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Abstract

A d-code in a graph is a set of vertices such that all pairwise distances are at least d. As
part of a study of d-codes of three-and four-dimensional regular polytopes, the maximum
independent set order of the 120-cell is calculated. A linear program based on counting
arguments leads to an upper bound of 221. An independent set of order 110 in the antipodal
collapse of the 120-cell (also known as the hemi-120-cell) gives a lower bound of 220 for
the 120-cell itself. The gap is closed by the computation described here, with the result that
the maximum independent set order of the 120-cell is 220. All maximum d-code orders of
the icosahedron, dodecahedron, 24-cell, 600-cell and 120-cell are reported.
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1 Introduction
An independent set in a graph is a set of pairwise non-adjacent vertices such that all pairs
are at distance two or more. A clique (a subset of the vertices that are pairwise adjacent) in a
graph corresponds to an independent set in the complement of the graph. Hence algorithms
for maximum clique can be applied to find maximum independent sets.

The problem of finding a maximum independent set in a graph is NP-Hard [12]. The
DIMACS Clique Challenge arose from the need to find practical algorithms for the maxi-
mum clique problem, and the proceedings volume is an excellent place to start looking for
information about practical algorithms for clique finding [14]. The challenge also included
a database of difficult clique problems. Bomze, Budinich, Pardalos, and Pelillo [1] provide
a comprehensive survey on the maximum clique problem. Östergård focusses on solving
maximum clique problems on graphs arising from various combinatorial problems. Both
surveys cite the problem of finding a maximum clique of the Keller graph of dimension 7
as a open problem. This problem has subsequently been solved [5].

In general, a d-code is a set of vertices such that pairwise distances are all at least d.
The concept of distance between vertices a and b may be cast in terms of graphs (number
of edges in the shortest path between the vertices), coding theory (the Hamming distance
between (0, 1) sequences representing coordinates of vertices), or sets (the cardinality of
the symmetric difference between the two subsets that represent the vertices). A d-code in
a graph G corresponds to an independent set in the graph H which has the same vertex set
as G and the property that two vertices u and v are adjacent in H if and only if the distance
between them inG is at most d−1. The interest for applications is usually to find maximum
d-codes, and one standard problem in the theory of error-correcting codes [16, 2] is to find
the largest d-code in the n-cube. Here we consider the problem of finding largest d-codes
in the graphs corresponding to other regular polytopes.

For polycyclic and polyhedral graphs in two and three dimensions, the construction
of d-codes has applications to chemistry [15, 4, 7, 8]. For example, sets of codes with
increasing d may be seen as templates for addition to an underlying molecular framework
by addends of increasing steric demand. Codes have been presented for chemically relevant
regular and semi-regular polyhedra [15] and arguments based on d-codes, coupled with
spectral information, give useful rationalisations of the extent and symmetry of addition
in fullerene chemistry, for example [9, 10, 11]. Although not invoked in chemistry so far,
d-anticodes, defined by the requirement that pairwise distances should not exceed d, would
model the opposite regime of attachment to a framework where the added groups cluster
under strong inter-addend attraction. Extension of the existing lists [15] to d-codes in the
graphs of all regular polytopes is a finite task, as there are only the following convex regular
polytopes [3]: in dimension n the n-simplex (αn), the n-cross-polytope (βn), the n-cube
(γn), and additionally in dimension 2 the regular polygons, and in dimensions 3 and 4, five
sporadic polytopes. In dimension 3, α3 is the tetrahedron, β3 the octahedron and γ3 the
cube, and there is a dual pair of sporadic polyhedra: the icosahedron and the dodecahedron.
In dimension 4, the analogues of the icosahedron and dodecahedron are the 600-cell (all of
its independent sets have been enumerated previously [6]) and the 120-cell (again a dual
pair), and there is also the self-dual 24-cell, without analogue in higher or lower dimensions
[3].

Codes for the polytopes common to all dimensions (αn, βn and γn) are well studied.
The 1-skeleton of αn is the complete graph Kn, of diameter 1, and the 1-skeleton of βn is
the complete multipartite graph (the Cocktail-Party graph) Kn(2) ≡ Cp(n) ≡ K2,2,...,2, of
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diameter 2, so coding problems are trivial for both. Codes for γn are the subject of classi-
cal coding theory [16]. As a bipartite graph with equal partite sets, γn has independence
number 2n−1. The coding problem is also trivial in two dimensions, where the order of the
d-code is bn/dc for the cycle of length n. It only remains to study the five exceptional reg-
ular polytopes in dimensions 3 and 4. Most of these problems are easy (see the summary
in Table 3, §3). The difficult case is that of the independence number of the 600-vertex
120-cell, which does not appear to be computable in a reasonable amount of time by use of
standard algorithms. The solution to this problem is described in the following.

2 Maximum Independent Sets of the 120-cell
The 120-cell is the largest regular polytope in 4 dimensions. Its properties are described
in Coxeter’s book on Regular Polytopes [3] and Stillwell’s survey paper [20], for exam-
ple. The 1-skeleton of the 120-cell is a 4-regular graph with 600 vertices, 720 pentagonal
faces and 120 dodecahedral cells. Models exhibiting three-dimensional projections of the
complete object have been constructed; photographs of Donchian’s models are shown in
[3]. A partial model of the 120-cell is given as an example of a construction using Zome
Models [13, Ch. 21]; this 330-vertex subgraph has 45 of the 120 dodecahedra, arranged in
concentric shells of 1, 12 and 32 face-sharing cells.

In the following subsections, the steps leading to the solution of the problem of finding
the maximum independent set order of the 120-cell are described. First, a description is
given of how the vertices of the graph are numbered and how its automorphism group is
computed (§2.1). Then (§2.2) a lower bound of 220 for the maximum independent set order
is derived from an independent set of order 110 in the antipodal collapse of the 120-cell.
An upper bound of 221 is established by use of a linear program (§2.3), and the information
from the solution to the integer program is then exploited (§2.4) to infer structural informa-
tion about a putative independent set of order 221. This information is subsequently used
in the computational search described in the remaining subsections, which establishes that
the maximum independent set order of the 120-cell is 220.

2.1 Numbering the Graph and its Automorphism Group

A special breadth-first search was used for numbering the 120-cell and finding a permuta-
tion representation of its automorphism group on the 600 vertices. The search in question
is performed as follows:

Clockwise BFS Labelling Algorithm:

Input: an adjacency list for the 120-cell or its collapse.
Output: a canonical labelling for the graph and its automorphisms expressed in terms of

permutations of the vertices of the canonically labelled graph.

To obtain the initial canonical labelling, select one vertex to be labelled as vertex 0 and
then choose one way to label its four neighbours as 1, 2, 3 and 4. The remaining vertices
are labelled using a breadth-first search starting at vertex 0, and visiting its neighbours
1, 2, 3, and 4 in order. In order to make the breath-first search labelling deterministic, the
neighbours of a vertex v are visited in an order which is decided as follows. Each unlabelled
neighbour u of vertex v is in one pentagon with vertex v and the breadth-first search parent
p of vertex v. Let the other two vertices of the pentagon be x and y so that the vertices of
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Figure 1: A subgraph of the 120-cell, as labelled by the Clockwise BFS Labelling Algo-
rithm.

this pentagon in cyclic order are u, v, p, x, y. Since x is a neighbour of p (and p is the
breadth-first search parent of v), x has already been labelled. The order of the neighbours
of vertex v is selected so that the labels of the vertices indicated by x in their pentagons are
sorted in increasing order. Figure 1 shows a portion of the 120-cell labelled this way.

The 120-cell has an automorphism group of order 14,400. Obtaining the permutations
of the automorphism group is easy using the clockwise BFS as described above, as they
correspond to choosing a start vertex for the BFS in each of the 600 possible ways, and for
each start, considering each of the 4! permutations of its neighbours (14,400 = 600 × 4!).

2.2 A Lower Bound from the Antipodal Collapse

Given a vertex v of a graph, its antipodal vertices are those at maximum distance from v.
The 120-cell has the property that each of its vertices has a unique antipodal vertex. The
antipodal collapse of the 120-cell is obtained by identifying each vertex of the 120-cell
with its antipodal vertex. If {u, u′} and {v, v′} are two sets of antipodal pairs of vertices of
a graphG, then in the collapse, there is one edge between {u, u′} and {v, v′} corresponding
to each edge of the form (u, v), (u, v′), (u′, v), or (u′, v′) of the original graph G. Since
multiple edges are inconsequential for the independent-set problem, each multiple edge is
replaced by a single edge. The result is a 4-regular graph on 300 vertices which has the
same local structure as the 120-cell. This graph is the 1-skeleton of the hemi-120-cell, one
of the projective regular polytopes of rank 4 in projective 3-space [17, Section 6C].

The automorphism group order of the collapse is 300 × 4! = 7200, and the Clockwise
BFS Labelling Algorithm from Section 2.1 is first used to label the vertices and find the
automorphisms. An independent set of order k in the antipodal collapse can be lifted to
one of order 2k in the 120-cell (if a vertex is in the independent set in the collapse, then
include the two corresponding vertices of the 120-cell).

A non-exhaustive computer search indicated that the antipodal collapse has at least
60 independent sets of order 110 up to isomorphism. This shows that the 120-cell has
an independent set of order 220. The most symmetrical of the sets that we found in the
antipodal collapse has stabiliser group of order 8. This set is lifted (Table 1) to give an
independent set of order 220 in the 120-cell, with 16 automorphisms.
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2.3 A Linear Programming Upper Bound

An upper bound of 221 is not difficult to prove by solving a linear programming problem
which sets up necessary constraints for a maximum independent set of the 120-cell. The
nine variables for this linear program are as follows:

R = the number of red (independent set) vertices
Bi for i = 0, 1, 2, 3, 4 = the number of blue (not in the independent set) vertices having

i red neighbours.
Pi for i = 0, 1, 2 = the number of pentagons with i red vertices. Each of the nine vari-

ables is constrained to be non-negative. The LP has six further constraints (five equalities
and one inequality). These are introduced after proving some theorems required to justify
the sixth constraint. The other constraints are all trivial conditions.

A blue pentagon is a pentagon whose vertices are all blue (i.e., none of them are in the
independent set). An isolated blue pentagon is defined to be a blue pentagon such that all
of its ten incident vertices (i.e., the ten vertices that are adjacent to a vertex of the pentagon
but are not themselves in the pentagon) are red. A blue pentagon with at least one incident
blue vertex is called a non-isolated blue pentagon. A blue vertex with one red and three
blue neighbours is called a key. A blue vertex with four red neighbours is called an isolated
blue vertex.

Remark 2.1. The independent set of order 220 listed in Table 1 has no isolated blue ver-
tices and no keys.

Theorem 2.2. For any maximum independent set, the number of non-isolated blue pen-
tagons is at most B1 (the number of keys).

Proof. Note that for a maximum independent set, it is not possible to have a blue vertex
v with four blue neighbours since otherwise the independent set order could be increased
by colouring v red. Therefore, if there is a blue pentagon which is a non-isolated blue

0 5 6 9 10 13 14 21 22 23 24 29 32 37 39
42 46 47 55 58 60 61 64 68 69 71 74 76 78 81
83 85 89 90 91 93 95 98 100 102 105 108 109 113 114

116 119 122 129 132 133 136 138 142 148 150 154 155 162 167
171 172 173 178 182 185 186 190 193 194 195 196 197 199 202
210 211 216 217 220 222 227 228 229 230 232 236 242 243 248
249 253 259 260 263 265 267 274 277 280 281 282 283 284 286
289 290 292 293 297 300 304 309 311 312 316 317 318 319 322
324 326 328 329 333 334 335 336 343 346 348 350 357 366 370
373 374 375 379 380 381 385 390 391 398 400 406 410 411 414
417 419 421 423 426 427 428 431 433 435 436 437 440 441 442
443 455 458 462 465 466 470 475 476 480 482 489 493 495 497
500 505 507 508 509 510 511 514 517 518 520 524 525 528 529
533 535 537 540 542 544 545 551 556 557 560 563 566 570 571
574 579 581 584 586 588 589 592 594 599

Table 1: An independent set of order 220 in the 120-cell generated from a set of order 110
in the antipodal collapse.
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pentagon, there must be at least one blue vertex on that pentagon which has one red and
three blue neighbours (a key). The number of vertices like this is B1. This does not
complete the proof however because a key can be on 0, 1, 2, or 3 blue pentagons.

To finish the proof, start by assigning a weight to each vertex v of the graph which is a
key: assign a weight of one if v is contained in at least one non-isolated blue pentagon and
zero otherwise. The sum of the weights of the keys is at most B1.

Next, assign fractional weights to the non-isolated blue pentagons. If a key v is on r
blue pentagons, this key contributes a weight of 1/r to each of its blue pentagons. The sum
of the weights of the non-isolated blue pentagons is equal to the sum of the weights of the
keys.

To finish the proof, we argue that for each of the non-isolated blue pentagons, the sum
of the contributions from its keys is at least one, meaning that the number of non-isolated
blue pentagons is at most B1. This argument is broken down into three cases according to
the types of keys on each non-isolated blue pentagon P .

Case 1: Pentagon P contains a key v which is only in one non-isolated blue pentagon.
In this case, the weight that v contributes to P is one and so P has weight at least one.

Case 2: Pentagon P contains a key v which is in two non-isolated blue pentagons.
Let A and B the the two non-isolated blue pentagons containing v and let (v, x) be the
edge common to A and B. Vertex x is also a key. If it is a key which is in exactly two
non-isolated blue pentagons then the weight of P is at least one, since each of v and x
contributes 1/2 to the weight of P . If x is in three blue pentagons, then consider Case 3
instead of Case 2.

Case 3: Pentagon P contains a key v which is in three non-isolated blue pentagons. Let
the three blue neighbours of v be x, y and z where x and y are the vertices which are on
P . Since v is on three non-isolated blue pentagons, x and y are either on two or three non-
isolated blue pentagons and hence they contribute at least 1/3 to each pentagon they are
on. Since P has contributions of at least 1/3 from v, x, and y, the sum of its contributions
is at least one, as required.

Corollary 2.3. For any maximum independent set of the 120-cell, the number of isolated
blue pentagons is at least P0 −B1.

Theorem 2.4. For a maximum independent set of the 120-cell, if I is the number of isolated
blue pentagons, then 2I ≤ P1.

Proof. In a dodecahedron, an isolated blue pentagon P appears as a blue pentagon with
five incident red vertices. This means that the only possibility for another blue pentagon
in the dodecahedron is the pentagon Q antipodal to P (all other pentagons contain at least
one of the five reds). But the vertices in the dodecahedron incident to Q cannot be red
(they have neighbours which are red) and therefore, a dodecahedron contains at most one
isolated blue pentagon.

Any edge (u, v) of the pentagon Q antipodal to P with both endpoints blue is in a
pentagon P ′ with exactly one red vertex in the dodecahedron which contains P and Q.
Since the pentagon Q has at least one edge with both endpoints blue, there is at least one
pentagon P ′ with exactly one red vertex in the dodecahedron with P and Q.

Each pentagon of the 120-cell falls into exactly two dodecahedra. To finish the proof,
we argue that a pentagon P ′ with exactly one red vertex occurs as one which must be
present as described above because of an isolated blue pentagon in at most one of its two
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dodecahedra. Suppose that P ′ corresponds to isolated blue pentagons in both of its two
dodecahedra. Then the picture must be as in Figure 2 where the isolated blue pentagons are
A and B, and P ′ is the pentagon with the bold edges. Vertex x is incident to A and vertex
y is incident to B so both x and y must be red. This is a contradiction since x and y are
adjacent to each other in the 120-cell.

 B

 A

y

x

r

a

b

u v

Figure 2: Two isolated blue pentagons A and B sharing a pentagon P ′ that has one red
vertex (P ′ outlined in bold).

The conclusion is that each isolated blue pentagon maps to at least one pentagon with
exactly one red in each of its two dodecahedra. Further, such pentagons with one red
correspond to at most one isolated blue pentagon of the graph. This implies that 2I ≤
P1.

We now have the necessary theory to justify an integer programming problem which
provides necessary constraints on a maximum independent set of the 120-cell. The condi-
tions for the integer programming problem are:

1. B1 +B2 +B3 +B4 +R = 600
2. P0 + P1 + P2 = 720
3. 4R = 1B1 + 2B2 + 3B3 + 4B4

4. 6R = 0P0 + 1P1 + 2P2

5. 5P0 + 2P1 = 3B1 + 1B2

6. P1 ≥ 2(P0 −B1)
The justifications for these constraints are:

1. The 120-cell has 600 vertices and for a maximum independent set B0 = 0 as noted
earlier.
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2. The 120-cell has 720 pentagons.

3. Each red vertex is incident to four blue vertices. Hence, four times the number of
red vertices is equal to the number of times a blue vertex is adjacent to a red one.

4. Each vertex is in six pentagons. Hence, six times the number of red vertices is equal
to the number of times a red vertex occurs in a pentagon.

5. A blue 2-path is a path on 3 vertices (and hence two edges) whose vertices are
all blue. Since each 2-path of the graph is in a unique pentagon, the number of blue 2-
paths is 5P0 + 2P1. The number of blue 2-paths is also equal to 3B1 + 1B2 since a blue
vertex with three blue neighbours is the centre of three blue 2-paths, a blue vertex with two
blue neighbours is the centre of one blue 2-path, and a blue vertex with zero or one blue
neighbours is not the central vertex of any blue 2-path.

6. This constraint comes from combining Corollary 2.3 with Theorem 2.4.

To get an upper bound for the maximum independent set order, the objective function
is to maximize the value of R. Solving the linear programming relaxation gives an up-
per bound of 2880/13 = 221.538 . . . which gives an upper bound of 221 on the integer
programming problem. (The optimum solution is attained for the vector P0 = 360/13,
P1 = 720/13, P2 = 8280/13, B1 = 0, B2 = 3240/13, B3 = 1680/13, B4 = 0, and the
polytope thus defined is three-dimensional and has nine-vertices.) Applying the same tactic
to the antipodal collapse gives an upper bound of 110 for the collapse, implying that the
independent set of order 110 found in §2.2 is a maximum independent set of the antipodal
collapse.

2.4 Exploiting the Integer Program Information

The example in §2.2 gives a lower bound of 220 for the order of a maximum independent
set of the 120-cell. On the other hand, §2.3 proves an upper bound of 221. This implies
that if the independent set from §2.2 is not optimal, then there is an independent set of the
120-cell of order 221. The next step is to examine the solutions of the integer programming
problem from §2.3 which have the number R of red vertices equal to 221 to gain structural
information as to what a solution of order 221 must look like.

Table 2 shows all the integer solutions that could result in an independent set of order
221. Correctness of the LP code is not an issue since it is not hard to check the final
solutions by hand.

Scanning the table of solutions, we observe that P0 − B1 is always at least 25. From
Corollary 2.3, the implication is that any independent set of order 221 has at least 25 iso-
lated blue pentagons. Observe also that all cases satisfy the constraint that the number B1

of keys plus two times the number B4 of isolated blues is at most seven.

The existence of an independent set of order 221 requires that there is some way to
add at least 25 isolated blue pentagons to the 120-cell without creating too many keys or
isolated blue vertices (B1 + 2B4 ≤ 7). The next two sections explain how we first tried
planting a smaller number of isolated blue pentagons in part of the graph in all ways up to
isomorphism and give an account of how the search for the 25 isolated blue pentagons was
completed.
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P0 P1 P2 B1 B2 B3 B4

25 64 631 0 253 126 0
26 62 632 0 254 124 1
27 60 633 0 255 122 2
28 58 634 0 256 120 3
26 62 632 1 251 127 0
27 60 633 1 252 125 1
28 58 634 1 253 123 2
29 56 635 1 254 121 3
27 60 633 2 249 128 0
28 58 634 2 250 126 1
29 56 635 2 251 124 2
28 58 634 3 247 129 0
29 56 635 3 248 127 1
30 54 636 3 249 125 2
29 56 635 4 245 130 0
30 54 636 4 246 128 1
30 54 636 5 243 131 0
31 52 637 5 244 129 1
31 52 637 6 241 132 0
32 50 638 7 239 133 0

Table 2: Solutions to the Linear Program that would correspond to an independent set of
order 221.

2.5 Planting Blue Pentagons

A typical approach to trying to plant 25 isolated blue pentagons into the 120-cell that covers
all possibilities up to isomorphism is to choose some smaller number of pentagons (for
example, seven) that are placed in all ways up to isomorphism and then add the rest without
concern for duplication since at some point, isomorphism screening is too costly for the
amount of duplication prevented. This approach was taken first and it resulted in too many
cases for a practical solution. The next strategy applied was to consider only a subgraph
of the 120-cell for which it is possible to prove that at least some number k of isolated
pentagons must be present in order to reach an independent set of order 221, and then to
place the k pentagons in this region in all ways up to isomorphism.

It is assumed that vertices of the 120-cell are labelled by the Clockwise BFS Labelling
Algorithm from Section 2.1 The restricted region for consideration is defined by first sort-
ing the pentagons. Before sorting, a list of five integers is created for each pentagon which
contains the labels of its vertices in reverse sorted order (which is not necessarily the same
as a cyclic ordering). Then these lists are compared lexicographically while sorting the pen-
tagons. This gives a sorted order of pentagons P0, P1, . . . , P719. The first six pentagons
are the ones pictured in Figure 1. The sequences used to sort them are:

P0 : 8, 5, 2, 1, 0

P1 : 11, 6, 3, 1, 0

P2 : 12, 9, 3, 2, 0

P3 : 14, 7, 4, 1, 0
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P4 : 15, 10, 4, 2, 0 and
P5 : 16, 13, 4, 3, 0.
The last two pentagons (illustrating how lexicographic order is used to break ties) are:
P718 : 599, 598, 596, 592, 591 and
P719 : 599, 598, 597, 594, 593.
This (slightly unnatural) ordering was selected so that the maximum vertex number

occurring in the pentagons numbered P0, P1, . . . , Pk is minimized given a chosen value
of k. Intuitively, this helps to compress the first k pentagons into a small subgraph of the
120-cell.

After some experimentation, it was decided that planting seven pentagons in all ways
up to isomorphism was the best compromise between the number of cases created and
the difficulty for finishing the cases. The restricted region for planting these pentagons is
shown to consist of the first 173 pentagons (P0, P1, . . . , P172) in the following lemma.

Lemma 2.5. If the 120-cell has an independent set of order 221 then it is possible to find
an independent set of order 221 such that there are at least seven isolated blue pentagons
in the first 173 pentagons (P0, P1, . . . , P172).

Proof. We already know from the results in §2.3 that the entire graph contains at least
25 isolated blue pentagons if there is an independent set of order 221. The idea for this
proof is to count the number of isolated blue pentagons in the graph by considering the
sets of pentagons numbered P0, P1, . . . , P172 for each of the automorphisms of the graph.
If the average count over each of these sets P0, P1, . . . , P172 is greater than six, then we
can conclude that there is at least one automorphism of the graph such that the count for
P0, P1, . . . , P172 is at least seven.

Owing to the structure of the automorphism group of the graph, taking into consider-
ation the sets of pentagons labelled P0, P1, . . . , P172 over all automorphisms accounts for
each pentagon the same number of times; each is included 14, 400× 173/720 times. If the
graph has 25 or more isolated blue pentagons, then the sum of the number of isolated blue
pentagons over each choice for P0, P1, . . . , P172 is equal to at least 25×14400×173/720.
Hence, the average term is equal to at least 25×173/720. But 25×173/720 > 6 and there-
fore, since the average is greater than six, at least one case must be greater than six.

The total number of ways to plant seven isolated blue pentagons in the set P0, . . . , P172

is equal to 8,211,380. It is a little more difficult than usual to define a canonical form
for these, because some of the automorphisms of the graph can map a choice of seven
pentagons selected from P0, P1, . . . , P172 to another choice of seven pentagons which is
lexicographically smaller, but is no longer a selection from the pentagons P0, P1, . . . , P172

because the new set contains a pentagon numbered 173 or higher. To accommodate this
difficulty, the canonical form is selected so that it is the lexicographically minimum set of
seven pentagons with the additional property that the pentagon with the largest number in
the set corresponds to some Pk for k ≤ 172.

The algorithms used for this phase were very simple. A nested set of seven loops was
used to plant all possible choices for seven isolated blue pentagons. For each isolated blue
pentagon selected, the ten incident vertices are coloured red. Vertices adjacent to a red
vertex are coloured blue. To determine if an additional choice for an isolated blue pentagon
is compatible with a previously chosen set, it suffices to check if its ten incident vertices
can all legally be coloured red (that is, they are either uncoloured or red already, but cannot
be blue).
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Then the 8,211,380 ways to place the isolated blue pentagons were run through a screen
which kept only the canonical cases. For this step, the automorphism group of the graph
was precomputed as described in §2.1. As a check on the computation, for each of the
1,379,646 cases retained, we determined the number of valid images it had (that is, the
number of ways to renumber it with an automorphism such that the largest label on a
pentagon is 172). The sum of these was equal to 8,211,380 (the number of cases possible
without removing duplicates), a necessary condition for correctness. As an additional check
of correctness, the number of cases to consider up to isomorphism matches that from a
computation done earlier with a different approach.

2.6 Finishing the Search by a Backtrack

For each of the 1,379,646 non-isomorphic ways of planting seven blue pentagons in the
pentagons P0, P1, ...P172 (described in §2.5), the next step is to determine if it is possible
to extend the configuration so that it contains at least 25 isolated blue pentagons. The
possibilities for an independent set of order 221 outlined in §2.4 indicate that a solution of
order 221 does not have many keys or isolated blues, more specifically, thatB1+2B4 ≤ 7.

A backtracking routine was used to try to extend each of the cases with the seven
isolated blue pentagons to 25 isolated blue pentagons without creating too many isolated
blues or keys in the process. Some tricks were used to make this computation finish in a
reasonable amount of time.

The backtracking algorithm at level k considers two cases: one where the pentagon
Pk is not included as an isolated blue pentagon, and if feasible, a second case where the
pentagon Pk is included as an isolated blue pentagon (which means that its ten incident
vertices are coloured red).

The colour of a vertex is recorded as an integer which is 0 if a vertex is not coloured.
The colour is decremented each time a vertex is coloured red, or incremented each time
a vertex is coloured blue. This permits the algorithm to colour vertices then backtrack by
uncolouring the vertices without using a data structure such as a stack to indicate vertices
with a status change. Only blue or white vertices can legally be coloured blue. Only red or
white vertices can legally be coloured red. If a vertex is coloured red, then its neighbours
are immediately coloured blue. When the colour of a vertex returns to zero, it returns to
the uncoloured status.

As the algorithm progresses, certain vertices can safely be coloured red. These are
characterized in the next theorem.

Theorem 2.6. Suppose a 120-cell has an independent set of vertices coloured red, the
neighbours of these are coloured blue, and the remaining vertices are uncoloured. If there
is an uncoloured vertex v with three blue neighbours and one uncoloured neighbour w,
then if there is a maximum independent set of the 120-cell which is consistent with the
entire colouring, there is a maximum independent set with v coloured red.

Proof. If v is red in the maximum independent set then there is nothing to prove. If v
is not red, then w is red because if w is blue instead, v is a blue vertex with four blue
neighbours, contradicting the maximality of the independent set (colouring v red increases
the independent set order). An independent set of the same order can then be found by
changing the colouring so that v is red and w is blue.

The algorithm first inserts the initial seven isolated blue pentagons, waiting until they
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are all included before applying Theorem 2.6. The delay is needed because applying the
theorem earlier can result in a colouring inconsistent with the initial pentagons. If there are
two uncoloured vertices u and v which are adjacent to each other and also each is adjacent
to three blues, there are two choices for how to apply Theorem 2.6, and it is possible that
only one of these is consistent with the initial selection of the seven isolated blue pentagons.

During the course of the backtrack, each time an isolated blue pentagon is added to the
current configuration, a queue is used to record vertices which evolve to being white with
three blue neighbours. As the goal is to try to add 25 isolated blue pentagons, 25 queues
suffice.

After addition of the ten incident reds of the isolated blue pentagon, the algorithm
traverses the queue, and each vertex in the queue which is not blue is coloured red (as
noted in the last paragraph, applying Theorem 2.6 at a vertex may prevent its subsequent
use at another vertex). This process can trigger the addition of further vertices to the queue.
When the isolated blue pentagon is removed (when the computation backtracks), the queue
is first traversed in the reverse order to undo these changes.

New isolated blue vertices are recorded at the point when the fourth neighbour of the
isolated blue is initially coloured red. The number is decremented when this fourth neigh-
bour becomes uncoloured again. Keys arise either when an uncoloured vertex with three
blue neighbours is coloured blue or when a third neighbour of a blue vertex is initially
coloured blue. To facilitate the detection of isolated blue vertices and keys, respectively,
the number of red neighbours and the number of blue neighbours of each vertex are main-
tained.

The algorithm takes exponential time to run, which is not surprising as the problem is
hard. A careful selection of the data structures results in an approach such that the work it
does to maintain the data structures is at most a constant times the number of times a vertex
is coloured red.

The algorithm also used some precomputed upper bounds. We determined the max-
imum number of isolated blue pentagons possible if the pentagons are chosen from Pk,
Pk+1, . . . , P719 such that the penalty (equal to B1 + 2B4) is at most seven (as required
for an independent set of order 221). There is no point in continuing this computation past
the point where 18 isolated blue pentagons are possible: since we start with seven, only 18
more are required. Theorem 2.6 was not used for computing these upper bounds, owing
to its interference with what we were trying to compute. At a given level of the backtrack
for placing the 25 blue pentagons, if the number of isolated blue pentagons included so far
plus the bound for the level is less than 25, the algorithm backs up, since it is necessary to
have at least 25 isolated blue pentagons for an independent set of order 221.

It is possible in the course of the algorithm that an isolated blue pentagon which has yet
not been considered ends up with all ten of its incident vertices red. This however does not
preclude the algorithm from adding it: the incident vertices just get coloured red more than
once.

The algorithm for this last backtrack was coded independently twice to ensure correct-
ness. The 1,379,646 cases were split into 64 slices, and run in parallel on a 64-processor
array, with the run of the C program for a typical slice taking 16−18 hours. Both programs
concluded that it is not possible to include 25 blue pentagons in the 120-cell with a penalty
of seven or less after applications of Theorem 2.6 are taken into account. Because this
must be possible for an independent set of order 221 to exist, the maximum independent
set order of the 120-cell is 220.
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Polytope n m f r g D |Cd|
Icosahedron 12 30 20 5 3 3 3, 2
Dodecahedron 20 30 12 3 5 5 8, 4, 2, 2
24-cell 24 96 96 8 3 3 8, 2
600-cell 120 720 1200 12 3 5 24, 8, 3, 2
120-cell 600 1200 720 4 5 15 220, 120, 48, 28, 24, 10, 8, 5, 5,

3, 2, 2, 2, 2

Table 3: Exceptional polytopes in dimensions three and four. The columns n, m, and f
give the numbers of vertices, edges and two-dimensional faces of the polytope; r, g and D
are the vertex degree, girth and diameter of the graph. The entries |Cd| are the maximum
orders of d-codes for d = 2, 3, ...D − 1.

3 Other Results
Table 3 lists the orders of the maximum d-codes for all five exceptional polytopes. Apart
from the 2-code of the 120-cell, the only case requiring special tactics is the 4-code of the
120-cell, which was solved as described in [18]. All five polytopes have antipodal pairs
as their d-codes for d = D, the diameter of the graph. When the codes are considered in
terms of their ‘contact polytopes’ [15], some interesting ‘Russian Doll’-like interconnec-
tions are seen. In the sense used in previous work [15], the contact polytope of a d-code
has the same vertices as the independent set, and two vertices of the contact polytope are
joined by an edge if the independent-set vertices are at distance d in the parent graph. Sim-
plices of dimensions two, three and four appear: the triangle (α2) is the contact polygon
of the 3-code of the icosahedron, the 4-code of the 600-cell and the 11-code of the 120-
cell; the tetrahedron (α3) is the contact polyhedron of the 3-code of the dodecahedron; the
four-dimensional simplex (α4) is the contact polytope of the 9-code of the 120-cell. The
cube appears (γ3) appears as the contact polytope of the 2-code of the dodecahedron. The
hyperoctahedron (β4) appears as the contact polytope of 2-code of the 24-cell, 3-code of
the 600-cell and the 8-code of the 120-cell. The 24-cell itself is the contact polytope of the
2-code of the 600-cell. The 3-code of the 120-cell is a perfect code [10] in the sense that
each vertex of the code is at the centre of a ball of radius 1 containing one vertex of the
120-cell and its four nearest neighbours; the 120-cell is then partitioned exactly into 120
such balls, with centres on the vertex set of a 600-cell whose edges are paths of length 3
in the 120-cell. These observations are closely related to the fact, pointed out by Coxeter
[3], that the vertices of the 120-cell embedded as an equilateral object in four-dimensional
space include the vertices of all fifteen of the other regular polytopes in four dimensions,
a property that has no analogy in three dimensions, where the dodecahedron contains the
vertices of the cube and tetrahedron, but not those of the octahedron or icosahedron.
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