional independency by means of a test
statistic based on empirical distributions. Su and White (2003) derived
a test based on smoothed empirical likelihood functions and in 2007
developed a nonparametric test for the conditional independence of dis-
tributions. To this end they applied conditional characteristic functions.
The test for conditional independence by Su and White (2008) is based
on a kernel estimation of conditional distributions f (y|x) and f (y|x, z). If
the null holds true then the last functions are equal. A serious drawback
of this test is the restriction of the sum of the dimensions of variables
X,Y ,Z to seven. In addition, it is necessary to define a weight function
for the Hellinger distance necessary to measure the distance between the
conditional distributions. The contributors applied their test to examine
Granger non-causality in exchange rates. It is used their approach and
methodologywhich is used in the empirical part of this paper. The causal-
ity test applied to the detection of nonlinear causality is based on Bern-
stein copulas (see for example Bouezmarni, Rombouts, and Taamouti
2012).
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Bouezmarni, Rombouts, and Taamouti (2012) focused on the differ-
ences between their test (henceforth called the brt test) and the test by
Su and White (2008). The main differences and advantages of the brt
test can be summarized as follows:
1. There is no restriction on the sum of the dimensions of the variables
under study.

2. The application of nonparametric Bernstein copulas in order to
estimate the joint conditional distributions guarantees the non-
negativity of their distributions. This is important with respect to
a true determination of the distance between them by means of
Hellinger distance.

3. It is necessary to determine only one parameter, which determines
the accuracy of the estimation of nonparametric copula density.

The contributors demonstrated by means of simulation studies that
their test has appropriate power and facilitates the recognition of dif-
ferent nonlinear dependencies between variables. By means of simula-
tion exercises evidence is presented for the uselessness of a classic linear
causality test for the detection of causal dependencies between nonlin-
ear processes. The authors applied their test in a Granger non-causality
examination of many macroeconomic and financial variables.

nonlinear causality versus
conditional dependence

Let {(X′t ,Y′t ,Z′t) ∈ Rd1 × Rd2 × Rd3 , t = 1 . . .T} be the realization of the
stochastic process inRd, where d = d1+d2+d3with joint distributionFXYZ
and density function fXYZ. The test of conditional independency between
variables Y and Z under condition X can be written down for density
functions as (Bouezmarni, Rombouts, and Taamouti 2012):

H0: P(f(Y |X,Z)(y|x, z) = f(Y |X)(y|x)) = 1, for ∀y ∈ Rd2 (1)
H1: P(f(Y |X,Z)(y|x, z) = f(Y |X)(y|x)) < 1, for some y ∈ Rd2 (2)

where f(·|·)(·|·) stands for the conditional density function.
It is worth noting that a lack of causality in the Granger sense can be

understood as conditional independence. Let (Y ,Z)′ be aMarkov process
of order 1. The variable Z does not cause in the Granger sense variable Y
if and only if the following null hypothesis holds true:

H0: P(f(Y |X,Z)(yt |y(t−1), z(t−1)) = f(Y |X)(yt |y(t−1))) = 1,
i. e. y = yt, x = y(t−1), z = z(t−1) for d1 = d2 = d3 = 1.
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For the sake of simplicity of notation we assume di = 1 for i = 1, 2, 3.
Taking into account this notation the well-known Sklar theorem can be
put down in the form:

FXYZ(x, y, z) = CXYZ(FX(x), FY(y), FZ(z)).

The respective density function fXYZ is given by the equation

fXYZ(x, y, z) = fX(x)fY(y)fZ(z)cXYZ(FX(x), FY(y), FZ(z)),

where cXYZ is the density function of copula CXYZ. The null hypothesis
(1) can be expressed bymeans of the copula notion in the following form:

H0: P(cXYZ(FX(x), FY(y), FZ(z))
= cXY(FX(x), FY(y))cXZ(FX(x), FZ(z))) = 1, ∀y ∈ R

while an alternative hypothesis fulfills the inequality:

H1: P(cXYZ(FX(x), FY(y), FZ(z))
= cXY(FX(x), FY(y))cXZ(FX(x), FZ(z))) < 1

for some y ∈ R, where cXY and cXZ stand for the densities of the copu-
las of two dimensional distributions (X,Y) and (X,Z). The test statistics
suggested by Bouezmarni, Rombouts, and Taamouti (2012) is based on
the Hellinger distance between two distributions i. e. the density of the
copula cXYZ and the product of the densities of copulas cXY and cXZ. This
measure

H(c,C) =
∫

[0,1]3

⎛⎜⎜⎜⎜⎜⎜⎝1 −
√

cXY(u, v)cXZ(u,w)
cXYZ(FX(x), FY(y), FZ(z))

⎞⎟⎟⎟⎟⎟⎟⎠
2

dCXYZ(u, v,w) (3)

is equal to 0 if the null hypothesis holds true.
The distance (3) exhibits important advantages. First of all it is sym-

metric and invariant with respect to monotone transformations. In ad-
dition, it is not sensitive to outliers, because their weights are lower than
the weights of other observations. For empirical data Hellinger distance
(3) can be estimated by means of the following formula:

Ĥ = H(ĉ,CT) =
∫

[0,1]3

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
√

ĉXY(u, v)ĉXZ(u,w)
ĉXYZ(u, v,w)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

dCXYZ(u, v,w)

=
1
T

T∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
√

ĉXY(F̂X(XT), F̂Y(YT))ĉXZ(F̂X(XT), F̂Z(ZT))
ĉXYZ(F̂X(XT), F̂Y(YT), F̂Z(ZT))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

,
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where F̂·(·) is the empirical form of marginal distribution F·(·). In addi-
tion, the densities of copulas are estimated by means of nonparametric
methods.
The test statistics (called BRT) and the method for computing the p-

value is given in Bouezmarni, Rombouts, and Taamouti (2012).

BRT =
Tk−

3
2

σ
(4Ĥ − C1T−1k

3
2 − B̂1T−1k − B̂2T−1k − B̂3T−1k

1
2 ),

where C1 = 2−3π
3
2 , σ =

√
2(π4 )

3
2 and

B̂1 = −2−1π + T−1
T∑
t=1

(4πĜt1(1 − Ĝt1))−
1
2 (4πĜt2(1 − Ĝt2))−

1
2

ĉXY(Gt1,Gt2)
,

B̂2 = −2−1π + T−1
T∑
t=1

(4πĜt1(1 − Ĝt1))−
1
2 (4πĜt3(1 − Ĝt3))−

1
2

ĉXY(Gt1,Gt3)
,

B̂3 = π
− 1

2T−1
T∑
t=1

1√
Ĝt1(1 − Ĝt1)

.

The densities ĉXYZ, ĉXY and ĉXZ are estimated by means of Bernstein
copulas. Under the null hypothesis the test statistics is distributed asymp-
totically according to standard normal distribution. The null hypothesis
is rejected for a given significance levelα if BRT > zα holds true, where zα
denotes the critical value given in the tables of standard normal distribu-
tion. Taking into account that the test statistic is asymptotically normal,
the contributors advise in the case of a finite sample the calculation of
p−values by means of bootstrap methods. Classical bootstrap methods
referring to empirical distribution cannot be applied. That is why Papar-
oditis and Politis (2000) suggested a local bootstrapmethod for nonpara-
metric kernel estimators. They take into account the fact that the densities
of the variables are conditional. Thismethodwas applied by Bouezmarni,
Rombouts, and Taamouti (2012) and Su andWhite (2008). The p−values
can be determined for samples {Xt*,Yt*,Zt*}Tt=1 generated by bootstrap-
ing under condition d1 = d2 = d3 = 1 in the following steps:

1. In the first step Xt* is generated by means of a kernel estimator:

f̃ (x) = T−1h−1
T∑
t=1

L
(
Xt − x
h

)
,

where L stands for the density of the one dimensional distribution.
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For t = 1, . . . ,T the values of Yt* and Zt* should be generated inde-
pendently from conditional densities:

f̃ (y|Xt*) =

∑T
s=1 L

(Ys−y
h

)
L
(
Xs−Xs*

h

)
∑T

s=1 L
(
Xt−Xs*

h

) ,

f̂ (z|Xt*) =

∑T
s=1 L

(Zs−z
h

)
L
(Xs−Xs*

h

)
∑T

s=1 L
(
Xt−Xs*

h

) .

2. For the generated sample test statistic BRT* should be established.
3. Steps 1–3 should be repeatedM times in order to receive {BRTj*}Mj=1.
4. Finally, the bootstrap p-value is given by

p* =
1
M

M∑
j=1
1{BRTj*>BRT}.

fractional cointegration
For any d and de two I(d) processes are fractionally cointegrated if there
exists a linear combination that is I(de) with de < d. In this case there
exists long-run dependence and a common stochastic trend. Assume that
zt = (xt, yt) with xt ∈ I(d) and yt ∈ I(d). If there exists β � 0 such that
the linear combination yt − βxt ∈ I(de), 0 ≤ de < d, then xt and yt are
fractionally cointegrated.We write zt ∈ CI(d, b), for b = d−de. Robinson
and Yajima (2002) consider the case of stationary variables, while Nielsen
and Shimotsu (2007) also analyse the case of covariance nonstationary
variables.
The fractional cointegration can be tested as follows. Firstly, using

Whittle estimators the long memory parameters are estimated, and then
a test of their equality is performed (comp. Robinson and Yajima 2002).

Data Description and Estimation of Realized Volatility
We consider two original datasets. Firstly there are five-minute transac-
tion prices and volumes of five stocks from the Warsaw Stock Exchange
from 3 March 2008 to 28 January 2011 (732 daily observations). The se-
lected stocks are bre Bank sa (bre), bz wbk sa (bzw), kghm Pol-
ska Miedź sa (kgh), Bank Polska Kasa Opieki sa (peo), Polskie Gór-
nictwo Naftowe i Gazownictwo sa (pgn). The second sample contains
the tick-by-tick transaction prices and volumes of five stocks from the
Vienna Stock Exchange from 2 January 2009 to 9 November 2011 (711
daily observations). The selected stocks are Andritz ag (andr), Erste

Managing Global Transitions



Testing of Dependencies between Stock Returns and Trading Volume 363

GroupBank ag (ebs), omv ag (omv), TelekomAustria ag (tka) and
Voestalpine ag (voe). For these companies’ descriptive statistics of the
time series of returns, realized volatility and trading volume were com-
puted. They are presented below.

daily stock returns
We computed daily stock returns at close andmultiplied themby 100. The
descriptive statistics and tests conducted confirmed stylized facts about
stock returns rt. The departure fromnormality is reflected in kurtosis and
skewness. The null hypothesis about normality is rejected for all compa-
nies under study (Jarque-Bera test). The Ljung-Box test indicates that in
most cases there exists significant autocorrelation in stock returns.

realized volatility
In empirical investigations daily squared returns or absolute returns are
used as a proxy of volatility. For high frequency, realized volatility is the
better alternative, because of improving the accuracy of risk computed
with high frequency squared returns.
In this paper we use a Newey-West estimator based on a Bartlett kernel

for daily-realized volatility (Hansen and Lunde, 2005):

RVNW
t =

m∑
i=1

r2i,t + 2
q∑
k=1

(1 − k
q + 1

)
m−k∑
i=1

ri,tri+k,t.

This estimator has many advantages. However, it does not take into
account volatility in the time between closing the session and opening
the session next day. Therefore, it is necessary to add to RVNW

t a square
of return computed for the price at close and price at open denoted by
rCOt. We followed a procedure by Hansen and Lunde (2005). In addition,
for companies listed on the Vienna Stock Exchange an optimal frequency
parameter was estimated.
We applied a logarithmic transformation to the realized volatility se-

ries. We observe that in spite of this logarithmic transformation, almost
all time series are not normally distributed (the exceptions beingBRE and
PEO). Significant autocorrelation is observed for all stocks under study.
We observe that all of the series from the Vienna Stock Exchange are pos-
itively skewed. Next, we removed the deterministic trend from the time
series. The series adjusted in this way are denoted as lnRVt. In all cases
the null hypothesis of unit root is rejected, so the series lnRVt can be used
in var models.
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trading volume
Daily trading volume is computed as the sum of volumes corresponding
to each transaction from a whole given day. We compute the descriptive
statistics of the log-volume series. In the case of the Polish stock pgn and
the Austrian stocks ebs, tka and voe the null hypothesis of normality
is rejected. We filtered the log-volume from the deterministic trend and
calendar effects.
In the next sections we consider two types of trading volume: expected

and unexpected. Unexpected trading volume (˜lnVt) is that part of total
volume that cannot be forecasted and is generated by the random pro-
cess of new pieces of information coming to the market. Expected trad-
ing volume (lnVt) can be forecasted and we used fitted values of arma
models as a proxy. Unexpected trading volume is given by the residuals
from arma models. Taking into consideration that in the next sections
var models are used, we conducted an augmented Dickey-Fuller test for
unit root for the variables under study. To summarize, the properties of
the time series under study are in line with Conjecture 1.

Empirical Results and Their Analysis
causality

In this section we analyse pairwise by means of nonparamteric Bernstein
copulas nonlinear causality between prices, trading volume and realized
volatility.

Causal Price-Trading Volume Relations
To test linear Granger causality we applied bivariate VAR(k). In order to
test nonlinear causality we used the BRT statistics described in the previ-
ous section applied to residuals from VARmodels. Using such a method
we can be sure that we test only nonlinear relations. When estimating
Bernstein copulas we took bandwidth k as integer part of 2

√
T. We com-

puted the p-values of the test with 200 bootstrap samples. Below we used
the notationsX � Y in order to describe the null hypothesis: thatX does
not Granger cause Y .

Stock Returns and Expected Trading Volume
The hypotheses

H0: rt � lnVt,
H1: rt → lnVt
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table 1 Results of causality testing for stock returns and expected trading volume

wig atx

H0 rt � lnVt lnVt � rt H0 rt � lnVt lnVt � rt
Test Linear brt Linear brt Test Linear brt Linear brt

bre . . . . andr . . . .

bzw . . . . ebs . . . .

kgh . . . . omv . . . .

peo . . . . tka . . . .

pgn . . . . voe . . . .

in terms of conditional densities can be formulated as follows:

H0: f (lnVt |lnVt−1, rt−1) = f (lnVt |lnVt−1),
H1: f (lnVt |lnVt−1, rt−1) � f (lnVt |lnVt−1).

The opposite direction of causal dependency has the form:

H0: f (rt |rt−1, lnVt−1) = f (rtrt−1),
H1: f (rt |rt−1, lnVt−1) � f (rtrt−1).

Table 1 presents the p-values of the tests conducted.
Bidirectional linear causality was detected only for one Polish stock

(peo). On the other hand there is linear causality from stock returns to
trading volume for all stocks from atx, but not in the opposite direc-
tion. The results concerning nonlinear dependencies showing that stock
returns cause expected trading volume are the same for both sets of stocks
under study. The null hypothesis of lack of causality is rejected.With one
exception (tka) causality in the opposite direction is not detected. The
computation results mean that Conjecture 2 holds true.

Stock Returns and Unexpected Trading Volume

Firstly, we estimated a bivariateVARmodel for pair rt−˜lnVt. As in previ-
ous sections we used an empirical distribution function in order to trans-
form the residuals from this model. The respective hypotheses are:

H0: rt � ˜lnVt against H1: rt → ˜lnVt, and

H0: ˜lnVt � rt against H1: ˜lnVt → rt.

There is no nonlinear relationship in either direction. Linear causality
from returns to unexpected trading volume was detected for bre, peo
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table 2 Results of causality testing for stock returns and unexpected trading volume

wig atx

H0 rt � l̃nVt l̃nVt � rt H0 rt � l̃nVt l̃nVt � rt
Test Linear brt Linear brt Test Linear brt Linear brt

bre . . . . andr . . . .

bzw . . . . ebs . . . .

kgh . . . . omv . . . .

peo . . . . tka . . . .

pgn . . . . voe . . . .

table 3 Results of testing for the pair realized volatility – expected trading volume

wig atx

H0 lnRVt � lnVt lnVt � lnRVt H0 lnRVt � lnVt lnVt � lnRVt

Test Linear brt Linear brt Test Linear brt Linear brt

bre . . . . andr . . . .

bzw . . . . ebs . . . .

kgh . . . . omv . . . .

peo . . . . tka . . . .

pgn . . . . voe . . . .

and andr.When considering causality fromunexpected trading volume
to returns we reject the null hypothesis for two Polish stocks (bzw and
peo), and two Austrian ones (andr and omv). In the light of these re-
sults Conjecture 3 is true only to some extent.

Realized Volatility and Expected Trading Volume
The linear, causal relations between realized volatility and expected trad-
ing volume were tested with the VAR model described above. To test
the presence of nonlinear relations we formulated the following null hy-
potheses

H0: f (lnRVt |lnRVt−1, lnVt−1) = f (lnRVt |lnRVt−1) and
H0: f (lnVt |lnVt−1, lnRVt−1) = f (lnVt |lnVt−1).

The first of these hypotheses is equivalent toH0: lnVt � lnRVt and the
second to H0: lnRVt � lnVt. Table 3 summarizes the results of testing
(p-values).
In all cases there is linear causality running from realized volatility to
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table 4 Results of testing for the pair realized volatility – unexpected trading volume

wig atx

H0 lnRVt � l̃nVt l̃nVt � lnRVt H0 lnRVt � l̃nVt l̃nVt � lnRVt

Test Linear brt Linear brt Test Linear brt Linear brt

bre . . . . andr . . . .

bzw . . . . ebs . . . .

kgh . . . . omv . . . .

peo . . . . tka . . . .

pgn . . . . voe . . . .

expected trading volume. Causality in the opposite direction is detected
only in the case of bre, pgn, ebs, tka and voe. In addition, there is
nonlinear causality from lnRVt to lnVt for one Polish stock (peo) and
one Austrian company (tka). Nonlinear dependencies in the opposite
direction were not detected. The results of computations partly support
Conjecture 4.

Realized Volatility and Unexpected Trading Volume

We now replace lnVt with ˜lnVt and estimate the VAR models and the
required copulas again. The hypotheses under study are the following:

H0: lnRVt � ˜lnVt against H1: lnRVt → ˜lnVt and

H0: ˜lnVt � lnRVt against H1: ˜lnVt �→ lnRVt

In all cases there is no nonlinear causal relationship in either direction,
which is in line with Conjecture 5. We observed linear causality from re-
alized volatility to unexpected trading volume in three cases (peo, ebs
and voe). Causality in the opposite direction is detected for one Polish
stock pgn and three stocks from atx (andr, ebs, voe). These find-
ings contradict Conjecture 5.

long memory estimation results
We use the Whittle estimation method and perform a test for the equal-
ity of long memory parameters. The functions h(n) as in (Robinson and
Yajima 2002) are:

h1(n) =
1
lnn
,

h2(n) =
1
ln2n

.
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table 5 Results of long memory parameter estimation and equality testing

wig atx

Test dlnRVt dlnVt T0(h1) T0(h1) Test dlnRVt dlnVt T0(h1) T0(h1)

bre . . . . andr . . . .

bzw . . . . ebs . . . .

kgh . . . . omv . . . .

peo . . . . tka . . . .

pgn . . . . voe . . . .

The parameter m = n0.6 is equal to 52 for Polish stocks and to 51 for
Austrian stocks. The standard errors of the estimation of long memory
parameters are 0.136 and 0.137, respectively. The table 5 presents the re-
sults of estimation and testing
The results presented above are in line with the results of unit root test-

ing. All of the series are stationary and exhibit long memory. With one
exception (tka) all of the estimated parameters are significant at a 0.1
level (most of them are significant at a 0.05 level and below). Taking into
account that the values of the chi-square distribution with one degree of
freedom are equal to χ21 = 2.706, χ21 = 3.841, χ21 = 6.635 for significance
levels 0.1, 0.05 and 0.01 respectively, there is no reason to reject the null
hypothesis for any Polish stock under consideration. In the case of the
Austrian stocks we reject the null for the tka stock (when using both h1
and h2 functions). When considering only the h2 function we also reject
the null in the cases of andr and ebs. In table 5 the results of the esti-
mated rank of cointegration are presented (we omit the tka stock here).
The parameter m1 = n0.55 used in the estimation is equal to 37 for both
sets of stocks and we multiply the eigenvalues by 10000. The estimation
results (details of them are available from the authors upon request) indi-
cate that in all cases of stocks traded on the Warsaw Stock Exchange the
rank of cointegration is equal to 0. This means that despite the equality of
the long memory parameters, a linear combination with a lower degree
of integration doesn’t exist. In the case of the ebs and voe stocks there
exists one cointegrating vector, but only for v(n) = m−0.251 . To summarize,
the results reported here are in line with Conjecture 6.

Conclusions

The main criterion for the maturity of a financial market are properties
of the information flow process such as degree of asymmetry, the speed
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at which new information is reflected in prices and trading volume, the
strength and types of short-and long-term, linear and non-linear, con-
temporaneous and causal relationships between the different character-
istics of shares (e. g. price, returns, return volatility, trading volume).
The main goal of this research was to check by using high frequency

data the causal price-volume relationships for selected highly liquid
stocks traded on the Warsaw and Vienna stock exchanges and compare
by this means these stock markets. The knowledge of these relations al-
lows getting an insight into the structure of both capital markets. The
main question was: how is information disseminated among market par-
ticipants?
The reply to this question is strictly connected with two central and

contradictory research hypotheses: contemporaneous information ar-
rival (the mixture of distributions hypothesis by Clark) or the sequential
information arrival hypothesis (formulated by Copeland). The proper
tool to check this research problem is modern causality analysis.
To detect linear causality classical vector autoregressive models were

used. The nonlinear form of relationships was examined using a test
based on nonparametric copulas.
In order to check the conditional dependence between two vector pro-

cesses the authors applied a new test defined by Bouezmarni, Rombouts,
and Taamouti (2012). This test is based on nonparametric estimation and
Bernstein copulas. The common test statistics require an estimation of
copula density functions. The nonparametric estimator of copula density
is based on Bernstein polynomials. The Bernstein copula estimator is al-
ways non-negative and does not suffer from the boundary bias problem.
This test is time consuming but easy to conduct. Themain reason for this
is that it does not involve a weighting function in the test statistic. In ad-
dition, it can be applied in general settings since there is no restriction
on the dimension of the data. To apply this test, only a bandwidth for the
nonparametric copula is needed.
The volatility of stock returns was computed using realized volatility

estimators including changes in prices for non-trading hours. There are
some clear patterns of causal relationships between stock returns, realized
volatility and expected and unexpected trading volume.
The conjecture about stationarity was by and large supported by em-

pirical results concerning returns, return volatility and trading volume
for companies under study from both stock markets.
As regards the pair stock returns and trading volume, conclusions de-
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pend on the part of trading volume used. There is strong linear and non-
linear causality from stock returns to expected trading volume, and a lack
of such a relationship in the opposite direction. So knowledge of past
stock returns can improve forecasts of expected trading volume. When
comes to unexpected trading volume, we conclude that there is only a
linear, causal relationship from stock returns to unexpected trading vol-
ume. Neither linear nor nonlinear causal relations in the opposite direc-
tion (from trading volume to returns) are detected. The empirical results
imply that, although there is a positive contemporaneous correlation be-
tween trading volume and returns, trading volume does not add signifi-
cant predictive power in the forecast of future returns in the presence of
current and past returns. This finding is consistent (for both markets un-
der study) with the Clark (1973) mixture model, which predicts no causal
relation from trading volume to stock returns. The empirical results also
underlined the difficulty of improving the predictability of returns by
adding public information about trading volume.
There is a linear causality running from realized volatility to expected

trading volume, and a lack of nonlinear dependence in the opposite di-
rection. When unexpected trading volume is used, we observe (with one
exception) linear causality for the pair volatility and trading volume in
both directions and a lack of nonlinear causality.
The results reported above mean that trading volume helps to pre-

dict return volatility and vice versa. Trading volume helps to predict re-
turn volatility. However, it is unable to forecast the level of returns. In
other words, trading volume contains information about returns indi-
rectly through its predictability of return volatility. This finding supports
the Clark (1973) latent common-factor model. In this model trading vol-
ume is defined as a proxy for daily information flow in the stochastic pro-
cess generating variance of stock returns.
The authors also investigated the properties of realized volatilities and

trading volumes series with respect to long memory. The series under
study (filtered realized volatilities and trading volumes) exhibit long
memory and inmost cases degrees of fractional integration are equal (es-
pecially for stocks listed on the Warsaw Stock Exchange), which means
that they share common long-run dependence. This evidence supports a
modified version of the mixture-of-distribution hypothesis of Bollerslev
and Jubinski (1999), which posits the existence of a latent directing vari-
able possessing long memory characteristics which account for the dy-
namics of volatility and trading volume. Our results reflecting the infor-
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mation arrival process confirmed the existence of longmemory. Thismay
allow us to generalize models that are based only on short-run dynamics
and can help to provide a better characterization of joint volatility-trading
volume dependencies. In addition, the existence of fractional cointegra-
tion was examined. Despite the equality of the long memory parameters
of realized volatilities and trading volumes, by and large linear combina-
tions of these variables with a lower degree of fractional integration do
not exist, so they do not move together in the long time horizon. In other
words a mutual long-run dependence does not exist. These findings are
in general not consistent with an mdh with long memory.
To summarize, the relationships returns-return volatility-trading vol-

ume are similar for samples of companies listed on both stock markets
under study. The findings based on high frequency data are in favour
of the mdh hypothesis. However the empirical results did not support
mdh with long memory. The findings mean that it is hard to forecast re-
turns based on past values of trading volume.
One of the main limitations of this analysis is the unavailability and

high cost of high frequency data. Future analyses for comparing the ac-
tual degree of development of the wse with the stock exchange inVienna
should be performed in subperiods of bear and bull markets on the ba-
sis of intraday data for all companies listed on both indices under study.
In this way the stability and robustness of results and interdependencies
could be checked. In addition, on the basis of high frequency data the ba-
sic characteristics of the microstructure of these stock markets should be
examined and compared.
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