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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that
the vertex set V (G) can be partitioned into disjoint classes X1, . . . , Xk, with the condition
that vertices in Xi have pairwise distance greater than i. We show that the packing chro-
matic number for the hexagonal lattice H is 7. We also investigate the packing chromatic
number for infinite subgraphs of the square lattice Z2 with up to 13 rows. In particular,
we establish the packing chromatic number for P6�Z and provide new upper bounds on
these numbers for the other subgraphs of interest. Finally, we explore the packing chro-
matic number for some infinite subgraphs of Z2�P2. The results are partially obtained by
a computer search.
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1 Introduction and preliminaries
The packing coloring was introduced by Goddard et al. in [6] under the name broadcast
coloring. The concept comes from the regulations concerning the assignment of broadcast
frequencies to radio stations. In particular, two radio stations which are assigned the same
frequency must be placed sufficiently far apart so that neither broadcast interferes with the
reception of the other. Moreover, the geographical distance between two radio stations
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which are assigned the same frequency is directly related to the power of their broadcast
signals. These frequency restrictions have inspired the graphical coloring problem defined
below.

A k-coloring of a graph G is a function f from V (G) onto a set C = {1, 2, . . . , k}
(with no additional constraints). The elements of C are called colors. Let Xi denote the set
of vertices with the image (color) i. Note that X1, ..., Xk is partition of the vertex set of G
into disjoint (color) classes.

Let X1, ..., Xk be a partition of the vertex set of G with respect to the following con-
straints: each color class Xi is a set of vertices with the property that any distinct pair
u, v ∈ Xi satisfies dG(u, v) > i. Here dG(u, v) denotes the usual shortest path distance
between u and v. Then Xi is said to be an i-packing, while such a partition is called a
packing k-coloring. The smallest integer k for which there exists a packing k-coloring of
G is called the packing chromatic number of G and it is denoted by χρ(G).

Let G = (V,E) be a graph. A walk is a sequence of vertices v1, v2, . . . , vk and edges
vivi+1, 1 ≤ i ≤ k − 1. A path on n vertices is a walk on n distinct vertices and denoted
Pn. A walk is closed if v1 = vn. A closed walk in which all vertices (except the first and
the last) are different, is a cycle. The cycle on n vertices is denoted Cn. For u, v ∈ V (G),
dG(u, v) or d(u, v) denotes the length of the shortest walk (i.e., the number of edges on the
shortest walk) in G from u to v. These definitions extend naturally to directed graphs.

A set S ⊆ V (G) is independent if xy 6∈ E(G) for any pair of vertices x, y ∈ S.
Cardinality of a largest independent set S of G is the independence number α(G) of G.

This paper studies the packing chromatic number of hexagonal lattice and of some
infinite subgraphs of square lattice. Section 2 contains the search for the lower bound on
the packing chromatic number in hexagonal lattice. The bound is obtained by a computer
program using the dynamic approach for computing graph invariants, as described in the
first part of the section. Section 3 discusses the packing chromatic number for some infinite
subgraphs of the square lattice. We establish the packing chromatic number for P6�Z and
provide upper bounds on these numbers for Pn�Z, where 7 ≤ n ≤ 13. We conclude the
paper with the packing chromatic number for C4�Z as well as with some partial results on
upper bounds for some infinite subgraphs of Z2�P2 provided in Section 4.

The results in our paper were partially obtained by computers, mainly in Windows en-
vironment, but some also using Linux Ubuntu operating system. The machines used for
computations were also diverse: Intel i7 930 based personal computer, Intel Q9400 based
machine and a computer cluster (with up to 24 processor cores). All computations were car-
ried out during six months, starting in the middle of 2010. The development environment
and class libraries Lazarus (version of Pascal language) were used to write all necessary
programs.

2 Hexagonal lattice
The hexagonal lattice H plays a crucial role in many network applications, particularly in
frequency assignments, e.g. see [5]. It was proved by Brešar et al. [1] that the packing
chromatic number of the infinite hexagonal lattice lies between 6 and 8. The result was
improved by Fiala et al. [3], where the packing 7-coloring of the hexagonal lattice is
presented.

We show in this section that actual lower bound on the packing chromatic number of
the infinite hexagonal lattice is 7 and therefore χρ(H) = 7.
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We now present the algorithms, that have been used to provide the main result. We first
describe the concept needed to describe our computer checking. The idea is introduced in
[9] in a more general framework, but for our purposes the following description will be
sufficient.
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Figure 1: Graph H1.

Observe first the graph H1 depicted in Fig. 1. We construct Hi for i > 1 as follows.
Take the graph which is composed of an isomorphic copy of Hi−1 and of an isomorphic
copy of H1. Then add additional four edges that connect vertices u′, v′, w′ , and z′ of the
last added copy of H1 in Hi−1 with the vertices u, v, w, and z of the new copy of H1. As
an example see Fig. 2 where H2 is depicted.
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Figure 2: Graph H2.

Obviously, Hi is a subgraph ofH for i ≥ 1.
We next define a directed graph Dk as follows.
The vertices of Dk are all packing k-colorings of H1. Let u and v be two distinct

vertices ofDk. Then ũv denotes a k-coloring ofH2 such that u and v induce the respective
packing k-coloring of the first and the second copy of H1. Note that ũv need not to be a
packing k-coloring of H2. uv is an arc in Dk if and only if ũv is a packing k-coloring of
H2.

Lemma 2.1. Let k ≤ 6. Then Hi admits a packing k-coloring if and only if Dk possesses
a walk P = v1, v2, . . . , vi with vj corresponding to the j-th copy of H1.
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Proof. Suppose first that Dk possesses a walk P = v1, v2, . . . , vi. If i = 2, then P is an
arc from v1 to v2 in Dk and the claim is obvious. Let then i > 2. Suppose the claim holds
for P ′ = v1, v2, . . . , vi−1, i.e. Hi−1 admits a packing k-coloring. Since P has an arc from
vi−1 to vi, the corresponding colorings induce a packing k-coloring in a copy of H2 that
corresponds to vi−1 and vi. In order to see that the assertion holds, note that the distance
between a vertex of a copy of H1 that corresponds to vi and a vertex of a copy of H1 that
corresponds to vi−2 is at least 7.

Suppose now that Hi admits a packing k-coloring. If i = 2, then by definition of
Dk a packing k-coloring of H2 induce an arc in Dk. Let then i > 2. Note that Hi is
composed of an isomorphic copy of Hi−1, say X , and of an isomorphic copy of H1, say
Y . Y is connected in Hi to an isomorphic copy of H1, say Z. Suppose the claim holds
for Hi−1 and let P ′ = v1, v2, . . . , vi−1 denote a walk in Dk that corresponds to X . Since
Hi admits a packing k-coloring, Y induces a packing k-coloring of H1, say vi. Y and Z
together induce a packing k-coloring of H2 and therefore vi−1vi forms an arc in Dk. Then
P = v1, v2, . . . , vi−1, vi is a walk in Dk and the proof is complete.

Lemma 2.2. Let k ≤ 6. ThenH admits a packing k-coloring only if Dk contains a closed
directed walk.

Proof. Let H for a given k admit a packing k-coloring denoted f . Suppose that Dk is
acyclic. Since H1 is finite, there is obviously only a finite number of vertices (packing
k-colorings of H1) in Dk, say nk. Let then d < nk denotes the length of a longest directed
path in Dk. Take now a subgraph of H isomorphic to Hd+2. A restriction of f to Hd+2

is obviously a packing k-coloring of Hd+2. From Lemma 2.1 it follows that Hd+2 admits
a packing k-coloring if and only if Dk possesses a walk P = v1, v2, . . . , vd+2 with vj
corresponding to a packing k-coloring of the j-th copy of H1. But since Dk is acyclic, the
length of the longest walk in Dk is at most d and we obtain a contradiction.

Theorem 2.3. χρ(H) = 7.

Proof. Since it is proved in [1] that the packing chromatic number of the infinite hexagonal
lattice is at least 6 and since in [3] a coloring of the hexagonal lattice using 7 colors is
presented, we have to show thatH does not admit a packing 6-coloring.

We first constructed the graph D6 by using a computer program. The graph consists
of 26660 vertices with a maximum output degree of 37 (see also the concluding remark).
By the depth first search algorithm we next established that D6 is an acyclic graph. From
Lemma 2.2 then it follows that the hexagonal lattice cannot admit a packing 6-coloring.
This assertion completes the proof.

An alternative approach to prove Theorem 2.3 is to use a naive brute force search for
a large enough subgraph of H. The approach used in the proof Theorem 2.3, however, is
potentially much more interesting and utile in order to search for the packing chromatic
number in other families of graphs since it uses the packing k-colorings of a relatively
small graph.

3 Square lattice
Cartesian product of graphs provide a setting which has been widely used in designing large
scale computer systems and interconnection networks. The Cartesian product of graphs G
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and H is the graph G�H with vertex set V (G)× V (H) and (x1, x2)(y1, y2) ∈ E(G�H)
whenever x1y1 ∈ E(G) and x2 = y2, or x2y2 ∈ E(H) and x1 = y1. The Cartesian
product is commutative and associative, having the trivial graph as a unit, cf. [8]. The
subgraph of G�H induced by u× V (H) is isomorphic to H and it is called an H-fiber.

It will be convenient to view the square lattice as the Cartesian product of two infinite
paths, i.e Z�Z.

Goddard et al. [6] determined the packing chromatic number for infinite subgraphs of
the square lattice Z2 with up to 5 rows. In the same paper the question of determining the
packing chromatic number of the infinite square lattice was posed. The best upper bound
17 was given by Holub and Soukal [7], while the best lower bound 12 was determined by
Ekstein et al. [2].

We have considered infinite subgraphs of Z�Z with up to 13 rows. The main results
are summarized in the following proposition.

Proposition 3.1.
(i) χρ(P6�Z) = 10,
(ii) χρ(P7�Z) ≤ 11,
(iii) χρ(P8�Z) ≤ 12,
(iv) χρ(P9�Z) ≤ 13,
(v) χρ(P10�Z) ≤ 14,
(vi) χρ(P11�Z) ≤ 14,
(vii) χρ(P12�Z) ≤ 15.
(viii) χρ(P13�Z) ≤ 15.

Proof. Note first that if f is a packing k-coloring of Pn�C`, k < `, then we can construct
from f a packing k-coloring of Pn�Pm for everym. One can use f to color every Pn-fibre
(uj × Pn) of Pn�Pm in the same way as the Pn-fibre (vj mod ` × Pn) of Pn�C`

1 2 1 3 1 2 1 3 1 2 1 3 1 10
3 1 4 1 8 1 5 1 9 1 4 1 2 1
1 6 1 2 1 3 1 2 1 3 1 7 1 5
2 1 3 1 7 1 4 1 6 1 2 1 3 1
1 9 1 5 1 2 1 3 1 5 1 8 1 4
3 1 2 1 3 1 10 1 2 1 3 1 2 1

Figure 3: A packing 10-coloring of P6�C14

1 2 1 3 1 2 1 3 1 2 1 3 1 4 1 5
3 1 6 1 4 1 7 1 5 1 6 1 2 1 7 1
1 8 1 2 1 3 1 2 1 3 1 9 1 3 1 2
4 1 3 1 5 1 10 1 4 1 2 1 5 1 11 1
1 2 1 9 1 2 1 3 1 8 1 3 1 2 1 3
5 1 7 1 3 1 6 1 2 1 7 1 4 1 6 1
1 3 1 2 1 4 1 5 1 3 1 2 1 3 1 2

Figure 4: A packing 11-coloring of P7�C16
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1 2 1 3 1 2 1 3 1 2 1 3 1 4
3 1 5 1 4 1 10 1 11 1 5 1 2 1
1 8 1 2 1 3 1 2 1 3 1 6 1 9
2 1 3 1 6 1 5 1 4 1 7 1 3 1
1 4 1 7 1 2 1 3 1 2 1 12 1 5
3 1 2 1 3 1 9 1 8 1 3 1 2 1
1 11 1 5 1 4 1 2 1 5 1 4 1 10
2 1 3 1 2 1 3 1 6 1 2 1 3 1

Figure 5: A packing 12-coloring of P8�C14

1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
4 1 5 1 6 1 4 1 5 1 7 1 4 1 5 1 6 1 7 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2

12 1 8 1 7 1 10 1 11 1 6 1 9 1 13 1 4 1 5 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
6 1 4 1 9 1 5 1 4 1 8 1 5 1 7 1 10 1 11 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2
7 1 5 1 13 1 6 1 7 1 12 1 4 1 6 1 5 1 4 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3

Figure 6: A packing 13-coloring of P9�C20

In order to obtained the upper bounds, we therefore first tried to find a packing k-
coloring of Pn�Cm for every n of the interest with k (and m) being as small as possible.

The obtained colorings for n ∈ {6, 7, 8, 9, 11, 13} are depicted in Figs. 3 - 8, while a
packing 14-coloring of P10�C16 and a packing 15-coloring of P12�C16 can be obtained
from the first 10 rows of the packing 14-coloring of P11�C16 depicted in Fig. 7 and the
first 12 rows of the packing 15-coloring of P13�C16 depicted in Fig. 8, respectively.

In order to provide the lower bound for χρ(P6�Z) we applied the backtracking search,
e.g. see [10], adapted to packing colorings. Since the procedure did not find a packing
9-coloring in χρ(P6�P12), the assertion follows.

Results in Proposition 3.1 provide general upper bounds for infinite families of Carte-
sian products of two paths. For some graphs of these families however, better bounds or
even the exact numbers can be computed. The results are depicted on the web page pre-
sented in the concluding remark. We again applied the backtracking search, which it is
guaranteed to find a solution, if one exits, but it is relatively time consuming and therefore
not usable for larger graphs.

The colorings depicted in Figs. 3 - 8 have something in common: every second vertex
in a row (column) is colored by the color 1. We therefore conjecture, that if a packing k-
coloring of Pn�Pm exists, one can always find a packing k-coloring such that the classX1

is distributed as described above. This conjecture is formally stated below.

Conjecture 3.2. Let n ≥ 4 and let χρ(Pm�Pn) = k. Then exists a packing k-coloring of
Pm�Pn with |X1| = α(Pm�Pn) = dnm2 e.
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1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
4 1 5 1 8 1 4 1 6 1 7 1 5 1 12 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2
7 1 9 1 13 1 5 1 10 1 11 1 4 1 6 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
5 1 4 1 6 1 7 1 4 1 5 1 8 1 14 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2
10 1 11 1 5 1 12 1 9 1 6 1 7 1 4 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
6 1 7 1 4 1 8 1 5 1 4 1 13 1 5 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2

Figure 7: A packing 14-coloring of P11�C16

1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
4 1 5 1 8 1 14 1 9 1 6 1 7 1 12 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2
6 1 7 1 4 1 15 1 5 1 4 1 10 1 5 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
11 1 9 1 5 1 6 1 7 1 8 1 13 1 4 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2
5 1 4 1 10 1 12 1 4 1 5 1 6 1 7 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
8 1 6 1 7 1 5 1 11 1 9 1 4 1 14 1
1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2
4 1 5 1 13 1 4 1 6 1 7 1 5 1 15 1
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3

Figure 8: A packing 15-coloring of P13�C16

If the conjecture holds, the vertices of the class X1 can be fixed and therefore the
backtracking is capable to provide results for much larger graph. In order to provide lower
bounds for graphs of moderate size we therefore applied backtracking with no additional
constraints, while for larger graphs the vertices of the class X1 were fixed. The results of
these computations are summarized in Table 1. The results in the table are of two types:
exact values and upper bounds. Some of the upper bounds are exact values of χρ if the
Conjecture 3.2 holds. If a value k in the table is exact, that means that a packing k-coloring
for the graph of interest is found and that the backtracking procedure confirmed that a
packing (k−1)-coloring does not exist. An upper bound k means that a packing k-coloring
for the graph of interest exists, but we could not prove that a packing (k− 1)-coloring does
not exist. On the other hand, if an upper bound k is marked with asterisk, the backtracking
proved that a packing (k − 1)-coloring with the vertices of the class X1 fixed as stated in
the conjecture does not exist.
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m\n 6 7 8 9 10 11 12 13 14−15 16−24 25−27 28−41 > 41
6 8 9 9 9 9 9 10 10 10 10 10 10 10
7 9 9 9 10 10 10 10 10 ≤11∗ ≤11∗ ≤11∗ ≤11∗

8 9 10 10 10 ≤11∗ ≤11∗ ≤11∗ ≤11∗ ≤11∗ ≤12 ≤12
9 10 ≤11∗ ≤11∗ ≤11∗ ≤11∗ ≤11∗ ≤12∗ ≤12∗ ≤12∗ ≤13
10 ≤11∗ ≤11∗ ≤11∗ ≤12∗ ≤12∗ ≤12∗ ≤14 ≤14 ≤14
11 ≤11∗ ≤12∗ ≤12∗ ≤14 ≤14 ≤14 ≤14 ≤14
12 ≤12∗ ≤12∗ ≤15 ≤15 ≤15 ≤15 ≤15
13 ≤13 ≤15 ≤15 ≤15 ≤15 ≤15

Table 1: Packing chromatic numbers and bounds for Pm�Pn.

4 Subgraphs of Z�Z�P2

It is known that χρ(Z3) = ∞ [4]. Moreover even the packing chromatic number of
Z�Z�P2 is unbounded [3]. On the other hand, it was proved that χρ(G�Z) < ∞ for
any finite graph G [3].

Hence, it is worthy to study the packing chromatic number of some infinite subgraphs
of Z�Z�P2. In particular we considered C4�Z, C6�Z, C8�Z, C10�Z, C12�Z, and
P2�P3�Z. We were able to obtain exact results for the packing chromatic number of
C4�Z, while for the other families some partial results and bounds were found.

Proposition 4.1.
(i) χρ(C4�Z) = 9,
(ii) χρ(C6�Z) ≤ 13,
(iii) χρ(C8�Z) ≤ 15,
(iv) χρ(C10�Z) ≤ 22,
(v) χρ(C12�Z) ≤ 17,
(vi) χρ(P2�P3�Z) ≤ 18.

Proof. The upper bounds follow from the packing 9-coloring of C4�C16 and from the
packing 15-coloring of C8�C24 depicted in Fig 9 and Fig 10, respectively. The packing
13-coloring of C6�C48, the packing 22-coloring of C10�C48, the packing 17-coloring of
C12�C48 and the packing 18-coloring of P2�P3�C48 can be obtained from the authors
or from the web page presented in the concluding remark.

1 4 1 6 1 5 1 8 1 4 1 6 1 5 1 9
2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1
1 5 1 7 1 4 1 9 1 5 1 7 1 4 1 8
3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1

Figure 9: A packing 9-coloring of C4�C16

The lower bound for C4�P10 is obtained by using the backtracking procedure which
confirms that 8-coloring of C4�P10 does not exist.

Note that a coloring of G which provides the upper bound in Proposition 4.1 has the
vertices of the class X1 distributed such that the cardinality of X1 equals the independence
number of G. We therefore generalize Conjecture 3.2 as follows.

Let Xm denote Pm or Cm.
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1 13 1 8 1 4 1 5 1 9 1 4 1 5 1 8 1 4 1 5 1 9 1 4
3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1
1 6 1 7 1 12 1 14 1 6 1 7 1 13 1 15 1 6 1 7 1 10 1 5
2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1
1 4 1 9 1 5 1 4 1 8 1 5 1 4 1 9 1 5 1 4 1 8 1 11
3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1
1 5 1 15 1 6 1 7 1 10 1 11 1 6 1 7 1 12 1 14 1 6 1 7
2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1

Figure 10: A packing 15-coloring of C8�C24

Conjecture 4.2. Let n ≥ 4 and let χρ(Xm�P`�Pn) = k. Then there exists a packing
k-coloring of Xm�P`�Pn such that |X1| = α(Xm�P`�Pn).

Analogous as in Section 3 we therefore applied backtracking with no additional con-
straints for graphs of moderate size, while for larger graphs the vertices of the classX1 were
fixed. The packing colorings of the graphs of interest can be obtained from the authors or
from the web page presented in the concluding remark. The results of these computations
are summarized in Table 2, where an upper bound k marked with asterisk means that the
backtracking proved that a packing (k− 1)-coloring with the vertices of the class X1 fixed
as stated in the conjecture does not exist.

m\n 2 3 4 5 6 7 8 9 10 11 12−15 16−18 19−34 > 34
4 5 5 7 7 7 7 8 8 9 9 9 9 9 9
6 5 8 8 8 10 10 11 11 11 12 ≤ 12∗ ≤ 12∗ ≤ 13 ≤ 13
8 7 7 9 9 10 10 11 ≤12∗ ≤12∗ ≤ 13∗ ≤ 13∗ ≤ 14 ≤ 14 ≤ 15

P2�P3 5 8 8 10 10 11 ≤12∗ ≤12∗ ≤14 ≤ 15 ≤ 18 ≤ 18 ≤ 18 ≤ 18

Table 2: Packing chromatic numbers for Cm�Pn and P2�P3�Pn (below).

Concluding remark
All obtained packing colorings as well as the graph D6 can be obtained from the au-
thors or directly from the web page http://matematika-racunalnistvo.fnm.
uni-mb.si/personal/vesel/constructions.aspx.
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