Opis
Cilj predstavljene študije je preučitev razmerja med velikostjo in položajem valja, jakostjo magnetnega polja, Reynoldsovim številom, volumskim deležem nanodelcev in indeksom uspešnosti za kvazi dvodimenzionalno obtekanje krožnega valja v pravokotnem kanalu, pri čemer ti parametri vplivajo na tokovne lastnosti vrtinčne sledi, odlepljanje ter sile upora in vzgona. Preučen je tudi vpliv magnetnega polja na prisilno konvekcijo ob valju. V enačbi o ohranitvi momenta je prezrt vpliv vzgona in tok je obravnavan kot nestisljiv tok s konstantnimi termodinamičnimi in transportnimi lastnostmi Newtonske tekočine. Mnoge tehnične aplikacije na tem področju z visokimi hitrostmi in v visoko turbulentnih režimih je zelo težavno modelirati in nujne so numerične simulacije. Večina računskih modelov v literaturi zaradi enostavnosti in sprejemljive točnosti uporablja dve enačbi za popis turbulence. Razpoložljivi podatki o obtekanju krožnega valja v kanalu z MHD-nanofluidom so skopi. Izpuščeni so členi, ki popisujejo vpliv viskozne disipacije in Joulove toplote in privzeto je, da je inducirano magnetno polje zanemarljivo. Enačba volumskega deleža je rešena za sekundarno fazo. Uporabljen je večfazni Eulerjev model zmesi v dimenzijski obliki. Hitrost fluida ob vseh trdnih stenah je enaka nič, tok na vhodu v kanal brez valja pa je popolnoma razvit. Na izhodu je privzet konstanten referenčni tlak, ničelni hitrostni gradient v toku pa je šibko privzet z obravnavo difuzijskega člena momentne enačbe po Galerkinu. Za sklopitev tlaka in hitrosti je bil uporabljen algoritem SIMPLE. Za ohranitev časovne natančnosti sheme tretjega reda je na Dirichletovih mejnih hitrostih uveljavljen Neumannov pogoj višjega reda za tlačni gradient. Cilinder je toplotno izoliran. Simulacije so bile izvedene v paketu ANSYS FLUENT 15.0. Za diskretizacijo vodilnih tokovnih in energijskih enačb v prostoru je bila uporabljena metoda vozliščnega spektralnega elementa, za časovno integracijo pa shema tretjega reda na podlagi vzvratnega odvajanja. Indeksi uspešnosti so bili v vseh primerih večji od ena, s čimer je dokazana možnost izboljšanja prenosa toplote v obravnavanem toku. Najboljše rezultate je dala postavitev cilindra s količnikom vrzeli od 0,75- do 1,25-kratnika premera, s 100-odstotnim izboljšanjem indeksa uspešnosti pri največjem količniku zapiranja. Enak trend je bil ugotovljen za vse količnike zapiranja. Največji indeks uspešnosti je bil vedno dosežen pri količniku vrzeli ena, in sicer pri vseh količnikih zapiranja. Domneve o kvazi dvodimenzionalni naravi modela so potrjene. Za območjem postavitve valja od začetka kanala do desetkratnika premera valja navzdol po toku, v katerem je bilo ugotovljeno postopno povečevanje indeksa uspešnosti, indeks spet pada. Najboljši indeks uspešnosti 2,43 je bil zabeležen pri postavitvi valja na mesto 10 premerov navzdol po toku pri Re = 3000 in jakosti magnetnega polja Ha = 20 s količnikom zapiranja 0,4 ter količnikom položaja in količnikom vrzeli 1. Vrednosti Nu v študiji so bile primerjane s predhodno objavljenimi analitičnimi in eksperimentalnimi podatki in ugotovljeno je bilo popolno ujemanje, ki potrjuje zanesljivost predlaganega modela. Vrtinčna sled je bila tesno povezana s temperaturnimi linijami. Za morebitno dodatno izboljšanje prenosa toplote bi bilo treba opraviti še simulacije za vrednosti Re nad 3000, količnik zapiranja nad 0,4, volumske koncentracije nanodelcev nad 2 % in postavitev valja več kot 10 premerov navzdol po toku. Kot zastojno telo v toku MHD-nanofluida pri višjih Reynoldsovih številih je bil uporabljen krožni valj. Podan je predlog idealnega položaja valja glede na količnik zapiranja, položaja in vrzeli. Z numeričnimi simulacijami in pridobljenimi napovedmi kvazi 2D-modela je bil potrjen potencial za izboljšanje prenosa toplote. Dosežena je bila zelo velika izboljšava indeksa uspešnosti ob upoštevanju vpliva vrednosti Re, Ha in % na tok v pravokotnem kanalu.