Acta Silvae et Ligni 118 (2019), 29-40 Izvirni znanstveni članek / Original scientific paper PATTERNS OF TREE MICROHABITATS ACROSS A GRADIENT OF MANAGED TO OLD-GROWTH CONDITIONS: A CASE STUDY FROM BEECH DOMINATED FORESTS OF SOUTH-EASTERN SLOVENIA DREVESNI MIKROHABITATI V BUKOVIH GOZDOVIH JUGOVZHODNE SLOVENIJE: PRIMER GOZDNIH REZERVATOV KOBILE IN RAVNA GORA TER BLIŽNJEGA GOSPODARSKEGA GOZDA Kristina SEVER1, Thomas A. NAGEL2 (1) Slovenian Forestry Institute, kristina.sever@gozdis.si (2) University of Ljubljana, Biotechnical Faculty, Department of Forestry and Renewable Forest Resources, tom.nagel@bf.uni-lj.si ABSTRACT An inventory of tree microhabitats was done in two unmanaged forests (Kobile and Ravna gora forest reserves) and one managed beech forest in SE Slovenia. The purpose of this study was to determine the influence of forest management, natural disturbances, and tree characteristics on microhabitat patterns. Forest structure and microhabitats were recorded in systematically placed plots (500 m2 in size) across each area. In total, we inventoried 849 trees on 54 plots and 1833 tree microhabitats. The results showed that forest management had no significant influence on the abundance of microhabitats per tree, but there were differences regarding microhabitat type between managed and unmanaged sites. There were substantially more microhabitats related to standing dead and live habitat trees in unmanaged forest (e.g. woodpecker cavities, insect galleries and bore holes, branch holes, dead branches and fruiting bodies of fungi), whereas in managed forests there were more tree microhabitats related to management (e.g. exposed heartwood, coarse bark, and epiphytic plants). The results also indicate that disturbance, tree diameter, vitality, and species influence the density, diversity, and occurrence of tree microhabitats. Key words: forest management, biodiversity, tree microhabitats, beech forests, old-growth, veteran tree, natural disturbance, dead wood IZVLEČEK V bukovih gozdovih na območju Gorjancev (JV Slovenija) je bil jeseni 2014 opravljen popis drevesnih mikrohabitatov (DM). Skupno 54 ploskev velikosti 500 m2 je bilo sistematično postavljenih na treh raziskovalnih območjih (v pragozdnem rezervatu Ravna gora in gozdnem rezervatu Kobile ter v bližnjem gospodarskem gozdu). Zabeležili smo 1833 drevesnih mikrohabitatov na 849 drevesih. Namen študije je bil ugotoviti, kako gospodarjenje, naravne motnje ter sestojne značilnosti vplivajo na pojav DM. Podatke smo analizirali s programoma Excel in SPSS z neparametričnimi metodami. Ugotovili smo, da način gospodarjenja ne vpliva značilno na številčnost DM na drevo, vpliva pa na vrsto DM. V obeh rezervatih je bilo zabeleženih več DM, povezanih z odmrlimi in starimi drevesi (dupla ptic, izletne odprtine in rovi podlubnikov ter žuželk, vejne votline, večje odmrle veje in trosnjaki gliv), v gospodarskem gozdu pa več DM, povezanih z gospodarjenjem (izpostavljena beljava, razbrazdana skorja in epifiti). Prav tako smo ugotovili, da na gostoto, raznolikost in pojav DM vplivajo tudi naravne motnje, premer in stanje drevesa ter drevesna vrsta. Ključne besede: gospodarjenje z gozdovi, drevesni mikrohabitati, bukovi gozdovi, gospodarski gozd, negospodarski gozd, Kobile, Ravna gora, naravne motnje GDK 22:53+180(497.4Kobile)(497.4Ravna gora(045)=111 DOI 10.20315/ASetL.118.3 1 INTRODUCTION 1 UVOD Maintaining forest biodiversity is a key challenge to managing the world's forests. Most countries tend to rely on a segregated approach to preserve forest biodiversity, whereby large regions are set aside in strict forest reserves to maintain native biodiversity and wood production is carried out in intensively managed-short rotation plantations (Paquette and Messier, Prispelo / Received: 12. 3. 2019 Sprejeto / Accepted: 26. 4. 2019 2010). Across Europe, and particularly in Slovenia, maintenance of forest biodiversity is often integrated with wood production goals. Under an integrated approach, it is necessary to balance wood production with key habitat structures for forest biodiversity. For example, silvicultural systems that create continuous cover, uneven-aged forest stands using native tree species may be sufficient for maintaining a broad range of generalist species, but a large component of forest 29 Sever K., Nagel T. A.: Patterns of tree microhabitats across a gradient of managed to old-growth conditions: ... biodiversity also requires habitat features that develop when forests are left unmanaged (Brunet et al., 2010). These features include large amounts of standing and lying woody debris and old veteran trees (Nagel et al., 2017a). Biodiversity experts suggest that more than 25 % of forest biodiversity is dependent on such features, including many saproxylic species of fungi, lichens, bryophytes, insects, birds, and bats (Siitonen, 2001; Bütler et al., 2013). Determining the amount (e.g. volume of deadwood or density of habitat trees) of these key habitat structures to maintain in managed forests is a challenge. In general, the more of these features that are left and maintained in a forest (i.e. moving toward old-growth conditions), the less profitable the forest will be. A recent study of deadwood and habitat trees across managed forests and forest reserves in Slovenia clearly indicates that continuous cover management is not sufficient for maintaining species that require old-growth type habitat (large amounts of decaying deadwood and habitat trees) (Nagel et al., 2017a). However, that study only focused on the density of large trees (i.e. > 50 cm dbh) as a measure of habitat trees. A key feature of old decaying habitat or veteran trees is that they contain a high density and diversity of tree microhabitats. These are defined as distinct structures occurring on living or standing dead trees that represent essential substrates for species or communities to develop, feed, shelter, or breed during a part of their life cycle. They include a diverse array of structures, such as cavities, cracks, conks of fungi, and broken branches, many of which expose sap and heartwood and facilitate wood decay in the canopy (Larrieu et al., 2018). Most studies that have examined the influence of forest management on biodiversity habitat have overlooked microhabitats (Paillet et al., 2017; Larrieu et al., 2012), yet there are an increasing number of studies that quantify them, mainly in managed forests or formerly managed forest reserves (e.g. Paillet et al., 2017; Vuidot et al., 2011; Winter et al., 2015; Winter and Möller, 2008; Regnery et al.; 2013, Larrieu and Cabanetes, 2012; Larrieu et al., 2012; and 2018; Cau-rbaud et al., 2017; Bütler et al., 2013) and, to a lesser extent, in well preserved old-growth forests (Kozak et al., 2018; Larrieu et al., 2014; Michel and Winter, 2009). Taken together, these studies generally show a different profile of microhabitats between managed and unmanaged stands. This is mainly because rotation cycles (e.g. < 100-150 years in managed forests) typically do not allow veteran trees to develop, and management activities tend to both remove damaged trees with little economic value or create particular types of microhabitats during harvesting and thinning operations (e.g. bark loss) (Larrieu et al., 2012; Vuidot et al., 2011). In contrast, old-growth forests have a high density of large old trees, which support a unique set of structures, including cavities, large broken branches from natural disturbance, and substantial accumulation of canopy deadwood (Kozak et al., 2018; Brunet et al., 2010). Legend v^mw fflHIlMii 0 vli □) 1_I_I_I_J_I_I_I_I Fig. 1: Study area showing the locations and sizes of the three sampling areas (source: GURS, 2019 and ZGS, 2019a). Slika 1: Območje raziskave (vir: GURS, 2019 in ZGS, 2019a). 30 Acta Silvae et Ligni 118 (2019), 13-27 In Slovenia, many authors have highlighted the importance of habitat and dead trees for biodiversity. Jure (2004) described the importance of old trees as habitat for saproxylic insect species. Perušek (2004) emphasized their importance for certain bird species. Golob (2006) suggested that habitat and dead trees are two of the most important indicators for monitoring the conservation of forest habitat types and species. Finally, Diaci and Perušek (2004) and Papež (2005) gave guidelines and recommendations for maintaining and increasing the number of old and dead trees in managed forests. However, there have been no studies explicitly on tree microhabitats in Slovenia thus far. In this case study, we take advantage of a gradient of forest conditions, from a managed stand, to a mature forest reserve, to a well-preserved old-growth remnant, in a region of south-eastern Slovenia dominated by beech forests. The overall goal was to quantify the density and diversity of tree microhabitats across these three levels of naturalness. Because this is the first study on microhabitats in Slovenia, the primary justification for this research was to provide baseline conditions on microhabitats in beech forests, the most common forest type in Slovenia. This information is necessary to help develop management recommendations concerning microhabitats and habitat trees, such as defining target values for the density and types of microhabitats in managed forests (Paillet et al., 2017). A secondary goal was to examine how natural disturbances influence microhabitat patterns. Both the forest reserve and old-growth forest studied here were damaged by former windthrow events, providing an opportunity to examine microhabitats in disturbed and undisturbed stands, something that has received little attention in the international literature on tree microhabitats. We emphasize that our research is a case study without replication of stand types, such that we hope this work will encourage future studies across Slovenia to provide more robust baseline conditions on tree microhabitats across various forest and management types. 2 MATERIALS AND METHODS 2 MATERIALI IN METODE 2.1 Study area 2.1 Območje raziskave The inventory of tree microhabitats was performed at three different locations: The Ravna gora old-growth forest reserve, the Kobile forest reserve, and a nearby managed forest. All three sites are located in close proximity in the Gorjanci region in South East Slovenia (Figure 1), where beech forests dominate. Ravna gora is a small remnant of old-growth (15.5 ha), with typical old-growth features, including large amounts of coarse woody debris and large canopy trees (some exceeding 100 cm dbh). The reserve was damaged by a strong thunderstorm in 1983 that caused a distinct damage patch in part of the reserve, mainly uprooting most of the canopy within the patch. The Kobile forest reserve (231 ha) is one of the largest forest reserves in Slovenia; it is located 750 m from Ravna Gora. The reserve is characterized by mature beech dominated stands, which have been unmanaged for about 90 years; natural mortality of old canopy trees indicate that some stands are reaching the beginning of the old-growth stage of development. Part of Kobile was also damaged by a windstorm about 15 years ago. Both the Kobile and Ravna Gora reserves are included in the Natura 2000 network. They provide habitat to many rare and protected plant and animal species that are linked to dead trees or veteran habitat trees, such as the white backed woodpecker (Dendrocopos leucotos Bechstein, 1802) and longhorn beetles (Morimus funereus Mulsant, 1863 Table 1: Basic characteristics of the three study locations Preglednica 1: Predstavitev osnovnih značilnosti objektov (source: ZGS, 2019b). raziskave (vir: ZGS, 2019b). Location Lokacija Size Površina (ha) Forest type Gozdne združbe Growing stock Lesna zaloga (m3/ha) Altitude Nadmorska višina (m) Bedrock Vrsta kamnine Average slope Povprečni naklon (°) Exposition Lega Tree species Drevesne vrste KOBILE FOREST RESERVE SECTION 05128B 23,2 Arunco - Fagetum 80 % Ostryo - Fagetum 20 % 349,0 570 - 960 Dolomite 30.0 West Fagus sylvatica 90 % Acer pseudoplatanus 6 % Other 4 % RAVNA GORA OLD-GROWTH FOREST RESERVE SECTION 03060 15.51 Savensi - Fagetum 100 % 832.0 860 - 965 Dolomite 9.0 SouthWest Fagus sylvatica 85 % Acer pseudoplatanus 15 % MANAGED FOREST SECTION 03054A 17.59 Savensi - Fagetum 100 % 396.0 865 - 930 Dolomite 7.0 North Fagus sylvatica 64 % Acer pseudoplatanus 28 % Picea abies 3 % Other 4 % 31 Sever K., Nagel T. A.: Patterns of tree microhabitats across a gradient of managed to old-growth conditions: ... and Rosalia alpina Linnaeus, 1758). The managed forest (section 03045 a) has a relatively homogeneous structure and is about 80 years old, with an average growing stock of 396 m3/ha, and the larger area is managed with an irregular shelterwood system (Smolic, 2014). The managed forest is located in the vicinity of both forest reserves - 290 m from Kobile and 850 m from Ravna gora). All study areas are described in Table 1. 2.2 Field measurements 2.2 Postavitev ploskev in meritve Field work was conducted in autumn 2014. It is recommended to inventory microhabitats when trees are without leaves (Larrieu et al., 2018), as visibility of tree crowns is improved. Together, we established 54 square plots, each 500 m2 in size. Plots were spaced systematically along line transects every 20 m. We placed two parallel transects in each study area; transects were approximately 300-400 m long to accommodate 8 to 10 plots per transect. At Ravna gora and Kobile, some line transects crossed areas that had been damaged by a windthrow. We placed 18 plots at Ravna gora (2 of which had fallen in the windthrow area), 18 plots at Kobile (8 in the windthrow area), and 18 plots in the managed forest. On each plot, we recorded the diameter (DBH), species, and status (live or dead) of all trees with DBH above 10 cm. The 10 cm DBH threshold was used because there are fewer microhabitats in small or young trees (Vuidot et al., 2011; Larrieu et al., 2012) and we were mainly interested in mature canopy trees. Each tree was carefully examined from the roots to the top of the crown, and all microhabitats were counted and recorded. To help with visual assessments of the crown, we used 8 power binoculars. The different types of microhabitats were based on a standardized catalogue of tree microhabitats (Kraus et al., 2016). In total, 11 different microhabitat types were distinguished in the field, of which 8 were saproxylic and 3 epixylic. These microhabitat types (categories) were further divided into sub-categories according to the size or height at which they were located: Saproxylic microhabitats that mainly occur on dead or rotten wood: • woodpecker cavities, • trunk and mould cavities, • branch holes, • water-filled cavities (dendrotelms) • insect galleries and bore holes, • bark loss / exposed sapwood, • bark pockets and bark structure (coarse bark), • dead branches and limbs / crown deadwood / trunk and crown breakage. Epixylic microhabitats that mainly appear on trees: • root buttress cavities, • fruiting bodies of fungi, • epiphytic bryophytes and lichens. Some additional categories were originally included in the survey, including vertebrate and invertebrate nests and sap and resin runs, but were later excluded because they were not present at the sites. Altogether, we recorded 1,833 microhabitats on 849 trees across the three sites. 2.3 Analyses 2.3 Izračuni in statistična obdelava Although there is no replication among the three different forest classes, we nevertheless carried out basic statistical tests to examine and compare various microhabitat patterns. It should therefore be noted that caution is needed when generalizing these data beyond the study area. The data were not normally distributed, such that nonparametric Mann-Whitney U and Kruskal-Wallis tests were used to test for differences in the quantity and diversity of microhabitats among management type (managed versus unmanaged), living and dead trees, control and windthrow areas, and differences among species and tree diameter classes. In some cases, we used the Chi-Square test of independence to determine if there were significant relationships between categorical variables, such as between management type and tree species and tree status. For tree species, we examined the two most abundant species, beech (Fagussylvatica) and sycamore maple (Acer pseudoplatanus), and grouped all other species into a separate class; these species included Acer platanoides, Carpinus betulus, Picea abies, Salix caprea, Abies alba, Tilia platyphyllos, Ulmus glabra and Prunus avium. We used Pearson's correlation coefficient to examine the relationship between microhabitats and tree diameter. All tests were performed with SPSS. 3 RESULTS 3 REZULTATI 3.1 Basic stand structure patterns 3.1 Osnovni podatki po območjih raziskave There were clear differences in stand structure among and within the study areas (Table 2), characterized by a higher density of smaller trees in the managed forest, and a lower tree density and larger diameter trees in the unmanaged areas. 32 Acta Silvae et Ligni 118 (2019), 13-27 (b) ' JET».- : . >.: ■ ; Fig. 2: Examples of different tree microhabitat types: (a) Slika 2: Različne kategorije drevesnih mikrohabitatov: (a) Vot-Woodpecker cavities - feeding holes; (b) Trunk cavities with line ptic (prehranjevalne) iz reda plezalcev (Piciformes); (b) mould; (c) Water-filled cavities (dendrotelms); and (d) Bark Debelne votline z razkrajajočim lesom; (c) Votline, napolnjene z loss / exposed sapwood. vodo; (d) Izpostavljena beljava in deli debla brez skorje 33 Sever K., Nagel T. A.: Patterns of tree microhabitats across a gradient of managed to old-growth conditions: ... Table 2: Basic characteristics of the different sampling areas. Preglednica 2: Osnovne značilnosti sestojev po objektih raziskave. Location Lokacija N. of plots Št. ploskev N. of measured trees Št. izmerjenih dreves Average n. of trees per plot Povprečno št. dreves na ploskev Average n. of snags per plot Povprečno št. odmrlih stoječih dreves na ploskev % of snags % odmrlih stoječih dreves Average dbh [cm] Povprečni prsni premer % of Fagus sylvatica % bukve N. of recorded tree microhabitats Št. zabeleženih drevesnih mikrohabitatov KOBILE 10.0 133 13.6 1.8 13.5 40.4 82.0 346 KOBILE WINDTHROW 8.0 43 5.4 1.3 23.3 44.7 95.3 209 RAVNA GORA 16.0 271 16.9 0.4 2.6 35.2 91.1 492 RAVNA GORA WIN-DTHROW 2.0 74 37.0 2.5 6.8 20.2 43.2 150 MANAGEDFOREST 18.0 328 18.2 0.3 1.5 32.2 77.7 636 All the areas were dominated by beech, although other more light demanding species, such as maple and cherry, were relatively abundant in the managed stand. The windthrow patch at Kobile is approximately 15 years old (the disturbance date is not known) and is dominated by a dense layer of beech and maple saplings, as well as scattered remnant canopy trees that survived the windthrow. There is also a high density of standing dead beech snags in the windthrow area, trees which presumably died sometime after the windthrow event due to crown damage or exposure. The windthrow patch at Ravna gora, which dates back to 1983, is dominated by a dense layer of pole-sized maple and beech, with very few surviving canopy trees. These differences in development stage following windthrow are clearly seen in the data, and also have implications for microhabitats, which is described further below. 3.2 Microhabitats patterns 3.2 Drevesni mikrohabitati glede na način gospodarjenja A comparison of microhabitats per tree (abundance and diversity) showed no significant difference (p > 0.05, Z value for abundance = -0.437 and diversity = -0.273) between managed (i.e. the managed forest stand) and unmanaged forest classes (i.e. Kobile and Ravna gora forest reserves together, including windthrow areas) (Figure 3). The average number of microhabitats per tree in unmanaged and managed forest was 2.4 and 1.8, respectively. Likewise, there was no significant difference with respect to diversity (different microhabitat categories per tree) between management classes. In both management classes, the average diversity per tree was 1.1. The most abundant types of tree microhabitats were branch holes, exposed sapwood, and root buttress cavities across both management classes. However, there were some important differences in specific types between management classes 40- 35- 30- 25- 4) d> 0,05; Z vrednost za število = -0,437, Z vrednost za raznolikost = -0,273), kar pomeni, da smo pri obeh načinih gospodarjenja našli približno enako število DM ter različnih kategorij na drevo. Vseeno pa so povprečne vrednosti števila DM na drevo v negospodarskih gozdovih nekoliko višje (2,4) kot v gospodarskih (1,8) (preglednica 3). Pri obeh načinih gospodarjenja so bili najpogostejši DM vejne votline, izpostavljena beljava in koreninske oporne votline. Kljub temu da nismo zaznali razlik v številu in raznolikosti, pa smo zaznali razlike v vrsti DM. Tako smo v obeh rezervatih zabeležili več saproksilnih DM, kot so votline ptic (p < 0,05; Z = -2,174), rovi žuželk ter vhodne in izhodne odprtine (p < 0,01; Pearsonov hi-kvadrat = 11,379, df = 1), vejne votline (p < 0,01; Z = -3,341) in bukova kresil-ka, ki je bila zabeležena samo v negospodarskem gozdu (slika 4). Prav tako smo v omenjenih gozdovih zaznali več habitatnih dreves z velikim številom DM (do 33) (slika 3). V gospodarskem gozdu pa so bili pogostejši: izpostavljena beljava (p < 0,05; Z = -1,957), razbrazdana skorja in skorjini žepi (p < 0,05; Z = -2,389) ter epifiti (p < 0,05; Pearsonov hi-kvadrat = 8.083, df = 1), manj pa je bilo DM, povezanih z odmrlim lesom (slika 4). Razlike med posameznimi raziskovalnimi območji so bile statistično značilne (p < 0,01; df = 4,), kar nakazujejo tudi povprečne vrednosti v preglednici 3. Največjo gostoto in raznolikost DM na drevo smo zabeležili na poškodovani površini v Kobilah (4,9 in 2,0), kjer je bilo tudi največ odmrlih dreves in DM, povezanih z odmrlim lesom. Najmanjšo gostoto in raznolikost pa smo zabeležili na poškodovani površini v Ravni gori (0,8 in 0,5 DM na drevo), saj tam prevladuje sestoj v fazi drogovnjaka, drevesa so tanjša in posledično je manj DM. Oba rezervata brez poškodovanih površin sta imela večjo gostoto drevesnih mikrohabitatov v primerjavi z gospodarskim gozdom. Status dreves je močno vplival na gostoto in razno- likost drevesnih mikrohabitatov na drevo (p < 0,01; Z vrednost za gostoto = -8,261, Z vrednost za raznolikost = -9,077). Odmrla drevesa so imela več mikrohabitatov kot živa (povprečno 8,1 in 1,8 DM na drevo) (preglednica 3). Saproksilni mikrohabitati, kot so votline ptic (p < 0,05; Z = -13, 450), rovi podlubnikov ter vhodne in izhodne odprtine (p < 0,05; Z = -21,513), izpostavljena beljava (p < 0,05; Z = -18,262), skorjini žepi (p < 0,05; Z = -9,618), odmrle veje in deli dreves (p < 0,05; Z = -2,158) ter trosnjaki in trosišča gliv (p < 0,05; Z = -11,867), so bili pogostejši na odmrlih drevesih. Prav tako smo zaznali razliko v številu in vrsti DM na drevo med drevesnima vrstama bukev in javor (p < 0,05). Na bukvi smo našli več DM na drevo kot na javorju (povprečno 2,2 DM na drevo na bukvi in 1,8 na javorju) (preglednica 3). Poleg tega so bili na bukvi pogostejši naslednji DM (p < 0,05): vejne votline (Z = -3,782), koreninske oporne votline (Z = -5,166) ter votline ptic, ki smo jih našli samo na bukvi. Na javorju pa so bili pogostejši (p < 0,05): razbrazdana skorja in skorjini žepi (Z = -8,390) ter epifiti (Z = -5,271), saj ti potrebujejo oporo za vzpenjanje, ki jo zagotavlja razbrazdana skorja. Med prsnim premerom dreves in številom ter raznolikostjo drevesnih mikrohabitatov smo zaznali zmerno pozitivno korelacijo. Pearsonov korelacijski koeficient za gostoto DM je znašal 0,447 (p < 0,01), za raznolikost pa 0,424 (p < 0,01). Nekateri avtorji (Larrieu in sod., 2012; Larrieu in Cabanettes, 2012; Paillet in sod., 2017; Vuidot in sod., 2011; Winter in Möller, 2008; Winter in sod., 2015), ki so raziskovali tematiko drevesnih mikrohabitatov v gozdovih zmernega pasu v Evropi, so prišli do podobnih rezultatov. Gostota drevesnih mikrohabitatov je bila pogosto podobna med različnimi stopnjami intenzivnosti gospodarjenja, razlika je bila predvsem v kategoriji drevesnih mikrohabitatov. Drevesna vrsta in vitalnost drevesa sta imela večji vpliv na številčnost DM v primerjavi z načinom gospodarjenja. V raziskavo smo vključili tudi površine v rezervatih, ki so bile poškodovane po vetrolomu. Poškodbe, ki jih povzročijo naravne motnje, kot je vetrolom, so pomembne z vidika nastanka odmrlega lesa in drevesnih mikrohabitatov. V rezervatu Kobile je veter srednje jakosti podrl in poškodoval večino dreves. Na odmrlih in poškodovanih drevesih, ki so še ostala, smo zabeležili največjo gostoto drevesnih mikrohabitatov. Nasprotno pa je v rezervatu Ravna gora zelo močan veter podrl večino dreves, nastala je vrzel, kjer se je sestoj pomladil, in na tem mestu smo zabeležili najnižjo gostoto DM na drevo. V gospodarskih gozdovih smo zabeležili visoko gostoto DM, tudi potencialnih, ki nastanejo zaradi poškodb pri sečnji in spravilu, vendar pa 39 Sever K., Nagel T. A.: Patterns of tree microhabitats across a gradient of managed to old-growth conditions: ... zaradi gospodarjenja ne dobijo možnosti, da bi se razvili, saj poškodovano drevje iz sestoja prej odstranimo. Iz rezultatov raziskave je razvidno, da so odmrla in poškodovana drevesa pomemben dejavnik za nastanek drevesnih mikrohabitatov, zato bi bilo treba del takšnih dreves v sestoju ohraniti, še posebej na območjih, kjer sta poudarjeni biotska pestrost in ohranjanje vrst (npr. območja Natura 2000). 6 REFERENCES 6 VIRI Brunet J., Fritz O., Richnau G. 2010. Biodiversity in European beech forests - a review with recommendations for sustainable forest management. Ecological Bulletinns, 53: 77-94. Bull E.L., Parks C.G., Torgersen T.R. 1997. Trees and logs important to wildlife in the interior Columbia river basin. Portland, U. S. Department of agriculture, Forest service, Pacific northwest research station: 55 str. Bütler R., Lachat T., Larrieu L., Paillet Y. 2013. Habitat trees: key elements for forest biodiversity. V: Integrative Approaches as an opportunity for the conservation of forest biodiversity. Kraus D., Krumm F. (ur.). European forest institute: 84-91. Courbaud B., Pupin C., Letort A., Cabanettes A., Larrieu L. 2017. Modelling the probability of microhabitat formation on trees using cross-sectional data. Methods Ecol. Evol. 8 (10), 1347-1359. Diaci J., Perušek M. 2004. Možnosti ohranjanja starega in odmrlega drevja pri gospodarjenju z gozdovi. V: Staro in debelo drevje v gozdu: zbornik referatov XXII. gozdarskih študijskih dni. Ljubljana, 25.-26. marec 2004. Brus R. (ur.). Ljubljana, Biotehniška fakulteta, oddelek za gozdarstvo in obnovljive gozdne vire: 227-240. Golob A. 2006. Izhodišča za monitoring ohranjenosti gozdnih habita-tnih tipov in habitatov vrst na območjih Natura 2000 v Sloveniji. V: Monitoring gospodarjenja z gozdom in gozdnato krajino. Hla-dnik D. (ur.) Strokovna in znanstvena dela, št. 27. 2006. Ljubljana, Biotehniška fakulteta, Oddelek za gozdarstvo in obnovljive gozdne vire: 223-245. GURS. 2019. Ortofoto posnetki. Geodetska uprava republike Slovenije. Jurc M. 2004. Pomen saproksilnih hroščev ter njihovo ohranjanje v Sloveniji. V: Staro in debelo drevje v gozdu: zbornik referatov XXII. gozdarskih študijskih dni. Ljubljana, 25.-26. marec 2004. Brus R. (ur.). Ljubljana, Biotehniška fakulteta, oddelek za gozdarstvo in obnovljive gozdne vire: 57-74. Kraus D., Bütler R., Krumm F., Lachat T., Larrieu L., Mergner U., Paillet Y., Rydkvist T., Schuck A., Winter S. 2016. Catalogue of tree microhabitats - Reference field list. Integrate+ Technical paper, 16 p. https://informar.eu/sites/default/files/pdf/Catalogue_Tree-Micro- habitats_Reference-Field-List_EN.pdf Kozak D, Mikolaš M., Svitok M., Bače R., Paillet Y., Larrieu L., Nagel T.A., Begovič K., Čada V., Diku A., Frankovič M., Janda P., Kameniar O., Keren S., Kjučukov P., Labusova J., Langbehn T., Malek J., Mikac S., Morrissey R.C., Novakova M.H., Schurman J.S., Svobodova K., Synek M., Teodosiu M., Toromani E., Trotsiuk V., Vitkova L., Svoboda M. 2018. Profile of tree-related microhabitats in European Primary beech-dominated forests. Forest Ecology and Management, 429: 363-374. Larrieu L., Cabanettes A., Delarue A. 2012. Impact of silviculture on dead wood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. European journal of forest research, 131: 773-786. Larrieu L., Cabanettes A. 2012. Species, live status and diameter are important tree feature for diversity and abundance of tree microhabitats in subnatural montane beech-fir forests. Canadian Journal of Forest Research, 42: 1433-1445. Larrieu L., Cabanettes A., Brin A., Bouget C., Deconchat M. 2014. Tree microhabitats at the stand scale in montane beech-fir forests: practical information for taxa conservation in forestry. Eur J Forest Res, 133: 3SS-367. Larrieu L., Paillet Y., Winter S., Butler R., Kraus D., Krumm F., Lachat T., Michel A.K., Regnery B., Vandekerkhove K. 2018. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Eco-logial Indicators, 84 (2018): 194-207. Michel A.K., Winter S. 2009. Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, U.S.A. Forest Ecology and Management, 257; 14S3-1464. Nagel T.A., Firm D., Pisek R., Mihelic T., Hladnik D., de Groot M., Rože-nbergar D. 2017a. Evaluating the influence of integrative forest management on old-growth habitat structures in a temperate forest region. Biological Conservation, 216: 101-107. Nagel T.A., Mikac S., Dolinar M., Klopčič M., Keren S., Svodoba M., Diaci J., Bončina A., Paulic V. 2017b. The natural disturbance regime in forests of the Dinaric Mountains: A Syntesis of evidence. Forest Ecology and Management, 388: 29-42. Papež J. 200S. Načrtno gospodarjenje z odmrlo lesno biomaso. Gozdarski vestnik, 63, 4: 197-221. Paquette A., Messier C. 2010. The role of plantations in managing the world's forests in the Anthropocene. Frontiers in Ecology and the Environment, 8, 1: 27-34. Paillet Y., Archaux F., Boulanger V., Debaive N., Fuhr M., Gilg O., Gosselin F., Guilbert E. 2017. Snags and large trees drive higher tree microhabitat densities in strict forest reserves. Forest Ecology and Management, 389: 176-186. Perušek M. 2004. Prilagoditve nekaterih vrst ptic na staro, debelo in odmrlo drevje. V: Staro in debelo drevje v gozdu: zbornik referatov XXII. gozdarskih študijskih dni. Ljubljana, 2S.-26. marec 2004. Brus R. (ur.). Ljubljana, Biotehniška fakulteta, oddelek za gozdarstvo in obnovljive gozdne vire: 75-85. Regnery B., Couvet D., Kubarek L., Julien J-F, Kerbirou C. 2013. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. Ecological indicators, 34: 221-230. Seibold S., Bässler C., Brandl R., Buche B., Szallies A., Thorn S., Ulyshen M.D., Müller J. 2016. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, S3: 934-943. Siitoneen J. 2001. Forest management, coarse woody debris and sa-proxylic organisms: fennoscandian boreal forests as an example. Ecological bulletins, 49: 11-41. Smolič J. 2014. »Pragozd Ravna gora in okoliški gozdovi«. Šentjernej, Zavod za gozdove Slovenije (osebni vir, oktober 2014). Vuidot A., Paillet Y., Archaux F., Gosselin F. 2011. Influence of tree characteristics and forest management on tree microhabitats. Biological conservation, 144: 441-450. Winter S., G.C. Möller. 2008. Microhabitats in lowland beech forests as monitoring tool for nature conservation. Science Direct, Forest ecology and management, 255: 1251-1261. Winter S., Höfler J., Michel A.K., Böck A., Ankerst D.P. 2015. Association of tree and plot characteristics with microhabitat formation in European beech and Douglas-fir forests. Eur. J. Forerst Res, 134: 335-347. ZGS. 2019a. Gozdni rezervati. Zavod za gozdove Slovenije. ZGS. 2019b. Pregledovalnik podatkov o gozdovih. Zavod za gozdove Slovenije. http:IIprostor.zgs.gov.siIpregledovalnikI (23.4.2019). 40