
ELEKTROTEHNIŠKI VESTNIK 82(3): 85–92, 2015
ORIGINAL SCIENTIFIC PAPER

Forgetting Early Estimates in Monte Carlo Control
Methods

Tom Vodopivec and Branko Šter
University of Ljubljana, Faculty of Computer and Information Science
Večna pot 113, 1000, Ljubljana, Slovenia

E-mail: tom.vodopivec@fri.uni-lj.si, branko.ster@fri.uni-lj.si

Abstract.
Monte Carlo algorithms are one of the three main reinforcement learning paradigms that are capable of
efficiently solving control and decision problems in dynamic environments. Through sampling they shape the
values of states in the search space. Based on these values they develop an exploration policy that is in turn
used to guide the future direction of sampling. Studies confirm the convergence of this interleaving iterative
approach to an optimal solution; however, when a learning agent lacks prior knowledge of the problem domain,
the convergence rate may be extremely slow in case of an erroneous staring policy that causes far-from-optimal
value estimates. In this paper we present a brief overview of Monte Carlo control algorithms in the scope
of reinforcement learning and propose a method to improve the convergence by gradually forgetting early
estimates. Our method keeps track of the state values with a moving average that gives a higher weight to the
recent rewards and discounts the weight of the previous rewards, while assuming that the policy is improving
over time. We apply it to the general on-policy Monte Carlo control algorithm and to the popular upper
confidence bounds for trees algorithm in the Monte Carlo tree search framework. The evaluation on several
decision problems confirms that our method regularly improves the convergence rate of both algorithms and in
some cases also their final policy.

Keywords: Monte Carlo control, reinforcement learning, decision problem, on-line learning, on-policy Monte
Carlo control, Monte Carlo tree search, upper confidence bounds for trees

POZABLJANJE PRETEKLIH VZORCEV PRI
ODLOČITVENIH METODAH MONTE CARLO

Algoritmi na podlagi vzorčenja Monte Carlo predstavljajo
enega od temeljnih načinov za reševanje odločitvenih prob-
lemov v domeni spodbujevalnega učenja. S preizkušanjem
ocenjujejo vrednosti delov prostora stanj in akcij ter na podlagi
teh vrednosti sprotno spreminjajo strategijo preiskovanja, kar
vpliva na nadaljnje vrednotenje. Opisan ponavljajoči proces
dokazano konvergira k optimalni odločitveni strategiji. Na
hitrost konvergence vpliva predznanje ali, ko predznanja ni,
ocene pridobljene iz začetnih vzorcev. Toda, če je začetna
strategija slaba, potem so lahko tudi začetna vrednotenja daleč
od optimalnih, kar bistveno upočasni konvergenco. V tem
prispevku na kratko predstavljamo metode Monte Carlo na po-
dročju spodbujevalnega učenja in predlagamo način, kako po-
hitriti konvergenco s pomočjo postopnega pozabljanja preteklih
vzorcev. Naša metoda uporablja za vrednotenje uteženo drseče
povprečje, ob predpostavki, da so zaradi izboljšanja strategije
na zadnje pridobljeni vzorci bolj zanesljivi od predhodnih.
Metodo smo preizkusili na dveh uveljavljenih algoritmih: on-
policy Monte Carlo control in upper confidence bounds for
trees. Eksperimentalna evalvacija na petih odločitvenih prob-
lemih potrjuje, da naša metoda izboljša hitrost konvergence
obeh algoritmov in pod določenimi pogoji tudi izboljša končno
doseženo strategijo.

Received 26 January 2015
Accepted 5 February 2015

1 INTRODUCTION

Machine learning is roughly divided into three main
branches: supervised, unsupervised and reinforcement
learning. The first is very useful for regression and
classification. The second has the ability to find hidden
patterns, which is applicable for clustering and autocor-
relation. The third is most suitable in solving control
and decision problems.

Reinforcement learning is regarded as one of the most
general known learning paradigms, because of the fact
that it can effectively learn from a simple feedback in the
form of a scalar signal [1]. In such a setting, Monte Carlo
methods are used to gather experience by sampling inter-
actions with the environment. Monte Carlo concepts are
present in many state-of-the-art reinforcement learning
techniques; however, one of their main issues is that the
initial sample interactions may not be adequate estimates
of the optimal solution. Since these estimates may slow
down convergence, we propose to ignore them to a
certain extent. We alter the state-evaluation mechanism
to discount the impact of past experience. For rare
events, we give more weight to the current rewards and
less to the past rewards, while for the frequent events



86 VODOPIVEC, ŠTER

the contrary. We integrate this concept into the general
on-policy Monte Carlo control algorithm [2] and into
a Monte Carlo tree search algorithm [3] – the upper
confidence bounds for trees algorithm [4]. We prove the
soundness of our idea with experimental evaluations on
an artificial decision problem and on four classical board
games. The results show a faster convergence to a closer
near-optimal value and a higher level of play in certain
games.

2 BACKGROUND

We provide an overview of the basic principles of re-
inforcement learning and Monte Carlo control methods,
and describe the original variants of the two evaluated
algorithms.

2.1 Reinforcement Learning
Reinforcement learning (RL) is usually thought of as

a class of problems rather than a class of methods. It
characterizes a specific set of learning problems from
multiple domains, including control theory, game theory,
optimal control, etc. The methods that can solve such
problems are called RL methods [2].

The goal of an RL method is to teach a learning agent,
i.e., the controller, of behaving well in a dynamic envi-
ronment. The environment feeds back what is “good” in
the form of a reward or penalty, which is called positive
or negative reinforcement. By definition, reinforcement
is a single scalar signal and is usually delayed in time.
The agents behaviour is defined by the actions it takes.
The environment state can be fully or partially observ-
able by the agent. This agent-environment framework is
shown in Fig. 1.

Figure 1. Standard reinforcement learning model [1].

An RL agent tries to learn an action-choosing pol-
icy in order to maximize the sum of all future rein-
forcements. For assistance in which actions to select,
it estimates the values of the known states. A value
is defined as the expected sum of all received future
reinforcements, if continuing from a certain state to the
terminal state. The value function defines the values
of all states. An optimal value function is such that
it enables an optimal policy in terms of reinforcement
maximization.

The solution of any RL problem is to compute the
optimal value function and the optimal policy. The

theory of Dynamic Programming provides the means
to iteratively compute the optimal value function using
the Bellman equation [2]. However, the main issue of
dynamic programming is that a complete knowledge
of the model is required. This is where Monte Carlo
methods prove useful as they are capable of learning
from on-line or simulated sampling interactions with
the environment without the knowledge of its dynamics.
They gather experience with an increasing number of
samples. Their essence is in averaging returns – the sum
of all reinforcements until a terminal state is reached.
The described common ground between the RL and MC
theory was defined by Barto, Sutton, and many other
researchers only after decades of separate treatment of
the two fields.

Figure 2. Policy iteration: in each iteration, the policy is
evaluated with the the estimation of the value function and
then, upon this value function, the policy is greedily improved.

2.2 Monte Carlo Methods
In the RL context, Monte Carlo (MC) methods are

usually defined only for episodic (not infinite) tasks,
so experience is divided into episodes and their per-
formance rises in an episode-by-episode (i.e., iterative)
fashion. Each occurrence of state s in a single episode is
called a visit to s. There are two main MC classes: one
averages the returns following every visit to s; and one
averages just the returns following the first visit. These
averages are used to estimate the value function, based
on the current policy. This is called policy evaluation.
In turn, a greedy policy improvement can be made based
on the value function. This iterative procedure is called
policy iteration and is a feature of many RL methods
(Fig. 2).

When there is no knowledge of the model dynamics,
usually it is more efficient to use action-values instead
of values. They reflect the same properties as values,
but may speed up convergence for the price of extra
memory. These values are called Q-values and instead
of representing the value of state s, they represent the
value of selecting action a in state s – they evaluate the
state-action pair (s, a). The condition for convergence
is that all (s, a) pairs are visited an infinite number of
times, that is why the policy must always keep choosing
each of the actions in a state with a probability greater



FORGETTING EARLY ESTIMATES IN MONTE CARLO CONTROL METHODS 87

than zero. This is called the problem of exploration
or the exploration-exploitation dilemma. The trade-off
parameter is introduced as the probability ε of not
choosing the best action, but rather a sub-optimal one.
Such a policy is called an epsilon-soft policy.

The problem of exploration when using MC methods
is addressed with two approaches, named off-policy and
on-policy. Off-policy MC allows that the policy used
for control is separated from the policy being evaluated.
There are a behaviour policy and an estimation policy;
only the former must be epsilon-soft, while the latter can
be deterministic and can fully greedily improve [2]. The
second approach, on-policy MC, is described below.

2.3 On-policy Monte Carlo Control

The on-policy algorithm serves as the basis for our
improved method. Although policy iteration originally
assumes that the policy improvement is completely
greedy, it is enough if the improvement is only moved
towards a greedy policy, which is the case with epsilon-
soft policies [2]. Such policies can then be used to con-
trol the agents behaviour and be evaluated and improved
at the same time. The basic on-policy MC control is
described in Algorithm 1. Decreasing the exploration
parameter ε in time often yields a higher performance.
The decrease is usually linear or exponential, depending
on whether the total number of iterations is known in
advance or if the task is finite or infinite.

2.4 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) methods [3] are
currently the state-of-the-art choice for a wide range of
game-playing algorithms [5]. The main difference with
ordinary MC methods is that, based on the gathered
experience, MCTS methods build a state-action tree. In
the MCTS framework, the MC concept of an episode is
often referred to as an MCTS iteration. An iteration is
typically composed of four steps: (1) descend through
the tree (i.e., memorized experience) by selecting nodes
according to a tree policy, (2) expand the tree with one
or more nodes visited in the current iteration, (3) choose
actions according to a default policy until a terminal state
is reached, and (4) backpropagate the gathered returns
up through the tree.

2.5 Upper Confidence Bounds for Trees

Upper confidence bounds for trees (UCT) [4] was
one of the first developed MCTS algorithms and is still
the main representative of the field. Furthermore, it is
also one of the most studied and generally effective
MCTS algorithms. However, its convergence rate can be
very low in practice, especially when the algorithm is
not aided by domain-specific enhancements. Improving
its performance without losing generality is a current
research challenge [5].

Algorithm 1. On-policy Monte Carlo Control [2].

LEARNING PARAMETER:
epsilon <- value between 0.0 and 1.0

//exploring rate
INITIALIZATION:
a. arbitrary epsilon-soft policy
b. arbitrary Q-value for each

state-action pair (s,a)
c. sum of returns for each (s,a) set to

zero
d. number of visits for each (s,a) set to

zero
INFINITE LOOP:
(1) Generate an episode (iteration) by the

current policy and remember visited
states, actions, and reinforcement

(2) Policy evaluation - for each (s,a) that
appears in the episode (iteration):

a. R <- sum of all rewards following
the first occurrence

b. Add R to the sum of returns
c. Increase number of visits by one
d. Calculate new Q-value from

sum of rewards and number of visits
(3) Policy improvement - for each state (s)

in the episode (iteration):
a. best_action <- action with maximal

Q-value(s,a)
b. change probability of all actions

(s,a) to epsilon
c. change probability of (s,best_action)

to
(1-epsilon+epsilon/number_of_actions)

The UCT algorithm expands the tree by one node per
iteration, uses a random default policy, and backprop-
agates the reward through all visited nodes in the tree
from the leaf node up to the root. It evaluates states
with the bandit algorithm UCB1 [6], which has been
proven to optimally balance exploration of the space and
exploitation of the gathered experience; it theoretically
solves the exploration-exploitation dilemma. The tree
policy selects children nodes with the highest value of

QUCT = QMC + cnp,n , (1)

where

QMC =

∑
Ri

n
(2)

is the average reward received from a node (i.e., state)
until the terminal state and

cnp,n = 2Cp

√
2 log np

n
(3)

is the exploration bias defined by the number of visits n
of a node, number of visits of its parent node np, and
weighting parameter Cp. Rewards Ri are gathered from
MCTS iterations i.



88 VODOPIVEC, ŠTER

3 RELATED WORK

Our idea may be classified as a weighted Monte Carlo
approach. Avellaneda et al. [7] developed a similar
approach by assigning probability weights to samples
to reduce the variance of results. Their method is ap-
plicatively used for building and calibrating asset-pricing
market models [8]. Haghighat et al. [9] also developed a
method for variance reduction by introducing determin-
istic importance functions as a weighting mechanism.
A review and improvement of certain variance reduc-
tion techniques, including importance sampling, was
presented in Saltas dissertation [10]. Another approach
similar to ours, by using adaptation of the step-size
parameter, was researched in the domain of temporal
difference learning by Noda [11], but to our knowledge,
it has not been applied to MC methods yet.

In the context of MCTS, Xie and Liu [12] studied the
idea of weighting MCTS iterations according to their re-
cency. They assume that early iterations contain less reli-
able value estimates, thus can be given a lower weight. In
the backpropagation step, they partition MCTS iterations
in groups with different weights. Their results confirm
that later partitions deserve a higher weight, since they
generally contain shorter and more accurate iterations.
We rely on the same assumptions; however, we employ a
simpler weighting function that uses a smoother weight-
ing distribution and introduces less parameters to the
enhanced algorithms.

4 DISCOUNTING EARLY ESTIMATES
WITH MOVING AVERAGE VALUES

Both on-policy MC control and UCT estimate
state-action values Q(s,a) as a statistical mean of gath-
ered rewards Ri through several episodes or iterations
i. This way, a single state-action value is iteratively
updated by the rule

Q(s,a) ←− Q(s,a) +
1

n(s,a)
(Ri −Q(s,a)) , (4)

where n(s,a) represents how many times action a was
selected in state s (i.e., a visit count of the state-action
pair that increases by 1 with each visit).

In improving the original MC algorithms we rely on
the idea that initial Q-values may be unreliable and
could corrupt the optimal value estimates at a later time.
Driven by this intuition, and by the results presented by
Xie and Liu [12], instead of using (4), we diminish the
importance of past Q-values with an exponential moving
average

Q(s,a) ←− (1− α(s,a)) Q(s,a) + α(s,a)Ri , (5)

where the discount rate is controlled by the weighting
factor α(s,a) in the range of [0, 1]. The higher its value,

Algorithm 2. Extension of On-policy Monte Carlo
Control with Moving Average Values

LEARNING PARAMETERS:
beta <- value between 0.0 and 1.0
//discount rate of previous rewards

...
(2) Policy evaluation - for each (s,a) that

appears in the episode (iteration):
...

d1. alpha <- beta * current_episode /
number_of_visits

d2. if(alpha > 1)
then alpha <-1.0
//threshold or sigmoid function

d3. Calculate new Q-value for (s,a) by
exponential moving average:
(1-alpha) * Q-value + (alpha) * R

...

the higher weight is given to current reinforcement
and lower to memorized Q-values, and vice versa. Its
value is adjusted in each iteration i for each state-action
pair (s, a) by the equation

α(s,a) = β ∗ i

n(s,a)
, (6)

where β is a constant parameter in the range of [0, 1] that
defines the discount rate of previous rewards. A higher
value of β and a lower number of visits to (s, a) give
more importance to recent rewards and less importance
to past experience. Parameter β should have a value less
or equal to the inverse of the maximum number of visits
of a (s, a) pair, otherwise α(s,a) can reach values greater
than 1 for less visited states and divergence may occur.
However, the maximum number of visits may not be
predictable, due to the possibility of multiple visits in
a single episode, or due to the lack of knowledge of
the total number of episodes or iterations. A threshold
or sigmoid function fT(x) over α(s,a) solves this issue.
Note the resemblance with (4) when reformulating (5)
and (6) into the following update rule

Q(s,a) ←− Q(s,a)+fT

(
β ∗ i

n(s,a)

)
(Ri−Q(s,a)) . (7)

We name the method described by this equation as
the Moving Average Values (MAV) for discounting
early MC estimates. Modification of on-policy MC con-
trol with MAV is straightforward and is shown in
Algorithm 2.

MAV-UCT

We integrate MAV into the UCT algorithm by modi-
fying its tree descent and backpropagation steps. In the
tree descent we extend (1) to evaluate a node with both
the default statistical mean QMC and the new moving
average value QMAV by



FORGETTING EARLY ESTIMATES IN MONTE CARLO CONTROL METHODS 89

20

25

305
10

15
20

0

20

40

60

0 5 10 15 20 25 30 35

0

5

10

15

20

25

Figure 3. Optimal state-value estimates for the Racetrack problem and an example optimal policy after a million iterations of
the on-policy MC control algorithm.

0 0.5 1 1.5 2

x 10
4

−80

−60

−40

−20

0

Iterations (Episodes)

A
ve

ra
ge

 R
ew

ar
d 

pe
r 

E
pi

so
de

 

 

Optimal Policy
On−policy MC Control
MAV On−policy MC Control

Figure 4. Performance of the original and MAV-enhanced
on-policy MC control algorithms on the Racetrack problem.

QMAV-UCT = wMAV QMAV

+(1− wMAV) QMC + cnp,n , (8)

where wMAV is an additional parameter that defines the
weight of the MAV contribution to a node value. Sev-
eral MCTS enhancements also use such weighting as it
allows a linear combination (i.e., a smooth transition) of
two or more evaluators. The QMAV values are computed
in the UCT backpropagation step by (5).

Since the MCTS tree memorizes the experience
gained from the previous batches of iterations, started
from several different root nodes, i.e., from different
locations in the state space, Equ. (6) must be adjusted to
consider iterations i′ only in the current batch. The same
applies to visits n′. This requires the implementation of

an additional visit counter for each tree node, whose
value is zeroed after each batch of iterations or every
time the tree root changes. Here, the discount rate of
previous rewards is calculated by

α(s,a) = fT

(
β ∗ i′

n′(s,a)

)
. (9)

In our experiments we implemented fT(x) as an ad-
justed sigmoid function by

fT(x) =

(
1

1 + e−x
− 0.5

)
∗ 2.0 . (10)

Since discount rate α(s,a) is at least higher or equal to
zero for any state-action pair, the function will never
return a negative value.

5 EXPERIMENTAL RESULTS

We evaluate the MAV on-policy MC control algorithm
and the MAV-UCT algorithm on several benchmark
problems and compare their performances with the orig-
inal variants presented in Section 2. The first batch of
experiments presents on-policy MC on a simple artificial
problem, while the second batch presents UCT on four
benchmark games of a different complexity.

5.1 On-policy MC on the Racetrack Problem
As a benchmark for the on-policy MC algorithm we

use the Racetrack problem presented by Sutton and
Barto [2]. It consists of a two-dimensional grid world
with movement constraints in the shape of a right curve
and a moveable car. The car has a vertical and a horizon-
tal integer velocity in the range of [0, 4]. The controller
may increase, decrease, or keep the same velocity, which
yields nine actions per state. The car starts stationary at
a random bottom position. The goal is to reach one of



90 VODOPIVEC, ŠTER

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

MCTS Iterations

E
rr

or
 F

ro
m

 O
pt

im
al

 V
al

ue

 

 
Random MCTS
UCT
MAV−UCT

(a) Root node error from the optimal value.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

MCTS Iterations

E
rr

or
 F

ro
m

 O
pt

im
al

 V
al

ue

 

 
Random MCTS
UCT
MAV−UCT

(b) Root best child node error from the optimal value.

Figure 5. Performance of MCTS algorithms on Tic Tac Toe expressed as error from the optimal value.

the far right positions in the minimum number of steps
without hitting the edge. The environment returns a −1
reward in each time step and −4 if the car hits the edge
of the track. Furthermore, the car is randomly moved
by an additional tile up or right with a 50% probability
in each time step. Figure 3 shows how on-policy MC
control learns the optimal state value estimates and an
optimal policy after a million episodes (the values are
negated for better visualization). Positions near borders
have overall lower values (i.e., higher penalty) than those
in the middle.

We measured the performance of the original and
MAV-enhanced on-policy algorithms as the average
gathered reward per episode, which is analogous to the
required number of steps to reach the terminal position.
These measurements are presented as a function of
the amount of available learning episodes (Fig. 4). We
linearly decreased exploring rate ε from 0.2 to 0 as the
total number of episodes was known. MAV parameter
β was set to 0.0012. The parameter values were hand-
picked based on repeated experiments. The results were
averaged from 100 repeats.

The best reachable performance for the given problem
is −8.3. After 20000 episodes, the original on-policy
MC control achieves −14.6, while with MAV, it
achieves −10.7, which is substantially closer to the
optimal value. On the other hand, in the first few
hundred episodes, the MAV-variant performs worse than
the original algorithm.

5.2 UCT on Games

First we evaluate the MCTS algorithms on the game
of Tic Tac Toe. This simple game is known to always
end in a draw if both players play optimally. In our case,
the environment feedbacks 1 for a win, 0.5 for a draw,
and 0 for a loss. Consequently, the optimal values of

Table 1. Playing strength of UCT and MAV-UCT on four
games. The opponent uses the original UCT algorithm with
Cp = 0.2 and always plays first. The learning parameters of
the two evaluated algorithms were optimized offline.

Ti
c

Ta
c

To
e

Co
nn

ec
t F

ou
r

G
om

ok
u
7x
7

H
ex

7x
7

Iterations/Move 10 100 100 100

Win Rates [%]
Original UCT 33.3 44.4 55.2 57.8
MAV UCT 34.0 44.7 59.1 59.9

95% conf. interval ±0.3 ±0.3 ±1.0 ±1.0

MAV UCT Optimal Parameter Values
Cp .040 .176 .015 .090
wMAV .385 .003 .236 .359
β .043 .119 .004 .007

the first two moves, i.e., the root node in the MCTS tree
and its best child (i.e., the best action from the root),
are both 0.5.

We comparatively evaluate three algorithms: MCTS
with a random tree policy, UCT, and MAV-UCT. We
generate a large amount of MCTS iterations from the
initial game state (i.e., an empty board) and measure
the absolute error of the root node (Fig. 5a) and its
best child (Fig. 5b). In both cases, MAV-UCT performs
best as it approximates the optimal values in much less
iterations (note the exponential x-axis) than the other two
algorithms, and performs at least as well as the others at
a lower number of iterations. The results are averaged
from 10000 repeats.



FORGETTING EARLY ESTIMATES IN MONTE CARLO CONTROL METHODS 91

Finally, we evaluate the playing strength of UCT and
MAV-UCT on four games: Tic Tac Toe, Connect Four,
Gomoku, and Hex. Such games are common bench-
marks in the MCTS domain [5]. These are more complex
than the Racetrack problem and are more suitable for a
general evaluation of new methods. The performance is
expressed as the win rate against a fixed opponent, i.e.,
an UCT algorithm with Cp = 0.2 that always plays
as the first player. The evaluated algorithms had their
learning parameters Cp, wMAV, and β optimized prior
to the evaluation with a Linear Reward-Penalty Learning
Automata [13] on 10000 games.

The results in Table 1 show an evident improvement
of MAV-UCT over UCT at Gomoku, a slight improve-
ment at Hex and Tic Tac Toe, and no improvement at
Connect Four. In the latter, the weight of MAV contribu-
tions wMAV was set to nearly zero by the optimization
procedure. This further confirms that MAV may be
ineffective at Connect Four. We experimented also at
higher numbers of iterations per move, but there was no
improvement in win rates. The results are averaged from
several thousand repeats. We did not extensively test the
robustness to changing the parameter values; however,
preliminary experiments show a very high sensibility to
discount rate β.

6 DISCUSSION AND CONCLUSION

In this paper we briefly presented the field of re-
inforcement learning [2], mechanics of learning with
Monte Carlo (MC) control methods, and Monte Carlo
Tree Search (MCTS) methods [3]. We proposed a new
weighted MC algorithm, i.e., the moving average values
(MAV), to alleviate the issue of unreliable early MC
estimates due to a sub-optimal initial action policy. Our
MAV method lowers the impact of previous estimates
by using a moving average that is weighted according
to the frequency of visits of individual parts of the state
space. We applied MAV to the on-policy MC control
algorithm [2] and the upper confidence bounds for trees
(UCT) algorithm [4] and experimentally validated its
performance on five problems with different dynamics.

Results indicate that MAV increases the convergence
rate of both on-policy MC control and UCT on the
Racetrack problem and at the game of Tic Tac Toe.
However, when assessing the level of play expressed as
the win rate of the MAV-UCT algorithm, it achieved
a noticeable improvement only at one of the four
benchmark games, i.e., Gomoku, and only at a lower
number of iterations per move. Preliminary results also
revealed that MAV’s performance is critically sensitive
to the value of its newly-introduced parameter β for
discounting past rewards, so more experiments need to
be done in order to fully analyse its robustness.

Considering that MAV-UCT introduces two new pa-
rameters and does not seem to generally increase perfor-

mance, its use may be limited only to specific problems
at this stage. We have just started to explore why the
playing strength does not improve despite the faster
convergence to the optimal value estimates. When pro-
gressing through the game, the dynamics of the envi-
ronment changes considerably as the player is moving
closer to the terminal position. We presume this may
critically affect the optimal value of discount parameter
β, which causes MAV to become ineffective in such a
setting. For the future work, we propose to dynamically
adapt β through the game duration and to identify the
general features of the state space and of the MCTS tree
structure that affect its optimal value.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Rein-
forcement learning: a survey,” Journal of Artificial Intelligence
Research, vol. 4, pp. 237–285, 1996.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. The MIT Press, 1998.

[3] R. Coulom, “Efficient selectivity and backup operators
in Monte-Carlo tree search,” in Proceedings of the 5th
international conference on Computers and games, ser. CG’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 72–83. [Online].
Available: http://dl.acm.org/citation.cfm?id=1777826.1777833

[4] L. Kocsis and C. Szepesvári, “Bandit Based Monte-
Carlo Planning,” in Proceedings of the Seventeenth
European Conference on Machine Learning, ser. Lecture
Notes in Computer Science, J. Fürnkranz, T. Scheffer,
and M. Spiliopoulou, Eds., vol. 4212. Berlin/Heidelberg,
Germany: Springer, 2006, pp. 282–293. [Online]. Available:
http://www.sztaki.hu/ szcsaba/papers/ecml06.pdf

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis,
and S. Colton, “A Survey of Monte Carlo Tree Search Methods,”
IEEE Transactions on Computational Intelligence and AI in
Games, vol. 4, no. 1, pp. 1–43, 2012.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis
of the Multiarmed Bandit Problem,” Machine Learning,
vol. 47, no. 2-3, pp. 235–256, 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1013689704352

[7] M. Avellaneda and P. Jäckel, “Weighted Monte Carlo,” Encyclo-
pedia of Quantitative Finance, 2010.

[8] M. Avellaneda, R. Buff, C. Friedman, N. Grandchamp, N. Gr,
L. Kruk, and J. Newman, “Weighted Monte Carlo: A New
Technique for Calibrating Asset-Pricing Models,” International
Journal of Theoretical and Applied Finance, vol. 4, pp. 1–29,
2001.

[9] A. Haghighat and J. C. Wagner, “Monte Carlo Variance Re-
duction with Deterministic Importance Functions,” Progress in
Nuclear Energy, vol. 42, no. 1, pp. 25–53, 2003.

[10] E. R. Salta, “Variance Reduction Techniques in Pricing Financial
Derivatives,” Ph.D. dissertation, Florida State University, 2008.

[11] I. Noda, “Recursive Adaptation of Stepsize Parameter
for Non-stationary Environments,” in Proceedings of the
12th International Conference on Principles of Practice in
Multi-Agent Systems, ser. PRIMA ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 525–533. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11161-7 38

[12] F. Xie and Z. Liu, “Backpropagation Modification in Monte-
Carlo Game Tree Search,” in Proceedings of the Third
International Symposium on Intelligent Information Technology
Application - Volume 02, ser. IITA ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 125–128. [Online].
Available: http://dx.doi.org/10.1109/IITA.2009.331

[13] K. S. Narendra and M. A. L. Thathachar, Learning automata -
an introduction. Prentice Hall, 1989.



92 VODOPIVEC, ŠTER

Tom Vodopivec received his pre-Bolgona B.Sc. degree (comparable
to the Bologna M.Sc. degree) from the Faculty of Computer and
Information Science of the University of Ljubljana in 2011. He is
a Ph.D. student, teaching assistant, and a member of the Laboratory
for Adaptive Systems and Parallel Processing at the same faculty.
His Ph.D. thesis is focused on Monte Carlo Tree Search algorithms,
while his research interests also comprise Reinforcement Learning,
Evolutionary Computation, Neural Networks, Game Theory, Parallel
Processing, and Machine Learning approaches in general.

Branko Šter is an associate professor at the Faculty of Computer and
Information Science, University of Ljubljana. He achieved his M.Sc.
degree in Electrical Engineering and Ph.D. degree in Computer and
information science both from the University of Ljubljana, in 1996
and 1999, respectively. His research interests include neural networks,
pattern recognition, reinforcement learning, and robotics.


