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Abstract

A complete list of all connected arc-transitive asymmetric digraphs of in-valence and
out-valence 2 on up to 1000 vertices is presented. As a byproduct, a complete list of all
connected 4-valent graphs admitting a 1

2 -arc-transitive group of automorphisms on up to
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are calculated and discussed.
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1 Introduction
Recall that a graph Γ is called 1

2 -arc-transitive provided that its automorphism group
Aut(Γ) acts transitively on its edge-set E(Γ) and on its vertex-set V(Γ) but intransitively
on its arc-set A(Γ). More generally, if G is a subgroup of Aut(Γ) such that G acts transi-
tively on E(Γ) and V(Γ) but intransitively on A(Γ), then G is said to act 1

2 -arc-transitively
on Γ and we say that Γ is (G, 12 )-arc-transitive. To shorten notation, we shall say that a
1
2 -arc-transitive graph is a HAT and that a graph admitting a 1

2 -arc-transitive group of au-
tomorphisms is a GHAT. Clearly, any HAT is also a GHAT. Conversely, a GHAT is either
a HAT or arc-transitive.

The history of GHATs goes back to Tutte who, in his 1966 paper [38, 7.35, p.59],
proved that every GHAT is of even valence and asked whether HATs exist at all. The first
examples of HATs were discovered a few years later by Bouwer [6]. After a short break,
interest in GHATs picked up again in the 90s, largely due to a series of influential papers of
Marušič concerning the GHATs of valence 4 (see [1, 17, 21, 24], to list a few). For a nice
survey of the topic, we refer the reader to [16], and for an overview of some more recent
results, see [13, 22].

To shorten notation further, we shall say that a connected GHAT (HAT, respectively) of
valence 4 is a 4-GHAT (4-HAT, respectively). The main result of this paper is a compilation
of a complete list of all 4-GHATs with at most 1000 vertices. This improves an unpublished
work [23], where all 4-HATs of order up to 869 vertices (with the exception of order 512)
with the vertex-stabiliser of order 2 were determined.

Our result was obtained indirectly using an intimate relation between 4-GHATs and
connected arc-transitive asymmetric digraphs of in- and out-valence 2 (we shall call such
digraphs 2-ATDs for short) – see Section 2.2 for details on this relationship. These results
can be succinctly summarised as follows:

Theorem 1.1. There are precisely 26457 pairwise non-isomorphic 2-ATDs on at most
1000 vertices, and precisely 11941 4-GHATs on at most 1000 vertices, of which 8695 are
arc-transitive and 3246 are 1

2 -arc-transitive.

The actual lists of (di)graphs, together with a spreadsheet (in a “comma separated val-
ues” format) with some graph theoretical invariants, is available at [28].

The rest of this section is devoted to some interesting facts gleaned from these lists. All
the relevant definitions that are omitted here can be found in Section 2. In Section 3, we
explain how the lists were computed and present the theoretical background which assures
that the computations were exhaustive. In Section 4, information about the format of the
files available on [28] is given.

We now proceed with a few comments on the census of 4-HATs. By a vertex-stabiliser
of a vertex-transitive graph or digraph Γ, we mean the stabiliser of a vertex in Aut(Γ).
Even though it is known that a vertex-stabiliser of a 4-HAT can be arbitrarily large (see
[18]), not many examples of 4-HATs with vertex-stabilisers of order larger than 2 were
known, and all known examples had a very large number of vertices. Recently, Conder and
Šparl (see also [8]) discovered a 4-HAT on 256 vertices with vertex-stabiliser of order 4
and proved that this is the smallest such example. This fact is confirmed by our census; in
fact, the following theorem can be deduced from the census.

Theorem 1.2. Amongst the 3246 4-HATs on at most 1000 vertices, there are seventeen
with vertex-stabiliser of order 4, three with vertex-stabiliser of order 8, and none with
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larger vertex-stabilisers. The smallest 4-HAT with vertex-stabiliser of order 4 has order
256 and the smallest two with vertex-stabilisers of order 8 have 768 vertices; the third
4-HAT with vertex-stabiliser of order 8 has 896 vertices.

Another curiosity about 4-HATs is that those with a non-abelian vertex-stabiliser tend
to be very rare (at least amongst the “small” graphs). The first known 4-HAT with a non-
abelian vertex-stabiliser was discovered by Conder and Marušič (see [7]) and has 10752
vertices. Further examples of 4-HATs with non-abelian vertex-stabilisers were discovered
recently (see [8]), including one with a vertex-stabiliser of order 16. However, the one on
10752 vertices remains the smallest known example. Using our list, the following fact is
easily checked.

Theorem 1.3. Every 4-HAT with a non-abelian vertex-stabiliser has more than 1000 ver-
tices.

In fact, there are strong indications that the graph on 10752 vertices discovered by
Conder and Marušič is the smallest 4-HAT with a non-abelian vertex-stabiliser.

We will call a 4-HAT with a non-solvable automorphism group a non-solvable 4-HAT.
The first known non-solvable 4-HAT was constructed by Marušič and Xu [24]; and its order
is 7!/2. An infinite family of non-solvable 4-HATs were constructed later by Malnič and
Marušič [15]. The smallest member of this family has an even larger order, namely 11!/2.
To the best of our knowledge, no smaller non-solvable 4-HATs appeared in literature. Per-
haps surprisingly, small examples of non-solvable 4-HATs seem not to be too rare, as can
be checked from our census (as well as from the unpublished work [23]).

Theorem 1.4. There are thirty-two non-solvable 4-HATs with at most 1000 vertices. The
smallest one, named HAT[480,44], has order 480, girth 5, radius 5, attachment number 2,
alter-exponent 2, and alter-perimeter 1. It is non-Cayley and non-bipartite.

(The terms radius, attachment number, alter-exponent, and alter-perimeter appearing
in the statement of Theorem 1.4 are defined in Sections 4.2 and 4.3.) Let us now continue
with a few comments on the census of 2-ATDs. All the undefined notions mentioned in
the theorems below are explained in Sections 2, 4.2 and 4.3. It is not surprising that, apart
from the generalised wreath digraphs (see Section 2.3 for the definition), very few of the
2-ATDs on at most 1000 vertices are 2-arc-transitive. In fact, the following can be deduced
from the census.

Theorem 1.5. Out of the 26457 2-ATDs on at most 1000 vertices, 961 are generalised
wreath digraphs. Of the remaining 25496, only 1199 are 2-arc-transitive (the smallest
having order 18), only 255 are 3-arc-transitive (the smallest having order 42), only 61 are
4-arc-transitive (the smallest having order 90), and only 6 are 5-arc-transitive (the smallest
two having order 640); none of them is 6-arc-transitive.

Note that the non-existence of a 6-arc-transitive non-generalised-wreath 2-ATD on at
most 1000 vertices follows from a more general result (see Corollary 3.2).

Recall that there is no 4-HAT on at most 1000 vertices with a non-abelian vertex-
stabiliser (Theorem 1.3). Consequently (see Section 2.2), every 2-ATD on at most 1000
vertices with a non-abelian vertex-stabiliser has an arc-transitive underlying graph; and
there are indeed such examples. In fact, the following holds (see Section 2.1 for the defini-
tion of self-opposite).
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Theorem 1.6. There are precisely forty-five 2-ATDs on at most 1000 vertices with a non-
abelian vertex-stabiliser. They are all self-opposite, at least 3-arc-transitive, have non-
solvable automorphism groups, and radius 3. The smallest of these digraphs has order 42,
and the smallest that is 4-arc-transitive has order 90. There are no 5-arc-transitive 2-ATDs
with a non-abelian vertex-stabiliser and order at most 1000.

If a 2-ATD is self-opposite, then the isomorphism between the digraph and its opposite
digraph is an automorphism of the underlying graph, making the underlying graph arc-
transitive. Hence, self-opposite 2-ATDs always yield arc-transitive 4-GHATs. However,
the converse is not always true: there are 2-ATDs that are not self-opposite, but have an arc-
transitive underlying graph. In this case, the index of the automorphism group of the 2-ATD
in the automorphism group of its underlying graph must be larger than 2 (for otherwise the
former would be normal in the latter and thus any automorphism of the underlying graph
would either preserve the arc-set of the digraph, or map it to the arc-set of the opposite
digraph). It is perhaps surprising that there are not many small examples of such behaviour.

Theorem 1.7. There are precisely fifty-two 2-ATDs on at most 1000 vertices that are not
self-opposite but have an arc-transitive underlying graph. The smallest two have order 21.
None of these digraphs is 2-arc-transitive. The index of the automorphism group of these
digraphs in the automorphism group of the underlying graphs is always 8.

We finish this section by mentioning an earlier attempt of Stephen Wilson and the first
author of this paper to compile a census of all small edge-transitive graphs of valence 4,
and thus, in particular, of all 4-GHATs; see [31]. The results of this paper confirm that the
list given in [31] contains all 4-GHATs of order at most 100.

2 Notation and definitions
2.1 Digraphs and graphs

A digraph is an ordered pair (V,A) where V is a finite non-empty set and A ⊆ V × V is
a binary relation on V . We say that (V,A) is asymmetric if A is asymmetric, and we say
that (V,A) is a graph if A is irreflexive and symmetric. If Γ = (V,A) is a digraph, then we
shall refer to the set V and the relation A as the vertex-set and the arc-set of Γ, and denote
them by V(Γ) and A(Γ), respectively. Members of V and A are called vertices and arcs,
respectively. If (u, v) is an arc of a digraph Γ, then u is called the tail, and v the head of
(u, v). If Γ is a graph, then the unordered pair {u, v} is called an edge of Γ and the set of
all edges of Γ is denoted E(Γ).

If Γ is a digraph, then the opposite digraph Γopp has vertex-set V(Γ) and arc-set
{(v, u) : (u, v) ∈ A(Γ)}. The underlying graph of Γ is the graph with vertex-set V(Γ) and
with arc-set A(Γ) ∪ A(Γopp). A digraph is called connected provided that its underlying
graph is connected.

Let v be a vertex of a digraph Γ. Then the out-neighbourhood of v in Γ, denoted by
Γ+(v), is the set of all vertices u of Γ such that (v, u) ∈ A(Γ), and similarly, the in-
neighbourhood Γ−(v) is defined as the set of all vertices u of Γ such that (u, v) ∈ A(Γ).
Further, we let val+(v) = |Γ+(v)| and val−(v) = |Γ−(v)| be the out-valence and in-
valence of Γ, respectively. If there exists an integer r such that val+(v) = val−(v) = r for
every v ∈ V(Γ), then we say that Γ is regular of valence r, or simply that Γ is an r-valent
digraph.



P. Potočnik et al.: A census of 4-valent half-arc-transitive graphs. . . 137

An s-arc of a digraph Γ is an (s + 1)-tuple (v0, v1, . . . , vs) of vertices of Γ, such
that (vi−1, vi) is an arc of Γ for every i ∈ {1, . . . , s} and vi−1 6= vi+1 for every i ∈
{1, . . . , s − 1}. If x = (v0, v1, . . . , vs) is an s-arc of Γ, then every s-arc of the form
(v1, v2, . . . , vs, w) is called a successor of x.

An automorphism of a digraph Γ is a permutation of V(Γ) which preserves the arc-set
A(Γ). Let G be a subgroup of the full automorphism group Aut(Γ) of Γ. We say that Γ is
G-vertex-transitive or G-arc-transitive provided that G acts transitively on V(Γ) or A(Γ),
respectively. Similarly, we say that Γ is (G, s)-arc-transitive if G acts transitively on the
set of s-arcs of Γ. If Γ is a graph, we say that it is G-edge-transitive provided that G acts
transitively on E(Γ). When G = Aut(Γ), the prefix G in the above notations is usually
omitted.

If Γ is a digraph and v ∈ V(Γ), then a v-shunt is an automorphism of Γ which maps v
to an out-neighbour of v.

2.2 From 4-GHATs to 2-ATDs and back

If Γ is a connected 4-valent (G, 12 )-arc-transitive graph, thenG has two paired orbits on the
arc-set of Γ, each orbit having the property that each vertex of Γ is the head of precisely
two arcs, and also the tail of precisely two arcs of the orbit. By taking any of these two
orbits as an arc-set of a digraph on the same vertex-set, one thus obtains a 2-ATD whose
underlying graph is Γ, and admitting G as an arc-transitive group of automorphisms.

Conversely, the underlying graph of a G-arc-transitive 2-ATD is a (G, 12 )-arc-transitive
4-GHAT. In this sense the study of 4-GHATs is equivalent to the study of 2-ATDs.

In Section 3, we explain how a complete list of all 2-ATDs on at most 1000 vertices
was obtained. The above discussion shows how this yields a complete list of all 4-GHATs
on at most 1000 vertices.

2.3 Generalised wreath digraphs

Let n be an integer with n ≥ 3, let V = Zn × Z2, and let A = {((i, a), (i + 1, b)) : i ∈
Zn, a, b ∈ Z2}. The asymmetric digraph (V,A) is called a wreath digraph and denoted by
~Wn.

If Γ is a digraph and r is a positive integer, then the r-th partial line digraph of Γ,
denoted Plr(Γ), is the digraph with vertex-set equal to the set of r-arcs of Γ and with (x, y)
being an arc of Plr(Γ) whenever y is a successor of x. If r = 0, then we let Plr(Γ) = Γ.

Let r be a positive integer. The (r−1)-th partial line digraph Plr−1( ~Wn) of the wreath
digraph ~Wn is denoted by ~W(n, r) and called a generalised wreath digraph. Generalised
wreath digraphs were first introduced in [32], where ~W(n, r) was denoted Cn(2, r). It
was proved there that Aut( ~W(n, r)) ∼= C2 o Cn ∼= Cn2 o Cn and that Aut( ~W(n, r)) acts
transitively on the (n−r)-arcs but not on the (n−r+1)-arcs of ~W(n, r) [32, Theorem 2.8].
In particular, ~W(n, r) is arc-transitive if and only if n ≥ r + 1. Note that |V( ~W(n, r))| =
n2r, and thus |Aut( ~W(n, r))v| = n2n/n2r = 2n−r.

The underlying graph of a generalised wreath digraph will be called a generalised
wreath graph.
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2.4 Coset digraphs

LetG be a group generated by a core-free subgroupH and an element g with g−1 6∈ HgH .
One can construct the coset digraph, denoted Cos(G,H, g), whose vertex-set is the set
G/H of right cosets ofH inG, and where (Hx,Hy) is an arc if and only if yx−1 ∈ HgH .
Note that the condition g−1 6∈ HgH guarantees that the arc-set is an asymmetric relation.
Moreover, since G = 〈H, g〉, the digraph Cos(G,H, g) is connected.

The digraph Cos(G,H, g) is G-arc-transitive (with G acting upon G/H by right mul-
tiplication), and hence Cos(G,H, g) is a G-arc-transitive and G-vertex-transitive digraph
with g being a v-shunt (where v = H · 1 ∈ G/H). On the other hand, it is folklore that
every such graph arises as a coset digraph.

Lemma 2.1. If Γ is a connected G-arc-transitive and G-vertex-transitive digraph, v is a
vertex of Γ, and g is a v-shunt contained in G, then Γ ∼= Cos(G,Gv, g).

3 Constructing the census
If Γ is a G-vertex-transitive digraph with n vertices, then |G| = n|Gv|. If one wants to
use the coset digraph construction to obtain all 2-ATDs on n vertices, one thus needs to
consider all groups G of order n|Gv| that can act as arc-transitive groups of 2-ATDs. In
order for this approach to be practical, two issues must be resolved:

First, one must get some control over |G| and thus over |Gv|. (Recall that in ~W(n, r),
|Gv| can grow exponentially with |V( ~W(n, r))|, as n → ∞ and r is fixed). Second, one
must obtain enough structural information about G to be able to construct all possibilities.

Fortunately, both of these issues were resolved successfully. The problem of bounding
|Gv|was resolved in a recent paper [37] and details can be found in Section 3.1. The second
problem was dealt with in [19], and later, in greater generality in [30] (both of these papers
rely heavily on a group-theoretical result of Glauberman [12]); the summary of relevant
results is given in Section 3.2.

3.1 Bounding the order of the vertex-stabiliser

The crucial result that made our compilation of a complete census of all small 2-ATDs
possible is Theorem 3.1, stated below, which shows that the generalised wreath digraphs
(defined in Section 2.3) are very special in the sense of having large vertex-stabilisers. In
fact, together with the correspondence described in Section 2.2, [37, Theorem 9.2] has the
following corollary:

Theorem 3.1. Let Γ be a G-arc-transitive 2-ATD on at most m vertices and let t be the
largest integer such that m > t2t+2. Then one of the following occurs:

1. Γ ∼= ~W(n, r) for some n ≥ 3 and 1 ≤ r ≤ n− 1,

2. |Gv| ≤ max{16, 2t},
3. (Γ, G) appears in the last line of [37, Table 1]. In particular, |V(Γ)| = 8100.

The following is an easy corollary:

Corollary 3.2. Let Γ be a G-arc-transitive 2-ATD on at most 1000 vertices. Then either
|Gv| ≤ 32 or Γ ∼= ~W(n, r) for some n ≥ 3 and 1 ≤ r ≤ n− 1.
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3.2 Structure of the vertex-stabiliser

Definition 3.3. Let s and α be positive integers satisfying 2
3s ≤ α ≤ s, and let c be a

function assigning a value ci,j ∈ {0, 1} to each pair of integers i, j with α ≤ j ≤ s − 1
and 1 ≤ i ≤ 2α − 2s + j + 1. Let Acs,α be the group generated by {x0, x1, . . . , xs−1, g}
and subject to the defining relations:

• x20 = x21 = · · · = x2s−1 = 1;

• xgi = xi+1 for i ∈ {0, 1, . . . , s− 2};
• if j < α, then [x0, xj ] = 1;

• if j ≥ α, then [x0, xj ] = x
c1,j
s−α x

c2,j
s−α+1 · · · x

c2α−2s+j+1,j

j−s+α .

Furthermore, let As,α be the family of all groups Acs,α for some c. It was proved in
[19] (see also [30]) that every group G acting arc-transitively on a 2-ATD is isomorphic to
a quotient of some Acs,α. More precisely, the following can be deduced from [19] or [30].

Theorem 3.4. Let Γ be a G-arc-transitive 2-ATD, let v ∈ V(Γ) and let s be the largest
integer such that G acts transitively on the set of s-arcs of Γ. Then there exists an integer α
satisfying 2

3s ≤ α ≤ s, a function c as in Definition 3.3, and an epimorphism ℘ : Acs,α →
G, which maps the group 〈x0, . . . , xs−1〉 isomorphically onto Gv and the generator g to
some v-shunt in G. In particular, |Gv| = 2s.

In this case, we will say that (Γ, G) is of typeAcs,α, and call the groupAcs,α the universal
group of the pair (Γ, G).

For s, α, and a function c satisfying the conditions of Definition 3.3, let c′ be the
function defined by c′i,j = c2α−2s+j+2− i,j . The relationship between c and c′ can be
visualised as follows: if one fixes the index j and views the function i 7→ ci,j as the
sequence [c1,j , c2,j , . . . , c2α−2s+j+1,j ], then the sequence for c′ is obtained by reversing
the one for c. If G̃ = Acs,α then we denote the opposite type Ac

′

s,α by G̃opp.
Observe that if (Γ, G) is of type G̃, then (Γopp, G) is of type G̃opp. A class of groups,

obtained from As,α by taking only one group in each pair {G̃, G̃opp}, G̃ ∈ As,α, will be
denoted Ared

s,α. (Note that some groups G̃ might have the property that G̃ = G̃opp.)
In view of Corollary 3.2, we shall be mainly interested in the universal groups Acs,α

with s ≤ 5 (as, excluding generalised wreath digraphs, these are the only types of 2-ATDs
of order at most 1000). We list the relevant classes Ared

s,α for s ≤ 5 explicitly in Table 1.
Groups inAred

s,α, for a fixed s will be named byAis, where i will be a positive integer, where
groups with larger α will be indexed with lower i. Also, the generators x0, x1, x2, x3, and
x4 will be denoted a, b, c, d, and e, respectively.

3.3 The algorithm and its implementation

We now have all the tools required to present a practical algorithm that takes an integer m
as input and returns a complete list of all 2-ATDs on at most m vertices (see Algorithm 1).
It is based on the fact that every such digraph can be obtained as a coset digraph of some
group G (see Lemma 2.1), and that G is in fact an epimorphic image of some group Acs,α
(see Theorem 3.4) withGv and the shunt being the corresponding images of 〈x0, . . . , xs−1〉
and g in Acs,α.

Moreover, if Γ is not a generalised wreath digraph or the exceptional digraph on 8100
vertices mentioned in part 3 of Theorem 3.1, then the parameter s satisfies s2s+2 < m, and
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name G̃

A1
1 〈a, g | a2〉

A1
2 〈a, b, g | a2, b2, agb, [a, b]〉

A1
3 〈a, b, c, g | a2, b2, c2, agb, bgc, [a, b], [a, c]〉

A2
3 〈a, b, c, g | a2, b2, c2, agb, bgc, [a, b], [a, c]b〉

A1
4 〈a, b, c, d, g | a2, b2, c2, d2, agb, bgc, cgd, [a, b], [a, c], [a, d]〉

A2
4 〈a, b, c, d, g | a2, b2, c2, d2, agb, bgc, cgd, [a, b], [a, c], [a, d]b〉

A3
4 〈a, b, c, d, g | a2, b2, c2, d2, agb, bgc, cgd, [a, b], [a, c], [a, d]bc〉

A1
5 〈a, b, c, d, e, g | a2, b2, c2, d2, e2, d2, agb, bgc, cgd, dge, [a, b], [a, c], [a, d], [a, e]〉

A2
5 〈a, b, c, d, e, g | a2, b2, c2, d2, e2, d2, agb, bgc, cgd, dge, [a, b], [a, c], [a, d], [a, e]b〉

A3
5 〈a, b, c, d, e, g | a2, b2, c2, d2, e2, d2, agb, bgc, cgd, dge, [a, b], [a, c], [a, d], [a, e]c〉

A4
5 〈a, b, c, d, e, g | a2, b2, c2, d2, e2, d2, agb, bgc, cgd, dge, [a, b], [a, c], [a, d], [a, e]bc〉

A5
5 〈a, b, c, d, e, g | a2, b2, c2, d2, e2, d2, agb, bgc, cgd, dge, [a, b], [a, c], [a, d], [a, e]bd〉

A6
5 〈a, b, c, d, e, g | a2, b2, c2, d2, e2, d2, agb, bgc, cgd, dge, [a, b], [a, c], [a, d], [a, e]bcd〉

Table 1: Universal groups of 2-ATDs with |G̃v| ≤ 32

the order of the epimorphic image G is bounded by 2sm (see Theorem 3.1). The algorithm
thus basically boils down to the task of finding normal subgroups of bounded index in the
finitely presented groups Acs,α.

Practical implementations of this algorithm have several limitations. First, the best
known algorithm for finding normal subgroups of low index in a finitely presented group
is an algorithm due to Firth and Holt [11]. The only publicly available implementation is
the LowIndexNormalSubgroups routine in MAGMA [5] and the most recent version
allows one to compute only the normal subgroups of index at most 5 · 105; hence only
automorphisms groups of order 5 · 105 can possibly be obtained in this way.

More importantly, even when only normal subgroups of relatively small index need to
be computed, some finitely presented groups are computationally difficult. For example,
finding all normal subgroups of index at most 2048 of the group A1

1
∼= C2 ∗ C∞ seems

to represent a considerable challenge for the LowIndexNormalSubgroups routine in
MAGMA. In order to overcome this problem, we have used a recently computed catalogue
of all (2, ∗)-groups of order at most 6000 [29], where by a (2, ∗)-group we mean any group
generated by an involution x and one other element g. Since A1

1 is a (2, ∗)-group and every
non-cyclic quotient of a (2, ∗)-group is also a (2, ∗)-group, this catalogue can be used to
obtain all the quotients of A1

1 of order up to 6000. Consequently, all 2-ATDs admitting
an arc-regular group of automorphisms of order at most 3000 can be obtained. Similarly,
since A1

2 is also a (2, ∗)-group, we can use this catalogue to obtain all the 2-ATDs of order
at most 1500 admitting an arc-transitive group G with |Gv| = 4.

It should be mentioned that the concept of a (2, ∗)-group is equivalent to that of a rotary
map, that can be described as groups generated by two elements the product of which is
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Algorithm 1 2-ATDs on at most m vertices.
Require: positive integer m
Ensure: D = {Γ : Γ is 2-ATD, |V (Γ)| ≤ m}

Let t be the largest integer such that m > t2t+2;
Let D be the list of all arc-transitive generalised wreath digraphs on at most m vertices;
If m ≥ 8100, add to D the exceptional digraph Γ on 8100 vertices, mentioned in part 3
of Theorem 3.1;
for s ∈ {1, . . . ,max{4, t}} do

for α ∈ {d 23se, d
2
3se+ 1, . . . , s} do

for G̃ ∈ Ared
s,α do

Let N be the set of all normal subgroups of G̃ of index at most 2sm;
for N ∈ N do

Let G := G̃/N and let ℘ : G̃→ G be the quotient projection;
Let H := ℘(〈x0, . . . , xs−1〉);
if H is core-free in G and |H| = 2s and ℘(g)−1 6∈ H℘(g)H then

Let C := cos(G,H,℘);
for Γ ∈ {C,Copp} do

if Γ is not isomorphism to any of the digraphs in D then
add Γ to the list D;

end if
end for

end if
end for

end for
end for

end for
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an involution. A catalogue of all (2, ∗)-groups of order at most 2000 could thus be derived
from Conder’s catalogue of rotary maps with at most 1000 edges [9]. Conversely, the
catalogue of (2, ∗)-group of order up to 6000 [29] extends the list in [9] up to 3000 edges
in the orientable case and to 1500 in the non-orientable case.

Like A1
1 and A1

2, the groups with 〈x0, . . . , xs−1〉 abelian (namely those with α = s and
ci,j = 0 for all i, j) are also computationally very difficult. One can make the task easier by
dividing it into cases, where the order of g is fixed in each case. Since g represents a shunt,
it can be proved that its order cannot exceed the order of the digraph (see, for example, [27,
Lemma 13]). Cases can then be run in parallel on a multi-core computer.

4 The census and accompanying data
Using Algorithm 1, we found that there are exactly 26457 2-ATDs of order up to 1000.
Following the recipe explained in Section 2.2, we have also computed all the 4-GHATs,
which we split in two lists: 4-HATs and arc-transitive 4-GHATs.

The data about these graphs, together with MAGMA code that generates them, is avail-
able on-line at [28]. The package contains ten files. The file “Census-ATD-1k-README.txt”
is a text file containing information similar to the information in this section. The remain-
ing nine files come in groups of three, one group for each of the three lists (2-ATDs, arc-
transitive 4-GHATs, 4-HATs). In each group, there is a ∗.mgm file, a ∗.txt file and a ∗.csv
file.

The ∗.mgm file contains MAGMA code that generates the corresponding digraphs. Af-
ter loading the file in MAGMA, a double sequence is generated (named either ATD, GHAT,
or HAT, depending on the file). The length of each double sequence is 1000 and the n-th
component of the sequence is the sequence of all the corresponding digraphs of order n,
with the exception of the generalised wreath digraphs. Thus, ATD[32,2] will return the sec-
ond of the four non-generalised-wreath 2-ATDs on 32 vertices (the ordering of the digraphs
in the sequence ATD[32] is arbitrary). In order to include the generalised wreath digraphs
into the corresponding sequence, one can call the procedure AddGWD(∼ATD,GWD) in the
case of the 2-ATDs, or AddGWG(∼GHAT,GWG) in the case of the 4-GHATs (note that a
generalised wreath graph is never 1

2 -arc-transitive).
The ∗.txt file contains the list of neighbours of each digraph. This file is needed when

the ∗.mgm file is loaded into MAGMA, but, being an ASCII file, it can be used also by
other computer systems to reconstruct the digraphs. For the details of the format, see the
“README” file.

Finally, the ∗.csv file is a “comma separated values” file representing a spreadsheet
containing some precomputed graph invariants. We shall first introduce some of these
invariants and then discuss each ∗.csv separately.

4.1 Walks and cycles

Let Γ be a digraph. A walk of length n in Γ is an (n+ 1)-tuple (v0, v1, . . . , vn) of vertices
of Γ such that, for any i ∈ {1, . . . n}, either (vi−1, vi) or (vi, vi−1) is an arc of Γ. The walk
is closed if v0 = vn and simple if the vertices vi are pairwise distinct (with the possible
exception of the first and the last vertex when the walk is closed).

A closed simple walk in Γ is called a cyclet. The inverse of a cyclet (v0, . . . , vn−1, v0)
is the cyclet (v0, vn−1, . . . , v1, v0), and a cyclet (v0, . . . , vn−1, v0) is said to be a shift of
a cyclet (u0, . . . , un−1, u0) provided that there exists k ∈ Zn such that ui = vi+k for all
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i ∈ Zn. Two cyclets W and U are said to be congruent provided that W is a shift of
either U or the inverse of U . The relations of “being a shift of” and “being congruent to”
are clearly equivalence relations, and their equivalence classes are called oriented cycles
and cycles, respectively. With a slight abuse of terminology, we shall sometimes identify a
(oriented) cycle with any of its representatives.

4.2 Alter-equivalence, alter-exponent, alter-perimeter, and alter-sequence

Let Γ be an asymmetric digraph. The signature of a walk W = (v0, v1, . . . , vn) is an n-
tuple (ε1, ε2, . . . , εn), where εi = 1 if (vi−1, vi) is an arc of Γ, and εi = −1 otherwise. The
signature of a walk W will be denoted by σ(W ). The sum of all the integers in σ(W ) is
called the sum of the walkW and denoted by s(W ); similarly, the kth partial sum sk(W ) is
the sum of the initial walk (v0, v1, . . . , vk) of length k. By convention, we let s0(W ) = 0.

The tolerance of a walk W of length n, denoted T (W ), is the set {sk(W ) : k ∈
{0, 1, . . . , n}}. Observe that the tolerance of a walk is always an interval of integers con-
taining 0. Let t be a positive integer or ∞. We say that two vertices u and v of Γ are
alter-equivalent with tolerance t if there is a walk from u to v with sum 0 and tolerance
contained in [0, t]; we shall then write uAtv. The equivalence class of At containing a
vertex v will be denoted by At(v).

Since we assume that Γ is a finite digraph, there exists an integer e ≥ 0 such that
Ae = Ae+1 (and then Ae = A∞). The smallest such integer is called the alter-exponent
of Γ and denoted by exp(Γ).

The number of equivalence classes ofA∞ is called the alter-perimeter of Γ. The name
originates from the fact that the quotient digraph of Γ with respect toA∞ is either a directed
cycle or the complete graph K2 or the graph K1 with one vertex.

If e is the alter-exponent of a (vertex-transitive) digraph Γ, then the finite sequence
[|A1(v)|, |A2(v)|, . . . , |Ae(v)|] is called the alter-sequence of Γ.

Several interesting properties of the alter-exponent can be proved (see [20] for exam-
ple). For example, if Γ is connected and G-vertex-transitive, then exp(Γ) is the smallest
positive integer e such that the setwise stabiliser GAe(v) is normal in G. The group GAe(v)
is the group generated by all vertex-stabilisers in G and G/GAe(v) is a cyclic group.

All notions defined in this section for digraphs generalise to half-arc-transitive graphs,
where instead of the graph one of the two natural arc-transitive digraphs are considered. As
was shown in [20], all the parameters defined here remain the same if instead of a digraph,
its opposite digraph is considered. The notions defined in this section were later generalised
in the context of infinite digraphs [14].

4.3 Alternating cycles – radius and attachment number

A walk W in an asymmetric digraph is called alternating if its tolerance is either [0, 1] or
[−1, 0] (that is, if the signs in its signature alternate). Similarly, a cycle is called alternating
provided that any (and thus every) of its representatives is an alternating walk.

This notion was introduced in [17] and used to classify the so-called tightly attached 4-
GHATs and 4-HATs of odd radius. The concept of alternating cycles was explored further
in a number of papers on 4-HATs (see for example [21, 34]).

Let Γ be a 2-ATD, let C be the set of all alternating cycles of Γ, and let G = Aut(Γ).
The set C is clearly preserved by the action of G upon the cycles of Γ. Moreover, since Γ
is arc-transitive, G acts transitively on C. In particular, all the alternating cycles of Γ are of
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equal length. Half of the length of an alternating cycle is called the radius of Γ.

Since Γ is 2-valent, every vertex of Γ belongs to precisely two alternating cycles. It thus
follows from vertex-transitivity of Γ that any (unordered) pair of intersecting cycles can be
mapped to any other such pair, implying that there exists a constant a such that any two cy-
cles meet either in 0 or in a vertices. The parameter a is then called the attachment number
of Γ. In general, the attachment number divides the length of the alternating cycle (twice
the radius), and there are digraphs where a equals this length; they were classified in [17,
Proposition 2.4], where it was shown that their underlying graphs are always arc-transitive.
A 2-valent asymmetric digraph with attachment number a is called tightly attached if a
equals the radius, is called antipodally attached if a = 2, and is called loosely attached if
a = 1. Note that tightly attached 2-ATDs are precisely those with alter-exponent 1.

4.4 Consistent cycles

Let Γ be a graph and let G ≤ Aut(Γ). A (oriented) cycle C in a graph Γ is called G-
consistent provided that there exists g ∈ G that preserves C and acts upon it as a 1-step
rotation. A G-orbit of G-consistent oriented cycles is said to be symmetric if it contains the
inverse of any (and thus each) of its members, and is chiral otherwise.

Consistent oriented cycles were first introduced by Conway in a public lecture [10] (see
also [3, 25, 26]). Conway’s original result states that in an arc-transitive graph of valence d,
the automorphism group of the graph has exactly d− 1 orbits on the set of oriented cycles.
In particular, if Γ is 4-valent and G-arc-transitive, then there are precisely three G-orbits
of G-consistent oriented cycles. Since chiral orbits of G-consistent cycles come in pairs
of mutually inverse oriented cycles, this implies that there must be at least one symmetric
orbit, while the other two are either both chiral or both symmetric.

Conway’s result was generalised in [4] to the case of 1
2 -arc-transitive graphs by showing

that if Γ is a 4-valent (G, 12 )-arc-transitive graph, then there are precisely four G-orbits of
G-consistent oriented cycles, all of them chiral. These four orbits of oriented cycles thus
constitute precisely two G-orbits of G-consistent (non-oriented) cycles.

4.5 Metacirculants

A weak metacirculant is a graph whose automorphism group contains a vertex-transitive
metacyclic group G, generated by ρ and σ, such that the cyclic group 〈ρ〉 is semiregular
on the vertex-set of the graph, and is normal in G. This notion was introduced by Marušič
and Šparl [22] and generalises that of a metacirculant introduced by Alspach and Parsons
[2]. Metacirculants admitting 1

2 -arc-transitive groups of automorphisms were first inves-
tigated in [33]. Recently, the interesting problem of classifying all 4-HATs that are weak
metacirculants was considered in [22, 35, 36]. Such 4-HATs fall into four (not necessarily
disjoint) classes (called Class I, Class II, Class III, and Class IV), depending on the struc-
ture of the quotient by the orbits of the semiregular element ρ. For a precise definition of
the class of a 4-HAT weak metacirculant see, for example, [35, Section 2]. Since a given
4-HAT may admit several vertex-transitive metacyclic groups, a fixed graph can fall into
several of these four classes. Several interesting facts about 4-HAT (weak) metacirculants
are known. For example, tightly attached 4-HATs are precisely the 4-HATs that are weak
metacirculants of Class I.
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4.6 The data on 2-ATDs

The “Census-ATD-1k-data.csv” file concerns 2-ATDs. Each line of the file represents one
of the digraphs in the census, and has 19 fields described below. Since this file is in “csv”
format, every occurrence of a comma in a field is substituted with a semicolon.

• Name: the name of the digraph (for example, ATD[32,2]);

• |V|: the order of the digraph;

• SelfOpp: contains “yes” if the digraph is isomorphic to its opposite digraph and
“no” otherwise;

• Opp: the name of the opposite digraph (the same as “Name” if the digraph is self-
opposite);

• IsUndAT: “yes” if the underlying graph is arc-transitive, “no” otherwise;

• UndGrph: the name of the underlying graph, as given in the files “Census-HAT-1k-
data.csv” and “Census-GHAT-1k-data.csv” – if the underlying graph is generalized
wreath, then this is indicated by, say, “GWD(m,k)” where m and k are the defining
parameters.

• s: the largest integer s, such that the digraph is s-arc-transitive;

• GvAb: “Ab” if the vertex-stabiliser in the automorphism group of the digraph is
abelian, otherwise “n-Ab”;

• |Tv:Gv|: the index of the automorphism group G of the digraph in the smallest arc-
transitive group T of the underlying graph that contains G – if there’s no such group
T , then 0;

• |Av:Gv|: the index of the automorphism group of the digraph in the automorphism
group of the underlying graph;

• Solv: this field contains “solve” if the automorphism group of the digraph is solv-
able and “n-solv” otherwise;

• Rad: the radius, that is, half of the length of an alternating cycle;

• AtNo: the attachment number, that is, the size of the intersection of two intersecting
alternating cycles;

• AtTy: the attachment type, that is: “loose” if the attachment number is 1, “antipo-
dal” if 2, and “tight” if equal to the radius, otherwise “—”;

• |AltCyc|: the number of alternating cycles;

• AltExp: the alter-exponent;

• AltPer: the alter-perimeter;

• AltSeq: the alter-sequence;

• IsGWD: “yes” if the digraph is generalized wreath, and “no” otherwise.

4.7 The data on arc-transitive 4-GHATs

The “Census-GHAT-1k-data.csv” file concerns arc-transitive 4-GHATs . Each line of the
file represents one of the graphs in the census, and has nine fields, described below. Note,
however, that the file does not contain the generalised wreath graphs.
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• Name: the name of the graph (for example GHAT[9,1]);

• |V|: the order of the graph;

• gir: the girth (length of a shortest cycle) of the graph;

• bip: this field contains “b” if the graph is bipartite and “nb” otherwise;

• CayTy: this field contains “Circ” if the graph is a circulant (that is, a Cayley graph
on a cyclic group), “AbCay” if the graph is Cayley graph on an abelian group, but
not a circulant, and “Cay” if it is a Cayley but not on an abelian group – it contains
“n-Cay” otherwise;

• |Av|: the order of the vertex-stabiliser in the automorphism group of the graph;

• |Gv|: a sequence of the orders of vertex-stabilisers of the maximal half-arc-transitive
subgroups of the automorphism group – up to conjugacy in the automorphism group;

• solv: this field contains “solve” if the automorphism group of the graph is solvable
and “n-solv” otherwise;

• [|ConCyc|]: the sequence of the lengths of A-consistent oriented cycles of the graph
(one cycle per each A-orbit, where A is the automorphism group of the graph) – the
symbols “c” and “s” indicate whether the corresponding cycle is chiral or symmetric
– for example, [4c; 4c; 10s] means there are two chiral orbits of A-consistent cycles,
both containing cycles of length 4, and one orbit of symmetric consistent cycles,
containing cycles of length 10.

4.8 The data on 4-HATs

The “Census-HAT-1k-data.csv” file concerns 4-HATs. Each line of the file represents one
of the graphs in the census, and has 16 fields. The fileds |V|, gir, bip, and Solv are as
in Section 4.7, and the fields Rad, AtNo, AtTy, AltExp, AltPer and AltSeq
are as in Section 4.6. The remaining fileds as follows:

• Name: the name of the graph (for example HAT[27,1]);

• IsCay: this field contains “Cay” if the graph is Cayley and “n-Cay” otherwise;

• |Gv|: the order of the vertex-stabiliser in the automorphism group of the graph;

• CCa: the length of a shortest consistent cycle;

• CCb: the length of a longest consistent cycle;

• MetaCircCl: “{}” if the graph is not a meta-circulant; otherwise a set of classes
of meta-circulants that represents the graph.
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[15] A. Malnič, D. Marušič, Constructing 4-valent 1
2

-Transitive Graphs with a Nonsolvable Auto-
morphism Group, J. Combin. Theory Ser. B 75 (1999), 46–55.
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[19] D. Marušič, R. Nedela, On the point stabilizers of transitive groups with non-self-paired subor-
bits of length 2, J. Group Theory 4 (2001), 19–43.
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