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Abstract

An NMNR-coloring of a hypergraph is a coloring of vertices such that in every hy-
peredge at least two vertices are colored with distinct colors, and at least two vertices are
colored with the same color. We prove that every 3-uniform 3-regular hypergraph admits
an NMNR-coloring with at most 3 colors. As a corollary, we confirm the conjecture that
every bipartite cubic graph admits a 2-homogenous coloring, where a k-homogenous col-
oring of a graph G is a proper coloring of vertices such that the number of colors in the
neigborhood of any vertex equals k. We also introduce several other results and propose
some additional problems.
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1 Introduction
In this paper we continue the study of homogenous colorings of graphs initiated in [8],
specifically focusing on regular bipartite graphs. We consider only finite graphs and hype-
graphs. Every graphG = (V,E) is determined by the set of vertices V = V (G) and the set
of edges E = E(G). For any undefined notions used in the paper we refer to the standard
monograph [1]. Given a vertex-coloring ϕ of a graph G, the palette of a vertex v, P (v), is
the set of colors appearing in the neighborhoodN(v) of v, i.e. P (v) = {ϕ(u) |u ∈ N(v)}.
The cardinality of P (v) is denoted by p(v).
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A k-homogenous coloring of a graph G is a proper coloring of its vertices such that the
palette of every vertex is of size k. The smallest number of colors (if it exists), for which G
admits a k-homogenous coloring is called k-homogenous chromatic number and denoted
χk
h(G).

As observed in [8], only bipartite graphs admit a 1-homogenous coloring: every proper
coloring of a bipartite graph with two colors is admissible. Additionally, every d-regular
graph admits a d-homogenous coloring: assigning distinct color to every vertex does the
job. In fact, the d-homogenous chromatic number of a d-regular graph G is equal to the
chromatic number of the square graph G2, i.e. the graph with V (G2) = V (G) where two
vertices are adjacent if they are at distance at most 2 in G.

In the other cases, the question whether a graph admits a homogenous k-coloring be-
comes harder. In particular, two types of problems arise: (a) for a given integer k and a
graph G, does G admit a k-homogenous coloring; and (b) if (a) is answered in affirmative,
what is the value of χk

h(G)?
A d-regular graph G is completely homogenous if it admits a k-homogenous coloring

for every k, 1 ≤ k ≤ d. The motivation for this paper was given by the following conjec-
ture.

Conjecture 1.1 (Janicová, 2015). Every cubic bipartite graph is completely homogenous.

As the cases with k ∈ {1, 3} are trivial as remarked above, it only remains to prove
that there exists a 2-homogenous coloring of every cubic bipartite graph. To prove this, we
make use of the results from the rich field of hypergraph colorings.

A hypergraph H = (V, ε) is determined by a set of vertices V = V (H) and a set of
(hyper)edges ε = ε(H), where every edge is an arbitrary subset of vertices. For an edge e,
let V (e) denote the set of vertices incident to e. We say that H is k-uniform if every edge
is incident to exactly k vertices, k-regular if every vertex is contained in exactly k edges,
and linear if every two edges share at most one vertex.

Similarly as in the case of graphs, by a coloring ϕ of a hypergraph H we mean an
assignment of colors to the vertices of H . For an edge e ∈ ε, the palette of e, P (e), is the
set of colors given to the vertices incident to e. Again, we define p(e) = |P (e)|. We say
that an edge e of H is monochromatic if p(e) = 1, i.e. all the vertices incident to e are
colored with the same color, and an edge is rainbow if p(e) = |V (e)|, i.e. no two vertices
of e are colored with the same color. A coloring of H is non-monochromatic non-rainbow
coloring (or a NMNR-coloring in short) if there is neither monochromatic edge nor rainbow
edge in H .

The notion of NMNR-colorings arose from more general concepts of color-bounded
hypergraphs introduced by Bujtás and Tuza in [2], where for every edge the lower and the
upper bound on the palette size is given, and pattern hypergraphs introduced by Dvořák et
al. in [6], where every hyperedge is assigned a set of admissible colors. Color-bounded
hypergraphs generalize many coloring concepts in hypergraphs; they were inspired by the
work of Drgas-Burchardt and Łazuka [5], who only set the lower bounds on the sizes of
palettes, and the notion of mixed hypergraphs introduced by Voloshin [12, 13]. A mixed
hypergraphM consists of the set of vertices and two families of edges, the C-edges and the
D-edges. A coloring of the vertices of M is proper if no C-edge is rainbow and no D-edge
is monochromatic. Study of mixed hypergraphs received considerable attention in the last
two decades1 (cf. [10]). Interestingly, colorings of mixed hypergraphs are strongly related

1See also the web-page http://spectrum.troy.edu/voloshin/mh.html for more details.
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to various types of graph colorings as shown e.g. by Král’ in [9].
If every edge of M is a C-edge and a D-edge, then M is called a bi-hypergraph. When

a mixed hypergraph M is a bi-hypergraph, then a proper coloring of M is precisely an
NMNR-coloring. We refer an interested reader to [3] and [4] for the most recent results in
this field.

Now, we present the main results of the paper, thus solving Conjecture 1.1 in affirma-
tive.

Theorem 1.2. Every cubic bipartite graph G admits a 2-homogenous coloring. Moreover,

χ2
h(G) ≤ 6 .

Theorem 1.2 is in fact a corollary of the following theorem:

Theorem 1.3. Every 3-regular 3-uniform hypergraph admits an NMNR-coloring with at
most 3 colors.

The rest of the paper is structured as follows: in Section 2, we introduce some auxiliary
results we use in the proofs of the main results. In Section 3, we prove Theorem 1.3, and
in the last section, we present several additional results and conclude the paper with some
open problems.

2 Auxiliaries
In this section we present some auxiliary results. First, we show how the problem of 2-
homogenous coloring of a cubic bipartite graphs can be modeled with an NMNR-coloring
of 3-uniform hypergraphs. Let G be a cubic bipartite graph and HG be a hypergraph with
the vertex set V (HG) = V (G) and the edge set ε(HG) = {N(v) | v ∈ V (G)}. Clearly,
HG is 3-uniform, hence an NMNR-coloring of HG is a coloring assigning exactly two
different colors to the vertices incident to every edge of HG, meaning that the palette of
every vertex in G is of size 2. Hence, we immediately obtain the next proposition.

Proposition 2.1. Every cubic bipartite graph G admits a 2-homogenous coloring if and
only if the hypergraph HG admits an NMNR-coloring.

Note that the bipartiteness of G is necessary to ensure that the coloring of G is proper,
as we now see. The hypergraphHG is not connected, since no pair of vertices from distinct
parts ofG is incident to a common edge ofHG. Let ϕ be an NMNR-coloring ofHG. Then,
a 2-homogenous coloring ϕ′ of G is obtained by assigning the color (i, ϕ(v)) to the vertex
v in G, where i ∈ {1, 2} denotes the part of G the vertex v belongs to. This in particular
means that at most twice the number of colors used for an NMNR-coloring of HG are used
for a 2-homogenous coloring of G. On the other hand, each 2-homogenous coloring of G
is also an NMNR-coloring of HG.

As G is cubic, HG is also 3-regular, which enables us to use the following results on
bipartite hypergraphs. A hypergraph is bipartite or 2-colorable if it admits a coloring of
vertices with 2 colors such that no edge is monochromatic.

Theorem 2.2 (Henning and Yeo, 2013). For an integer k ≥ 4, every k-regular k-uniform
hypergraph is bipartite.
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The proof of Theorem 2.2 was given in [7], but the result was mentioned already earlier
in [11].

For k = 3, there exist infinite families of non-bipartite 3-regular 3-uniform hypergraphs
(cf. [7]), the Fano plane being the most famous example (see Fig. 1). The result however
holds if the hypergraph is not regular.

Theorem 2.3 (Henning and Yeo, 2013). Every connected 3-uniform hypergraph with max-
imum degree at most 3 that is not 3-regular is bipartite.

Figure 1: The hypergraph of Fano plane is not bipartite.

Theorem 2.3 immediately implies the following corollary.

Corollary 2.4. Every connected 3-regular 3-uniform hypergraph is either bipartite or be-
comes bipartite after deleting any edge from it.

3 Proof of Theorem 1.3
First we prove a lemma about NMNR-colorings of linear 3-regular 3-uniform hypergraphs.

Lemma 3.1. Every linear 3-regular 3-uniform hypergraph admits an NMNR-coloring with
at most three colors.

Proof. Let H be a connected 3-regular 3-uniform linear hypergraph. By Corollary 2.4, H
is either bipartite, or H − e is bipartite, for any e ∈ E(H). In the former case, the lemma
trivially holds, so we may asume that H is not bipartite.

We prove the lemma by contradiction. Suppose that H does not admit an NMNR-
coloring with at most three colors. Let es = (u, v, w) be an edge of H and ϕ be a 2-
coloring (with colors 0 and 1) of H−es. Consequently, es is monochromatic, and, without
loss of generality, we may assume that ϕ(u) = ϕ(v) = ϕ(w) = 0.

We distinguish two types of edges of H regarding ϕ: an edge e is of type 0 if two
vertices of e are colored with 0, and the third vertex is colored with 1, and analogously, e
is of type 1, if one of its vertices is colored with 0, and the other two are colored with 1.
Define ϕ(v) = 1− ϕ(v) and call it the complementary color of a vertex v.

First, we discuss the types of the edges incident to the vertices of a monochromatic
edge.

Claim 3.2. Every vertex incident to a monochromatic edge is incident to an edge of type 0
and an edge of type 1.
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Proof: Let e be a monochromatic edge of H . Without loss of generality, we may assume
all the vertices of e are of color 0. Suppose to the contrary that there is a vertex of e, say
x, incident to two edges of the same type. If x is incident to two edges of type 0, then we
can recolor x to 1 (see the left case in Fig. 2), obtaining a 2-coloring of H , a contradiction.
In the case when x is incident to two edges of type 1, we color x with the color 2 (see the

x x x x

Figure 2: Recoloring of a vertex x incident to two edges of type 0 (on the left), and type 1
(on the right). Vertices of color 0 are depicted with empty circles, vertices of color 1 with
full, and the vertex of color 2 as a cross.

right case in Fig. 2). Notice that all three edges incident to x are now bichromatic, and so
we obtain an NMNR-coloring of H with at most 3 colors, a contradiction. �

An alternating chain C = e0v1e1v2e2 . . . ek−1vk with respect to the coloring ϕ, is
a sequence of vertices and edges, where e0 is a monochromatic edge incident to v1, the
vertices vi, vi+1 are incident to the edge ei, for 1 ≤ i ≤ k − 1, and ei is of type ϕ(vi).
The third vertex incident to ei is denoted v′i+1. We say that an edge e, distinct from the
edges of C, is a bow edge for C if at least two of its vertices are incident to some edges
of C. An alternating chain C is wrapped if one of the vertices vk and v′k, say vk, is
incident to some bow edge ek = (vk, x, y) and there is no bow edge for the alternating
chain C ′ = e0v1e1v2e2 . . . ek−2vk−1. Consequently, if, say, x is incident to ei, then y is
not incident to any edge of C, as H is linear and C ′ does not have bow edges.

In the following claim, we discuss the edges incident to the vertices of alternating chains
without bow edges.

Claim 3.3. Let C = e0v1e1v2e2 . . . e`−1v` be an alternating chain without bow edges.
Then, for every ei, 1 ≤ i ≤ `− 1, each of the vertices vi+1 and v′i+1 is incident to another
edge of the same type as ei, and an edge of the opposite type.

Proof: Suppose to the contrary, that there exists i, 1 ≤ i ≤ ` − 1, for which the claim
does not hold and choose the smallest such i. Then, we recolor each vj , 1 ≤ j ≤ i, with
its complementary color, and obtain a 2-coloring of H with precisely one monochromatic
edge ei, due to minimality of i. By applying Claim 3.2 to ei and vi+1 or v′i+1, we obtain a
contradiction on non-bipartiteness of H . �

From Claims 3.2 and 3.3, and the fact thatH is finite, it directly follows that there exists
a wrapped alternating chain C = esv1e1v2e2 . . . ek−1vk, for some k ≥ 2 in H starting in
some vertex of es, say u = v1.
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In what follows, we show that we can recolor some vertices of H using colors 0, 1,
and 2 to obtain an NMNR-coloring with at most three colors. At every step of recoloring,
at most one edge of H is monochromatic and the other ones are bichromatic. Note that,
for simplicity, we always adjust the coloring ϕ, so ϕ changes after every recoloring. Let
i, 0 ≤ i ≤ k − 2, be the smallest integer such that the edge ei is incident to a vertex of
the edge ek = (vk, x, y). Let x be the vertex incident to the edges ei and ek. Additionally,
denote the edge incident to vk distinct from ek−1 and ek by ek+1. It is possible that ek+1

is also incident to some vertex of C, but, by the minimality of i, it may be incident only to
some vertex incident to the edges ej , for j ≥ i. As H is linear, ek+1 is not incident to x.

First, recolor all the vertices vj , for 1 ≤ j ≤ i, with the color ϕ(vj). Note that only ei
becomes a monochromatic edge (see Fig. 3). Next, consider two cases regarding the vertex

e0

ek

ek−1

v1 vkvk−1v2

e1

vi+1

ei

e0

ek

ek−1

v1 vkvk−1v2

e1

vi+1

ei

v1

Figure 3: In a wrapped alternating chain we recolor the vertices from v1 to vi to their
complementary colors, where ei is the edge to which ek is wrapped.

x. In both cases, we may, without loss of generality, assume that ϕ(vk) = 0.

(i) x = vi+1. Suppose first that ϕ(x) = 0. Then, ϕ(y) = 1, for otherwise ek would
be monochromatic. If the edge ek+1 is of type 0, then recolor the vertex x to 2 and
the vertex vk to 1. If the edge ek+1 is of type 1, then we consider two subcases. If
i + 2 < k − 1, then recolor the vertices x and vk to 2, and the vertex vk−1 to 0.
Otherwise, if i + 2 = k − 1, recolor x to 1, vk−1 to 0, and vk to 2. As vk−1 is not
incident to ek+1, ϕ is an NMNR-coloring in both subcases.

We may thus assume that ϕ(x) = 1. By Claim 3.3, we have that ϕ(y) = 1. Note that
i+1 < k− 1 in this case as H is linear. If the edge ek+1 is of type 1, then recolor x
and vk to 2, and vk−1 to 0. In the case when ek+1 is of type 0, recolor x to 2, and vk
to 1. This establishes the case (i).

(ii) x = v′i+1. Suppose that ϕ(x) = 0. As above, ϕ(y) must be 1. Note that by
Claim 3.2, the third edge x is incident to is of type 1. If the type of ek+1 is 0, then
recolor x to 2 and vk to 1. If the type of ek+1 is 1, then recolor the vertices x and vk
to 2, and the vertex vk−1 to 0.

Therefore, we may assume that ϕ(x) = 1. Suppose first that ϕ(y) = 1. Then, the
third edge incident to x is of type 0. If ek+1 is of type 0, then recolor vk to 1, and x
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to 2. If ek+1 is of type 1, then recolor vk−1 to 0 and vk to 2, and, in the case when
i+ 1 < k − 1, recolor also x to 2.

Suppose now that ϕ(y) = 0. Then, the third edge incident to x is of type 1. If ek+1

is of type 0, then recolor vk to 1, and x to 0. Therefore, we may assume that the type
of ek+1 is 1. Then, we recolor vk to 2, and x and vk−1 to 0.

This establishes the lemma.

Now, we are ready to prove Theorem 1.3 by considering non-linear 3-regular 3-uniform
graphs.

Proof of Theorem 1.3. We prove the theorem by contradiction. Let H be a 3-regular 3-
uniform hypergraph with the minimum number of vertices such that it does not admit an
NMNR-coloring with at most 3 colors. By Lemma 3.1, H is not linear. Thus, we may as-
sume that there exists a pair of edges e, f ∈ E(H) having at least two vertices in common.
If e and f are incident to the same three vertices, then H − e is bipartite by Corollary 2.3.
Consequently, H is bipartite also and the theorem holds.

Hence, it remains to consider the case where e and f are incident to precisely two com-
mon vertices. Let e = (u, v, w) and f = (v, w, z). Suppose first that there is another edge
g = (v, w, x) of H incident to the vertices v and w. Then, let H∗ be the hypergraph ob-
tained from H by replacing the edges e, f and g with an edge e∗ = (u, z, x) and removing
the vertices v and w. By the minimality of H , there exists an NMNR-coloring ϕ∗ of H∗

with at most 3 colors. Without loss of generality, we may assume that ϕ∗(u) = ϕ∗(z) = 0
and ϕ∗(x) = 1. However, we can obtain an NMNR-coloring of H from ϕ∗ by coloring the
vertex v with 0 and w with 1.

Thus, we may assume that there is no edge of H , apart from e and f , incident to both
v and w. Now, let H∗ be the hypergraph obtained from H by identifying the edges e
and f into an edge e∗ = (u, v∗, z) (where v∗ corresponds to the vertices v and w in H).
Again, since H∗ is smaller than H , there exists an NMNR-coloring ϕ∗ of H∗ with at most
3 colors. In what follows, we show that ϕ∗ can be extended to the vertices v and w. Denote
the third edge of H containing v (resp. w) by g = (a, b, v) (resp. h = (w, c, d)). There are
three possible configurations of g and h (up to symmetry) in terms of the vertices a, b and
c, d, namely:

(i) g = (a, u, v), h = (w, z, c);

(ii) g = (a, u, v), h = (w, c, d), with d 6= z; and

(iii) g = (a, b, v), h = (w, c, d), with b 6= u, d 6= z.

Note also that it is possible that some vertices of g and h coincide.
Without loss of generality, we may again assume that the vertices of e∗ are colored

by the colors 0 and 1 only in ϕ∗. Clearly, if ϕ∗(u) = ϕ∗(z) = 1 and ϕ∗(v∗) = 0,
then we color both, v and w, with 0 and obtain an NMNR-coloring of H with at most 3
colors. So, we may assume that ϕ∗(v∗) = 0 and either ϕ∗(u) = 0 and ϕ∗(z) = 1, or
ϕ∗(u) = 1 and ϕ∗(z) = 0. In both cases, if {ϕ∗(a), ϕ∗(b)} 6= {1} and {ϕ∗(a), ϕ∗(b)} 6=
{0, 2}, then color v with 1 and w with 0. Otherwise, if {ϕ∗(c), ϕ∗(d)} 6= {1} and
{ϕ∗(c), ϕ∗(d)} 6= {0, 2}, then color v with 0 and w with 1. In the remaining cases, i.e.
when {{ϕ∗(a), ϕ∗(b)}, {ϕ∗(c), ϕ∗(d)}} ∈ {{1}, {0, 2}}, color v and w with the color 2.
It is easy to verify that such a coloring results in an NMNR-coloring of H with at most 3
colors, which establishes the theorem.
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Finally, from Theorem 1.3, we derive the proof of Theorem 1.2.

Proof of Theorem 1.2. Let G be a cubic bipartite graph and HG the 3-regular 3-uniform
hypergraph HG, whose existence is guaranteed by Proposition 2.1. By Theorem 1.3, there
exists an NMNR-coloring of HG with at most 3 colors, and thus also a 2-homogenous
coloring of G with at most 6 colors.

4 Conclusion
We have shown that every cubic bipartite graph G is completely homogenous and that
χ2
h(G) ≤ 6. For the latter, we used a simple construction of coloring obtained by NMNR-

coloring with at most 3 colors of the hypergraph HG modeling the neighborhoods in two
parts of G. At least 3 colors must be used to color HG, but one does not always need
to double the number of colors to guarantee that the coloring of G is proper. In fact, we
believe that the following holds.

Conjecture 4.1. Let G be a cubic bipartite graph. Then

χ2
h(G) ≤ 4 .

A computer verification shows that the conjecture is true for cubic bipartite graphs of
order at most 26, and is tight as χ2

h(K3,3) = 4.
When considering k-regular bipartite graphs for k ≥ 4, the proof that they all admit

a 2-homogenous coloring is much easier. Similarly as cubic bipartite graphs, by Proposi-
tion 2.1, one can model the ones with higher degree. Let G be a k-regular bipartite graph
and HG the k-regular k-uniform hypergraph modeling G. By Theorem 2.2, HG is bipar-
tite, implying that no edge of HG is monochromatic, and clearly not rainbow, as only two
colors are used. It immediately proves the following theorem.

Theorem 4.2. Every k-regular bipartite graph G, with k ≥ 4, admits a 2-homogenous
coloring. Moreover,

χ2
h(G) ≤ 4 .

It is natural to ask, what if, for k ≥ 4, the sizes of palettes are bigger than 2. Already in
the class of 4-regular bipartite graphs, there are graphs which do not admit 3-homogenous
colorings. However, among all 4-regular bipartite graphs of order at most 22, there are
precisely two graphs not admitting a 3-homogenous coloring: the complete bipartite graph
K5,5 without a perfect matching, and the bipartite complement of the Heawood graph, i.e.
the complete bipartite graphK7,7 with a copy of the Heawood graph removed. Both graphs
are depicted in Fig. 4.

An `-proper coloring of a hypergraph H is such that the palette size of every edge
equals `. One can trivially generalize Proposition 2.1 into the following form.

Proposition 4.3. Every k-regular bipartite graph G admits an `-homogenous coloring if
and only if the hypergraph HG admits an `-proper coloring.

A complete k-uniform hypergraph Hk
n is a hypergraph on n vertices with the edge set

consisting of all k-element subsets of the vertex set. Let G be isomorphic to the complete
bipartite graph Kn,n without a perfect matching. Then, each of the two components of
the hypergraph HG is isomorphic to the complete (n − 1)-uniform hypergraph Hn−1

n .
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Figure 4: The only two 4-regular bipartite graphs on at most 22 vertices which do not admit
a 3-homogenous coloring. A K5,5 without a perfect matching on the left, and the bipartite
complement of the Heawood graph on the right.

In [2], the authors, considered a more general notion of complete uniform color-bounded
hypergraphs, with given lower and upper bounds for the sizes of edge palettes. Here, we
only present the result, where the lower and the upper bounds are equal.

Proposition 4.4 (Bujtás, Tuza, 2009). The complete (n − 1)-uniform hypergraph Hn−1
n

admits an `-proper coloring if and only if ` ∈ {1, n− 1} or

2 ≤ n− 2

`− 1
.

Hence, the above inequality holds whenever ` ≤ n/2. Proposition 4.4 implies that the
complete bipartite graph Kn,n without a perfect matching is not completely homogenous
for any n ≥ 4. However, as discussed already above, it is not known if there exists some
other infinite family of regular bipartite graphs which are not completely homogenous.
Thus, the directions of further work are straightforward.

Question 1. Which k-regular bipartite graphs admit `-homogenous colorings, for k ≥ 4
and 3 ≤ ` ≤ k − 1?

Problem 4.5. Classify completely homogenous k-regular bipartite graphs, for k ≥ 4.

Question 2. For a k-regular bipartite graph G admitting an `-homogenous coloring, what
is the order of χ`

h(G) as a function of k and `?

We conclude with a conjecture about 4-regular bipartite graphs.

Conjecture 4.6. Every 4-regular bipartite graph, distinct from K5,5 without a perfect
matching and the bipartite complement of the Heawood graph, is completely homogenous.
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