ISSN 1408-7073 RMZ - MATERIALS AND GEOENVIRONMENT PERIODICAL FOR MINING, METALLURGY AND GEOLOGY RMZ - MATERIALI IN GEOOKOLJE REVIJA ZA RUDARSTVO, METALURGIJO IN GEOLOGIJO RMZ-M&G, Vol. 59, No. 2/3 pp. 99-330 (2012) Ljubljana, November 2012 Historical Rewiev More than 90 years have passed since in 1919 the University Ljubljana in Slovenia was founded. Technical fields were joint in the School of Engineering that included the Geologic and Mining Division while the Metallurgy Division was established in 1939 only. Today the Departments of Geology, Mining and Geotechnology, Materials and Metallurgy are part of the Faculty of Natural Sciences and Engineering, University of Ljubljana. Before War II the members of the Mining Section together with the Association of Yugoslav Mining and Metallurgy Engineers began to publish the summaries of their research and studies in their technical periodical Rudarski zbornik (Mining Proceedings). Three volumes of Rudarski zbornik (1937, 1938 and 1939) were published. The War interrupted the publication and not untill 1952 the first number of the new journal Rudarsko-metalurski zbornik - RMZ (Mining and Metallurgy Quarterly) has been published by the Division of Mining and Metallurgy, University of Ljubljana. Later the journal has been regularly published quarterly by the Departments of Geology, Mining and Geotechnology, Materials and Metallurgy, and the Institute for Mining, Geotechnology and Environment. On the meeting of the Advisory and the Editorial Board on May 22nd 1998 Rudarsko-metalurski zbornik has been renamed into "RMZ - Materials and Geoenvironment (RMZ -Materiali in Geookolje)" or shortly RMZ - M&G. RMZ - M&G is managed by an international advisory and editorial board and is exchanged with other world-known periodicals. All the papers are reviewed by the corresponding professionals and experts. RMZ - M&G is the only scientific and professional periodical in Slovenia, which is published in the same form nearly 50 years. It incorporates the scientific and professional topics in geology, mining, and geotechnology, in materials and in metallurgy. The wide range of topics inside the geosciences are wellcome to be published in the RMZ -Materials and Geoenvironment. Research results in geology, hydrogeology, mining, geotechnology, materials, metallurgy, natural and antropogenic pollution of environment, biogeochemistry are proposed fields of work which the journal will handle. RMZ -M&G is co-issued and co-financed by the Faculty of Natural Sciences and Engineering Ljubljana, and the Institute for Mining, Geotechnology and Environment Ljubljana. In addition it is financially supported also by the Ministry of Higher Education, Science and Technology of Republic of Slovenia. Editor in chief Table of Contents - Kazalo Foreword 99 Predgovor Brenčič, M. Osemdeset let življenja in dela Dragice Strmole 101 Dobnikar, M. Phase contrast method for asbestos fibres determination 103 Uporaba metode faznega kontrasta za določanje azbestnih vlaken Dobnikar, M. Osemdeset let življenja in dela profesorja geologije dr. Rajka Pavlovca 109 Mikuž, V., Pavšič, J. Ostanki peresastih koral iz eocenskih plasti pri Gračišcu blizu Pazina v Istri 113 A sea pen remnants from Eocene beds at Gračišce near Pazin in Istria, Croatia Mikuž, V., Pavšič, J. Osemdeset let življenja in dela zaslužnega profesorja geologije dr. Simona Pirca 123 Zupančič, N. Regionalna porazdelitev geokemičnih prvin v tleh Slovenije 125 Regional distribution of geochemical elements in Slovenian soils Andjelov, M. Mercury enrichments in soils influenced by Idrija mercury mine, Slovenia 141 Živo srebro v tleh na širšem vplivnem območju rudnika v Idriji, Slovenija Gosar, M., Teršič, T. Cooperation of GeoZS in geochemical investigation in former Yugoslavia 159 Vključenost GeoZS v geokemične raziskave v nekdanji Jugoslaviji Šajn, R., Alijagič, J. Sustainable Aggregates Resource Management: experience learnt and shared within South East Europe Trajnostno gospodarjenje z mineralnimi surovinami za gradbeništvo - izkušnje, pridobljene v jugovzhodni Evropi Šolar, S., Shields, D., Zelic, U. Data-driven modelling of groundwater vulnerability to nitrate pollution in Slovenia Podatkovno vodeno modeliranje ranljivosti podzemne vode na nitratno onesnaženje v Sloveniji Uhan, J. 181 Hydrochemical characteristics of groundwater from the Kamniškobistriško 3 polje aquifer Hidrokemijske značilnosti podzemne vode vodonosnika Kamniškobistriškega polja Urbanc, J., Cerar, s., Stražar, A. The influence of vegetation type on metal content in soils 229 Vpliv vrste vegatacije na vsebnost težkih kovin v tleh Zupančič, N. Sedemdeset let življenja in dela profesorja geologije dr. Jožeta Čarja 245 Vrabec, M. 247 Geophysical evidence of recent activity of the Idrija fault, Kanomlja, NW Slovenia Geofizikalni dokazi za recentno aktivnost Idrijskega preloma v dolini Kanomlje Bavec, M., Car, M., stopar, R., Jamsek, P., Gosar, A. Characteristics of the Predjama fault near Postojna, SW Slovenia 257 Značilnosti Predjamskega preloma pri Postojni, JZ Slovenija šebela, S. Middle to Upper Jurassic succession at Mt Kobariški Stol (NW Slovenia) 267 Srednje- do zgornjejursko zaporedje na Kobariškem Stolu (SZ Slovenija) Šmuc, A. 285 299 Evidence of Quaternary faulting in the Idrija fault zone, Učja canyon, NW Slovenia Znaki kvartarne tektonske aktivnosti v coni Idrijskega preloma pri Učji Vrabec, M. Geomorfni indikatorji kvartarne aktivnosti Savskega preloma med Golnikom in Preddvorom Geomorphic indicators of Quaternary activity of the Sava fault between Golnik and Preddvor Jamšek Rupnik, P., Benedetti, L., Bavec, M., Vrabec, M. Author s Index, Vol. 59, No. 2/3 315 Instructions to Authors 317 Template 325 Foreword The metaphor »standing on the shoulders of giants« has marked the progress of science throughout the centuries. Although it is sometimes attributed to Isaac Newton, in reality, its origins go back much further in human history. But the most important thing is not the saying itself or the time of its first appearance, it is the message that it carries. Knowledge is like a pyramid whose top will collapse by taking away even the smallest part of its foundations. Nobody, regardless of their success and talent, achieves greatness alone, but is shown the right direction by the teachers who help pave part of the way. Without their advice, and sometimes orders, it would be impossible to continue down the path. And this is the message of the saying. All who buildand perfect their knowledge are only sitting on the shoulders of our ancestors. This jubilee edition is dedicated to our teachers who have paved the way for the present generation of geologists. All of these teachers havededicated their time to a specific part of geology, mastered it, and transmitted the knowledge to younger generations. They have researched vast areas of geology, including petrology, mineralogy, geochemistry, sedimentology, tectonics, regional geology and palaeontology. This is why the papers are also very varied. Their students, especially colleagues who have graduated under their mentorship, have presented us with a short summary of current geological research dealing with previously listed areas of geology and reconfirmed the varied character of Slovene geology. The present collection is therefore a modest compliment to the teaching and scientific contribution of Dragica Strmole, Jože Čar, PhD, Professor; Rajko Pavlovec, PhD, Professor; and Simon Pirc, PhD, Professor. With their work, they have significantly contributed to the development and progress of Slovene geological sciences. Finally, we would like to thank all the authors of the papers who have kindly responded to our request and thus honoured an important jubilee of their teachers and mentors. Special thanks also go to the editors of this collection who have spent a lot of their time and energy on its realization, and last but not least, to the editorial board of RMZ - Materials and geoenvironment journal, who have included our collection in their program. Everybody has thus not only shown respect for the teachers, but has also added another stone to the colourful mosaic of the knowledge of the geological history of Earth and of its phenomena. Associate Professor, Mihael Brenčič, PhD, Head of Department of Geology Uvodnik Predgovor Rek »Na ramenih velikanov« zaznamuje pot znanosti skozi stoletja. Čeprav ga velik del literature pripisuje Newtonu, njegove korenine segajo globoko v človekovo preteklost. A ni pomemben zgolj rek in kdaj se je le-ta razvil, pomembnejše je njegovo sporočilo. Znanje je kot piramida, katere vrh se poruši, če mu spodmakneš le del temeljev. Nihče, pa če je še tako uspešen in nadarjen, ne zraste iz sebe, ampak mu njegovo pot tlakujejo učitelji, velik del poti prehodi po poti, ki so mu jo uhodili oni in nakazali njegovo smer. Brez njihovih nasvetov in včasih tudi ukazov, ne bi našel poti naprej. In to je pomen tega reka. Vsi, ki se ukvarjamo z znanjem in ga gradimo ter izpopolnjujemo, le sedimo na ramenih naših predhodnikov. Tokratno jubilejno številko posvečamo našim učiteljem, ki so sedanji generaciji aktivnih geologov utrli nove smeri. Vsak od naših tokratnih slavljencev se je posvetil delu geološke znanosti in jo izmojstril ter svoje znanje prenesel na mlajše generacije. Učitelji, katerim posvečamo zbornik, so posegli na zelo široka področja geologije: od petrologije, mineralogije, geokemije, sedimentologije, tektonike, regionalne geologije do paleontologije. Zaradi tega je pester tudi naš zbornik. Njihovi učenci, predvsem kolegi, ki so doktorirali pod njihovim mentorstvom, nam predstavljajo kratek pregled aktualnih geoloških raziskav z vseh prej naštetih področij geologije ter tako ponovno potrjujejo pestrost slovenske geologije. Zbornik, ki je pred nami, naj bo tako skromen poklon učiteljskemu in znanstvenemu prispevku Dragice Strmole, prof. dr. Jožeta Čarja, prof. dr. Rajka Pavlovca in prof. dr. Simona Pirca. S svojim delom so pomembno prispevali k razvoju in napredku slovenske geološke znanosti in šole. Na koncu velja tudi posebna zahvala vsem avtorjem prispevkov, ki so se prijazno odzvali in s tem počastili pomembno obletnico svojih učiteljev in mentorjev. Prav tako velja zahvala urednikom zbornika, ki so v njegovo pripravo vložili nemalo svoje energije in časa, ter ne nazadnje velja zahvala tudi uredništvu revije RMZ - Materiali in geookolje, ki je zbornik, posvečen našim jubilantom, uvrstilo v svoj program. S tem so vsi skupaj izrazili ne le spoštovanje do jubilantov in njihovega dela, temveč so s svojimi prispevki položili še en kamen v pester mozaik poznanja geološke zgodovine Zemlje in njenih pojavov. Izr. prof. dr. Mihael Brenčič predstojnik Oddelka za geologijo Osemdeset let življenja in dela Dragice Strmole Dragica Strmole, diplomirana geologinja in dolgoletna asistentka in višja strokovna sodelavka Oddelka za geologijo, je letos spomladi izpolnila jubilejnih osemdeset let. Rojena je bila v Ljubljani, kjer je tudi obiskovala in končala osnovno šolo in gimnazijo. Svojo geološko pot je začela leta 1950 z vpisom na Priro-doslovno-matematično fakulteto Univerze v Ljubljani, Oddelek za geologijo in paleontologijo. Po uspešno končanem študiju se je leta 1956 najprej zaposlila na Geološkem zavodu v Ljubljani kot geolog petrograf in opravila strokovni izpit. Z začetkom študijskega leta 1961 pa se je zaposlila kot asistentka na Katedri za mineralogijo in petrografijo Oddelka za montanistiko na Fakulteti za naravoslovje in tehnologijo Univerze v Ljubljani, kjer je delovala vse do svoje upokojitve v letu 1991. Leta 1974 je bila izvoljena v naziv višja strokovna sodelavka. Po upokojitvi je še vedno ostala aktivna v slovenski geologiji in je še danes zunanja sodelavka Oddelka za geologijo. Za študente geologije, pa tudi drugih ved, ki so v svoj kurikul vključevale geologijo, je vodila vaje iz predmetov Kristalografija, Mineralogija, Petrologija in Laboratorijska preiskava mineralov (kasneje Preiskovalne metode v mineralogiji). Poleg pedagoškega dela je izvajala tudi mikroskopske mineraloške in pe-trografske preiskave, preiskave trdote mineralov in preiskave z metodo faznega kontrasta. Njen opus raziskovalnih del vsebuje članke s področja mineraloških in petrografskih analiz različnih magmatskih kamnin Slovenije, rudonosnih kamnin Črne gore in glinenih sedimentov. Sodelovala je tudi pri pripravi Geološkega terminološkega slovarja, monografije, ki je bila v slovenskem prostoru težko pričakovana. Prav vsi študenti geologije, ki smo študirali v obdobju njenega delovanja na Oddelku za geologijo, smo se osnov kristalografije, mineralogije, petrologije in preiskav materialov naučili iz njenih jasnih in nazornih razlag ter z njeno neutrudno pomočjo. Vsakega od nas je dobro poznala in nam vlivala potrebnega poguma za premagovanje prvih in najtežjih ovir, s katerimi smo se srečevali na začetku naše geološke poti. Vedno dostopna in pripravljena na pogovor je marsikomu pokazala pot skozi labirint kristalografije, precej nas pa je navdušila za to, da smo se usmerili v raziskave kristalov in mineralov ter v petrologijo. Tako kot do študentov, je bila vedno spodbudna, razumevajoča in v pomoč pri uvajanju v Predstavitev novo področje dela tudi do vseh sodelavcev. Kot asistentka in sodelavka, tudi in predvsem pa v obdobju, ko je vodila Oddelek za geologijo, je vso energijo vložila v to, da so bile razmere za delo in študij na Oddelku za geologijo optimalne, kolektiv je deloval združno kot enota ter strokovno, kar s(m)o doživeli tudi študenti, ki s(m)o v letih študija osvojili obsežno znanje za uspešno delo geologa. Meta Dobnikar Phase contrast method for asbestos fibres determination Uporaba metode faznega kontrasta za določanje azbestnih vlaken Meta Dobnikar1, * 1Ministrstvo za izobraževanje, znanost, kulturo in šport, Direktorat za visoko šolstvo in znanost, sektor za visoko šolstvo, Kotnikova 38, SI-1000 Ljubljana, Slovenia *Corresponding author. E-mail: meta.dobnikar@gov.si Received: September 24, 2012 Accepted: September 27, 2012 Abstract: Certain diseases, such as lung cancer or pleural mesothelioma are highly connected to inhalation of asbestos fibres. Asbestos is therefore considered as hazardous material. Use of chrisotile is forbidden in technologically advanced countries, and defined as asbestos is all material, having more then 1 % asbestos fibres. Using optical microscopy and phase contrast method, asbestos fibres were qualitatively and quantitatively determined in different soil and dust samples. The method was proved to be accurate and convenient. Most of the examined material was determined as asbestos. Izvleček: Pojavi določenih bolezni, kot je na primer pljučni rak ali plevlar-ni mezoteliom, imajo močno povezavo z izpostavljenostjo oziroma vdihavanjem azbestnih vlaken. Azbest je zato obravnavan kot zdravju nevaren material in uporaba hrizotila je v industrijsko razvitih državah prepovedana. Kot azbest se obravnava vsak material, ki vsebuje več kot 1 % azbestnih vlaken. Z uporabo optičnega mikroskopa in metode faznega kontrasta je bila kvalitativno in kvantitativno določena vsebnost azbestnih vlaken v vzorcih tal in prahu. Metoda se je izkazala za primerno oz. bolj natančno za namen določanja vsebnosti azbestnih vlaken. Ugotovili smo, da večina preiskanih materialov vsebuje več kot 1 % azbestnih vlaken in jih lahko opredelimo kot azbestne materiale. Key words: asbestos, phase contrast method, optical microscopy Ključne besede: azbest, metoda faznega kontrasta, optična mikroskopija Introduction The term "asbestos" is used for fibre occurrence of different minerals, silicates from amphibole and serpentine group. Asbestos fibres are defined as crystals with length to diameter ratio at least 3 : 1, if length is more then 5 pm and diameter less then 3 pm (Falini et al., 2003). Amphibole and serpentine group minerals are highly resistant, chemically inert and stable, forming flexible and solid fibres. Asbestos was, due to its chemical and physical properties, commonly used in industry, especially in civil engineering and fire resistant materials. Near to 95 % of asbestos used belongs to mineral chrisotile, with ideal chemical composition Mg3Si2O5(OH)4, fibrous variety of serpentine, trioctahedral magnesia analogue of kaolinite, 1 : 1 alumo-silicate. As certain diseases, such as lung cancer or pleural mesothelioma are highly connected to inhalation of asbestos fibres, it is considered as hazardous material (Falini et al., 2003). Asbestos fibres are too small to be expelled from inhalation path by human natural defence system, therefore they enter into the body by inhalation paths and deposit in human lungs. Use of chrisotile is forbidden in technologically advanced countries, EPA (Environmental Protection Agency) defined as asbestos all material, having more then 1 % asbestos fibres (Burdett, 2006). Recommended method for asbestos fibres determination is optical microscopy in plane polarised light. The method is relatively inaccurate when asbestos content is around 1 %. Analysis results turn out much better in combination of this optical microscopy method with phase contrast method, when content of asbestos fibres down to 0,1 % may be determined. It is worth noting that fibres with diameter less then 1 pm difficult to determine by optical microscope (Burdett, 2006). The phase contrast method The resolution of optical microscope depends on its quality and is around 5 pm. For qualitative and quantitative determination of asbestos fibres the two methods (optical microscopy in plane polarised light and phase contrast method) have to be combined. Material is observed in immersion with appropriate refraction index and dispersion. Nitrobenzol is used most commonly. At phase contrast method optical microscope with polarised light is used. There is phase plate inserted within objectives, to change phase light changes into amplitude light changes in order to enable phase objects (objects as small grains or fibres, that only change the phase of the light) to be seen under the microscope. Con- light field Figure 1. Phase plate (dark circle) and denser annulus is used to gather the light into a ring. The size of the light ring can be changed, so we may successively observe bright field (light ring smaller then phase plate ring), phase contrast field (light ring just the same size as phase plate ring), bright field (light ring larger then phase plate ring) and edge dark field (light ring at the edge of visible field) (Figure 1). Asbestos fibres are colourless and therefore hardly visible in polarised light, are typically coloured in phase contrast, so qualitative and quantitative analysis of the fibres is enabled. light field light circle projection at the objective. Wetzlar optical microscope (Figure 2), with condenser annulus and objectives with phase plates used. Samples were analysed at objective 40-times and ocular 10-times. Immersion of nitrobenzole (C6H5NO2), with refraction index 1.55 was used. When counting asbestos fibres, those of width less then 3 pm, and length more then 5 mm and less then 15 pm, with width to length ratio <1 : 3 were considered. In air filter samples, all asbestos fibres within 1 cm2 area of the filter were counted. Example of asbestos fibres analysis in soil samples and air filters 33 samples of soils and air filters were analysed qualitatively and quantitatively for asbestos fibres content, using the phase contrast method. 26 samples of soil and 7 air filters were analysed. Samples of soils and filters were examined in phase contrast using Leitz In soil samples, mineral grains were counted according to the method of regular profiles. All grains within linear horizontal profile were counted. Vertical distance between the profiles and one step on the profile were 0.4 mm. 500 mineral grains of each sample were counted. Results are presented in the number of respirable asbestos fibres per 100 mineral grains (Table 1). 106 Dobnikar, M. Table 1. Results of the asbestos fibers counting with optical microscope phase contrast method: sample No. of respirable asbestos fibers per 100 mineral grains S-1 0.5 S-3 3 S-4 4.7 S-5 1.5 S-7 1 S-11 6.2 S-12 5 S-16 2.4 S-20 4.4 MK-4 1 MK-9 11.8 MK-11 0.8 MK-19 0 Uz. iza igr. 6.4 Uz. tlo (igr.) 5 BS1-2 1.6 BS1-5 6.4 BS1-6 5.2 BS1-7 5.6 BS1-8 1.2 BS3-1 1.6 BS3-2 7.4 BS3-3 6.8 BS8-3 17.2 BS9-4 1.6 BS9-5 7.4 Filters No. of respirable asbestos fibres per 1 cm2 U1 256 U2 177 U3 193 US1 349 UV10 106 UX2 134 UP3 2331 Figure 2. Optical microscope Leitz Wetzlar Conclusion Respirable asbestos fibers were quantitatively determined in soil samples as well as in air filters with the use of phase contrast method. The selected method proved to be adequate and accurate. Results of analysis show that the majority of analysed samples contain more then 1 % of asbestos fibres, and should be considered as hasardeo-us, asbestos containing materials. References Falini, G., Foresti, E., Gazzano, M., Gu-altieri, A. F., Lesci, I. G., Pecchini, G., Renna, E. & Rcveri, N. (2003): A new method for the detection of low levels of free fibres of chrysotile in contaminated soils by X-ray powder diffraction. J. Environ. Monit., 5, 654-660. Burdett, G. (2006): THE VALUE OF MICROSCOPY ANALYSIS IN ASBESTOS CONTROLS, in: Asbestos Risk Reduction & Measurement of Asbestos Fibre Concentration, Proceeding of the International Seminar held in AGH University of Science and Technology, Cracow, September 28-29, 2006. Appendix. Ed. Jer-zy Dyczek, September 28-29, 2006, AGH University of Science and Technology, Faculty of Materials Science and Ceramics Department of Building Materials, Cracow. Osemdeset let življenja in dela profesorja geologije dr. Rajka Pavlovca Letošnjega 15. januarja je profesor Rajko Pavlovec praznoval svoj 80. rojstni dan. Rodil se je v Ljubljani, kjer je obiskoval osnovno šolo, klasično gimnazijo in maturiral leta 1950. Odločil se je za študij geologije na ljubljanski univerzi in leta 1954 diplomiral. Po diplomi se je zaposlil na takratnem Inštitutu za geologijo, ki se je leta 1966 preimenoval v Inštitut za paleontologijo Slovenske akademije znanosti in umetnosti. Leta 1962 je obranil doktorsko disertacijo Stratigrafski razvoj starejšega terciarja v jugozahodni Sloveniji s posebnim ozirom na numulite in asiline pod mentorstvom prof. dr. Ivana Rakovca. Po doktoratu je odšel na izpopolnjevanje kot štipendist ustanove Alexander von Humboldt-Stiftung na univerzi v Munchnu. V obdobju od 1971 do 1975 je uspešno deloval kot knjižni urednik v založbi Mladinska knjiga. V letu 1975 je bil izvoljen v naziv izrednega in leta 1981 za rednega profesorja na Fakulteti za naravoslovje in tehnologijo Univerze v Ljubljani. Na Fakulteti za naravoslovje in tehnologijo je poučeval vsebine dodiplomskih predmetov: osnove stratigrafije, biostratigrafija, regionalna geologija, stratigra-fija in specialna paleontologija za študente različnih letnikov geologije, predmet geologija in paleontologija za študente biologije in pedagogike na Pedagoški fakulteti v Mariboru, predmet geologija in geomorfologija za študente geodezije na Fakulteti za gradbeništvo in geodezijo ljubljanske univerze ter magistrski predmet mikropaleontologija paleogena na univerzi v Ljubljani. Bil je mentor domačim in tujim diplomantom, magistrandom in doktorandom, organiziral je številne strokovne ekskurzije. Dalj časa je bil tudi predsednik komisij pri diplomah, magisterijih in doktoratih ter član številnih drugih komisij. Na takratni Fakulteti za naravoslovje in tehnologijo je imel tudi več pomembnih in vodilnih funkcij. Leta 1974 je bil predstojnik odseka za geologijo pri takratni Montanisti-ki, v obdobju 1987-1990 prodekan in v letih 1993-1995 dekan FNT. Upokojil se je 1. oktobra 2005. Med študenti je bil priljubljen zaradi svojih živahnih predavanj, med katera je znal vključiti marsikatero šalo ali anekdoto. S predavanji, referati in posterji je v obdobju od leta 1957 do 2005 sodeloval na številnih kongresih, simpozijih in posvetovanjih doma in v tujini, večinoma s m Predstavitev problematiko o velikih foraminiferah in z njimi povezano stratigrafijo paleoge-na. Napisal je okrog 350 znanstvenih razprav in strokovnih člankov, objavljenih v domačih in tujih revijah ter zbornikih. Celotna bibliografija prof. Pavlovca je zelo obsežna in je po tematiki zelo bogata ter raznovrstna. Objavljenih ima nad tisoč prispevkov. Sodeloval je pri mnogih monografijah in objavil dve samostojni poljudni knjižici. Prva z naslovom Kras je bila dalj časa v šolah obvezno čtivo. V svojem obsežnem opusu je imel tudi veliko predavanj, napisal je več recenzij, ocen in poročil. Samostojno ali skupaj s sodelavci je Pavlovec ugotovil in opisal tudi več novih vrst in podvrst paleogenskih foraminifer: Nummulites vipavensis iz Ustij v Vipavski dolini, N. ustjensis iz Ustij, N. quasilaevigatus iz Vipolž v Brdih, N. brkinensis in N. postbearnensis iz Podgrada v Brkinih, Assilina medanica iz Vipolž v Brdih, Ass. marinellii similis iz Podgrada, Ass. maxima iz Grožnjana v Istri, Ass. monacensis iz Stene ob Dragonji, Ass. istrana iz Dola pri Hrastovljah, Ass. exiliformis iz Jelšan pri Slovenski Bistrici in dve školjčni vrsti: Cardium culji-nense iz Čuljine pri Drnišu in Spondylus variocostatus iz Gluvače pri Drnišu. Z vsemi navedenimi na novo spoznanimi fosilnimi oblikami organizmov se je prof. Pavlovec za vedno zapisal v register domače in svetovne paleontološke znanstvene litetarture. Marsikatero od navedenih vrst so pozneje ugotovili tudi zunaj naše domovine. Izredno veliko je naredil za popularizacijo geološke in paleontološke znanosti med mladimi in najmlajšimi bralci s svojimi številnimi preprostimi in razumljivimi prispevki, ki jih je objavljal predvsem v slovenskih poljudnih in poljudnoznanstvenih revijah. Objavil je okrog 600 poljudnih člankov in drobnih vesti v Proteusu, Cicibanu, Pionirju in reviji Življenje in tehnika. Zaradi raznovrstnih in mnogoterih poljudnih prispevkov njegovo ime ostaja v spominu marsikaterega učenca, dijaka, študenta, učitelja in drugih ljubiteljev naravoslovja. Bil je član več domačih in tujih društev, urednik in član uredniških odborov pri mnogih periodičnih in monografskih publikacijah. V domačih društvih je še vedno aktiven. Prof. Pavlovec je bil v letih od 1965 do 1969 tudi predsednik Slovenskega geološkega društva, v obdobju od leta 1977 do 1980 pa predsednik Prirodoslovnega društva Slovenije. V letu 2002 je postal častni član Društva Ex libris Sloveniae in leta 2005 častni član Društva prijateljev mineralov in fosilov v Tržiču. Osemdeset let življenja in dela profesorja geologije dr. Rajka Pavlovca 111 Po upokojitvi prof. Pavlovec nikoli ni pretrgal vezi z matičnim Oddelkom za geologijo in je ohranil svojo živahnost in neposrednost do kolegov. Vedno rad pomaga s svojimi nasveti in bogatimi izkušnjami, s predavanji in raznimi napotki pri izvedbi učnega programa za študente geologije, je vodja Naravoslovno-tehniške sekcije pri Slovenski matici, tajnik Društva Ex libris Sloveniae in organizator izredno zanimivih in priljubljenih strokovnih ekskurzij. Prav tako vsako leto napiše vsaj po en znanstveni članek in več krajših strokovnih prispevkov v različne publikacije. Nikoli ne odkloni strokovnokritičnih pregledov osnutkov člankov svojih kolegov, z izrednim posluhom za jezik popravi marsikatero nerodno izražanje in svetuje izboljšave. Zaradi njegovih dolgoletnih uredniških izkušenj in v njem zakoreninjenega redoljubja takšna besedila zelo hitro pregleda in nemudoma vrne avtorjem, kar je ena od njegovih številnih pozitivnih osebnostnih značilnosti. Za svoja dela je prejel tudi več nagrad in odlikovanj. Leta 1955 je prejel Prešernovo nagrado Univerze v Ljubljani za študente, leta 1964 nagrado Sklada Borisa Kidriča, leta 1977 Levstikovo nagrado Mladinske knjige in leta 1980 medaljo Bele vrane s sončnico Društva ljubiteljev knjig v Lublinu. Leta 1984 pa je bil odlikovan z redom republike z bronastim vencem. Prof. Pavlovcu se zahvaljujemo za njegove dosedanje znanstvene, strokovne in poljudnoznanstvene prispevke in mu ob jubileju znova iskreno čestitamo in želimo še veliko zdravja z željo po nadaljnjem sodelovanju. Vasja Mikuž in Jernej Pavšič Ostanki peresastih koral iz eocenskih plasti pri Gračišcu blizu Pazina v Istri A sea pen remnants from Eocene beds at Gračišce near Pazin in Istria, Croatia Vasja Mikuž1, *, Jernej Pavšič1 1Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Privoz 11, SI-1000 Ljubljana, Slovenija *Korespondenčni avtor. E-mail: vasja.mikuz@ntf.uni-lj.si Received: October 5, 2012 Accepted: October 12, 2012 Izvleček: V prispevku sta obravnavana dva skromna ostanka peresastih koral (Pennatulacea) iz srednjeeocenskih - lutetijskih skladov najdišča Gračišce pri Pazinu v Istri na Hrvaškem. Ugotovljeno je, da sta najdena ostanka od dveh različnih oblik oktokoral iz družine Pennatulidae, ki pripadata rodu Graphularia. Abstract: Discussed are two modest remains of sea pen corals (Pennatulacea) from Middle Eocene - Lutetian beds of Gračišce locality near Pazin in Istria (Croatia). The found remains belong to two distinct forms of octocorals of Pennatulidae family, of Graphularia genus. Ključne besede: peresaste korale (Pennatulacea), Graphularia, nanoplank-ton, srednji eocen - lutetij, Gračišce, Istra, Hrvaška Key words: sea pens (Pennatulacea), Graphularia, nanoplankton, Middle Eocene - Lutetian, Gračišce, Istria, Croatia Uvod Gračišce blizu Pazina je majhen, tipično istrski zaselek (sliki 1 in 2). Pod njim so ob regionalni cesti Gračišce-Pican razgaljeni profili paleogenskih apnencev in flišnih kamnin. Na nekaterih odsekih, kjer izdanjajo apnenčeve, grobo klastič-ne eocenske olistostrome (slika 3), je veliko najrazličnejših fosilnih ostankov. V preteklosti smo v omenjenih srednjeeocenskih sedimentih že našli dva inter- nodija roženastih koral (Gorgonacea), ki ke paličaste in nepravilne oblike, ki jim pripadata vrsti Isis nummulitica (Mikuž dolgo časa nismo posvečali večje pozor- 2008 in 2010). Med fosilnimi ostanki nosti. V prerezih imajo okroglo, oval- smo opazili tudi majhne, drobne, krat- no do subkvadratasto obliko. Na obeh Slika 1. Geografski položaj najdišča Gračišce pri Pazinu v Istri Figure 1. Geographical position of site Gračišce at Pazin in Istria Slika 2. Zaselek Gračišce, jugovzhodno od Pazina na Hrvaškem Figure 2. The village Gračišce, southeast of Pazin in Croatia Foto (Photo): V. Mikuž 2008 Slika 3. Izdanki srednjeeocenske olistostrome ob cesti Gracisce-Pican Figure 3. The outcrops of Middle Eocene olistostrome along the road Gracisce - Pican Foto (Photo): V. Rakovc, 1998 odlomljenih delih apnenčeve paličice opažamo koncentrično-radialno zgradbo z majhno osrednjo votlinico velikosti pike. Glede na opaženo strukturo smo sklepali, da gre za skeletne ostanke nekih organizmov. Izkazalo se je, da smo našli posamezne dele skeleta oktokoral iz skupine peresastih koral (Pennatula-cea) oziroma iz rodu Graphularia. Geološka zgradba v najdišču Gračišče Hagn, Pavlovec in Pavšič (1979: G185-G186) pišejo, da je v Gračišcu olistostro-ma znotraj flišne serije kamnin. Olistostro-ma je bila formirana v mlajšem delu srednjega eocena oziroma v lutetiju. Starost potrjujejo majhne in velike foraminifere v laporastem vezivu ter številne vrste kalci-tnega nanoplanktona. Očitno je tudi, da so bili organizmi iz plitvejših delov bazena preneseni ali postrgani v globlje predele takratnega morskega bazena, saj imamo danes v najdišču povsem mešano združbo različnih fosilnih ostankov. Združba nanofosilov določa plastem pri Gračišcu zgornjelutetijsko starost oziroma biocono Discoaster tani nodifer (NP 16). Paleontološki del Sistematika po: Bayer 1956, Baeuk & Pisera 1984 Classis Anthozoa Ehrenberg, 1834 Subclassis Octocorallia Haeckel, 1866 Ordo Pennatulacea Verrill, 1865 Subordo Subsessiliflorae Kükenthal, 1915 Genus Graphularia Milne Edwards & Haime, 1850 Rod Graphularia sta postavila Milne Edwards in Haime leta 1850. Prve primerke tega rodu so našli v londonskih glinah (Branco 1885: 423), vendar Branco (1885) ne omenja podatkov o starosti teh glin. Po podatkih TouLAe (1918: 418) so londonske gline spodnjeeocenske starosti. Zittel (1880, 209) navaja, da so fosilne primerke rodu Graphularia odkrili v eocenskih skladih Anglije in severne Afrike. Zittel (1895: 98) piše, da je rod Graphularia značilen za terciarne sklade in ga uvršča k družini Pennatulidae. Alloiteau (1952: 415) rod Graphula-ria omenja med tistimi rodovi, katerih sistematski položaj ni določen. Bayer (1956: F228) omenjeni rod uvršča v družino Virgulariidae in poddružino Virgu-lariinae, ki jih je postavil Verill, 1868. Baeuk & Pisera (1984: 205) poročata o najdbi nove peresaste korale vrste Graphularia transaedina iz miocenskih ba-denijskih plasti Poljske, ki ima skeletne ostanke v prerezu kvadrataste oblike. Iz interneta [1, 2] smo izvedeli, da danes rod Graphularia uvrščajo k družini Pennatu-lidae Ehrenberg 1834, torej tako kot Zittel leta 1895. Graphularia cf. desertorum Zittel, 1880 Tab. 1, sl. 1a-1d cf. 1880 Graphularia desertorum Zitt. - Zittel, 209, Fig. 117 cf. 1880 Graphularia desertorum Zittel - Roemer, 116-117 cf. 1885 Graphularia desertorum Zittel - Branco, 424, Taf. 20, Figs. 11, 11a-11b cf. 1895 Graphularia desertorum Zitt. - Zittel, 98, Fig. 190 cf. 1912 Graphularia desertorum Zittel - Andrée, 207 cf. 1925 Graphularia desertorum Zittel 1880 - Felix, 288 Material: Razmeroma skromen fragment oziroma del skeletnega segmenta (tab. 1, sl. 1a-1d) iz srednjeeocenskih - lutetij-skih skladov v okolici Gračišca pri Pazinu Najdišče: Izdanki srednjeeocenske oli-stostrome pod zaselkom Gračišce (slika 3) z bogato in raznoliko mikro- in ma-krofavno. Makrofavnistični ostanki so večinoma zelo slabo ohranjeni, razen nekaterih izjem, kot so velike numuliti-ne, poliheti in redki morski ježki. Ob cesti proti Picnu je velik del profila prekrit z umetno cementno utrditvijo in je od leta 2008 dalje praktično nedostopen. Opis: Ohranjen je samo krajši del karbonatnega skeletnega segmenta, ki je paličaste in nekoliko sploščene oblike (tab. 1, sl. 1a-1b). V prerezu je nepravilne ovalne do štirikotne oblike. Na ožji ploščati strani poteka vzdolžno ozek zaobljen greben, ki ima ob straneh dve ozki zarezi, na nasprotni ploščati strani pa širok plitev žleb. Na prečno prerezanih površinah segmenta se vidijo koncentrično potekajoče prirastne linije, na sredini prereza je temnejše polje oziroma nekdanji osrednji kanal (tab. 1, sl. 1c). Radialno potekajoče linije so prikrite in manj opazne. Na stranskem, najbolj zašiljenem robu segmenta opazimo poškodbo (tab. 1, sl. 1d), kjer lahko opazujemo lupinasto zgradbo skeletnega elementa. Površina predstavljenega dela peresaste korale je gladka. Velikost delca (Size of fragment): dolžina (Length) = 17 mm premer 1 (Diameter 1) = 4,5 mm premer 2 (Diameter 2) = 3,2 mm Primerjava: Opisani skeletni fragment peresaste korale iz Gračišca velikostno in oblikovno zelo ustreza zgornjemu širšemu delu primerka iz libijske puščave, ki ga prikazuje (Zittel 1880: Fig. 117). Razlika je samo v površinski ornamenta-ciji, gračiški primerek je bolj gladek, severnoafriški ima več tankih vzdolžnih črt. V marsičem je gračiški primerek podoben tudi skeletnemu fragmentu iste vrste, ki ga predstavlja Branco (1885: Taf. 20, Figs. 11, 11a-11b). Andrée (1912: 204) je raziskoval oligocenske ostanke iz Nemčije (Mainza) in postavil novo vrsto Graphularia crecelii. Skeletni deli te vrste tudi v marsičem spominjajo na vrsto Graphularia desertorum. Mislimo, da med njima ni bistvenih razlik. Stratigrafska in geografska razširjenost: Branco (1885: 423, Taf. 20, Figs. 11) opisano vrsto Graphularia desertorum predstavlja iz eocenskih numuli- Tabla 1. 1a Graphularia cf. desertorum Zittel, 1880; apnenčasti del skeleta s sploščene strani, srednjeeocenska olistostroma blizu Gračišca pri Pazinu na Hrvaškem, velikost primerka 17 mm x 4,5 mm * 3,2 mm 1b Isti primerek z druge strani 1c Prerez istega primerka s koncentrično strukturo, povečano 1d Lupinasta zgradba apnenčevega skeleta, povečano 2a Graphularia incerta (D^Archiac, 1848); del apnenčevega skeleta, Gračišce pri Pazinu, velikost primerka 29,5 mm * 3 mm * 2,9 mm 2b Isti primerek z druge strani 2c Prerez istega primerka s koncentrično lupinasto zgradbo, povečano Plate 1. 1a Graphularia cf. desertorum Zittel, 1880; flat side of calcareous skeletal fragment, Middle Eocene olistostrome near Gračišce at Pazin in Croatia, size of specimen 17 mm x 4.5 mm x 3.2 mm 1b The same specimen from reverse side. 1c The same specimen, cross section with concentric structure, enlarged. 1d Layered structure of calcareous skeleton, enlarged. 2a Graphularia incerta (D'Archiac, 1848); calcareous skeletal fragment, Gračišce near Pazin, size of specimen 29.5 mm x 3 mm x 2.9 mm 2b The same specimen from reverse side. 2c Cross section of the same specimen with concentric layered structure, enlarged. Fotografije (Photos): Marijan Grm tnih apnencev libijske puščave. Zittel (1895: 98) piše, da je bila najdena v eocenskih numulitnih apnencih v kraju Farafrah v libijski puščavi. Felix (1925: 288) navaja, da so ostanki opisane vrste najdeni v eocenskih numulitnih apnencih libijske puščave v najdišču El-Guss--Abu-Said pri kraju Farafrah. Isti avtor omenja še druga najdišča. Graphularia incerta (D'Archiac, 1848) Tab. 1, sl. 2a-2c 1848 Virgularía incerta, nov. sp. -D'Archiac, 414, Pl. 9, Figs. 14, 14a 1880 Graphularia incerta M. Edw. et H. (Virgularia incerta d Archiac) - Roemer, 117 1885 Graphularia incerta Edw. u Haime - Branco, 424 1912 Graphularia incerta d Arch. -Andrée, 207 1925 Graphularia incerta d Archiac sp. 1848 - Felix, 288 1950 Graphularia incerta Edw. & Haime - Malaroda, 150 Material: Kratek paličast del manjšega premera (tab. 1, sl. 2a-2c), ki je bil najden v istem najdišču v okolici Gračišca pri Pazinu (slika 3). Opis: Fragment skeletnega dela peresaste korale je paličast in rahlo ukrivljen (tab. 1, sl. 2a-2b). Površina segmenta je precej korodirana in zato jamičasta ter razpokana. Na površini ni opazne nikakršne ornamentacije. V prerezih je okrogle oblike, lepo se vidi osrednji kanal in okoli njega koncentrično potekajoče prirastne linije (tab. 1, sl. 2c). Tudi tu se vidi značilna lupinasta zgradba apnenčevega segmenta. Na eni strani, kjer je brušena in polirana površina, se v prečnem prerezu vidi tudi zelo tanka radialna struktura. Velikost delca (Size of fragment): dolžina (Length) = 29,5 mm premer (Diameter) = 3 x 2,9 mm Primerjava: Gračiški primerek je primerljiv s primerkom D'ÄRCHiAC-a (1848: Taf. 9, Figs. 14, 14a), ki je pribli- žno enakega premera in prav tako okroglega prereza. Deloma je primerljiv tudi s primerki vrste Graphularia pyrenaica (Doncieux 1926: Pl. 3, Figs. 13-19) iz spodnjelutetijskih plasti v okolici Biar-ritza v jugozahodnem delu Francije. Stratigrafska in geografska razširjenost: D'Archiacov primerek (1848) je iz srednjeeocenskih plasti Biarritza v Franciji. Malaroda (1950: 151) jo omenja iz zgornjeeocenskih plasti Italije (Colli Berici), nadalje še piše, da so opisano vrsto Graphularia incerta ugotovili v eocenskih skladih angleško-pa-riškega bazena, v lutetijsko-rupelijskih plasteh Akvitanije v Franciji, v rupelij-skih Nemčije in celo v miocenskih Dunajske kotline. V laporastem vezivu olistostrome ali kaotične breče v Gračišcu je ugotovljeno 30 nanoplanktonskih oblik: Campylosphaera dela (Bramlette et Sullivan) Chiasmolithus grandis (Bramlette et Riedel) Coccolithus eopelagicus (Bramlette et Riedel) Coccolithus formosus (Kamptner) Coccolithus pelagicus (Wallich) Cyclococcolithus neogammation (Bramlette et Wilcoxon) Discoaster aster Bramlette et Riedel Discoaster barbadiensis Tan Discoaster binodosus Martini Discoaster binodosus hirundinus Martini Discoaster deflandrei Bramlette et Riedel Discoaster distinctus Martini Discoaster keupperi (Stradner) Discoaster saipanensis Bramlette et Riedel Discoaster tani Bramlette et Riedel Discoaster tani nodifer Bramlette et Riedel Girgisia gammation (Bramlette et Sullivan) Helicosphaera cf. obliqua Bramlette et Wilcoxon Micrantholithus flos Deflandre Neococcolithes dubius (Deflandre) Pontosphaeraplana (Bramlette et Sullivan) Prediscosphaera cretacea (Arkhangelsky) Reticulofenestra bisecta (Hay, Möhler et Wade) Reticulofenestra coenura (Reinhardt) Reticulofenestra umbilica (Levin) Rhabdosphaera tenuis (Bramlette et Sullivan) Sphenolithus radians Deflandre Tetralithus obscurus Deflandre Tribrachiatus orthostylus (Bramlette et Riedel) Zygrhablithus bijugatus (Deflandre) Sklepi Predstavljena ostanka srednjeeocenskih oktokoral iz reda peresastih koral (Pen-natulacea) sta najdena v olistostromi blizu Gračišca pri Pazinu v Istri (slika 3). Do zdaj takšna fosilna ostanka iz Istre še nista bila nikoli dokumentirana. Apnenčeva skeletna fragmenta sta zelo skromna, vendar imata vse tiste značilnosti, na podlagi katerih jih lahko uvrstimo k dvema različnima oblikama peresastih koral, k vrstama Graphularia cf. desertorum Zittel, 1880 (tab. 1, sl. 1a-1d) in G. incerta (D'Archiac, 1848) (tab. 1, sl. 2a-2c). Obe obliki sta iz družine Pennatulidae. Priznati moramo, da od vsega začetka nismo pričakovali apnenčevih skeletnih delov oktokoral, zato so v naši zbirki fosilnih ostankov iz Gračišca samo štirje njihovi primer- ki. Dva ostanka pripadata internodijema vrste Isis nummulitica (Mikuž 2008 in 2010). Odslej bomo bolj pozorni tudi na takšne in druge drobne ter podobne ostanke skeletov nekdanjih organizmov. V vezivu olistostrome je ugotovljeno 30 različnih nanoflorističnih oblik. V seznamu iz Gračišca (tabela 1) je vrsta Reticulofenestra bisecta (Hay, Mohlet et Wade) in druge oblike, ki tamkajšnje kamnine uvrščajo v spodnji del bio-cone NP17 (Martini 1971) ali CP14b (Okada & Bukry 1980). Conclusion The remains of Middle Eocene octoco-rals of the order of sea pens (Pennatula-cea) were found in aolistostrome close to Gračišce near Pazin in Istria (figure 3). Up to the present such fossil remains were not documented in Istria. The calcareous skeletal fragments are very modest, but they display all characteristics that permit their attribution to two distinct forms of sea pens, to species Graphula-ria cf. desertorumZittel, 1880 (pl. 1, figs. 1a-1d) and G. incerta (D'Archiac, 1848) (pl. 1, figs. 2a-2c). Both forms belong to family Pennatulidae. We must admit that from the beginning on the calcareous skeletal parts of octocorals were not expected, and only four such specimens occur in our fossil collection from Gračišce. Two remains belong to internodiums of species Isisnummulitica (Mikuž 2008 and 2010). From now on we will be more attentive to these and similar tiny skeletal remains of ancient organisms. 30 different nannoplankton species have been found in the olistostrome matrix. The list of species from Gračišce (Table 1) contains Reticulofenestra bisecta (Hay, Mohler et Wade) and other species that allow the assignment of the age of the source rock to the lower part of the biozone NP17 (MARTINI 1971) or CP14b (OKADA & BUKRY 1980). Zahvala Zaslužnemu profesorju dr. Simonu Pir-cu in dr. Milošu Bartolu se zahvaljujemo za prevode v angleščino, za fotografsko, tehnično in računalniško podporo pa sodelavcu Marijanu Grmu. Za posredovano fotografijo najdišča Gračišce se zahvaljujemo Viliju Rakovcu iz Kranja. Viri Alloiteau, J. (1952): Classe des Anthozo-aires. Sous-classe des Alcyonaria Milne-Edwards 1857. In: J. Piveteau, Traité de Paléontologie, Tome premier. Masson et Cie, Éditeurs (Paris): 408-418. Andrée, K. (1912): Eine zweite Graphular-ia-Art (Gr Crecelii n. sp.) aus dem mit-teloligocänen Meeressand im Mainzer Becken. Centralblatt Min. Geol. Paläont., Jg. 1912 (Stuttgart): 202-207. Baluk, W. & Pisera, A. (1984): A new species of sea pens, Graphularia transaedina sp. n., from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica (Warszawa) 34 (3-4): 203-211 + Pl. 1-8. Bayer, F. M. (1956): Octocorallia. In: Moore, C. R. (Edit.), Treatise on Invertebrate Paleontology. Part F, Coelenterata. Geological Society of America and University of Kansas Press (Lawrence): F1-F498. Branco, W. (1885): Ueber einige neue Arten von Graphularia und über tertiäre Be-lemniten. Zeitschr. Deutsch.Geol. Ge-sellsch. (Berlin) 37: 422-432, Taf. 20. D'Archiac, A. (1848): Description des fossiles du groupe nummulitique recueillis par M. S. P. Pratt et M. J. Delbos aux environs de Bayonne et de Dax. Mém. Soc. Géol. France, Géol., 2e sér., Tome 3 (Paris) Mém. 6: 397-456, Pl. 8-13. Doncieux, L. (1926): Catalogue descriptif des fossiles nummulitiques de l'Aude et de l'Hérault. Annales Univ. Lyon, Nouv. sér., 1-Scien., Médic., Fasc. 45, Deux. part., fasc. 3, Corbières septentrionales (Lyon, Paris): VII, 1-99, Pl. 1-8. Felix, J. (1925): Anthozoa tertiaria et qua-ternaria. I. Paleocän - Oligocän. In: C. Diener, (Edit.), Fossilium Catalogus, I: Animalia, Pars 28. W. Junk (Berlin): 35-296. Hagn, H., Pavlovec, R. & Pavsic, J. (1979): Excursion G, Gracisce near Pican, Istria - Eocene. In: K. Drobne (Editor), 16th European Micropaleontological Colloquium, Geological development in Slovenia and Croatia, Guidebook (Ljubljana): G185-G190. Malaroda, R. (1950): Il Lattorfiano del Monteccio di Costozza (Colli Berici). Parte prima: I macrofossili. Memorie Mus. Civ. Storia Natur., 1949-50, Verona (Verona) 2: 147-210, Tav. 1-7. Martini, E. (1971): Standard Tertiary and Quaternary calcareous nannoplank- ton zonation. In: Farinacci, A. (ed.), Proceedings of the Second Planctonic Conference, Roma 1970, 2. Edizioni Tecnoscienza (Roma): 739-785. Mikuž, V. (2008): Ostanek eocenske gor-gonarijske korale iz okolice Gračišca pri Pazinu v Istri. (Eocene gorgonacean coral remain from surroundings of Gračišce near Pazin, Istria). Razprave IV. razreda SAZU (Ljubljana) 49 (2): 51-63, (Tab. 1). Mikuž, V. (2010): Gorgonarijska korala iz Gračišca pri Pazinu v Istri na Hrvaškem. (Gorgonacean coral from Gračišce near Pazin in Istria, Croatia). Folia biologica et geologica (Ljubljana) 51 (3): 5-15, (Tab. 1). Okada, H. & Bukry, D. (1980): Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry 1973, 1975). Marine Micropal-eontology (Amsterdam) 5: 321-325. Roemer, F. (1880): Notiz über Belemnites ambiguus Morton aus der Kreide von New Jersey. N. Jb. Min. Geol. Palaeont. (Stuttgart) 2: 115-117. Toula, F. (1918): Lehrbuch der Geologie. Ein Leitfaden für studierende. Dritte auflage. Alfred Hölder (Wien und Leipzig): XI, 1-556, Taf. 1-30. Zittel, K. A., 1876-1880: Handbuch der Palaeontologie. I. Band. Palaeozoologie. Druck und Verlag von R. Oldenbourg (München und Leipzig): VIII, 1-765. Zittel, K. A. (1895): Grundzüge der Palaeontologie (Palaeozoologie). Druck und Verlag von R. Oldenbourg (München und Leipzig): VIII, 1-971. [1] http://commons.wikimedia.org/wiki/ Category:Pennatulidae (12. 9. 2012) [2] http://www.marinespecies.org/aph-ia.php?p=taxdetails&id=128484 (WoRMS) (12. 9. 2012) Osemdeset let življenja in dela zaslužnega profesorja geologije dr. Simona Pirca V geologiji, kjer merimo čas v milijonih let, 80 let ne pomeni ravno veliko. Seveda pa je drugače, če teh 80 let pomeni življenje in delovanje enega naših cenjenih kolegov, zaslužnega profesorja dr. Simona Pirca. Dne 2. marca 1932, ko se je v Lipnici pri Radovljici začelo njegovo življenje, si verjetno nihče ni mislil, da ga bo posvetil prav geologiji. Po končani realni gimnaziji v Ljubljani se je namreč najprej vpisal na Fakulteto za gradbeništvo, a že po letu dni je postala in ostala njegova življenjska izbira geologija. Po diplomi leta 1961 se je kot ekonomski geolog zaposlil na Geološkem zavodu Ljubljana. Verjetno so njegov nemirni duh, želja po novih izzivih in obvladovanje več svetovnih jezikov prispevali k odločitvi, da se je priključil skupini Geološkega zavoda, ki je raziskovala rudišča v Alžiriji. Postal je vodja rudnih raziskav in uvedel do takrat za slovensko geologijo popolnoma nov način - geokemično prospekcijo. A usoda ni hotela, da bi še naprej delal kot terenski geolog. Prometna nesreča mu je pustila tako hude posledice pri hoji, da je moral poiskati drugačno karierno pot. Leta 1970 se je zaposlil na Odseku za geologijo Univerze v Ljubljani. Sodeloval je pri predmetih Mikroskopija rud in premogov ter Ocena in metode raziskav koristnih mineralnih surovin. Raziskovalno se je vedno bolj usmerjal v uporabo geokemije in statistike. Po magisteriju leta 1975 se je na študij odpravil v ZDA na pensilvanijsko državno univerzo Penn State, kjer je 1979 doktoriral. Pridobljeno znanje je prenesel v Slovenijo predvsem z modernizacijo študijskega programa. Leta 1980 je pridobil naziv docenta ter uvedel in predaval dva popolnoma nova predmeta: Geokemija in Statistika v geologiji, svoje bogate izkušnje terenskega geologa pa delil s študenti pri predmetu Ekonomska geologija. Nepozabna so bila tudi njegova predavanja iz uporabe tuje strokovne literature. Njegova predavanja so bolj kot podajanje dejstev zaznamovali spodbujanje k razmišljanju ter poznavanje širših okvirjev vse od naravoslovnih znanosti do filozofije in umetnosti. Vedno se je trudil, da bi študenti razumeli, da je geologija globalna veda, ki se ne konča v geografskih mejah Slovenije. S svojo odprtostjo in človeškim odnosom je pritegnil številne diplomante, magistrante in doktorande. Predstavitev 124 Zupančič, N. Na raziskovalnem področju se je usmeril predvsem v geokemično kartiranje in statistične tehnike reprezentativnega vzorčenja. Uspešno je rešil probleme geokemičnega kartiranja na kraških področjih. Kartiranje z uporabo tal, vodnih mahov, vode, rastlin in podstrešnega prahu je odprlo vrata ločevanju geogenih in antropogenih vplivov in s tem novim področjem v geologiji - geologiji okolja, geomedicini in vojaški geologiji. Zavedal se je pomembnosti mednarodnih povezav in že leta 1984 postal vodja skupnih projektov z ZDA, ki so jim sledili projekti Alpe-Jadran ter IGCP-projekti, v okviru katerih je pomagal postaviti temelje geokemične karte Evrope. Za svoje delo je leta 2005 prejel Lipoldovo medaljo, leta 2006 pa je postal zaslužni profesor ljubljanske univerze. Tudi po upokojitvi leta 2002 ni opustil stika s stroko - prevaja strokovna in znanstvena besedila, je recenzent v domačih in tujih revijah ter član uredniškega odbora v Journal of Geochemical Exploration. S svojim bogatim znanjem in duhovitostjo občasno popestri tudi redna predavanja študentom. Zaslužni profesor dr. Simon Pirc v življenju ni bil le pronicljiv raziskovalec in razumevajoč pedagog, temveč vedno in na prvem mestu človek. Ob jubileju mu iskreno čestitamo in želimo, da bi se tudi v njegovem devetem desetletju srečevali ob iskrivih pogovorih. Nina Zupančič Regionalna porazdelitev geokemičnih prvin v tleh Slovenije Regional distribution of geochemical elements in Slovenian soils Mišo Andjelov1, * Agencija Republike Slovenije za okolje, Vojkova cesta 1b, SI-1000, Ljubljana, Slovenia *Korespondenčni avtor. E-mail: miso.andjelov@gov.si Received: October 8, 2012 Accepted: October 22, 2012 Izvleček: Rezultat okoljske geokemične raziskave v mreži 5 km * 5 km na območju celotne Slovenije je omogočil opredelitev geokemičnega odtisa kamnin v tleh na regionalni ravni, kar je pomembno pri interpretaciji geokemičnih procesov in za ločevanje ter oceno antropogenih obremenitev. Prikazane in komentirane so porazdelitve 28 kemičnih prvin (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sb, Sc, Sn, Sr, Th, Ti, U, V, W, Y, Zn in Zr). Na osnovi primerjave vsebnosti teh prvin v tleh na območju Slovenije ločimo 5 naravnih geokemičnih združb: Ni-Cr-Cu-Sc-Fe-V-Mn-Ti, K-Al-Ba-Na, La-Th-U-Zr-Y-Ti, Sr-Ca-Mg, Pb-Zn-P in združbo, ki pomeni faktor onesnaženja pri pripravi vzorcev tal. Abstract: Evironmental geochemical investigation of Slovenia on 5 km * 5 km raster grid enabled regional determination of geochemical rock imprint on the soils. Results are important for interpretation of geochmical processes, and to discern and assess anthropogenic pressures. Distribution of 28 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sb, Sc, Sn, Sr, Th, Ti, U, V, W, Y, Zn in Zr) are presented together with commentary. Based on the content of these elements in the soil there could be defined 5 natural geochemical associations in Slovenia: Ni-Cr-Cu-Sc-Fe-V-Mn-Ti, K-Al-Ba-Na, La-Th-U-Zr-Y-Ti, Sr-Ca-Mg, Pb-Zn-P. The sixth association Co-W is reperesentative of polution resulting in the process of soil sample preparation. Ključne besede: radiometrične raziskave, geokemija, tla, faktorska analiza, Slovenija Key words: radiometric survey, geochemistry, soil, factor analysis, Slovenia Uvod Prvo sistematično zbiranje geokemičnih podatkov sega v obdobje takoj po drugi svetovni vojni, ko so podobno kot v drugih državah tudi v Sloveniji začeli iskati radioaktivne kamnine, predvsem tiste, ki vsebujejo uran. Po odkritju uranske mineralizacije v grodenskih skladih Italije in podobnih sedimentih v nekaterih drugih državah je Zavod za nuklearne surovine iz Beograda v letu 1960 začel sistematično prospekcijo grodenskih plasti v Slovenji in preverbo radioaktivnih anomalij, ki so bile odkrite že pri prejšnjih raziskavah. Med večjimi regionalnimi prospekcijami je treba omeniti tudi letalsko radiometrično in hidroge-okemično prospekcijo. V letu 1969 so omenjeni prospekciji izvedli raziskovalci Inštituta za raziskovanje jedrskih surovin iz Beograda z namenom, da bi ugotovili anomalne vsebnosti urana v tleh, vodah in mulju (Petrovič & Po-krajac, 1969). Čeprav je bil uran primarnega pomena, so pri raziskavah izkoristili priložnost in opravili več raziskav tudi drugih ge-okemičnih prvin. Geokemične raziskave na območju Posavskih gub v Sloveniji je povzel Pirc (1977). Po zbranih ocenah količin urana v kamninah, vodah in muljih je Pirc podal osnovne značilnosti vedenja urana v obravnavanih okoljih. Med obratovanjem rudnika urana Žirovski Vrh so bile od leta 1974 do 1989 na območju med Žirovskim Vrhom in Škofja Loko opravljene številne radiometrične in geokemične prospekcije z namenom odkriti nove zaloge uranove rude. Ob jedrski nesreči v Černobilu leta 1986 se je izkazalo, da ni na voljo dovolj zanesljivih podatkov o kemični sestavi zemeljskega površja. Zato so kmalu nato zasnovali mednarodni projekt (IGCP 259) z naslovom Mednarodno geokemično kartiranje (Darn-ley et. al. 1995). V okviru omenjenega projekta je bil uradno uveden leta 1993 izraz »geokemično ozadje«, ki se nanaša na naravno nihanje vsebnosti prvin v okolju na zemeljskem površju in vključuje geogene vsebnosti prvin (naravnega ozadja) in razpršene antropogene prispevke v okolju. V okviru slovenskega dela projekta so se preučevali na statistični podlagi zasnovani postopki za kartiranje z vzorci tal, vode, vodnega mulja in mahu (Pirc & Maksimovič, 1985; Andjelov, 1986; Pirc et al. 1991; Pirc 1993; Pirc & Šajn 1997; Šajn et. al. 1998). Omenjenemu projektu je sledil projekt Globalne geokemične osnove (IGCP 360), ki se je nadaljeval in končal pod okriljem IUGS. Rezultat tega projekta je bil geokemični atlas Evrope (Bidovec & Pirc 2008), ki je bil izdelan na podlagi vzorcev vode, tal, humusa ter potočnega in poplavnega mulja. Raziskave urana v Sloveniji so bile končane leta 1990, ker ni bilo več potrebe po odkrivanju novih zalog uran. Z novo fazo raziskav smo se lotili na Inštitutu za geologijo, geotehniko in geofiziko Geološkega zavoda Ljubljana sistematične izdelave radiometrične karte Slovenije. Celotno ozemlje države je bilo pokrito s pravilno mrežo 5 km x 5 km, v kateri so bile na 816 lokacijah opravljene meritve gama sevanja in na 819 lokacijah odvzeti vzorci tal za geokemične analize (Andjelov, 1993; Andjelov, 1994; Andjelov & Klaic, 1994; Andjelov et. al. 1995; Andjelov 1999). Namen teh raziskav je bil, da bi dosegli na regionalni ravni popolno pokritost Slovenije z radiometričnimi in geokemičnimi podatki. Ti podatki so omogočili izdelavo radiometričnih in geokemičnih kart, natančnejše ocene naravnega ozadja analiziranih prvin v tleh in zagotovili okvir za različne geološke in okoljske raziskave. Poznanje geokemičnega ozadja v tleh je uporabno za oceno dejanskega stanja v okolju in pri zagotavljanju smernic in standardov kakovosti za okoljsko zakonodajo na področju ocenjevanja onesnaženja tal. Materiali in metode Osnova za izbiro izhodišča vzorčne mreže so bile geokemične raziskave v Istri (Pirc & Zupančič, 1989), ki so vključevale analizo variabilnosti v različnih geoloških medijih. Za zagotovitev sistematičnosti meritev smo uporabili vzorčno mrežo s celicami 5 km x 5 km z naključno izbranim izhodiščem. Skupno je bilo v štirih letih opravljenih 817 radiometričnih meritev K, U in Th in na 819 lokacijah odvzet vzorec tal za geokemično preiskavo. Vzorčili smo zgornjih 10 cm talnega profila. Povprečna masa vzorca je bila od 1,5 kg do 2 kg. Vzorce s povprečno 22-odstotno vlago smo zračno osušili, presejali na 2-mi-limetrskih sitih in nato zmleli v vibracijskem mlinu do debeline 0,063 mm. Vzorci so bili analizirani v laboratoriju ACME v Vancouvru v Kanadi s plazem -sko emisijsko spektrometrijo (ICP-ES) po štirikislinskem razklopu (ACME, 1993): 0,25-gramski vzorec se raztaplja v 10 ml mešanici kislin HClO4, HNO3, HCl in HF pri temperaturi 200 °C. V vzorcih so določili 35 prvin: Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sb, Sc, Sn, Sr, Th, Ti, U, V, W, Y, Zn in Zr. Podobno metodo so uporabili Šajn in sodelavci (1998). Uran je bil določen z metodo nevtronske aktivacije (DNC) v laboratoriju XRAL v Don Millsu v Kanadi (XRAL, 1993). Primerjava rezultatov uporabljenih merilnih tehnik in analitskih metod je pokazala, da je korelacija med terenskimi radiometričnimi meritvami s 4-kanalnim spektrometrom s 348 cm3 velikim detektorjem natrijevega jodida in določitvami v laboratoriju za kalij (ICP +0,75) in uran (DNC +0,66). Ocena ponovljivosti je pokazala, da imajo zelo dobro ponovljivost (d < 10 %) Al, Ca, Fe, K, Mg, Na, P, Ti, Ba, Co, Cr, La, Mn, Ni, Sc, Sr, U, V, W, Y, Zn in Zr. Relativno razliko med 10 % in 20 % imajo 3 prvine (Cu, Pb, Th). Glede na rezultate primerjalnih meritev in meritev geoloških standardov menimo, da so uporabljene metode zadosti natančne za izdelavo geokemičnih kart prvin in oceno porazdelitve vsebnosti prvin v tleh. Rezultati in razprava Slovenska povprečja vsebnosti kemičnih prvin v tleh Rezultati kemičnih analiz 819 vzorcev tal v mreži 5 km x 5 km v Sloveniji omogočajo oceno povprečnih vsebnosti 24 kemičnih prvin (tabela 1). Prvin, ki imajo več kot eno četrtino določitev pod mejo detekcije, ne prikazujemo. Ocena vsebnosti urana v tleh je bila narejena z analizo 814 vzorcev tal z nevtronsko aktivacijo. Približno enake (±25 %) vrednosti svetovnega povprečja so mediane devetih prvin, Al, Cu, Fe, K, Mn, Ni, P, Ti in V (tabela 1). Nekaj večji (do 100 %) sta mediani dveh prvin: Mg in Th in mnogo večje (več kot 100 %) so mediane prvin Co, Pb, U in Zn. Nižje so mediane šestih prvin Ba, Ca, Na, Sr in Zr. O clarku za Cr, La, Sc, W in Y v tleh nimamo podatkov. Glede na primerjavo povprečij prvin v tleh v Sloveniji lahko rečemo, da se bistveno ne odmikajo od svetovnih povprečij v tleh, kot tudi ne od evropskih povprečij. Rezultati kemičnih analiz 819 vzorcev tal v mreži 5 km x 5 km v Sloveniji omogočajo oceno povprečnih vsebnosti 24 kemičnih prvin (tabela 1). Poleg omenjenih prvin je bil v 814 vzorcih tal analiziran tudi uran. Približno enaka (±25 %) vrednosti clarka so povprečja osmih prvin: Al, Fe, Na, K, Ti, P, Mn in V (tabela 1). Nekaj večja (do 100 %) so povprečja šestih prvin: Ca, As, Cu, Ni, Sr in Th, ter mnogo večja (več kot 100 %) povprečja prvin: Mg, Cd, Co, Pb, U, in Zn. Nižja so povprečja treh prvin: Ba, Cr in Zr. O clarku za Be, La, Nb, Sc in Y v tleh nimamo podatkov. Splošno lahko rečemo, da se povprečja prvin v tleh v Sloveniji ne razlikujejo bistveno od ocen svetovnega in evropskega povprečja. Naravna porazdelitev kemičnih prvin v tleh Slovenije V postopku statistične obdelave smo upoštevali analize 814 določitev kemičnih prvin v vzorcih tal. Za oceno povezave med prvinami smo uporabili faktorsko analizo vrste R, ki temelji na povezavi med spremenljivkami na osnovi matrike korelacijskih koeficientov (Ko-šmelj, 1983; Daviš, 1986). Za optimi-ranje prostorske razporeditve faktorjev je bila uporabljena metoda ortogonalne Tabela 1. Določitve vsebnosti kemičnih prvin v tleh Slovenije v primerjavi z vrednostmi evropskega in svetovnega povprečja Prvina Slovenija - meritve v mreži 5 km x 5 km Evr°patia clarketia min. max. x XG M Al 0,39 11,12 6,69 6,31 6,92 11,0 7,13 Ca 0,02 28,92 2,58 0,99 0,78 0,92 1,37 Fe 0,21 11,76 3,75 3,47 3,80 3,51 3,8 K 0,06 4,09 1,45 1,30 1,40 1,92 1,36 Mg 0,09 10,87 1,35 0,95 0,83 0,77 0,6 Na 0,02 2,54 0,53 0,43 0,47 0,80 0,63 P 0,011 0,458 0,074 0,064 0,063 0,128 0,08 Ti 0,01 2,23 0,38 0,33 0,36 0,572 0,46 Ba 12 2261 371 323 360 375 500 Co <2 99 28 25 26 7,78 8 Cr 7 406 90 82 88 60,0 200 Cu <1 271 28 23 23 13,0 20 La <2 104 31 28 30 23,5 Mn 24 7187 1044 857 902 650 850 Ni <2 548 53 45 47 18,0 40 Pb 4 1112 40 34 34 22,6 10 Sc <1 41,0 13,2 12,2 13,0 9,19 Sr 13 1016 98 85 82 89,0 300 Th <2 26 11 10 11 7,24 6 U+ <0,1 9,8 3,7 3,4 3,4 2,00 1 V 5 357 118 105 113 60,4 100 W <2 293 62 41 41 <5,0 Y <2 116 18 15 15 21,0 Zn 10 1877 116 103 104 52,0 50 Zr <2 227 49 40 46 231 300 Legenda: Glavne prvine v deležih (%) in sledne v miligramih na kilogram so bile določene z ICP-metodo, + določitve z DNC metodo, min-max - razpon vrednosti, x - aritmetična sredina, xG - geometrična sredina, M - mediana, slovensko povprečje vsebnosti prvin v tleh, clarketla -svetovno povprečje vsebnosti prvin v tleh (Rosler & Lange, 1972), Evropatla - evropsko povprečje vsebnosti prvin v zgornjem sloju tal (0-25 cm) (Salminen et al., 2005) rotacije (varimax). S faktorsko analizo smo začetno število 25 obravnavanih kemičnih prvin skrčili na 6 sintetičnih spremenljivk, ki skupno pojasnjujejo 76,9 % celotne variance. Pri interpretaciji smo upoštevali le pet faktorjev, ki pomenijo naravne geokemične združbe, šesti faktor pomeni onesnaženje pri pripravi vzorcev tal. Faktorje smo vsebinsko opredelili na osnovi najvišjih pozitivnih in negativnih vrednosti v matriki faktorskih uteži (tabela 2). Tabela 2. Dominantne vrednosti rotiranih faktorskih obremenitev (n = 814) Prvina F1 F2 F3 F4 F5 F6 Kom Ni 0,91 0,85 Cr 0,83 0,87 Cu 0,75 0,64 Sc 0,73 0,88 Fe 0,72 0,86 V 0,68 0,81 Mn 0,64 0,65 Ti 0,51 0,53 0,81 K 0,83 0,68 Al 0,70 0,90 Ba 0,70 0,82 Na 0,65 0,69 La 0,80 0,80 Th 0,79 0,70 U 0,77 0,64 Zr 0,64 0,61 Y 0,59 0,78 Sr -0,74 0,52 Ca -0,68 0,82 Mg -0,52 0,64 Pb 0,78 0,56 Zn 0,75 0,66 P 0,66 0,45 Co 0,80 0,85 W 0,87 0,79 Var 21,7 13,8 15,3 7,2 8,0 10,9 76,9 F1 ... F6 - faktorske obremenitve, Kom - komunaliteta v deležih (%), Var - varianca v deležih (%) Geokemična združba Ni, Cr, Cu, Sc, Fe, V, Mn, Ti S prvim faktorjem je pojasnjeno 21,7 % skupne variabilnosti in združuje največ prvin (tabela 2). Faktor je pozitivno obremenjen z Ni (0,91), Cr (0,83), Cu (0,75), Sc (0,73), Fe (0,72), V (0,68), Mn (0,64) in Ti (0,51). Visoke pozitivne vrednosti faktorja najdemo v zahodni Sloveniji v distričnih in evtričnih rjavih tleh v Vipavski dolini, na flišu Postojn- ske kadunje in na ozemlju istrskega ter brkinskega flišnega bazena (slika 1). Višje pozitivne faktorske vrednosti so na Krasu v jerovici, na Primorskem v rendzinah na alveolinsko-numulitnih apnencih in na Dolenjskem v rjavih po-karbonatnih tleh ter v rendzinah na kre-dnih in jurskih apnencih. V severovzhodni Sloveniji najdemo povišane vrednosti faktorja v dis- Slika 1. Prostorska porazdelitev prvega faktorja (Cr, Cu, Fe, Mn, Ni, Sc, Ti, V) tričnih rjavih tleh na ozemlju meta-morfnih kamnin na Strojni, Kozjaku in Pohorju. Prvi faktor ima najvišje negativne vrednosti na Pohorju, kjer izdanja granodiorit. V Julijskih Alpah so visoke negativne vrednosti v rendzinah, ki so nastale na nesprije-ti moreni in grušču. Negativne vrednosti so še v distričnih rjavih tleh na permskih in permokarbonskih plasteh na Idrijsko-Škofjeloškem ozemlju in Posavskem hribovju. Faktor izraža prevladujočo podvr-ženost vremenskim vplivom z visoko stopnjo erozije in visoke hitrosti sedimentacije. Geokemična združba K, Al, Ba in Na Z drugim faktorjem je razloženo 13,8 % celotne variance. Obremenjen je s prvinami: K (0,83), Al (0,70), Ba (0,70) in Na (0,65). Visoke vrednosti faktorja so vezane zlasti na distrična rjava tla na različnih silikatnih kamninah in tla, ki jih občasno ali stalno zaliva površinska ali podzemna voda (oglejena tla in psevdogleji) (slika 2). Na Pohorju, Strojni in Kozjaku najdemo najvišje vrednosti drugega faktorja v tleh na granodioritu, muskovitno-biotitovem gnajsu in kremenovem sericitnem fili-tu. Visoke vrednosti so tudi v distričnih rjavih tleh na Idrijsko-Škofjeloškem Slika 2. Prostorska porazdelitev drugega faktorja (Al, Ba, K, Na) ozemlju in Posavskem hribovju na permokarbonskem kremenovem peščenjaku, skrilavem glinovcu in konglomeratu. V Dravski in Murski ravnini ter Slovenskih goricah so visoke vrednosti faktorja vezane na oglejena tla in psevdogleje ter na distrična in ev-trična rjava tla, ki so nastala na peščenem laporju, pesku in produ. Nizke vrednosti faktorja so na območju Zunanjih Dinaridov v rjavih pokar-bonatnih tleh in rendzinah na triasnih, jurskih in krednih apnencih in dolomitih. Na območju Julijskih Alp so nizke vrednosti faktorja vezane za rendzine, nastale na morenah in pobočnem grušču. Prvine, ki nastopajo v tem faktorju, so vezane predvsem na glinaste komponente v tleh. Geokemična združba La, Th, U, Zr, Y in Ti Tretji faktor pojasni 15,2 % celotne variabilnosti. Pozitivno je obremenjen z: La (0,80), Th (0,79), U (0,77), Zr (0,64), Y (0,59) in Ti (0,53). Tretji faktor je najmočneje izražen na ozemlju karbonatnih kamnin južne Slovenije. Ozemlje je zgrajeno iz apnencev in dolomitov triasne, jurske in kredne starosti. Tu nastopajo rendzine, rjava po- Slika 3. Prostorska porazdelitev tretjega faktorja (La, Th, Ti, U, Y, Zr) karbonatna tla in izprana tla. Najvišje vrednosti faktorja najdemo v Suhi Krajini, na Blokah in v Beli krajini (slika 3). Visoke vrednosti faktorja opazimo tudi v rdečih in rjavih glinah Dolenjskega podolja. Negativne vrednosti faktorja v Koprskih brdih, Brkinih, Vipavski dolini in Banjšicah so vezane na distrična rjava tla na nekarbonatnih flišnih kamninah in evtrična rjava tla na laporju in flišnih kamninah. Negativne vrednosti faktorja na ozemlju Julijskih Alp nastopajo v rendzinah na morenah in grušču. Na Idrijsko-Škofjeloškem ozemlju in v Posavskem hribovju so negativne vrednosti faktorja v distričnih rjavih tleh na peščenjakih, skrilavih glinovcih in konglomeratih. Ravno tako so na ozemlju Pohorja, Strojne in Kozjaka negativne vrednosti faktorja vezane za distrična rjava tla na metamorfnih kamninah. Med prvinami, združenimi v tem faktorju, je določena kristalno-kemijska podobnost (velikost iona, naboj, ele-ktronegativnost itd.), zato pogosto prihaja do nadomeščanja med njimi. Uran je pogosto vezan kot zamenjava za itrij, cerij, cirkonij, torij, kalcij in barij v mineralih, kot so ksenotim, allanit, cirkon, torianit, fluorit, barit itd. Torij pa je vezan kot zamenjava za ione urana, cirkonija, cerija v ura-ninitu, cirkonu, monacitu, braneritu in allanitu. Geokemična združba Sr, Ca in Mg Četrti faktor pojasnjuje najmanj skupne variabilnosti, le 7,2 %. Izražen je predvsem njegov negativni krak, nanj so vezani: Sr (-0,74), Ca (-0,68) in Mg (-0,52). Visoke pozitivne vrednosti faktorja, ki pomenijo nizke vrednosti Sr, Ca in Mg, so vezane na di-strična rjava tla na različnih silikatnih kamninah in nekarbonatnih flišnih ka- mninah (slika 4). Na Idrijsko-Škofje-loškem ozemlju in Posavskem hribovju so visoke vrednosti faktorja vezane na distrična rjava tla na skrilavem glinovcu, kremenovem peščenjaku in konglomeratu permske in permokar-bonske starosti. Visoke vrednosti faktorja opazimo tudi v tleh, ki so nastala na triasnih glinov-cih in peščenjakih. V porečju Notranjske Reke in dolini Soče najdemo povišane vrednosti faktorja v distričnih rjavih tleh na flišnih plasteh. V Beli krajini so povišane vsebnosti faktorja v izpranih tleh. Povišane vsebnosti faktorja najdemo tudi na Pohorju, Strojni Slika 4. Prostorska porazdelitev četrtega faktorja (Sr, Ca, Mg) in Kozjaku v distričnih tleh, nastalih na kremenovem sericitnem filitu in filitoi-dnem skrilavcu. Na Goričkem so visoke vrednosti faktorja v tleh, nastalih na kremenovem produ. Negativne vsebnosti tega faktorja so vezane na obrečna tla, ki nastajajo v ozkih poplavnih pasovih vzdolž rek in oglejena tla, za katera je značilno zadrževanje vode v tleh (Sava, Savinja, Drava, Mura). Na Dolenjskem in Notranjskem so negativne vrednosti v rjavih pokarbonatnih tleh in rendzinah na apnencih in dolomitih. Negativne vrednosti najdemo tudi v evtričnih rjavih tleh na flišnih plasteh Primorja. Na Pohorju, Strojni in Kozjaku so negativne vrednosti faktorja 4 vezane na predele, ki jih sestavljajo metamorfne kamnine, to so muskovitno-biotitov gnajs in klo-ritno-amfibolov skrilavec in globočni-na pohorski granodiorit. Na splošno lahko opazimo, da so vrednosti faktorja pozitivne na ozemljih silikatnih klastičnih kamnin, negativne vrednosti pa so na ozemljih karbonatnih kamnin. Ker je negativni krak bolj izražen, smo ga poimenovali negativni karbonatni faktor. Na ta faktor imajo domnevno velik vpliv klimatske variacije in izpiranje tal. Ugotovili so, da je vezava stroncija odvisna od vsebnosti glinenih komponent in topnih kationov v raztopini. Vezava stroncija v tleh upada, če narašča vsebnost Mg in Ca v talni raztopini. Geokemična združba Pb, Zn in P Peti faktor pojasni 8 % celotne variabilnosti. Ta faktor bremenijo: Pb (0,78), Zn (0,75) in P (0,66). Najvišje vrednosti faktorja so v rendzini na tri-asnem apnencu na Peci in v širši okolici, kjer so zelo pomembna orudenja svinca in cinka (slike 5). V Posavskem hribovju so visoke vrednosti faktorja v distričnih rjavih tleh na permokarbon-skem skrilavem glinovcu, peščenjaku in konglomeratu. Na omenjenem ozemlju so v širši okolici Litije pomembna svinčevo cinkova rudišča. V podobnih kamninah so visoke vsebnosti faktorja v tleh na Idrijsko-Škofjeloškem ozemlju. Visoke vsebnosti faktorja opazimo tudi v Julijskih Alpah v rendzinah na dolomitu in apnencu, moreni in pobočnem grušču. Pojave svinčevo-cinkove rude na tem območju najdemo v Planici pri Ratečah ter na jugozahodnem pobočju Mangarta in so v zvezi z rudiščem v Rablju (Drovenik et al., 1980). V zahodnih Karavankah so v distričnih rjavih tleh na glinovcu in peščenjaku povišane vrednosti faktorja pod Golico. Povišane vrednosti faktorja so tudi v ev-tričnih rjavih tleh na savskem prodnem zasipu v Ljubljanski kotlini. Negativne vrednosti faktorja najdemo v tleh na flišu v Koprskih brdih, Brkinih in Vipavski dolini. Nizke vrednosti faktorja so vezane tudi za rendzine in rjava pokarbonatna tla na apnencih Slika 5. Prostorska porazdelitev petega faktorja (Pb, Zn, P) in dolomitih Notranjske in Dolenjske. V Murski ravnini in na Goričkem so negativne vrednosti faktorja vezane na distrična in evtrična rjava tla na peščenem laporju, pesku in produ. Faktor kaže naravno porazdelitev naštetih prvin v tleh, kot tudi domnevne vplive industrijskih onesnaževalcev. Peti faktor bremenita predvsem težki kovini. Združba W in Co Šesti faktor opredeljuje 10,9 % celotne variance. Ta faktor bremenita predvsem W (0,87) in Co (0,80). Glede na ti prvini lahko šesti faktor interpretiramo kot faktor onesnaženja vzorcev z mletjem v mli- nu iz volfram-kobaltovega karbida. Faktor dejansko pomeni vsebnosti abraziv-nih mineralov v vzorcih. Višje vrednosti faktorja imamo predvsem v bolj abra-zivnih tleh severovzhoda Slovenije na magmatskih in metamorfnih kamninah Pohorja in na kremenovem pesku, produ in glinah v Dravski ravnini, Slovenskih goricah, Murski ravnini in na Goričkem. Sklepi S statistično obdelavo multielemen-tnih kemičnih analiz tal, vzorčevanih v mreži 5 km x 5 km, in z geokemičnimi kartami smo prišli do sklepa, da obstaja najmanj pet geokemičnih združb prvin, ki so prostorsko vezane na različne tipe tal. Združba Cr-Cu-Fe-Mn-Ni-Sc-Ti-V je značilna za tla na flišu v zahodni Sloveniji, jerovice na Krasu, rjava pokar-bonatna tla na Dolenjskem in distrična tla na metamorfnih kamninah v severovzhodni Sloveniji. Združba Al-Ba-K--Na je vezana na distrična rjava tla na različnih silikatnih kamninah, glejna tla in psevdogleje. Združba La-Th-Ti-U-Y--Zr je najmočneje izražena na ozemlju karbonatnih kamnin južne Slovenije, kjer nastopajo rendzine, rjava pokarbo-natna tla in izprana tla. Za združbo Ca--Mg-Sr so značilne negativne vrednosti, ki so vezane na obrečna in oglejena tla (Sava, Savinja, Drava in Mura), na tla na metamorfnih kamninah (Pohorje, Strojna in Kozjak) in na evtrična rjava tla Primoija. Združba P-Pb-Zn je značilna za tla v okolici svinčevo-cinkovih ru-dišč (Mežica, Litija, Mangart), distrična rjava tla v Posavskih gubah in rendzine na dolomitu in apnencu, moreni in po-bočnem grušču Julijskih Alp. Glede na raziskovalne ugotovitve lahko sklenemo, da ocene naravnega ozadja vsebnosti kemičnih prvin v tleh niso odvisne le od geokemične sestave matičnih kamnin, ampak izražajo tudi obstoj znanih metalogenetskih anomalij, kar nakazuje na pomembno vlogo poznavanja regionalne geologije pri izbiri vzorčnega načrta za ugotavljanje naravnega ozadja tal. Zahvale Delo je rezultat naloge Karta naravne radioaktivnosti Slovenije. Podatki teh raziskav so bili podrobneje obdelani v doktorski disertaciji z naslovom Radioaktivne prvine v tleh Slovenije pod mentorstvom prof. dr. Simona Pirca. Za vso pomoč, nasvete in podporo pri nastajanju se mu iskreno zahvaljujem. Moja zahvala velja tudi sodelavcem Geološkega zavoda Ljubljana, še posebej pokojnemu Zoranu Klaicu za pomoč pri meritvah in vzorčevanju, kar je omogočilo zaključek tega obsežnega raziskovalnega dela. Viri ACME (1993): Acme Analytical Laboratories Ltd. Assaying and geochemical analyses. Acme Analytical Laboratories Ltd., 10 pp., Vancouver. Andjelov, M. (1986): Uran v potočnem mulju in mahu na ozemlju Žirovskega vrha; diplomska naloga, 81 str., Ljubljana. Andjelov, M. (1993): Use of ground gamma ray spectrometric survey for elaboration of radioelement geochemical maps. 38 pp., Vienna. (Final report. Research contract No.6793/R1/RB, IAEA.) Andjelov, M. & Klaic, Z. (1994): Radi-ometrična karta Slovenije: Ozemlje naše države je le na evropskem povprečju. Delo, Znanje za razvoj, 16. 2. 1994, Ljubljana. Andjelov, M. (1994): Rezultati radiome- tričnih in geokemičnih meritev za karto naravne radioaktivnosti Slovenije. Geologija 36, 223-248, Ljubljana. Andjelov, M., Tomšič, J. & Pečnik, M. (1995): Natural background radioactivities and geochemical map of Slovenia. Application of uranium exploration data and techniques in environmental studies. IAEA-TECDOC-827, 217-230, Vienna. Andjelov, M. (1999): Radioaktivne prvine v tleh Slovenije : doktorska disertacija, 225 str., Ljubljana. Bidovec, m. & Pirc, s. (2008): Geometrični atlas Evrope. Novi glas. Unesco (Slov. izd.), leto 37, št. 75, str. 18-19. Darnley, A. G., Bjorklund, A., B0lviken, B., Gustavsson, N., Koval, P. V., Plant, J. A., Steenfelt, A., Tauchid, M., Xuejing, Xie., Garrett, R. G. & Hall, G. E. M. (1995): A Global Geo-chemical Database for Environmental and Resource Management. Recommendations for International Geoche-mical Mapping - Final Report of IGCP Project 259. Earth Science Report 19. UNESCO Publishing, 122 pp., Paris. Davis, J. C. (1986): Statistics and data analysis in geology. Willey & Sons, 651 pp., New York. Drovenik, M., Pleničar M. & Drovenik, F. (1980): Nastanek rudišč v SR Sloveniji. Geologija, 23. knjiga, 1. del, 157 str., Ljubljana. Košmelj, B. (1983): Uvod v multivariatno analizo. Ekonomska fakulteta Borisa Kidriča, 272 str. Ljubljana. Petrovič, M. & Pokrajac, S. (1969): Regionalna prospekcija urana u oblasti SI Slovenije i SZ Hrvatske. - 88 str., Beograd. (Tipkano poročilo. Institut za geološko-rudarska istraživanja i ispiti-vanja nuklearnih i drugih mineralnih sirovina.) Pirc, S. (1977): Uran v kamninah, vodah in mulju na območju Posavskih gub v Sloveniji. Rudarsko-metalurški zbornik, No. 4, 335-357. Pirc, S. & Maksimovic, Z. (1985): Methodology for geochemical mapping in Yugoslavia. In: Proceed.1 st International. Symp. Geochem. And Health, I. Thornton, Ed., Northwood: Science Reviews Ltd., London, pp. 31-44. Pirc, S. & Zupančič, N. (1989): Geokemija kamnin Slovenije; Geokemična karta Istre in Slovenskega primoija. 107 str., Ljubljana. (Tipkano poročilo. Oddelek za geologijo.) Pirc, S., McNeal, J. M., Lenarčič, T., Pro-hic, E., Svrkota, R. (1991): Geoche-mical mapping of carbonate terrains. Trans. - Inst. Min. Metall., B, Appl. earth sci., Vol. 100, pp. B74-B87. Pirc, S. (1993): Regional geochemical surveys of carbonate rocks-final report, USG Project JF881-0. - Oddelek za geologijo NTF, Univerza v Ljubljani, 30 pp. Ljubljana. Pirc, S. & Šajn, R. (1997): Vloga geo-kemije v ugotavljanju kemične obremenitve okolja. Kemizacija okolja in življenja - do katere meje? Projekt Evropskega leta varstva narave 1995. Slovensko ekološko gibanje, 165-186, Ljubljana. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsi- na, K., Mazreku, A., CConnor, P.J., olsson, S.A., ottesen, R.T., peter-sell, V., Plant, J. A., Reeder, S., Sal-peteur, I., sandstrom, H., siewers, U., steenfelt, A. & Tarvainen, T. (2005): FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps. Geological Survey of Finland, 526 pp. Espoo. stepančič, D. (1989): Pedološka karta Slovenije 1 : 400 000. Center za pe- dologijo in varstvo okolja, Biotehniška fakulteta, Ljubljana. Šajn, R., Bidovec, M., Andjelov, M., Pirc, s. & Gosar, M. (1998): Geokemični atlas Ljubljane in okolice. Inštitut za geologijo, geotehniko in geofiziko, 34 str., 37 kart, Ljubljana. XRAL 1993: XRAL Laboratories -Neutron Activation Services Inc. a Division of SGS Canada,1885 Leslie Street, Don Mills, Ontario. Mercury enrichments in soils influenced by Idrija mercury mine, Slovenia v Živo srebro v tleh na širšem vplivnem območju rudnika v Idriji, Slovenija Mateja Gosar1, * Tamara Teršič1 Geological Survey of Slovenia, Dimičeva 14, SI-1000 Ljubljana, Slovenia Corresponding author. E-mail: mateja.gosar@geo-zs.si Received: September 14, 2012 Accepted: September 19, 2012 Abstract: Presented investigations confirmed that soils in the wider Idrija surroundings are highly enriched with mercury. The most important sources of mercury in soils for wider Idrija area were atmospheric emissions from the roasting plant. Hg gasses and dust particles have spread far into the Idrija environs. Mercury is therefore present in soils at localities far from the outcrops of ore-rich rocks. Some other small but extremely contaminated areas were identified in the woods of the Idrija environs, where ore roasting was performed in the 16th and 17th century. In the Idrija urban area there are mutual mercury impacts on the environment from the atmosphere and the soil parent material. Mercury-rich parent material in the city of Idrija is the bedrock of Pront-area, where ore-bearing rocks containing native mercury and cinnabar crop out. Additionally, mercury is present in soils developed on ore and roasting wastes dumped along the banks of the Idrijca River in the city area. In the lower Idrijca Valley the floodplain soils are contaminated with Hg because most roasted ore residues were dumped into the Idrijca riverbed and washed away because of the torrential nature of the Idrijca River and some of this mercury enriched material was deposited on the floodplains. Izvleček: Predstavljene raziskave potrjujejo, da so tla v širši okolici Idrije močno obremenjena z živim srebrom. Najpomembnejši vir živega srebra so bile med predelovanjem rude atmosferske emisije. Pri žganju rude je nastajalo veliko prašnih delcev in plinov, ki so obremenjevali širšo okolico pražarne rude in povzročili nastanek izjemno velike avreole živega srebra. Ugotovljena so bila tudi številna majhna, toda izjemno onesnažena mesta v gozdovih v okolici Idrije, kjer so v 16. in 17. stoletju žgali rudo v lončenih žgalnih posodah. Ugotavljamo, da so bila žgalniška območja pomemben vir onesnaženja okoliških ekosistemov z živim srebrom. V urbanem okolju Idrije so delovali na okolje vzajemni vplivi zračnega nanosa in talne podlage. Vir živega srebra na območju Pronta, kjer izdanjajo kamnine, ki vsebujejo sa-morodno živo srebro in cinabarit, je kamninska podlaga. Nadalje so v mestnem jedru tla razvita na deponijah prežgane rude vzdolž bre-žin reke Idrijce. Ker so med največjo proizvodnjo večino žgalniških ostankov vsipavali v strugo Idrijce in je bil ta material zaradi hudourniške narave reke prenesen v nižje predele, pa so vsebnosti živega srebra povišane tudi na poplavnih ravnicah v spodnjem toku Idrijce. Ključne besede: soil, mercury, mining, Idrija, pollution Key words: tla, živo srebro, rudarstvo, Idrija, onesnaženje Introduction Contamination of the Earth's ecosystems by potentially toxic metals is a global problem. It will probably grow with our planet's increasing population and their requirements for natural resources (Siegel, 2002). There are several sources of metals in the environment, both natural and manmade. The natural sources of metals in environment lie with the rocks and processes by which they formed and which affected them after lithification. High values of metals are found, for example, in mineralized areas and in areas where the dominant bedrock is rich in metals as, for example, in black shale. The presence of elevated levels of organic matter in an anoxic environment at the time of sediment deposition was responsible for concentrating anomalous amounts of metals. Volcanic emissions and forest fires are natural springs of some metals in the atmosphere (gases, aerosols, particulates) and after they precipitate they become part of the near-surface ecosystems. There are many anthropogenic sources in the environment: coal combustion residues, mining, metal-smelting industries, car emissions, military actions (Pirc & Budkovic, 1996; Greiciute et al., 2007; Idzelis et al., 2006) and primary input sources in agro-ecosystems (fertilizers, liming materials, sewage sludges, pesticides, irrigation water) (Adriano, 1986). The mining and metal industry can be an important source of trace elements in the environment from (a) the mining and milling operations with problems of grinding, concentrating and transporting ores, and disposal of tails along with mine and mill waste water and (b) the smelter-refinery process with problems of concentrate, haulage, storage, sintering, atmospheric discharges and blowing dust (Adriano, 1986; Dudka & Adriano, 1997; Jordan, 2009). The proportion of trace elements releases into environment depends on ores being processed. Mining itself affects relatively small areas. It is the tailings and waste rock deposits close to the mining area that are the source of the metals (Hoskin et al., 2000). The impacts of atmospheric discharges (gaseous and particulate matter emissions) from smelters can be detected within several kilometres from the point of release. Depending on the efficiency of the recycling of metals, metals initially released by mining activities, end up after a number of years in the various compartments of the surface layer of the Earth (Kesler, 1994). In many areas worldwide present and historical mining and smelting activities are causing a variety of environmental problems such as elevated metal concentrations in soils/sediments, dispersion of toxic metals in soil and water and ecological damage caused by extensive metal pollution. Because ore is only a small fraction of the total volume of mined material, ore extraction, beneficiation processes and further processing of ores produce large amounts of waste which can contain metals or chemicals from manufacturing processes (Siegel, 2002). The environmental concern in mining areas is primarily related to mechanical damage of the landscape and acid mine drainage (AMD). The trace element uptake from contaminated soils and direct deposition of contaminants from the atmosphere onto plant surfaces can lead to plant contamination by trace elements. These results in plant toxicity and a potential transfer of contaminating elements along the food chain exist (Dudka & Adraiano, 1997). In context of long and intensive history of metal mining in Slovenia, it is clear that many older mining operations started at a time when there was little concern for the surrounding environment. The impact of long history of mining and metallurgy was intensively investigated in the last decade. It was established that, in Slovenia, mining and ore processing represent one of the major modes for anthropogenic input of metals into the environment. One of the most important districts influenced by metal mining and ore processing in Slovenia is the area around Idrija mercury mine, where half a millennium of mercury production is reflected in increased mercury contents in all of its environmental segments. Mercury with its unique physicochem-ical properties is highly toxic and more Figure 1. Map of study area dangerous for living organisms than most other trace elements. It is regarded as a global pollutant. The outbreak of mass poisoning with this metal in the second half of 20th century (Minamata and Niagata in Japan, Iraq) warned the world about the danger of intoxication and mercury came into the focus of environmental investigations all around the world. Interest also arose at Idrija area, and pioneer's investigations on influence of mercury production on the environment were conducted (Byrne & Kosta, 1970; Kosta et al., 1974; Dermelj, 1974; Kavčič, 1974). After that investigations at Idrija area ceased for about 20 years. In the last two decades numerous extensive and detailed investigations on mercury emissions, distribution, deposition, speciation and pollution in general were performed in Idrija region determining an unprecedented legacy of mercury contamination (Gnamuš, 1992, 2002; Hess, 1993; Palinkaš et al., 1995; Gosar, 1997; Gosar et al., 1997a, 1997b, 2006; Biester et al., 1999, 2000; Horvat et al., 1999, 2003; Dizdarevic, 2001; Gnamuš et al., 2000; Gosar & Šajn, 2001, 2003; Gosar & Žibret, 2011; Kocman et al., 2004, 2011a, 2011b; Gosar & čar, 2006; Hines et al., 2006; Žibret & Gosar, 2006; Gosar, 2008; Kocman & Horvat, 2010; Teršič et al., 2011a; Teršič et al., 2011b; Gosar & Žibret, 2011; Gosar & Teršič, 2012). Idrija and its surroundings are heavily polluted with Hg due to naturally increased mercury contents in mineralized rocks, mining and ore processing. During the operation period of the mine 107 692 t of mercury were produced. Taking into account the losses during mining and inefficient roasting process, the total amount of mercury mined is estimated to be at least 144 725 t (Mlakar, 1974; Miklavcic, 1999; Cigale, 2006). It has been estimated that 37 033 t of mercury were emitted into the environment during the operation period of the mine that ceased production in 1995 (Cigale, 2006). In this paper environmental geochemistry studies of soils in the area of Idrija (Figure 1) which were performed at the Geological survey of Slovenia together with collaborating partners in the last 20 years are presented. This paper is dedicated to our honoured professor dr. Simon Pirc, who taught us geochemistry and to professor dr. Jože Čar who gave us basic knowledge and the idea of studying old roasting sites in Idrija area. Materials and methods The soil samples were air-dried, afterwards gently crushed in a ceramic mortar and passed through a sieve with 2 mm openings. The soil fraction smaller than 2 mm was pulverised before chemical analyses. The powdered soil samples were submitted for chemical analysis to ACME Analytical Laboratories in Vancouver (Canada) accredited under ISO 9001:2000. After aqua-regia digestion (1 hour, 95 °C) mercury was analysed eighter with Cold Vapor Atomic Absorption Spec-trometry (CVAAS) (up to year 2008) or with inductively coupled plasma mass spectrometry (ICP-MS). Samples with more than 50 mg/kg Hg were analyzed with ICP emission spectrometry (ICP-ES). The accuracy and analytical precision of the analytical methods were verified against standard reference materials (standards GXR-2 (Park City, Summit Co., Utah), GXR-5 (Somerset Co., Maine), GXR-6 (Davidson Co., North Carolina) and SJS-1 (San Joaquin Soil)) and duplicate samples in each analytical set. The shipment of samples, duplicates and geological standards to the laboratory was carried out in a random succession to distribute evenly any errors due to laboratory performance. This procedure ensured an unbiased treatment of samples and a random distribution of possible drift of analytical conditions for all samples. Objectivity was assured through the use of neutral laboratory numbers. Geochemical mapping Geochemical soil mapping was performed during summer months of the years 2000 and 2001. In the most polluted areas, such as Idrija and Spodnja Idrija, an average of samples 4/km2 were taken, whereas in more distant areas sampling density was approximately 1/km2. There were 100 soil samples collected (0-15 cm) in an area of 160 km2 (Gosar & Sain, 2001, 2003; Gosar et al., 2006). The results revealed the highest median (47 mg/kg) in Area 1, which includes the towns of Idrija and Spodnja Idrija, and the Idrijca River valley between them. Median in the intermediate Area 2 was 3.2 mg/kg and in the most distant Area 3 1 mg/ kg (Gosar et al., 2006). It was established that on 19 km2 Hg contents in soil exceed the The New Dutchlist action value for Hg (10 mg/kg; MHSPE, 1994) which is also the critical values according to Slovenian legislation (Uradni list RS - Official Gazette RS, 1996). Spatial distributions of mercury contents in soil depended very much upon the morphology of terrain (Gosar & Sajn, 2001, 2003; Gosar et al., 2006). We can come to the conclusion that the pollution is primarily related to the River Idrijca Valley, while the effect on the farther surroundings is less significant, but still important. It is of most interest to compare the Hg contents in samples taken higher or lower than the main exhaust stack of the roasting factory. The average of Hg in soil, which lies in lower altitudes than the main exhaust stack is 42 mg/kg. In higher altitudes the average is 2.8 mg/ kg. High values occur in the Idrijca River valley and at the base of slopes, while lower values prevail at higher elevations and at margins of the investigated area (Gosar et al., 2006). Strong relationship between the Hg contents in soil and between height above sea level and the distance from the smokestack of the roasting plant, which was the main anthropogenic source of mercury, was determined. Also Hg contents in soils along the Idrijca River depend mostly on the distance from the source of pollution, shape of the valley and local winds blowing along the valley. The highest concentrations were found near the source of pollution, i.e. the smokestack of the roasting plant and they decrease exponentially down the valley. Exceptions are alluvial soils which will be presented in paragraph "Contaminated floodplain soil". With geochemical mapping results we proved that the influence of atmospheric emissions caused by the Idrija roasting plant resulted in impacts on the environment on a regional scale (Gosar et al., 2006). The results of Hg thermo-desorption measurements showed the presence of the cinnabar- and non-cinnabar-bound Hg. Metallic mercury was not detected (Gosar et al., 2002; Gosar et al., 2006). In the total researched area the weighted average of total cinnabar-bound Hg in soils was 18 %. The highest median (49 %) was identified in Area 1. The portions of non-cinnabar compounds increased with the distance from the mercury source. It has been assumed that there were two different transport mechanisms of dust particles and gaseous Hg0 during the mercury production period. Coarse-grained particles with mostly cinnabar-bound Hg settled in the im- mediate vicinity of the smokestack of the roasting plant, whereas the fine grained fraction could be dispersed further ahead. As a consequence, fine grained material with Hg2+ and Hg0 prevails in remote localities and is bound to soils with matrix and organic matter (Gosar et al., 2006). Contaminated floodplain soil Besides soil pollution by atmospherically derived mercury, considerable areas with polluted floodplain soils were identified in the areas of the Idrijca and Soča River Valleys. During mining history of the area, considerable amounts of mercury-bearing ore residues and roasting residues were spilled into the River Idrijca. This mercury-rich material was washed away because of the torrential nature of the Idrijca River and some of this material was deposited on the flood-plains in the lower part of the Idrijca and Soča River valleys, thus building a large accumulation of mercury-enriched floodplain soils (Gosar et al., 1997b; Gosar, 2008; Žibret & Gosar, 2006: Gosar & Žibret, 2011). Studies of mercury speciation in sediments and soils from floodplains (Biester et al., 2000) indicated the occurrence of cinnabar and matrix-bound Hg compounds. Accumulation of cinnabar predominately occurred in coarse grained river sediments. In contrast, non-cinnabar Hg was found enriched in areas where fine grained material was deposited reaching up to 40 % of Hg tot (1-60 mg/kg) in floodplain soils (Biester et al., 2000). In continuation the influence of geo-morphological factors on the Hg contamination of the Idrijca River alluvial sediments was studied (Zibret & Go-sar, 2006; Gosar & Zibret, 2011). According to our expectations, floodplains were found to be the most contaminated unit (mean Hg content 335 mg/kg). On the first terrace the identified mean Hg concentration was 155 mg/kg. The least contaminated material was found in the higher terraces (3.8 mg/kg), which most probably reflect only atmospheric influences of the Idrija mercury mine area. Mapping of the Idrijca River terraces was performed in order to estimate the volume of the identified geomorpho-logical units. For the determination of mercury concentrations, the alluvial sediments on different levels were sampled and the analysis of variance was performed. The results showed that the concentration of Hg varies the most between the floodplain and terraces inside the same alluvial plain, but does not change significantly in relation to the distance from the source of pollution, neither in relation to the position inside one terrace or floodplain nor the depth. It was estimated that about 2000 tons of mercury have been stored in the Idrijca River alluvial sediments (Zibret & Gosar, 2006). Historical mercury-ore roasting sites In last couple of years interesting historical small-scale mercury-processing sites, which are non-uniformly distributed in the surroundings of Idrija, have become the subject of our investigations. In 2005 čar and Terpin published interesting paper about different ways of ore roasting techniques in the first 150 years (16th and first half of 17th century) of mercury production in Idrija. They found numerous localities of historical ore roasting sites in the woods around Idrija, where large quantities of broken pottery in which Hg ore was roasted, can be found. Up to now, 21 localities of ancient roasting sites were established on the neighbouring hills and in more distant localities. They also found very interesting and old literature (Grund, 1911) reporting mercury contamination at the Pšenk ancient ore roasting area that was discovered during cutting down old spruce-trees in the beginning of the 20th century. Grund (1911) reported that 0.6 m thick layer of roasting vessels fragments was found, which was investigated in detail. In three of the reduced grouped samples, 0.7 %, 0.45 % and 2.09 % of mercury was found. A fragment of a certain earthen vessel contained 0.06 % of Hg, a small piece of recipient 4.92 % of Hg, and soil from one of the earthen vessels 0.52 % of Hg. It was calculated that more than 1850 kg was present at the Pšenk locality (Grund, 1911). At the beginning of mercury production in Idrija the technology of excavation and ore processing were very simple. The excavated ore was roasted similar as charcoal in piles and later in earthen vessels at various sites in the woods around Idrija (Valentinitsch, 1981; Čar & Terpin, 2005; Kavčič, 1993, 2008). The ore roasting in earthen vessels lasted without any fundamental changes from 1510 to 1652. The major modification was done merely in 1580, when distilled lime began to be added to the ore in order to prevent the exhaled mercury to re-bind to HgS. At this method a suit of two earthen roasting vessels was used - the bigger upper, in the shape of longish gourd (earthen vessel), and smaller lower vessel (receptacle). The ore was transported to roasting sites which, due to felling large quantities of trees, were being set up at increasingly greater distances from mine pits. In this procedure, 1.5 kg of rich ore mixed with quicklime was placed in small clay vessels; the vessels were stopped with moss, placed neck downwards onto a receptacle, and their contacts smudged with clay. About 1000 vessels prepared in this way were placed on a piece of treaden ground encircled with stones, covered with sand or ash up to a height of 10 cm above the contact of lower and upper vessels, stacked with wood and ignited. As it grew hotter, the mercury evaporated from the upper vessel and accumulated in the lower, cooler vessel. After one day of burning and several days of cooling, the vessels were separated and the mercury was collected from the bottom vessel. As well as roasting in piles also roasting in earthen vessels gave a very poor yield and resulted in considerable losses. Because of the high temperatures usually a third of earthen vessels cracked during burning and mercury escaped from the vessels (Kavčič, 2008). Our preliminary investigation of mercury contents in soils at old roasting site locations (Gosar & Čar, 2006) revealed that mercury contents in soils at these sites are very high, surpassing all up to that time described localities at Idrija and surroundings. It was estimated that there are about 40 t of mercury still present at ancient roasting sites (Gosar & Čar, 2006). We started detailed investigations on mercury contents in soils at 2 historical roasting site locations (Gosar & Čar, 2006; Teršič & Gosar, 2009; Teršič et al., 2008; Teršič, 2010, 2011; Teršič et al. 2011a; Teršič et al. 2011b). The main aims were to find out the extension of mercury pollution at old roasting sites and their significance for mercury dispersion locally and also in the wider Idrija area, to determine the contents and vertical distribution of mercury in soils and sediments and to establish the changes in mercury speciation with depth in the soil profile. As several anomalies were discovered during geochemical soil survey (Gosar et al., 2006) where increased mercury contents could not be the consequence of main Hg sources such as atmospheric emissions, mineralized rock dumps and roasting residues or their use in construction, we wanted to find out if old roasting sites could be the reason for these anomalies. At Frbejzene trate roasting site the organic matter-rich surface soil layer (SOM) and underlying mineral soil were sampled at 63 sampling locations on an approximately 300 m x 250 m area. The results indicate extremely high Hg concentrations with a maximum of 37 000 mg/kg in SOM and 19 900 mg/kg in mineral soil. The established Hg median in soil was 370 mg/kg and in SOM 96.3 mg/kg. Spatial distributions of Hg in SOM and soil showed very high Hg contents in the central investigated area which decrease rapidly with the distance from this area. The New Dutch-list action value for Hg in soil (10 mg/ kg; MHSPE, 1994) was exceeded in soil (5-20 cm) on approximately 95 % of the investigated area. The highest Hg contents were determined at a depth of 5-20 cm, and they decreased with depth in the soil profile. Mercury speciation was performed using Hg thermo-desorption-AAS to distinguish cinnabar from potentially bioavailable forms. The results of Hg thermo-des-orption measurements indicated the presence of cinnabar (HgS) and Hg bound to organic or mineral soil matter. A significant portion (35-40 %) of Hg in the investigated soil and SOM samples was comprised of non-cinnabar compounds, which are potentially bioavailable. It has been shown that soils contain high amounts of potentially transformable non-cinnabar Hg, which is available for surface leaching and runoff into the surrounding environment. Therefore, contaminated soils and roasted residues at the studied area are important for the wider spatial contamination of soils and other environmental compartments (Tersic et al., 2011a). The other investigated ancient roasting site was the Psenk site, where similar results were obtained. Detailed soil sampling was performed on 210 m x 180 m area to establish the extension of Hg pollution and to investigate Hg transformations and transport characteristics through the 400 year-long period. A total of 156 soil (0-15 cm and 15-30 cm) and SOM (soil organic matter) samples were collected from 73 sampling points. Three soil profiles were sampled to determine vertical distribution of Hg. The main Hg phases were determined by the Hg-thermo-desorption technique. The measured Hg contents in soil samples in the study area vary from 5.5 mg/kg to almost 9 000 mg/kg with a median of 200 mg/kg. In SOM, Hg contents are ranging from 1.4 mg/kg to 4 200 mg/kg with a median of 20 mg/kg. The New Dutchlist action value for Hg (10 mg/kg; MHSPE, 1994) is exceeded on approximately 82 % of the investigated area. Extremely high Hg contents were found in soil profiles where the metal reaches 37 020 mg/kg. In general, Hg concentrations in all three profiles show a gradual decrease with depth with the minimum values between 140 mg/kg and 1 080 mg/kg. The Hg-thermo-de-sorption curves indicate the presence of Hg in the form of cinnabar and that of Hg bound to organic or mineral soil matter. The distribution of Hg species in soil and SOM samples shows almost equal distribution of cinnabar and non-cinnabar Hg compounds. The non-cinnabar fraction shows a little increase with depth, however, cinnabar represents a high portion of total Hg (about 40 %). Large amounts of potentially mobile and transformable non-cinnabar Hg compounds exist at the roasting site, which are potentially bioavailable (Tersic et al., 2011b). At roasting site Psenk we also studied the applicability of earthworm casts as a sampling media for determining soil contamination (Tersic & Gosar, 2012). Earthworm casts were sampled at the same locations as soil and SOM samples. In general the Hg values determined in casts are slightly higher compared to the values in SOM and somewhat lower compared to the Hg contents in soil. Strong correlation between Hg contents in casts and soil was found. Spatial distribution of Hg in earthworm casts is similar to the Hg distribution in soil with somewhat smaller anomaly. For most of the analyzed elements, the determined contents were in the order of soil > cast > SOM, indicating that the material from casts is a mixture of material from soil and SOM. Only Ca, Mg, P, Sr, Cu and Zn contents were higher in earthworm casts compared to soil. Beside Hg, strong correlations between concentrations in casts and soil were found also for U, Cr, Ni and Mo. Earthworm casts proved to be an appropriate sampling media for determining soil contamination at this particular area (Tersic & Gosar, 2012). Regarding the investigation of Hg distribution in soils of the wider Idrija area (Gosar et al., 2006), the determined Hg values of the studied roasting site areas are much higher. Compared to the established Hg median (3.2 mg/kg) and maximum (75 mg/kg) values for soils in the surroundings of Idrija town (Gosar et al., 2006), the Hg median in soils of the studied areas are about 100-fold higher and the maximum value was almost 300-fold higher (Tersic, 2010). However, it should be taken into account that the roasting sites are of a small size and that Hg contents in soils and SOM decrease rapidly with the distance from the source of pollution. Microanalysis of contaminated soils and roasting vessels fragments using scanning electron microscope coupled with energy dispersive spectrometer (SEM/EDS) has been applied to better characterize the Hg-bearing species in investigated materials (Tersic, 2011). Mercuric sulphide (HgS) was found to be the main mercury compound present in the samples. Analysis of earthen vessels fragments showed abundant HgS coatings on the surface of ceramics, forming either crustlike aggregates on matrix or isolated grains. Some well-shaped grains with indicated structure and the size of up to 200 pm could also be observed. In soil HgS was present as powder-like concentrations scattered in soil samples, frequently coating silicate and quartz crystals and clay-minerals. Polycristal-line, mercury- and sulphur- rich particles comprising silica, clay minerals and Al-, Fe- and Mg-oxides that were also observed in the samples were interpreted as soil aggregates infiltrated by mercuric and sulphur vapours and by liquid mercury spilled during roasting. These particles suggest a possible presence of mercury-sulphur associations other than HgS (Tersic, 2011). Detailed geochemical surveys carried out at these two ancient roasting sites proved that the unique way of historical ore processing in the surroundings of Idrija resulted in extremely polluted sites which influence today's extension and spatial distribution of mercury in the Idrija area. Several Hg anomalies in sediments which were discovered in upper Idrijca River Valley (Gosar, 2008; Gosar & Zibret, 2011) and in the soils on the hills around Idrija (Hess, 1993; Gosar & Sajn, 2001; Gosar et al., 2006), where increased mercury contents could not be the consequence of main anthropogenic Hg sources, are now interpreted as a consequence of ancient ore roasting sites impacts. comparison of mercury contents in sons of the Idrija area to other mercury mining sites The Idrija mine was the second largest mercury mine in the world being surpassed only by the Almadén mine in central Spain that has produced one-third of the total world production of mercury. As it was presented in this paper, five hundred years of intensive mercury mining activities in Idrija left a legacy of highly polluted environment. Idrija area can be compared to the Almadén area which is regarded as the largest geochemical anomaly of mercury on Earth. The district includes a series of mercury mineral deposits, having in common a simple mineralogy (dominant cinnabar, minor pyrite). The ore deposits have been mined for more than 2000 years, and the main mine of the district (Almadén), has been active from Roman times to pre- Table 1. Hg concentrations in soils from mining contaminated areas worldwide Location Hg (mg/kg) Reference Idrija: historical mercury-ore roasting sites 3.4-19 900 Tersic, 2010, Tersic et al., 2011a; 2011b Idrija: soil survey 160 km2 0.3-973 Gosar et al., 2006 Idrija: alluvial soils in the Idrijca Valley 0.595- 1 970 Gosar & Zibret, 2011 Almadén district 6-8 889 Higueras et al., 2006 Mieres mining sites (N Spain) 1.7-2 224 Loredo et al., 1999 Mieres mining sites (N Spain) 54-29 304 Fernandéz-Martinez et al., 2006 Azogue Valley mining sites (SE Spain) 6-1 400 Viladevall et al., 1999 Andacollo Cu-Au-Hg mining district (Chile) 2.5-47 Higueras et al., 2004 Punitaqui Cu-Au-Hg mining district (Chile) 3.2-16 Higueras et al., 2004 Tongren district, Guizhou Province (China) 0.18-47 Li et al., 2008 sent day with almost no interruptions. The mercury distribution in soils of the Almadén district revealed the existence of high, and extremely high mercury values (6-8 889 mg/kg) (Higueras et al., 2003, 2006; Table 1). The soil contents in both districts are in the same range, but the contaminated area in the case of Idrija is much smaller. In both areas extremely contaminated areas of historical ore roasting are due to low recovery rate. Highly elevated mercury contents were reported also from Mieres (northern Spain) by Loredo et al. (1999), who determined in soil samples near spoil heaps Hg values of up to 2 224 mg/ kg. In continuation, extremely high Hg content (29 304 mg/kg) was reported from La Peña-El Terronal site (Mieres, N Spain) (Fernandéz-Martinez et al., 2006). Viladeval et al. (1999) report the contents of 6-1 400 mg/kg Hg in soils and overburden from a mineralized area in Azogue Valley (SE Spain) (Table 2). Conclusions Idrija certainly represents one of the areas where natural elevated mercury concentrations are technologically enhanced due to the 500 years long Hg mining, and therefore requires special attention. Presented studies have shown that Hg mining in Idrija caused intense pollution of local and regional soils. Although numerous studies have already been performed at Idrija mercury mining area, which have shown on complexity of mercury contamination problem, they also open new scientific questions and challenges for future work. Acknowledgments The presented research and preparation of paper are funded by Slovenian Research Agency (ARRS) in the frame of the research programme Groundwater and Geochemistry (P1-0020) and the research project Environmental geochemistry of metal contaminated sites (J1-2065) which are performed on the Geological Survey of Slovenia. References Adriano, D. C. (1986): Trace elements in the terrestrial environment, SpringerVerlag, New York, Berlin, Heidelberg, Tokyo, 533 p. Biester, H., Gosar, M. & Covelli, S. (2000): Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environmental Science and Technology. Vol. 34/16, 3330-3336. Biester, H., Gosar, M. & Müller, G. (1999): Mercury Speciation in Tailings of the Idrija Mercury Mine. Journal of Geochemical Exploration. Vol. 65/3, 195-204. Biester, H., Gosar, M., Covelli, s. (2000): Mercury speciation in Sediments affected by Dumped Mining Residues in the Drainage Area of the Idrija Mercury Mine, Slovenia. Environment Science Technology, Vol. 34/16, 3330-3336. Byrne, A. R. & Kosta, L. (1970):Studies on the distribution and uptake of mercury in the area of mercury mine at Id- rija, Slovenia. Vestnik SK17. 5-11. Čar, J. & Terpin, R. (2005): Stare žgalnice živosrebrove rude v okolici Idrije. Idrijski razgledi, Idrija. Vol. 50/1, 80-105. Cigale, M. (2006): Rudnik živega srebra Idrija od 1490 do 2006. In: B. Režun, U. Eržen, M. Petrič, I. Gantar (Eds.), 2. Slovenski Geološki Kongres, Zbornik povzetkov, Rudnik živega srebra v zapiranju d.o.o., Idrija, 13-16. Dermelj, M. (1974): Idrija spet v središču mednarodne pozornosti. Idrijski razgledi, Idrija. Vol. 19/3-4, 126-132. Dizdarevič, T. (2001): The influence of mercury production in Idrija mine on the environment in the Idrija region and over a broad area. RMZ - Materials and Geoenvironment. Vol. 48/1, 56-64. Dudka, S. & Adriano, D. C. (1997): Environmental impacts of Metal Ore Mining and processing: A Review. Journal of Environmental Quality. Vol. 2, 590-602. Fernandez-Martinez, R., Loredo, L., Ordonez, A., Rucandio, M. I. (2006): Physiochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environmental Pollution. Vol. 142/2, 217-226. Gnamuš, A. (1992): Uporaba bioloških indikatorjev za spremljanje in ovrednotenje obremenjenosti kopenskih ekosistemov z živim srebrom, B. Sc. thesis, University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, 160 p. Gnamuš, A. (2002): Živo srebro v kopenski prehranski verigi - Indikatorski or- ganizmi, privzem in kopičenje, Institut »Jožef Stefan«, Ljubljana. Gnamuš, A., Byrne, A. R. & Horvat, M. (2000): Mercury in the soil-plant-deer-predator food chain on a temperate forest in Slovenia. Environ. Sci. Tech-nol. Vol. 34/16, 3337-3345. Gosar, M. & Šajn, R. (2001): Mercury in soil and attic dust as a reflection of Idrija mining and mineralization (Slovenia) = Živo srebro v tleh in podstrešnem prahu v Idriji in okolici kot posledica orudenja in rudarjenja. Geologija. Vol. 44/1, 137-159. Gosar, M. & Šajn, R. (2003):Geochemi-cal soil and attic dust survey in Idrija, Slovenia. Journal de Physique. Vol. 107,561-564. Gosar, M. (1997): Živo srebro v sedimen-tih in zraku na ozemlju Idrije kot posledica orudenja in rudarjenja = Mercury in sediments and air as a reflection of Idrija mineralization and minin, Ph. D. Thesis, University of Ljubljana, Ljubljana. Gosar, M. (2008): Mercury in River Sediments, Floodplains and Plants Growing thereon in Drainage area of Idrija Mine, Slovenia. Polish Journal of Environmental Studies. Vol. 17/2, 227236. Gosar, M., Čar, J. (2006): Vpliv žgalnic živosrebrove rude iz 16. in 17. stoletja na razširjenost živega srebra v okolici Idrije = Influence of mercury ore roasting sites from 16th and 17th century on the mercury dispersion in surroundings of Idrija. Geologija. Vol. 49/1, 91-101. Gosar, M., Teršič, T. (2012): Environmental geochemistry studies in the area of Idrija mercury mine, Slovenia. Environ. geochem. health, Vol. 34, suppl. 1, 27-41. Gosar, M., Pirc, s. & Bidovec, M. (1997b): Mercury in the Idrijca river sediments as a reflection of mining and smelting activities of the mercury mine Idrija. Journal of Geochemical Exploration. Vol. 58, 125-131. Gosar, M., Pirc, s., Šajn, R., Bidovec, M., Mashayanov, N. R., sholupov, s. E. (1997a): Distribution of mercury in the atmosphere over Idrija. Environment Geochemistry Health. Vol. 19, 101-110. Gosar, M., Šajn, R. & Biester, H. (2006): Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Sci. total environ. Vol. 369/1-3, 150-162. Gosar, M., Šajn, R. & Biester, H. (2002): Zvrsti živega srebra v tleh in podstrešnem prahu na Idrijskem = Mercury speciation in soils and attic dust in the Idrija area. Geologija. Vol. 45/2, 373-378. Gosar, M., Žibret, G. (2011): Mercury contents in the vertical profiles through alluvial sediments as a reflection of mining in Idrija (Slovenia). Journal of Geochemical Exploration., Vol. 110/2, 81-91. Grund, R. (1911): Geschichtliches aus Idria, Berg und Hüttenwessen, Wien, Vol. 59/34, 457-461. GreičiCte, K., Juozulynas, A., Šurkiene, G., & Valeikiene, V. (2007): Research on soil disturbance and pollution with heavy metals in military grounds. Geologija. Vol. 57, 14-20. Hess, A. (1993): Verteilung, Mobilität und Verfügbarkeit von Hg in Böden und Sedimenten am Beispiel zweier hochbelasteter Industriestandorte, Heidelberger Geowissenschaftliche Abhandlungen, Heidelberg. Higueras, P., Oyarzun, R., Biester, H., Lillo, J. & Lorenzo, S. (2003): A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. Journal of geo-chemical exploration. Vol. 80/1, 95104. Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernández, J. C., Molina, J. A., Esbri, J. M., Lorenzo, S. (2006): The Almadén district (Spain): Anatomy of one of the world's largest Hg-contaminated sites. Science of the total environment. Vol. 356/1-3, 112-114. Hines, M. E., Faganeli, J., Adatto, I. & Horvat, M. (2006): Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia. Applied Geochemistry. Vol. 21/11, 1924-1939. Horvat, M., Covelli, S., Faganeli, J., Logar, M., Fajon, V., Rajar, R., Sirca, A., Jagar, D. (1999): Mercury in contaminated coastal environments; a case study: the Gulf of Trieste. Science total environment. Vol. 237/238, 43-56. Horvat, M., Kontic, B., Kotnik, J., Ogrinc, N., Jereb, V., Logar, M., Faganeli, J., Rajar, R., Sirca, A., Petkovsek, G., Zagar, D. & Dizdarevic, T. (2003): Remediation of mercury polluted sites due to mining activities. Crit. rev. anal. chem. Vol. 33, 291-296. Hoskin, W., Bird, G. & stanley, T. (2000): Mining - facts, figures and environment. Industry and environment. Vol. 23, 4-8. Idzelis, R., Grekiüté, K. & Dainius, L. P. (2006): Investigation and evaluation of surface water pollution with heavy metals and oil products in kairiai military ground territory. Journal of Environmental Engineering & Landscape Management. Vol. 14/4, 183-19G. Jordan, G. (2GG9): Sustainable mineral resources management: from regional mineral resources exploration to spatial contamination risk assessment of mining. Environ. Geol. on line first, 1l p. Kavčič, I. (19l4): Kakšna je stopnja onečiščenosti zraka v Idriji. Idrijski razgledi. Vol. 19/1-2, 25-29. Kavčič, I. (1993): Pridobivanje in uporaba živega srebra, In S. Bevk, J. Kavčič, I. Leskovec (Eds.) Idrijska obzorja, Pet stoletij rudnika in mesta, Mestni muzej Idrija, Idrija, 83-93. Kavčič, I. (2GG8): Živo srebro: zgodovina idrijskega žgalništva = History of smelting in Idrija, Založba Bogataj, Idrija. Kesler, S. E. (1994): Mineral resources, economics, and the environment, Maxwell Macmillan International, New York, 391 p. Kocman, D., Horvat, M. & Kotnik, J. (2004): Mercury fractionation in contaminated soils from the Idrija mercury mine region. Journal of Environ-mentalMonitoring. Vol. 6, 696-7G3. Kocman, D., Horvat, M. (2G1G): A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmospheric Chemistry Physics. Vol. 10,1417-1426. Kocman, D., Kanduč, T., Ogrinc, N., Horvat, M. (2011a): Distribution and partitioning of mercury in a river catchment impacted by former mercury mining activity. Biogeochemistry. Vol. 104/1-3, 183-201. Kocman, D., Vreča, P., Fajon, V., Horvat, M. (2011b): Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environmental research. Vol. 11, 1-9. Kosta, L., Byrne, A. R., Zelenko, V., Stegnar, P., Dermelj, V. Ravnik, V. (1974): Studies on the uptake, distribution and transformations of mercury in living organisms in the Idrija region and comparative areas. Vestnik SKD. Vol. 21, 49-76. Loredo, J., Ordonez, A., Gallego, J. R., Baldo, C., Garcia-Iglesias, J. (1999): Geochemical characterization of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). Journal of Geochemical Exploration. Vol. 67(1-3), 377-390. Miklavčič, V. (1999): Mercury in the town of Idrija (Slovenia) after 500 years of mining and smelting, In: R. Ebinghaus, R.R. Turner, L.D. de Lacedra, O. Vasiljev, W. Salomons (Eds.), Mercury contaminated sites, Springer-Verlag, Berlin, 259-270. Mlakar, I. (1974): Osnovni parametri proizvodnje rudnika Idrija skozi stoletja do danes. Idrijski razgledi. Vol. 19(3-4), 1-40. Official Gazette - Uradni list RS, Uredba o mejnih, opozorilnih in kritičnih imisi-jskih vrednostih nevarnih snovi v tleh. Uradni list. 1996: 68, 5773-5774. Palinkas, L. A., Pirc, S., Miko, S. F., Durn, G., Namjesnik, K., Kapelj, S. (1995): The Idrija mercury mine, Slovenia, a semi-millennium of continuous operation: an ecological impact, In: Richardson, M. (ed.), Environmental toxicology assessment, Taylor & Francis, London, 317-341. Pirc, S., Budkovic, T. (1996): Remains of World War 1 geochemical pollution in the landscape, In: Richardson, M. (ed.), Environmental xenobiotics, Taylor & Francis, London, 375-418. Siegel, F. R. (2002): Environmental Geochemistry of Potentialy Toxic Metals, Springer, Verlag Berlin, Heidelberg, 218 p. Tersic, T. (2010): Environmental influences of historical small scale ore processing at Idrija area, Ph.D. thesis, University of Ljubljana, Ljubljana. Tersic, T. (2011): SEM/EDS analysis of soil and roasting vessels fragments from ancient mercury ore roasting sites at Idrija area. Geologija. Vol. 54/1, 31-40. Tersic, T., Gosar, M. (2009): Preliminary results of detailed geochemical study of mercury at the ancient roasting site Psenk (Idrija area, Slovenia). Geologija. Vol. 52/1, 79-86. Tersic, T., Gosar, M. (2012): Comparison of elemental contents in earthworm cast and soil from a mercury-contaminated site (Idrija area, Slovenia). Science of the Total Environment, 430, 28-33. Tersic, T., Gosar, M., Biester, H. (2008): Historical ore processing in Idrija: case study of a unique mercury waste disposal site. In: 18th Annual V.M. Goldschmidt Conference, Vancouver, 13-18 July 2008. Awards ceremony speeches and abstracts. Geochimica et cosmochimica acta, 72, Amsterdam. Vol. 12/1, A942p. Tersic, T., Gosar, M., Biester, H. (2011a): Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejzene trate (Idrija area, Slovenia). Journal of Geochemi-calExploration. Vol. 110, 136-145. Tersic, T., Gosar, M., Biester, H. (2011b): Environmental impact of ancient small-scale mercury ore processing at Psenk on soil (Idrija area, Slovenia). Applied Geochemistry. Vol. 26, 18671876. Valentinitsch, H. (1981): Das landesfürstliche Quecksilberbergwerk Idria 1575-1659, Historische Landeskommission für Steiermark, Graz. Viladevall, M., Font, X., Navarro, A. (1999): Geochemical mercury survey in the Azogue Valley (Betic Area, SE Spain). Journal of Geochemical Exploration. Vol. 66/1-2, 27-35. Zibret, G. & Gosar, M. (2006): Calculation of the mercury accumulation in the Idrijca river alluvial plain sediments. The Science of the Total Environment. 368,291-297. Cooperation of GeoZS in geochemical investigation in former Yugoslavia Vključenost GeoZS v geokemične raziskave v nekdanji Jugoslaviji Robert Šajn1, * & Jasminka Alijagic1 Geological Survey of Slovenija, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia Corresponding author. E-mail robert.sajn@geo-zs.si Received: September 20, 2012 Accepted: October 15, 2012 Abstract: The main purpose of this paper is to present geochemical investigations in former Yugoslavia. Intensively, in the last decade Geological Survey of Slovenia (GeoZS) spread the geochemical researches to Bosnia and Herzegovina, Macedonia, Croatia, Kosovo and Serbia through many bilateral projects. The main mines, smelters and ironworks were the main target of investigation. According to fact that Slovenia is very rich with mines, and consequently with numerous ironworks and smelters, the GeoZS has a long tradition in this kind of researches. Successful cooperation between GeoZS and institutions from other countries resulted by numerous publications, especially with Macedonia. Some of our results are already published, but still some remains unpublished. For determination of contamination, various sampling materials such as soil, alluvial sediments, river sediments, attic dust, lichen and moss were collected. In data processing various techniques of statistical approach have been used, but for their visualization also for the preparation of predictive maps of contamination we used universal kriging method, double kriging method and artificial neural network (ANN). Izvleček: Glavni namen prispevka je predstaviti geokemične raziskave v nekdanji Jugoslaviji. V zadnjem desetletju Geološki zavod Slovenije (GeoZS) uspešno sodeluje pri številnih geokemičnih raziskavah v Bosni in Hercegovini, Makedoniji, na Hrvaškem, Kosovu in v Srbiji na osnovi številnih bilateralnih in evropskih projektov. Glavno cilj raziskav je bilo stanje okolja v okolici večjih rudnikov, topilnic kovin in železarn. Glede na dejstvo, da je v Sloveniji delovalo večje število rudnikov ter posledično številne železarne in topilnice kovin, ima GeoZS dolgo tradicijo tovrstnih raziskav. Uspešno sodelovanje med GeoZS in ustanovami iz drugih držav je rezultiralo s številnimi objavami, kar posebej velja za sodelovanje z Makedonijo. Za določitev obremenjenosti okolja so bili zbrani različni vzorčni materiali, kot so tla, aluvialni in rečni sedimenti, podstrešni prah, lišaji in mahovi. V postopku obdelave podatkov so bile uporabljene napredne multivari-antne statistične metode, za napoved razširjanja onesnaženja in vizu-alizacijo pa metode univerzalnega in segmentnega krigiranja, kakor tudi metode umetne inteligence (ANN - večslojni perceptron). Key words: atmospheric contamination; river transport; heavy metals, former Yugoslavia Ključne besede: težke kovine, onesnaženje, nekdanja Jugoslavija Introduction This study represents a summary of environmental geochemical researches in the countries formed by breakup of Yugoslavia. Our researches are mainly focused on mining and metallurgical processes which are obviously the biggest destructors of environment: B&H (Ironworks Zenica; Ironworks Vares and Fe mines - Smreka, Droskovac, Brezik, Pb-Zn-Ba mine Veovaca); Croatia (the Drava valley; Experimental geochemical map of Slovenia and Croatia); Kosovo (Pb- Zn mine Trepca and Pb smelter Zvecan-Kosovska Mitrovi-ca); Macedonia (Cu mine Bucim, Pb-Zn mines SASA and Toranica, As-Sb-Tl mine Alsar), Pb smelter Veles; FeNi - Kavadarci; thermoelectric power plants (Kicevo and Bitola), alluvial deposits of the Vardar river, Skopje); Srbija (Mine and flotation Bor). After mineral extraction a big amount of waste has been exposed to oxidation conditions on the surface which lead to mobilisation of toxic material and formation of acidic water. Consequences of smelting and metallurgic processes are gaseous and atmospheric particles emission, waste water and waste mineral deposits. The results help us to determine local and regional geochemical conditions, allowing us to understand a main processes and causes of the environmental changes and finally their contribution to the sustainable spatial planning. Obtaining and interpreting utilization data about chemical composition can be used in environmental protection and sustainable development of particular country, as well as for determina- tion of pollution impacts to the human health, agriculture, forestry and future land use. Comprehensive approaches in investigation, understanding environmental issues, natural background and human impact on the environment is very important for development in earth and environmental sciences. Basically, the major goals are strengthening an international scientific cooperation network and partnership between GeoZS and other former Yugoslav countries, improvement of material research standards, exploiting the research and technological demonstration results as well promoting the GeoZS to regional centres of excellence. The results of numerous geochemical studies of natural distribution and proportion of anthropogenic heavy metals in the environment, especially in areas of former mining and smelting in Slovenia and the region can be used as guiding principles for the future environmental remedial actions. Specifically, the results from the entire study will complement our knowledge about a complexity of chemical compounds in the environment. Special emphasis is given to the further development of advanced data processing techniques and methods of linear and nonlinear mathematical models, based on the application of modern mathematical analysis such as PCA (Prin- cipal Component Analysis), and ANN (Artificial Neural Network) at the distribution and transport of heavy metals in the environment. Drava valley (Slovenia and Croatia) The Drava watershed, including its tributaries, has been an important mining and smelting region since antiquity. The industry underwent significant development during the middle Ages, and achieved its peak in the middle of the last century. Numerous mines and smelters such as Bleiberg-Kreuth in Austria, Cave del Predil in Italy and Mežica in Slovenia have had a significant impact on the chemical composition of the alluvial sediments of the Drava. It is widely known that the broader Drava valley is rich with heavy metals (Pb, Zn, Cu, As, Cd). The study area covers the course of the Drava from the Slovenian-Austrian border which can be divided into two regions: Alpine and Pannonian. The Alpine region occupies the Drava canyon from the Slovenian-Austrian border up to the town of Maribor (about 78 km) where the Alpine landscape is dominant. The Pannonian region occupies an area from the town of Maribor downstrem to the confluence of the Mura and Drava rivers, where the river valley is wide and exhibits the mor- 66 HO fit 100 120 ISO Figure 1. Spatial distribution of zinc in the Drava valley - Pannonian area (Croatia and Slovenia) phological characteristics of the Pannonian basin. The Pannonian section of the study area covers about 123 km of the river flow. Throughout the study area, extensive deposits of alluvial sediments are found: in currently flooded zones (at present mainly behind the bank systems) covering about 55 km2 in historically or periodically flooded areas (in recent times protected by the bulks, where agriculture production is intensive) covering about 100 km2; and sediments of alluvial terraces comprising an area of 930 km2 (Peh et al., 2008; Sajn et al., 2011). Across the Alpine region, the 16 sampling locations are defined at places along the river course where alluvial plains and river terraces occur. Simultaneously, samples of stream sediment were collected at 8 points in the river. In the Pannonian part of the study area, where extensive alluvial plane and river terraces occur, 118 sampling locations at 25 profile lines were placed perpendicular to the river course. Analysis of 41 chemical elements was performed. Based on a comparison of statistical parameters, spatial distribution of particular elements and the results of factor analysis, three natural and one anthropogenic geochemical associations were identified. The natural geochemical associations (Al-Fe-K-Co-Cr-Cu-Li-Ni-Rb-Sc-Th, Ti-Ce-La-Nb-Ta and Ca-Mg-Sr) were influenced mainly by lithology. The anthropogenic association (As-Ba-Cd-Mo-Pb-Sb-Zn) is mostly the result of historical zinc and lead mining and smelting in the Drava river watershed. The entire assessed area of about 133 km2 is, according to Slovenian and Croatian legislation, critically polluted with heavy metals, especially zinc. Based research of all forms of environmental pollution, including mines, smelters and ironworks in Slovenia at the present time, we have found that 88 km2 of the total surface of the country is critically polluted with heavy metals. This means that alluvial sediments of the Drava River represent a wider source of pollution in both Slovenia and Croatia (Peh et al., 2008; Sajn et al., 2011). Experimental geochemical map (slovenia and croatia) Geochemical research of soil, stream and overbank sediments, as well as rocks in Slovenia and Croatia has been carried out continuously within the last two decades. The experimental geochemical map of Croatia and Slovenia is crated as a result of successful international cooperation in the field of environmental geochemistry. Regarding the fact that strategy and methodology in producing our national geochemical maps have hitherto much in common we decided to produce the joint geochemical map explaining the geochemical trends of the wider area in a more comprehensive way (Sajn at al., 2006; Sajn at al., 2008) The high contents of Fe, Ni, Cr, Sc, V, Mn, Al and Cu, have found in the areas covered by Pg and Cretaceous flysch, and in the areas of Neogene postorogenic sedimentary formations as well as by metamor-phic rocks of the Pohorje Mt. and its environs. Nb, La, Th, As, Y and Zr are characteristic for brown carbonate soils, or terra rossa on carbonate platforms, as well as for the areas of eastern Slavonia. Ba, K and Na are typical for areas covered by igneous rocks. Ca, Sr, Mg and P are the most poorly differentiated and are associated either with rendzinas and similar soil types in the mountainous areas or, again, with the carbonate contents in immature alluvial soils in the Sava and Drava river valleys. Pb, Zn, Hg and Cd represents a typical heavy metal association originated either as a consequence of natural erosion of ore-bearing rocks or, again, of mining activity and smelting industry in the past. Their highest concentrations can be found in Slovenia in the vicinity of mines and metallurgic centers (Idrija, Mežica, Litija, Jesenice and Celje). Mining activity left its traces as well, which is reflected in the higher concentrations of heavy metals in recent sediments of the Sava and Drava rivers. Increased values in the areas of Gorski kotar, Velebit and Dalmatia derive their origin mostly from atmospheric deposition (Figure 2). Figure 2. Spatial distribution of Cd, Hg, Pb and Zn in topsoil (Croatia and Slovenia) zenica (Bosnia and Herzegovina) Zenica, 170 000 inhabitants, is located in the valley of river Bosna, about 70 km north from Sarajevo. Construction of the iron and steel works started in 1892, during Austro-Hungarian period, and until the end of 50's, becomes the biggest construction site in the former Yugoslavia. Expansion of production reached the record of 1.72 Mt of pig iron and 1.91 million tons of crude Cd (mg/kg) 0.35 0.51 0.59 0.71 0.85 1.20 Figure 3. Spatial distribution of cadmium in the topsoil and the subsoil (Zenica, B&H) steel in 1986. At the beginning of 90's production was completely stopped but production was continued with less capacity at the end of last century. Area of 52 km2 is covered with sampling grid that includes: urban zone, industrial zone and wider valley of the River Bosna. The entire area is separated into cells by the sampling grid with a density of sample per square kilometer but in the urban zone, sampling density is increased. At 62 different sites, 124 samples of topsoil (0-5 cm) and subsoil (20-30 cm) were collected Two geogenic and one anthropogenic geochemical association are established on the basis of: visually indicated similarity of geographic distribution of elemental patterns in the topsoil and bottom soil, comparisons of basic statistics, correlation coefficient matrices, results of cluster and factor analyses and comparisons of enrichment ratios (Alijagic & Sajn, 2006; Alijagic, 2008; Alijagic & Sajn, 2010). Two natural geochemical associations (Al, Ca, Ce, K, La, Li, Nb, Rb, Sc, Ta, Ti Th, V and Y) and (Co, Cr, Na, Ni and Mg) are influenced mainly by li-thology, but the third anthropogenic association (Ag, Bi, Cd, Cu, Hg, Mo, Pb, Sb and Zn) is result of historical activities of the ironworks Zenica, but also coal mining and other anthropogenic influences in the past. High concentrations of Co, Cr and Ni are result of weathering processes and critical level of the mentioned elements is found on c. 2 km2 in topsoil and c. 3.3 km2 in bottom soil. Natural critically polluted area is located on surrounding hills, outside from the urban zone and main share in total natural pollution is principally with Ni and Cr. Anthropogenic pollution that associate high concentrations of As, Cd, Cu, Hg, Pb and Zn, exceed critical level on c. 2 km2 in both soil horizons. For the mentioned association is significant that polluted area is situated in the Zenica basin and area among the river. Critically polluted area is mainly situated on the Miocene coal layers on the NW side of the study area and refers to As distribution. stavnja valley (Bosnia and Herzegovina) Vares is situated in the valley of the river Stavnja with 20 000 inhabitants. In this region, iron ore mined and smelted from Antique period but with arrival Austrians to Bosnia, Vares admire revival in economy aspect. Construction of the ironworks and metal foundry in Vares started in 1891, and until 1991. Three Fe ore deposits Smreka, Droskovac, and Brezik are situated in municipality of Vares. Open pit's reserves and resources in the mentioned three Fe ore deposits are approximately 169 million tones, in 1991. Apart the Fe in hematite and siderite there are present another oli-goelements such as Cu, Pb, Zn, As, Sb and Sn. Lead, zinc and barite Veovaca open pit is situated about 10 km of the town. Sulphide mineralization is associated with layers of barite and have volcanogenic - sedimentary genesis. Pb - Zn mineralization is associated with Droskovac Fe deposits. From the abandoned open pit and waste deposit "Veovaca" is significant leeching of trace elements that have great influence on environmental pollution around the open pit and along the river Stavnja. The main goals of the study have been: Identification of optimal methodology for geochemical research in the areas of former military operations (with remain minefields and/or suspected mined areas), according to the sampling material, sampling density, data processing and interpretation of results; Determination of concentration levels and spatial distribution of chemical elements in the secondary materials (soil, river sediments and attic dust) along the Stavnja valley; Assessment of the natural background according to lithology and the proportion of influence of mining and metallurgy activities on distribution of chemical elements in the secondary materials (soil, river sediments and attic dust) along the Stavnja valley; Identification of main geochemical associations and their spatial distribution using multivariate statistical approach (PCA) and Artificial Neural Network (ANN); Design models of heavy metal dispersion around the major emitters, using multivariate statistical approach (PCA) and Artificial Neural Network - ANN (Figure 4). At 153 sampling locations, 265 samples of soil, stream sediment and attic dust were collected. Analysis of 36 chemical elements was performed. One anthropogenic and four geogenic geochemical associations were establish on the basis of visually indicated similarity of geographic distribution of elemental patterns in the topsoil and subsoil; comparisons of basic statistics, correlation coefficient matrices; results of cluster and factor analyses and comparisons of enrichment ratios (Alijagic & Sajn, unpublished data). The geogenic geochemical associations (Cr, Ni, Co, Fe, V, Sc and Cu), (Th, La, As, K, Sc and Tl), (Al, Ga and V) and (K and P) are influenced mainly by lithology, but anthropogenic geochemical association (Pb, Zn, Ag, Sb, Hg, Cd, W, Bi, U, Mo, Mn, Ba, Sr, Ca, Cu, Tl, Fe and As) links elements that are result of historical activities of the ironworks Vares, mining activities as well as other anthropogenic influences of metallurgical 10 25 40 60 75 90 Figure 4. A - Landuse map with the sampling grid (Vares, B&H); B - spatial distribution of Ag, Ba, Bi, Cd, Cu, Hg, Mn, Mo, Pb, Sb, W, Zn and Fe using standard kriging method; C - using segment (multiple) kriging; D - using ANN (multilayer perceptron neural networks) factors in the past. The main polluted zones are found in the city Vares and their surroundings, where are located two Fe open pits and the Veovaca, Pb-Zn-Ba mine and ironworks. Another zone with high concentration of aforementioned heavy metals has been found downstream of the river Stavnja, in alluvial sediments suitable for agricultural activities (Alijagic & Sajn, unpublished data). Investigation in Macedonia Cooperation GeoZS with Macedonia is basically the strongest one at the moment, which can be proved by many already published materials. We focused our geochemical researches to most polluted locations such as the mines (Cu Bucim, Pb-Zn SASA and Toran-ica, As-Sb-Tl Alsar), Pb-Zn smelter Veles; FeNi - Kavadarci; thermoelec- tric power plants (Kicevo and Bitola), alluvial deposits of the Vardar river, Skopje. Here we want to present several study cases (Veles, Kavadarci and Bucim) but several other very interesting studies are: identification of heavy metals in honey samples (Stankovska et al., 2007; 2008), and moss samples (Barandovski et al., 2012) in R. Macedonia; determination of chemical composition of soil around the thermoelectric plant Oslomej, in Kicevo (Stafilov et al., 2011). Veles (Macedonia) Veles (50 000 inhabitants) is the most polluted city in Macedonia. In the centre of town lead and zinc smelter located. The Macedonian Institute for Health Protection reported in 2003, when the factory still operated, that Veles was absorbing 62 000 t of zinc, 47 300 t of lead and 120 000 t of sulphur dioxide annually. Plans for the cleanup include ridding the city of heavy metals and decontaminating soil in the 45 ha area around the smelter. As, Cd, Cu, Hg, In, Pb, Sb and Zn are chemical elements introduced into the environment through anthropogenic activities. Typical for this elemental assemblage is the enrichment of the elements in topsoil versus European topsoil, from 2.2-times for the Sb to 27-times for the Cd. High concentrations and as well the enrichments of mentioned elements, especially Cd in topsoil is noticeable close to Zn smelter in Veles and in urban zone. In area of the main polluted area average concentration of Cd exceed European Cd average more than 110-times! The shape of the dispersion halo has been strongly influenced by local winds and the shape of the Veles basin. Cd average in topsoil for the all study area amount 7.7 mg/kg in range 0.30-600 mg/kg. Considering land use, the average of Cd in cultivable area amount to 6.1 mg/kg, in uncul-tivable area 4.8 mg/kg, in urban area 12 mg/kg and in main polluted area 32 mg/kg. The most of highest values is in the industrial part of the region with the maximal Cd content from 76 mg/kg to 600 mg/kg, and in the part of the city which is close to the smelter plant (104 mg/kg and 105 mg/kg). In this region several topsoil samples with extremely high content of cadmium are present 420 mg/kg (3500-times higher that European topsoil average. According to experimental results, the area critically polluted with Cd is about 6.6 km2, with Pb 4.2 km2 and Zn 3.8 km2. Materials for the study case are collected from the following articles: Stafilov et al., 2008; Stafilov et al., 2010. Radionuclides in soil were studied in Dimovska et al., 2010a. This work has awarded with The State Prize of the Government of Republic of Macedonia »Goce Delcev« for the scientific achievement in 2008. Figure 5. Spatial distribution of lead in topsoil (Veles, Macedonia) Kavadarci (Macedonia) Materials for the study case are collected from the following articles: Stafilov et al., 2008b; 2009a; 2009b; 2010b. But also several other interesting studies in this area are: Baceva et al., 2009; 2011; 2012a; 2012b concern atmospheric pollution; Dimovska et al., 2012b represent radioactivity in soil; Zibret et al., 2012 applied artificial neural network in determination of contamination; Stafilov et al., 2012 provide an interesting study of As-Sb-Tl in this region. Town Kavadarci is located in Tikves valley, about 100 km south from the capital Skopje (Figure 1). The city is well known and famous by its vineyards and it is main vine production region in Macedonia. The urban area is located on 200-300 m altitude, surrounded with hills from east and south sides of the valley (with height difference between 300 m and 770 m). The climate in Kavadarci is of a continental type of climate with a reduced Mediterranean climate and with hot summer and cold winter. The major wind direc- As-Sb-TI (percentiles of distribution) I MB 10 Z5 40 60 75 SO Figure 6. A - Landuse map of Kavadarci area with the sampling grid (Ka-vadarci, Macedonia) B - spatial distribution of As-Sb-Tl using standard kriging method; C - using segment (multiple) kriging; D - using ANN (radial basis function neural networks) tion is from the north and northwest. The complete investigated region (360 km2) was covered by 172 sampling location. 344 soil samples of topsoil and subsoil were collected. The highest concentrations of Cr and Ni are are located on the outcropping Paleozoic serpentinites (inner parts of the Vardar zone). High, sometimes critically content of Cr and Ni in the zone of Eocene flysch is already proven in numerous researches from Macedonia and other Balkan countries. The fer-ronickel smelter plant "FENI", in spite of the obvious environmental pollution has not contributed significantly to the measured amount of these elements, which occur in high concentrations in the background. High concentrations of Cd, Hg, Pb and Zn are also found on the SW and W, hilly part of the study area as a consequence of the high concentrations of heavy metals in organic material of topsoil or the long distance transportations. High concentrations of the mentioned heavy metals were also found as a result of urban activities in the city of Kavadarci, but they are very low. The highest concentrations of As, Sb and Tl are found on the Holocene alluvium of Crna Reka. Enrichment of the Holocene alluvium of the Crna Reka is consequence of natural erosion from the mine deposits (As and Sb) of Alsar on the Kozuf Mountain, but also from mine activities in the past. High concentrations are determined in the river sediments of Vardar River. This enrichments with As, Sb and Tl in the Holo-cene alluvium of the rivers Crna Reka and Vardar should be studied in the future because it is a rare example of enrichment of alluvial sediments (Fig 6). Principally, the natural enrichment is related especially to Ni. Pollution with As, Cd, Co, Cr, Cu, Hg, Mo, Pb and Zn is basically insignificant. Construction of geochemical maps using universal kriging methods is quite useful in determination of distribution patterns, but in such a maps are present mistakes called Bull's eye effect because in the isotropic space appears elongated division, that is possible solve only with denser sampling grid. Applying the multilayer perceptron (MLP) avoiding this problem and we constructed much better maps of contamination, especially from the geological point of view (Figure 6.). Bucim (Macedonia) Materials for the study case are collected from the following articles: Balabanova et al., 2009, 2010; 2011a; 2011b; 2012a; 2012b; Stafilov et al., 2010b. The Bucim copper mine is located in the eastern part of the Republic of Macedonia. The mine is in function from 1980 and processes 4 Mt of ore annu- ally. The ore reserves are estimated to total about 85 Mt. The deposit is a porphyry copper type deposit and mineralization is related to Tertiary sub-volcanic intrusions of andesite and latite in a host of Pre-Cambrian gneisses and amphibolites. The main ore body is approximately 500 m in diameter and 250 m in vertical and has been worked in a large open pit, which actually allows direct exposure of ore particles to the atmosphere. The igneous rocks have been altered into clays and micas. The basic ore proceeding process includes: drilling and blasting, than blasted ore is transported towards primary crushing while the tailings on the mine disposal. Different sampling media: moss, epiphytic lichens and attic dust were used for comparative analysis due to monitoring air pollution and distribution of 15 elements including certain heavy metals. Thus, attic dust, moss and li- chen have the potential for collecting complementary information on present and historical air pollution trends. For the geogenic geochemical association Ni-Cr-Cd-Fe-Al-K-Mn-Zn is significant a similar distribution pattern, with minor variations, especially in the biogenic samples. In all observed materials, the higher concentrations are observed in the area of predominant Pliocene sediments, with fact that both patterns, in attic dust and moss are much more similar. Significant deviation from that fact represents high values in moss and lichen in the area where occur Palaeozoic rocks, mainly schist. Spatial distribution pattern of anthropogenic association As, Cu and Pb is very similar for all three sampled materials. The association presents distribution of high contents of potentially risk elements close to the anthropogenic sources. All three treated materials are shown to be useful in determining an anthropogenic impact as well as the chemical properties or geological background on orographic diverse terrain in the presence of complex geological structure. With fact that attic dust is the most stable and responsive to environmental changes and lichen is the worst. Based on the research results, the combinations of attic dust and moss give the best results in the determination of anthropogenic impact on the environment as well as the natural enrichment. Attic dust shows very stable historical reconstruction of contamination, moss a current state, related to a period of growth and to period of accumulation of chemical elements. Kosovska Mitrovica (Kosovo) Materials for the study case are collected from the following articles: Aliu et al., 2009 2010; Stafilov et al., 2020a; Šajn et al., 2012; Mining and metallurgic activities in Kosovo have a long history. The Trepča Mine Limited in K. Mitrovica was built in 1927 and produced lead, arsenic and cadmium from the 1930s until 2000. The smelter close to Zvečan commenced work in 1939. Because of the smelter and three huge tailing dams, environmental pollution in K. Mitrovica increased dramatically. The smelter has been working sporadi- cally since the 1999 conflict between Kosovo's Albanian and Serb population in Kosovo. The total production of mine Trepča from 1931 to 1998 has been estimated at 34 350 000 t run-of-mine ore at grades of 6 % Pb and 4 % Zn. The ore was beneficiated in the flotation plants. The Pb concentrates were brought to the lead smelter of Zvečan (capacity 80 000 t per year) and the Zn concentrates were brought to the zinc smelter of K. Mitrovica (capacity 50 000 t per year); there was also a unit for the production of fertilisers and batteries. The amount of metal produced was 2 066 000 t Pb, 1 371 000 t Zn as well as Ag, Bi and Cd. The investigated region (300 km2) was covered by a sampling grid of 1.4 km x 1.4 km. In total, 159 soil samples from 149 locations were collected. Inductively coupled plasma-mass spectrometry (ICP-MS) was applied for the determination of 36 elements. For data evaluation, parametric and non-parametric statistics methods were used. The obtained results show that the content of Ag, Pb, Sb, Bi, Zn, Cd, As, Cu, Hg, Au, Tl and Mo appeared as an anthropogenic association, which contents mainly depend on mining and processing activities. In vicinity of cities Zvečan and K. Mitrovica their content is even higher than the corresponding intervention values ac- Pb (mg/kg) 100 210 300 500 800 2000 Figure 8. Spatial distribution of lead in topsoil (K. Mitrovica, Kosovo) cording to The New Duch List exceed extremely high elements such as Pb, in 152 km2 of the investigated area. Zn, Cd, Cu, Ag, and Hg. Their aver-The pollution is involving several age contents are: Pb 450 mg/kg with a range of 34-35 000 mg/kg, Zn 30 mg/ kg in the range of 32-12000 mg/kg, Cd 1.6 mg/kg with a range of 0.10-47 mg/kg, Cu 42 mg/kg in range 9.0-1600 mg/kg, Ag 30 mg/kg in range 0.05-58 mg/kg and Hg 0.20 mg/kg in range 0.02-11 mg/kg. There is no doubt that the mining and smelting activities left huge consequences on environment in urban zones of K. Mitrovica and Zvečan, the Trepča mines in Stari Trg, but also in alluvial sediments of the Ibar River, where intensive agriculture activities are present. Investigation in Serbia Geochemical researches in Serbia begun in 2011 and finish 2012, we focused our study on the alluvial sediments of river Ibar (environmental impact of mine Trepča and Pb smelter Zvečan), river sediments and river terraces of the river Timok, and the copper mine Bor where we collected the soil samples and attic dust (Šajn et al., 2012, unpublished data). Bor is a town located in eastern Serbia, with one of the largest copper mines in Europe. The population of municipality has about 50 000. Basic economic activities in Bor are copper mining and metallurgy. The mine was opened in 1903 and 1905 started the copper-smelting work. The factory, in which is now melting the copper concentrate was built from 1961 to 1968. Every year, it emits 4.86 kg to 7.99 kg of zinc, 6.27 kg to 25.11 kg of lead and 5.3 kg to 19.6 kg of arsenic per capita, which depends on the emission volume of production and content of these metals in raw materials. Bor and surrounding is cover by 96 soil sampling sites (topsoil and bottom soil), 10 sites of urban soil and 86 sites of attic dust. First, preliminary results show that the mining and metallurgical activities in Bor and its surroundings caused numerous environmental problems, and left catastrophic consequences for the entire environment. The river Timok with its tributaries represents a drainage water system from the copper mine Krivelj (Bor), and heavy metal industry in Bor. Hazardous waste is transported by this river to the Danube, consequently polluted by heavy metals. Sampling grid is constructed on the way that we cover the main polluted part from town Zajecar till its confluence with Dunav, but also a two main tributaries from the Krivelj mine. Altogether, 15 samples of river sediments and 15 soil samples from alluvial plains and 10 soil samples from river terraces were collected. After the high concentrations of heavy metals especially Pb, Zn, Cd, Ag, Hg and Cu were discovered in Kosovska Mitrovica and Zvečan, we decided to continue a sampling along the river till its confluence with the river Zapadna Morava. Total, 14 samples of river sediments, 14 alluvial sediments (top and bottom soil), 14 river terraces (top and bottom soil) and 4 soil samples on second river terraces (top and bottom soil). Conclusion The major goals are strengthening an international scientific cooperation network and partnership between GeoZS and other former Yugoslav countries, improvement of material research standards, exploiting the research and technological demonstration results as well promoting the GeoZS to regional centres of excellence. The results of numerous geochemical studies of natural distribution and proportion of anthropogenic heavy metals in the environment, especially in areas of former mining and smelting in Slovenia and the region can be used as guiding principles for the future environmental remedial actions. Specifically, the results from the entire study will complement our knowledge about a complexity of chemical compounds in the environment. Special emphasis is given to the further development of advanced data processing techniques and methods of linear and nonlinear mathematical models, based on the application of modern mathematical analysis such as PCA (Principal Component Analysis), and ANN (Artificial Neural Network) at the distribution and transport of heavy metals in the environment. Soil is together with water and air, one of the most important natural resource of country. Apart of food production, soil is a natural filter for hazardous and noxious substances that can run out to system of drinkable water and groundwater respectively. Because of that soil care, as natural treasure, represent very important priority in environmental protection. For better soil treatment, is necessary to know all soil characteristic, their concentration of chemicals and concentration of potential toxic elements as well. References Alijagic, J. (2008): Distribution of chemical elements in an old metallurgic area, Zenica (Central Bosnia). Master thesis, Masaryk University Brno, Brno, 100 p. Alijagic, J. & Sajn, R. (2006): Influence of ironworks on distribution of chemical elements in Bosnia and Herzegovina and Slovenia. Geologija, 49, 123-132. Alijagic, J. & Sajn, R. (2010): Distribution of chemical elements in an old metallurgical area, Zenica (Bosnia and Herzegovina). Geoderma, 162, 71-85, doi: 10.1016/j.geoderma. 2011.01.007. Alijagic, J. & Sajn, R. (2012): Preliminary result of geochemical investigation in Stavnja valley - B&H.(unpublished data) Aliu, M., Sajn, R., Stafilov, T. (2009): Distribution of cadmium in surface soils in K. Mitrovica region, Kosovo. Geol. Maced., 23, 27-34. Aliu, M., Sajn, R., Stafilov, T. (2010): Distribution of zinc in surface soils in K. Mitrovica Region, Kosovo, International Journal of Pure and Applied Chemistry, 5, 351-357. Baceva, K., Stafilov, T., Sajn, R. (2009): Biomonitoring of nickel air pollution near the city of Kavadarci, Republic of Macedonia, Ecology and Protection of the Environment, 12, 57-69. Baceva, K., Stafilov, T., Sajn, R., Tänäselia, C., Ilic Popov, S. (2011): Distribution of chemical elements in attic dust in the vicinity of a ferron-ickel smelter plant. Fresenius environ. bull. 20, 2306-2314. Baceva, K., Stafilov, T., Sajn, R. (2012a):Monitoring of air pollution with heavy metals in the vicinity of ferronickel smelter plant by deposited dust, Macedonian Journal of Ecology and Environment, (in press). Baceva, K., Stafilov, T., Sajn, R., Tänäselia, C. (2012b): Moss biomonitoring of air pollution with heavy metals in the vicinity of a ferronickel smelter plant, Journal of Environmental Science and Health, Part A, 47 (in press). Balabanova, B., Stafilov, T., Baceva, K., Sajn R. (2009): Atmospheric pol- lution with copper around the copper mine and flotation, Bucim, Republic of Macedonia, using biomonitoring moss and lichen technique, Geologica Macedonica, 23, 35-41. Balabanova, B., Stafilov, T., Baceva, K., Sajn, R. (2010): Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radovis, Republic of Macedonia. J. environ. sci. health, Part A, Environ. sci. eng., 45/12, 1504-1518. Balabanova, B., Stafilov, T., Sajn, R., Baceva, K. (2011): Distribution of chemical elements in attic dust as reflection of lithology and anthropogenic influence in the vicinity of copper mine and flotation, Archives of Environmental Contamination and Toxicology, 61, 173-184. Balabanova, B., Stafilov, T., Sajn, R., Baceva, K. (2011a): Total deposited dust as a reflection of heavy metals distribution in area with intensively exploited copper minerals. Geologica Macedonica, 25, 1-9. Balabanova, B., Stafilov, T., Sajn, R., Baceva, K. (2012a): Characterisation of heavy metals in lichen species Hy-pogymnia Physodes and Evernia Pru-nastri due to biomonitoring of air pollution in the vicinity of copper mine, International Journal of Environmental Research, 6, 779-794. Balabanova, B., Stafilov T., Sajn R., Baceva, K. (2012b): Stability comparison of individual sampling media (moss/lichen/attic dust) and their responsiveness for estimation of areal chemical background and heavy metal pollution (in prepare). Barandovski, L., Frontasyeva, M. V., Stafilov, T., Šajn, R., Pavlov, S., Enimiteva, V. (2012): Trends of atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique. J. environ. sci. health, Part A, Environ. sci. eng., 47, 2000-2015, doi: 10.1080/10934529.2012.695267. Dimovska, S., Stafilov, T. Šajn, R., Frontasyeva, M. V. (2010): Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs. Radiat. prot. dosim., 138, 144-157, doi: 10.1093/rpd/ncp238. [COBISS.SI-ID 1698645] Dimovska, S., Stafilov, T. Šajn, R. (2012b): Radioactivity in soil from the city of Kavadarci (Republic of Macedonia) and its environs. Radiat. prot. dosim., 148, 107-120, doi: 10.1093/ rpd/ncq601. Peh, Z., Šajn, R., Halamič, J., Galovič, L. (2008): Multiple discriminant analysis of the Drava River alluvial plain sediments. Environ. Geo., 55, 1519-1535, doi: 10.1007/s00254-007-1102-2. Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frotasyeva, M. V., Strelko-va, L. P. (2008a): Geochemical atlas of Veles and the environs. Sts. Cyril and Methodius University, Faculty of natural sciences and matematics, Skopje, 123 p. Stafilov, T., Šajn, R., Boev, B., Cvetkovič, J., Mukaetov, D., Andreevski, M. (2008b): Geochemical atlas of Kavadarci and the environment, Sts. Cyril and Methodius University , Faculty of Natural Science, Skopje, 109 p. Stafilov, T., Šajn, R., Boev, B., Cvetkovič, J., Mukaetov, D., Andreevski, M., Lepitkova, S. (2009a): Distribution of cobalt in soil from Kavadarci and the environs. Geol. Maced., 23, 43-53. Stafilov, T., Šajn, R., Boev, B., Cvetkovič, J., Mukaetov, D., Andreevski, M., Lepitkova, S. (2009b): Distribution of nickel in surface soil in Kavadarci and the environs, Natural Resources and Technology, 3, 30-41. Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., Strelkova, L. P. (2010a): Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. J. hazardous Material, 175, 896-914. Stafilov, T., Šajn, R., Boev, B., Cvetkovič, J., Mukaetov, D., Andreevski, M., Lepitkova, S. (2010b): Distribution of some elements in surface soil over the Kavadarci Region, Republic of Macedonia. Environ. Earth Sci., 61, 1515-1530. Stafilov, T., Aliu, M., Šajn, R. (2010a): Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica Region, Kosovo. Int. j. environ. res. public health, 7, 40504061, doi: 10.3390/ijerph7114050. Stafilov, T., Balabanova, B., Šajn, R., Bačeva, K., Boev, B. (2010b): Geochemical atlas of Radoviš and the environs and the distribution of heavy metals in the air. Prirodno-matematički fakultet. Sts. Cyril and Methodius University , Faculty of Natural Science, Skopje, 89 p. Stafilov, T., Šajn, R., Sulejmani, F., Bačeva, K. (2011): Geochemical atlas of Kicevo and the environs. Sts. Cyril and Methodius University, Faculty of natural sciences and matematics, Skopje. 69 p. Stafilov, T., Sajn, R., Alijagic, J. (2012): Distribution of arsenic, antimony and thallium in soil in Kavadarci and its surroundings, Republic of Macedonia. Soil sediment contam., doi: 10.1080/15320383.2012.714425. Stankovska, E., Stafilov, T., Sajn, R. (2007): The content of cadmium in honey from the Republic of Macedonia, Ecology and Protection of the Environment, 10, 11-17. Stankovska, E., Stafilov, T., Sajn, R. (2008): Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption. Environ. monit. assess., 142, 117-126, doi: 10.1007/s10661-007-9913-x. Sajn, R., Aliu, M., Stafilov, T., Alijagic, J. (2012):Heavy metal contamination of topsoils around a lead and zinc smelter in Kosovska Mitrovica, Kosovo. J. Ge-ochem. Explor. (under revision). Sajn, R., Halamic, J., Peh, Z., Galovic, L., Alijagic, J. (2011): Assessment of the natural and anthropogenic sources of chemical elements in alluvial sediments of the Drava River using multivariate statistical methods. J. Geo-chem. Explor., 110, 278-289, doi: 10.1016/j.gexplo.2011.06.009. Sajn, R., Halamic, J., Peh, Z., Galovic, L., Sorsa, A. (2008): Experimental geo-chemical map of Croatia and Slovenia. Berichte der Geologischen Bundesanstalt, Bd. 77, Geologische Bundesanstalt ,Wien, p. 16. Sajn, R., Peh, Z., Halamic, J., Miko, S., Galovic, L. (2005): Experimental geo-chemical map of Croatia and Slovenia. In: Velic, I., Vlahovic, I., Biondic, R. (eds.), Third Croatian Geological Congress, Opatija. Proceeding book, Croatian Geological Survey, 243-244. Sajn, R., Stafilov, T., Cvetkovic, V. (2012): Preliminary result of geo-chemical investigation in Serbia - Ibar valley, Timok valley and area of copper open pit and processing plant (unpublished data) Zibret, G., Sajn, R., Alijagic, J., Stafilov, T. (2012): Use of neural networks in the geochemical data interpretation. Journal for Geological Sciences (in press). Sustainable Aggregates Resource Management: experience learnt and shared within South East Europe rp • a 1 • • • 1 • • • • Trajnostno gospodarjenje z mineralnimi surovinami za gradbeništvo - izkušnje, pridobljene v jugovzhodni Evropi Slavko Šolar1, *, Deborah Shields2, Urška Zelič3 'Geološki zavod Slovenije, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia 2Colorado State University & Politecnico di Torino, Deborah.Shields@ColoState.EDU 3Alianta, projektno svetovanje, d. o. o., Verovškova ulica 60, SI-1000 Ljubljana, Slovenia Corresponding author. E-mail: slavko.solar@geo-zs.si Received: October 15, 2012 Accepted: October 18, 2012 Abstract: The purpose of this paper is to describe sustainable mineral resources management and its application to aggregates management. First the theoretical foundations of sustainable resource management are introduced in the context of the characteristics of aggregates that differentiate them from most other mineral commodities. The environmental, economic and social aspects are reviewed and well as the challenges of implementation and the necessity of adaptation. The remainder of the paper discusses the SARMa project, which implemented sustainable aggregates resource management (SARM) and sustainable supply mix (SSM) in South East Europe (SEE). SARMa had 14 partners in 10 nations who worked together to develop a common approach to SARM and SSM in SEE. The project produced 3 manuals addressing such issues as environmentally friendly quarrying, decision-making for SARM and SSM at the regional, national, and transnational scales, and construction and demolition waste management. These results built on numerous case studies, analyses and recommendations that led to common methods and knowledge management tools. SARMa contributed to the SEE Programme's overall objectives by integrating environmental, social, and economic aspects of sustainability with respect to aggregates, capacity building, and fostering transnational territorial cooperation. Izvleček: Namen članka je predstaviti trajnostno gospodarjenje z mineralnimi surovinami s poudarkom na gospodarjenju s kamenimi agregati. V prvem delu so predstavljene teoretične osnove trajnostnega gospodarjenja z viri glede na značilnosti kamenih agregatov, ki se razlikujejo od večine drugih mineralnih surovin. Prdstavljeni so tako okoljski, ekonomski in družbeni vidiki, kot tudi izzivi izvajanja trajnostnega gospodarjenja in potrebe po prilagajanju sprejetih politik. V drugem delu članka je predstavljen projekt SARMa, ki je apliciral koncepta trajnostnega upravljanja z mineralnimi surovinami (SARM -Sustainable Aggregates Resource Management) in trajnostne oskrbe (SSM - Sustainable Supply Mix) v jugovzhodni Evropi (JVE). Pri projektu je sodelovalo 14 organizacij iz 10 držav, ki so razvile skupen način obravnave SARM in SSM v JVE. Nastali so trije priročniki, ki obravnavajo teme, kot so: preprečevanje ali zmanjševanje površinskega pridobivanja na okolje, sprejemanje odločitev o SARM in SSM na regionalni, nacionalni in mednarodni ravni ter pridobivanje recikliranih kamenih agregatov iz inertnih odpadkov. Nastali rezultati temeljijo na številnih študijah primerov, analizah in priporočilih, ki so vodili k skupnim metodam in orodjem za povečanje znanja vključenih ciljnih skupin. Projekt SARMa je prispeval k ciljem programa Jugovzhodna Evropa, saj je povezal okoljski, ekonomski in družbeni vidik trajnosti na področju kamenih agregatov, pripomogel k izboljšanju kapacitet ter spodbudil mednarodno teritorialno sodelovanje. Key words: Mineral resource management, Sustainable development, Policy, Sustainable supply mix, Slovenia Ključne besede: trajnostno gospodarjenje z mineralnimi surovinami za gradbeništvo, trajnostni razvoj, politike, trajnostna oskrba, Slovenija Introduction In the second half of the twentieth century, societies began to realize that new approaches to development were needed. Human activities were having impacts that exceeded the Earth's carrying capacity on global, and in many places on regional and local, scales. This was particularly true with regard to environmental pollution and the consequences of natural resource extraction and consumption. Minerals are resources that are both essential for modern existence and future development, and whose extraction, use and disposal can cause negative social and environmental impacts. Societies cannot be expected to forego the stream of benefits coming from the use of mineral resource products, and by extension from mining. Therefore, it is crucial to encourage both the mitigation of cumulative negative impacts, which were in most cases the consequences of past practices, and the implementation of new, better practices. Recognizing that past activities are no longer acceptable, a new development framework has emerged. The framework, called sustainable development, has four overarching goals: economic prosperity, environmental health, social equity for the present generation, and equal opportunities for future generations. In the past decade, the goals of sustainable development have been embraced by most countries in the world, and are now being applied to decision making at global, local, and individual scales, including those decisions related to mining. The foundations for sustainable mineral resource management were laid through a review of sustainable development concepts, their links to mineral resources, national mineral policies and management programs. The likelihood of improved choices from among possible development options is increased when those decisions are informed by knowledge and science. Scientific and technical expertise can be applied to monitoring socio-economic and biophysical processes and, in so doing, provide information and data to every stage of the policy cycle, including to sustainability policies. Earth scientists, geologists and others are involved not only in fundamental research projects, but also in applied projects. Most applied projects are multidisciplinary and have as their goal the solution of different open and ongoing challenges that society faces. An important set of these projects deals with the provision of an adequate and secure supply of raw materials. This paper describes a Southeast Europe project "Sustainable Aggregates Resource Management". The main objectives of the project are to develop a common approach to sustainable aggregate re- source management (SARM) and sustainable supply mix (SSM) planning at three scales (local, regional/national, transnational) to ensure efficient and secure supply in South East Europe. Sustainable aggregates resource management There has been an inappropriate tendency to focus exclusively on metals when minerals are used as an engine of development. As a result, the potential positive contributions of mineral development are often overlooked in countries with limited endowment of metals. Under- or over-emphasis on the minerals sector can be lessened by addressing mineral development within the context of sustainable development. Each country identifies sustainability goals, with respect to social equity, environmental health, and economic growth that are appropriate to its circumstances. The contribution of mineral resources to the achievement of those goals will be similarly context dependent. Natural aggregate is an essential commodity in modern society. Developing nations need stable, adequate and secure supplies of construction materials to build the infrastructure needed to achieve the Millennium Development Goals (Baird & Shetty, 2003). This includes highways, roads, bridges, railroads, airports, seaports, water and waste treatment facilities, and energy generation facilities. Construction materials are also essential to the provision of sustainable housing and the expansion of industrial capacity (CIB & UNEP, 2002). These large volume materials will need to be provided in a rational integrated manner that maximizes their societal contributions and minimizes environmental impacts. Natural aggregate is a material composed of rock fragments, which may be used in their natural state or after mechanical processing such as crushing, washing, and sizing (Langer & Tucker, 2003). There are two categories of aggregates, gravel and crushed stone. Gravel generally is considered to be material whose particles are about 2.0 mm to 63.0 mm in diameter. Its edges tend to be rounded. Crushed stone is of the same size range, but is artificially crushed rock, boulders, or large cobbles. Most or all of the surfaces of crushed stone are produced by the act of crushing, and the edges tend to be sharp and angular. Natural aggregate has hundreds of uses, from chicken grit to the granules on roofing shingles (tiles). However, most aggregate is used in cement concrete, asphalt, and for other construction purposes. The average per capita consumption of aggregate generally ranges from 5 t to 15 t per year (Langer & Šolar, 2002). While aggregate is a non-renewable resource, supplies are nearly inexhaustible on a global scale. They have characteristics that differentiate them from most other mineral commodities: • a high number of potential extraction sites; • a high volume to value ratio; • significantly different set of potential environmental impacts; and • regional importance combined with a narrow economic transportation radius. In most cases, aggregate demand is met by local or in-country suppliers. This occurs because most aggregate transportation is carried out on roads and transportation short distances to different locations by road is economically viable. Moreover, constructing and maintaining a dense road network is less expensive than constructing rail or channel networks. In many countries, aggregates have simplified legal frameworks (local level competence, licensing, taxation, control) compared to other minerals due to the above mentioned characteristics. In some countries aggregates are the landowner's property even if most of other minerals are state owned. Aggregates are very often overlooked in minerals sustainability debates due to the fact that they are seldom export products of national importance like metals or energy resources. Aggregates typically do become part of sustainability debate in countries with organized environmental protection groups that have active individual members. These are mostly developed countries where mining is a declining economic activity and most other types of mineral extraction have ended. In developing countries, the negative and positive effects of quarrying are not important issues in the development debate because the negative impacts of aggregate extraction that are passed on as burdens for future generations cannot be compared with the present desire for faster economic development and poverty alleviation. The fact that the costs of remediating negative social and environmental impacts of aggregate quarrying and use will be higher in the future than they are today is neither a priority nor a point of discussion in most developing countries. Nonetheless, aggregates should be an integral part of any country's overall sustainability plans. Geological settings, and economic and social conditions, are influential factors in determining how aggregates are supplied. But because the manner in which aggregates are supplied affects the ability of developing nations to achieve a sustainable future, it is important that a country's strategic and operational policy guidelines are based on sustainable development principles. Construction materials and aggregates present a very clear example of the transition from natural to human-made (manufactured / physical) capital. In order to optimize this transition, the positive impacts of quarrying should be maximized and negative ones minimized. Lack of understanding about the links among different types of impacts of quarrying is a source of time consuming disagreements between stakeholder groups, including the general public, industry, environmental, social and expert groups on local and national levels. One of the most effective ways to identify the full range of positive and negative impacts, as well as system interactions, is to examine the entire quarry and product life cycle. Societal, value based, objectives expressed in policies emphasize certain parts of life cycle and bring those issues to the attention of stakeholders. One of the tools that can be used to ensure that mineral resources (aggregates) are provided in a manner that contributes to sustainability over the full life cycle is Sustainable Aggregate Resource Management (SARM). Environmental Aspects - SARM requires developing aggregate resources in an environmentally responsible manner that does not result in long-term environmental harm, even if short-term environmental impacts are unavoidable. Two main environmental categories should be considered in SARM: reducing negative environmental impacts and resource protection / conservation. These goals are very achievable because the aggregate industry has made, and continues to make, great strides in environmental management. Most destructive environmental impacts of aggregates are on the landscape (visual intrusions), air (noise, dust), water (surface, underground water), soil (erosion, pollution), and on biota (loss of biodiversity). Besides type, the nature of impacts (range, timing, duration, ability to prevent /control) should also be considered (Langer & Arbogast, 2002). There are many regulatory and voluntary tools that can be used to identify, reduce and control negative environmental impacts. These include environmental impact assessment, environmental management systems, environmental accounting, environmental reporting, life cycle analysis, ISO 14000 standards, all of which can be applied both on-site (quarry & processing facility) and to transportation routes. SARM, however, is not just about protecting the environment from the potential negative impacts of aggregate extraction. Reclaiming aggregate operations or orphaned sites has tremendous potential to improve our quality of life, create additional wealth, increase biodiversity, and restore the environment. In the expanding suburban areas of today, mined-out aggregate pits and quarries are converted into second uses that range from home sites to wildlife refuges, from golf courses to watercourses, and from botanical gardens to natural wetlands. Reclamation should be a major consideration in sustaining the environment and in creating biodiversity (Langer, 2003). Mineral resource (aggregate) protection includes: (a) minimal exploitation of primary aggregates with rational production by introducing the recycling and reuse of construction materials as secondary aggregates; (b) exploitation of renewable aggregate and substitute resources; (c) increasing the knowledge about aggregate potential, and (d) preserving the land access to aggregates in designated areas. The first two of these protection measures are intended to reduce the demand for aggregate that is newly mined or from newly developed sites. The latter two address the long-term need for primary materials (Šolar, 2003). Economic aspects of SARM - There are four main economic aspects to SARM: (a) ensuring that the material requirements of society are provided for; (b) maintaining a viable business environment; (c) encouraging value-added production and employment; and (d) embracing full cost accounting while remaining competitive. The first three of these are the responsibility of government. The fourth is the responsibility of the firm. All societies utilize a stream of material inputs for manufacturing and construction. In the case of transition and post-conflict economies, there is particular need for construction materials to support development and rebuilding of infrastructure, industrial capacity, and housing. One aspect of SARM involves ensuring that these resources are available to the marketplace. This is sometimes referred to as secure supply. The main elements of secure supply are creation or maintenance of production capacity, identification of sufficient reserves and resources, provision of land access (extraction and exploration sites / areas), and development of the country's or region's infrastructure capacity (roads, railroads, power). All the foregoing issues are interlinked and need to be balanced by policy makers and resource managers. Secure supply can also take the form of importation in cases where the full cost of domestic supply would be higher than the full cost of imported materials. A viable business environment exhibits the following characteristics: (a) a sta- ble and feasible permitting regime; (b) consistent application of rules and regulations; (c) functioning capital markets; (d) reasonable levels of taxation; and (e) well defined property rights. Underemployment and unemployment are serious problems in many parts of the world. Therefore, governments should also consider setting policies that support the availability of a trained workforce and promote employment in the extractive industries. Development of value-added manufacturing is another important issue. Existence of a value-added sector can reduce the need for imported materials while allowing the domestic economy to capture the economic benefits (employment, tax revenues) that would otherwise accrue in another country. Economic realities drive industry activity. Firms need to remain competitive if they are to stay in business. Nonetheless, firms have a responsibility to accept the full cost of doing business, including costs of preventing or remediating environmental damage. Industry must be willing to accept the fact that in some cases, when all the costs are taken into consideration, a quarry will not be a viable economic enterprise and must be either shut down or not developed. Firms can, however, increase competitiveness by modifying production processes, upgrading product quality, and maintaining a well trained workforce. Production process and product quality can be achieved through voluntary quality control procedures such as adherence to ISO 9000 requirements. Quality is an important market element that can be labeled and traded. Research and development (R&D) is another issue that increases the enterprise's overall performance and has a great impact on increasing the added value. Some of R&D's goals include new products, and using BAT (best available technology) in the field. Finally, maintaining or increasing employment is not only governmental issue, because human resources are one of most important driving forces of every enterprise. Corporate culture, knowledge and skills need to be created, maintained, reviewed and revised (if necessary). Special attention with regard to human resources should be put on health and safety of employees. Social aspects - Identifying stakeholders' values, interests, goals and the scale at which they apply is the first step in resolving the complex situations that impact a country's ability to maintain a secure material supply and achieve other policy goals. As an example, there may be abundant sites in a region that have suitable aggregate, but the existence of conflicting land uses, zoning, regulations, or citizen opposition can lead to insufficient or more costly supply. Scale of interest is a con- sideration in such situations due to fact that benefits and costs accrue to different parties in different regions. A third important issue is intra-generational equity, fairness to those living near or impacted by quarrying. Equity implies a need for transparency and public participation in decision making, as well as access to information within democratic process (Šolar, 2003). Broader societal aspects can be described in terms of the legal framework, communication and education. The legal framework should protect the interests not only of country or region, but also investors and all other stakeholders. An effective legal framework needs balance between administrative requirements and flexible, time efficient, inexpensive procedures of licensing. Further, a country or region needs to have the institutional capacity to implement and enforce the legislation (monitoring and control components in particular), to develop and maintain resource information infrastructure, to foster research and development, to use funds from mineral rents (taxes) for the benefit of current and future generations, and facilitate cooperation with other sectors. In addition to the legal framework, voluntary initiatives from different stakeholders (industry, non-governmental organizations) enrich dialogue and facilitate agreements. Voluntary initiatives include communication, education, partnership, and participation. All stakeholders should have access because increased awareness of the costs and benefits of supplying materials to society will lead to more timely agreements about how to (re)dis-tribute costs and benefits of aggregate extraction and use. (Šolar, 2003). Implementation - To ensure that aggregate resources are managed in a sustainable manner, each of the primary stakeholders - government, industry, public, and other nongovernmental organizations - must accept certain responsibilities. The government is responsible for developing the policies and climate that provide conditions for success. The industry must work to be recognized as a responsible corporate and environmental member of the community. The public and non-governmental organizations have the responsibility to become informed about natural resource management issues, take personal responsibility for their consumption patterns, and to constructively contribute to a process that addresses not only their own, but a range of objectives and interests. All stakeholders have the responsibility to identify and resolve legitimate concerns, and the government, industry, and the public must cooperate at the regional and local levels in planning for sustainable aggregate extraction (Langer, 2003 a). To be effective, SARM must be a pragmatic pursuit, not an ideological exercise. It is an iterative process and government, citizens, and industry should all be involved in the pursuit. The process consists of a number of steps, including issuance of policy statements, elaboration of objectives, establishment of actions, identification of indicators, and monitoring: • Policy statements issued by governments commonly identify the aggregate industry as a key industry contributing to jobs, wealth, and a high quality of life for their citizens, and commit the government to the protection of critical resources and protection of citizens from the unwanted impacts from aggregate extraction. Industry policy statements commonly identify environmental and societal concerns and commit the company to environmental stewardship and interaction with the community. • Objectives describe what is to be accomplished and commonly are subsets of the social, economic and environmental components of SARM. Typically objectives will include, but not be limited to: (a) ensuring future supplies of aggregate; (b) reducing the demand for newly mined aggregate; and (c) protecting and restoring the environment. • Actions are associated with each objective and describe the steps to reach the objective. • Indicators deserve special mention. They measure progress as well as the effects of efforts to protect and enhance natural and human systems and will be discussed in more detail below. • Monitoring, feedback, and the regular reconsideration of requirements as events develop to the SARM process. The establishment of a joint monitoring process presents an excellent opportunity to forge partnerships with communities and involve citizen groups. Measurement - Progress toward the policy goals that have been described in detail within a resource management plan need to be measured over time. Measurement can be described in terms of the hierarchical model of principles, criteria, and indicators. Adaptation - It is useful to think of policy making as a continuous process. Sustainable aggregate management has a place in all these stages. Over time societal goals, governmental policy, laws and acts, public and corporate management plans, regulatory regimes, and data sets can change. SARM should be seen as an adaptive process that responds to changes in social, economic and environmental system and to changing public preferences as well. There are a range of potential problems associated with adoption, including: (a) unrealistically high expectations, (b) lack of commitment, and (c) inappropriate past practices. Therefore, a very clear roadmap of the management plan, and also a plan to address disappointment, is needed. In order to strengthen stakeholder commitment, all open issues should be discussed in a way that promotes consensus on the outcomes. Building trust and confidence during the process of creating a management plan can help overcome the distrust that has been created by past bad practices. Given the impacts of the global recession, current aggregates production levels are now dependent to some degree on economic stimulus expenditures and on public infrastructure projects. This circumstance provides an opportunity for governments to encourage producers to practice SARM and also to coordinate their mineral policies with other public policies so as to minimize conflicts and costs and optimize benefits. Recognition of the need for SARM that fulfills present demand and planning for supplies to meet future demand is present within modern society, although stringent SARM policies do not exist in most countries. Nonetheless, the multiple aspects and goals of SARM are not being achieved in many regions or countries, including the region of South East Europe (SEE). SEE countries are rich in aggregates, but neither management nor supply is coordinated within or across the area. At the site level, the issues are high environmental impacts, a need for stakeholder consultation and capacity, a lack of social license to operate, and limited recycling. At the regional/national level, the issues are policies and regulations affecting aggregates that: do not address resource and energy efficiency or EU guidelines, preclude the use of recycled materials and industrial byproducts, and fail to address aggregate consumption in long-term sustainable development and spatial planning. The transnational issues are lack of capacity and lack of coordination on aggregates production and transport. Taken together these issues demonstrate the need to shift to sustainable aggregate resource management (SARM) and sustainable supply mix (SSM) policies. As noted above, efficient, low socio-environmental impact quarrying and waste management is SARM. A SSM comprises materials from multiple sources, including recycled wastes and industrial by-products (slag), that together maximize net benefits of aggregate supply across generations. SARMa PROJECT 2009-2011 In 2009, the EU Commission approved a project titled "Sustainable Aggregates Resource Management" (SEE/A/151/2.4/X - SARMa) under the South East Europe Transnational Cooperation Programme. The SARMa project focused on implementing sustainable aggregates resource management (SARM) across SEE and identifying the components of a sustainable supply mix (SSM) of aggregates for SEE. It should be noted that the South East Europe Programme does not fund research, but rather is a framework intended to foster transnational partnerships and enhance the integration of new and candidate countries into the European Union through the application and distribution of existing knowledge. Partnership - In selecting the project team, there was a need for: (a) broad geographical coverage, and (b) the inclusion of partners from old member states, new member states, and candidate countries. This assured knowledge transfer and best practices transmission to zones with less experience in SARM and SSM, which will enable better cohesion of SEE countries in aggregates management and supply. Other aspects of the partnership were: (c) competence and expertise of partners, not only in resources, but also with environmental issues, (d) vertical coverage in different countries of activities at different scales (i.e., different zones for field work, model development, and pilot implementation), which facilitated transnational activities, and knowledge transfer from experts to stakeholders at the policy and implementation levels in different countries, and (e) continuing partnership among project members and observers representing ministries in charge of mining, regional authorities, chambers of commerce, and industry. The 14 partners in 10 countries of SEE area are listed below: 1. Geological Survey of Slovenia, SI 2. University of Leoben, AT 3. Ministry of Economy, Labour, and Entrepreneurship, Directorate for Mining, HR 4. Prefectural Authority of Pella, GR 5. Institute of Geology and Mineral Exploration, GR 6. Technical University of Crete, GR 7. Hungarian Office for Mining and Geology, HU 8. Emilia-Romagna Region - Environment, Soil and Coast Defense Department, IT 9. Parma Province, IT 10. National Institute for Research-Development in domain of Geology, Geophysics, Geochemistry and Remote Sensing, RO 11. University of Bucharest, Faculty of Geology and Geophysics, RO 12. Ministry of Economy Herzegbos-nian Canton, BH 13. University of Belgrade, Faculty of Mining and Geology, SR 14. Ministry of Economy, Trade and Energy, AL Scientists and experts formed a major part of the project team of the SAR-Ma SEE project. They were selected to ensure that the necessary expertise would be available to achieve the expected objectives and implement the expected results. Geological surveys, institutes and faculties work regularly as experts and policy advisers with government and industry and combine up-to-date knowledge and expertise in the area of aggregates. All have continuing, long-term relationships with decision making bodies in their countries and prepare strategic documents for authorities. Partners have the experience in major projects and public awareness-raising activities in order to manage the SARMa project and disseminate outputs and results. Also, 8 decision making bodies were included that have aggregates sector extraction areas under their rule and expressed a desire to participate actively in seeking solutions to the challenges of aggregates production and supply. In addition, emphasis was being placed on public/stakeholder capacity building activities (Solar & Shields, 2011). Project goals - The two main project objectives were to: develop a common approach to SARM across SEE, and ensure a SSM in SEE based on fair distribution of costs and benefits of aggregate production, use, waste disposal and recycling, so as to enhance resource and energy efficiency and quality of life. Other supporting objectives included: coordination in managing aggregate resources, increasing the transfer of know-how, and supporting capacity building in firms, government and civil society; development of a unified information infrastructure and common understanding of aggregates based on EU guidelines and directives, including those on protected areas, potential secondary supply, and transnational transportation networks; and prepare for a Regional Centre on SARM & SSM. Project activities were intended to connect institutional actors, decision makers, policy implementers, economic sector, quarry operators, civil society, and NGOs through data collection activities, workshops, and targeted results at 3 spatial scales because, as previously noted issues differ by scale. Each scale was handled as a separate Work Package having its own specific goals: those being Local, Regional/National, and Transnational. Local goals: (a) optimize the efficiency of primary aggregates production, (b) prevent or minimize environmental impacts of quarrying and improve reclamation, (c) minimize illegal quarrying by improving knowledge, (d) promote recycling (construction, demolition & quarry waste), and (e) increase interested and affected groups' capacity. Regional/national goals: (a) assess and quantify aggre- gate resources and relevant transportation links, (b) develop strategies for sustainably managing aggregate resources, including in protected areas, considering aggregate resources in land management and use planning, and harmonizing policies across regions, and (c) develop guidelines and procedures for SSM planning. Transnational goals: (a) recommend methods for harmonizing SARM & SMM transregionally and transnationally, and (b) design a multi-purpose and multi-scale Aggregates Intelligence System (AIS) as a long-term tool for know-how transfer. Planning has also begun for a Regional Centre on SARM & SSM, the purpose of which will be to increase capacity of all interested and affected groups through additional studies, workshops, and educational materials. Final results - The Sustainable Aggregates Resource Management (SAR-Ma) project contributed a transnational bottom-up approach by developing a common approach to Sustainable Aggregates Resource Management (SARM) and ensuring a Sustainable Supply Mix (SSM) in 10 participating SEE countries. At the local level, the main findings for local authorities, industry representatives and communities are presented in the manual "How to achieve aggregates resource efficiency in local communi- ties", emphasizing environmentally friendly quarrying, reduction of illegal extraction, and increased recycling. At the regional, national and transnational level, the recommendations are presented in the manual "SARM and SSM at the Regional, National and Transnational Level", which is targeted at decision-making authorities. An additional contribution on the pathway to a more sustainable society was the "Construction and Demolition Waste Management Manual", which illustrates activities related to inert waste recycling. As the base of these manuals (in the bottom-up approach) 50 case study reports, 10 studies/analyses, 9 different recommendations and other documents were prepared as the supporting materials. Additionally (not planned in the AF), the two specific manuals were prepared: "Guidelines for the environmental recovery of quarries in near river areas" and "Concise planning manual for the recovery of aggregate quarries". The following results should also be emphasized: • 9 common guidelines covering recommendations for environmentally friendly quarrying, recycling and preventing illegal quarrying for industry and authorities; on implementation of (EU) legislation; for aggregate policy and management; and for development and land use planners; on transnational level for decision-makers on SARM and on SSM; • common methodologies adopted among partners on database framework on illegal quarrying and Life-cycle Assessment scheme, and on GIS and Aggregate Intelligence System (AIS); • advanced tools adopted to improve knowledge management within the partnership: SARM, SSM and GIS. Over 9 500 copies of the manuals were printed in 11 languages to facilitate dissemination to the end-users. Moreover, the messages were directly promoted to more than 1 300 representatives of public authorities and 2 100 representatives of the industry, at the 19 different regional, national or transnational workshops, aiming at increasing awareness, knowledge and capacity of the target groups. Additionally the project was presented at a number of events (over 20) organized outside the project, in SEE and EU. Thirteen press conferences were organized and 54 articles were published. Counting magazine and journal articles, over 900 000 people were reached. On the basis of these methodologies, regional or national policies on SARM and SSM were improved in 11 participating countries or regions: Slovenia, Austria, Greece, Region of Central Macedonia, Hungary, Emilia-Romag- na Region, Parma Province, Romania, Herzeg-Bosnian Canton, Serbia, Albania and Croatia. The benefits of the harmonised transnational approach are confirmed and will contribute to increased aggregates resource efficiency in participating countries. The 23 participating partners and observers intensively promoted the project outcomes to target groups in their territories. At the policy level, important achievements have been accomplished at the national, regional and local level of 10 participating countries by contributing to the improved policies on aggregates management and supply, as well as the waste management, recycling and protection of the environment related to quarrying activities. The outcomes of the recommendations in the SEE area were also contributing to the EU policies and initiative related to these topics. Please see next point for details. At the policy level, an important contribution was imposed in 12 participating territories (Zelic, 2012): - At the national level: o Greece: the SARMa project is referenced twice in the working document for the New Greek National Minerals Policy - it was also referenced several time in the public forum presenting the work on the Greek National Minerals Policy; o Austria: contribution to Austri- an Mineral Resources Plan development; o Hungary: the transposition of the Community law and policy was impacted by the SARMa outcome on the national level, its conclusions are built into the national mineral strategy in preparation; o Slovenia: SARMa activities coincided with the drafting of National Mining Strategy and evaluation of Mining Act; o Romania: Mineral resources Department at the Ministry of Economy, Commerce and Business Environment of Romania has realized the need of drawing up a national mineral policy (inclusively aggregates) based (also) on promotion of SARMa outcomes and is trying to obtain financing for this project; o Albania: SARMa Project has been implemented within the same period in which the reviewing and the improvement of the Albanian Law on Mining have been carried out as well as its approval. o Serbia: SARMa activities had an impact on the national policies and regulations - there were some changes in the structure of Ministries related to aggregates production, new Law on Mining and Geological Exploration (end 2011), and the new Miner- als Policy of Serbia is being prepared. o Croatia: SARMa activities are positively influencing the national policy on aggregates management. - At the regional level: o Emilia-Romagna Region: SAR-Ma recommendations will be integrated into the new law on soil defence and quarrying activities, at time of writing in an early phase of development. o Herzeg-Bosnian Canton: public authorities in this and other Bosnian structures increased awareness, knowledge and capacity about the aggregates policy and its reference with other areas, which will influence their decision-making in the future. - At the local level: o Parma Province: will apply new law about soil defence and quarrying activities that will be issued by the ER Region in the future on the basis of SARM practices and recommendations; o Pella Prefecture/Region of Central Macedonia: SARMa activities positively influenced the local policy on aggregates management. The 3 dimensions of sustainability were realised in the following way, including the steps after the project end: • Institutional sustainability is as- sured since partners incorporated the recommendations and new methods in their daily work, at the level of public authorities or expert organisations; • Additionally, partners are taking a lot of effort to promote and disseminate the project outputs (manuals) and the described methods also in their networks in each country or region; • The political sustainability was is parallel assured since the recommendations addressed directly the local, regional and national policies and were promoted at the level of public authorities directly or by the expert organisations providing the expert support for these institutions; • The financial sustainability was partially assured by financing the regular operations of the mentioned organisations in which the developed approaches will be used; • Additionally, it was estimated that the developed recommendations are generally applicable, while especially the public authorities are still lacking capacity to incorporate them in the new or improved regulations. Therefore a new SEE project proposal SNAP-SEE - Sustainable aggregates supply in SEE was applied at the SEE programme 4th call; • There are initiatives also for upgrading the developed topics at other levels, e.g. at the EU level in the Interreg IVc or at more scientific level in FP7, or the successors of these programmes. The project had a significant impact on territorial cohesion of 10 SEE countries in the tackled field by harmonising their approach to aggregates management and related policies, and to transferring efficiently the related EU guidelines to the national or regional level. These policies are also contributing to the environmental dimension by promoting the environmentally friendly quarrying, promoting recycling and preventing illegal quarrying. These activities are contributing to the social dialogue with affected stakeholders. Economic activities of private sector operators (large and small ones) are influenced by promoting the positive sides of more socially and environmentally acceptable quarrying activities, leading to positive impacts for the society. At the EU level SARMa activities coincided with the implementation of the EU new waste management legislation, mine waste management legislation and mineral policy issues. In this way SARMa had a reinforcement effect on the above EU policies by producing practical manuals and recommendations on the best practice measures in the SEE region. Within the networks of the SARMa partners the recommendations were promoted during the events of the Hungarian and Polish presidency of the EU. conclusions The SARMa project's impact is noticeable at the level of national, regional and local public authorities, where different policies regulating aggregates management and supply from the economic or environmental perspectives are being developed or improved. There are proposals for follow-up projects further increasing capacity of the public authorities and enhancing the involvement of stakeholders in these processes. The project also contributed to the improvement of the EC Raw Materials Initiative, waste management legislation. Finally, SARMa contributed to the SEE Programme overall objectives by integrating environmental, social and economic aspects of sustain-ability with respect to aggregates management and supply, capacity building, and fostering transnational territorial cooperation among local, regional, national and transnational authorities. All SARMa manuals, recommendations and other reports are available at http://www.sarmaproject.eu References Baird, M. & Shetty, S. (2003): Getting there. Finance and Development, Vol. 40(4), p. 14-19. CIB & UN Environment Program (2002): Agenda 21 for Sustainable Construction in Developing Countries. Pretoria, CSIR - Council for ScientiÊ c and Industrial Research. (CIB - International Council for Research and Innovation in Building and Construction)). Langer, W. H. & Arbogast, L. (2002): Environmental impacts of mining natural aggregate. In: Fabbri, A.G.(ed.), Gaal, G. (ed.), Mc-Cammon, R. B. (ed.). Deposit and geoenvironmental models for resource exploitation and environmental security, (NATO science series, Series 2, Environmental security, Vol. 80). Dordrecht: Kluwer, p. 151-170. Langer, W. H. & Šolar, S. V. (2002): Natural aggregate resources - environmental issues and resource management: report of Working Group 5. In: Fabbri, A.G. (ed.), Gaal, G. (ed.), McCammon, R. B. (ed.). Deposit and geoenvironmental models for resource exploitation and environmental security, (NATO science series, Series 2, Environmental security, Vol. 80). Dordrecht: Kluwer, p. 525-532. Langer, W. H. & Tucker, M. L. (2003): Specif cation Aggregate Quarry Expansion - A Case Study Demonstrating Sustainable Management of Natural Aggregate Resources. Open-File Report 03-121, U. S. Department of the Interior, U. S. Geological Survey. World Wide Web Address: http://pubs.usgs.gov/ of/2003/ofr-03-121/OFR-03-121-508. pdf). Langer, W. H. (2003): Part 2: Creating a Sustainable Future. Sustainable aggregate resources management is integral to our social, economic, and environmental systems. Department: Carved in Stone. Aggregates Manager. October2003. http://www.aggman.com. Langer, W. H. (2003 a): The Future and Sustainability - Cooperation and responsibility are the keys to building a sustainable industry for future generations. Department: Carved in Stone. Aggregates Manager. September 2003. http://www. aggman.com. Shields, D. J. & Šolar, S. V. (2004): Sustainable mineral resource management and indicators : case study Slovenia. Ljubljana: Geological Survey of Slovenia, 84 p. Šolar, S. V. & Shields, D. J. (2011): Sustainable aggregates resource management: practices in south east Europe. In: HEBESTREIT, C. (ed.), KULCZYCKA, J. (ed.), WIRTH, H. (ed.). International Conference Sustainable Production and Consumption of Mineral Resources - Integrating the EU's Social Agenda and Resource Efficiency, Wroclaw, 20-22 October 2011. Sustainable production and consumption of mineral resources. Krakow: [Mineral and Energy Economy Research Institute of the Polish Akademy of Sciences], p. 143-150. Šolar, S. V. (2003): Indicators of Sustainable Development for a Mineral Resource Management Plan: the case of open pits. Doctoral Dissertation. University of Ljubljana. 182p., 3 app. Zelič, U. (2012): Final Progress Report - Sustainable Aggregates Resource Management unpublished, Ljubljana: unpublished, archive GeoZS, 16p. Data-driven modelling of groundwater vulnerability to nitrate pollution in Slovenia Podatkovno vodeno modeliranje ranljivosti podzemne vode na nitratno onesnaženje v Sloveniji Jože Uhan1, * 1Agencija RS za okolje, Vojkova 1b, SI-1000 Ljubljana, Slovenia Corresponding author. E-mail: joze.uhan@gov.si Received: October 4, 2012 Accepted: October 19, 2012 Abstract: This paper describes the case study of statistical data-driven models implementation to assess groundwater vulnerability to nitrate pollution of alluvial aquifers in Slovenia. The aim of the research was spatial prediction of the relative probability for increased groundwater nitrate concentration in order to plan the groundwater nitrate reduction measures and optimize the programme for monitoring the effects of these measures. For the selection of possibly optimal statistical model and comparison with the one of point count system methods PCSM, receiver operating characteristic method ROC was used. Results of the probabilistic classifier from the weights-of-evidence model WofE and neuro-fuzzy model NEFCLASS has in the case of groundwater nitrate pollution a significant better average performance than the widespread used SINTACS parametric point count relative rating as groundwater contamination potential. Izvleček: Članek opisuje študijski primer uporabe statističnih podatkovno vodenih modelov za ocenjevanje ranljivosti podzemne vode na nitratno onesnaženje v aluvialnih vodonosnikih Slovenije. Namen raziskave je bil prostorsko napovedati relativno verjetnost zvišane vsebnosti nitrata v podzemni vodi za potrebe načrtovanja ukrepov za zmanšanje nitratnega onesnaženja in optimiranja programov merilnega nadzora učinkov teh ukrepov. Za izbor optimalnega statističnega modela in primerjavo z rezultati večparametrske metode razvrščanja in tehtanja je bil uporabljen pokazatelj karakteristike delovanja klasifikacijskih metod ROC. Verjetnostni klasifikatorji modela teže evidenc WofE in nevronske mehke logike NEFCLASS izkazujejo v primeru nitratnega onesnaženja podzemne vode značilno boljše povprečne klasifikacijske lastnosti kot sicer zelo razširjena metoda razvrščanja in tehtanja parametrov SINTACS. Key words: groundwater vulnerability, nitrate, data-driven modelling, Slovenia Ključne besede: ranljivost podzemne vode, nitrat, podatkovno vodeno modeliranje, Slovenija Introduction Groundwater nitrate pollution in Slovenian shallow alluvial aquifers has been a major concern in recent years, and more than a third of the groundwater in these aquifers has poor chemical status according to Water Framework Directive (Directive 2000/60/ES) criteria, most frequently due to a high concentration of nitrate (Uhan et al., 2010). The operative programme of measures requires identification of the potentially vulnerable priority areas within groundwater bodies for cost-effective measures planning. Groundwa-ter vulnerability maps are an important tool of the water management decisionmaking process. Most of the previous groundwater vulnerability assessments of shallow alluvial aquifers in Slovenia (Janza & Prestor, 2002; Bracic Zeleznik et al., 2005; Mali & Janza, 2005; Uhan et al., 2008) used a variety of parametric point count methods with a relative rating for the potential of groundwater contamination, e.g. the SINTACS index, adapted to conditions in the Mediterranean region (Civita, 1990). These methods require validation with field measurements, such as a tracer test, groundwater residence studies or investigation of pollution processes, e.g. denitrification. Gogu & Dassargues (2000) identified the integration of results from process-based models in vulnerability mapping techniques as a new research challenge in groundwater vulnerability assessment. Data-driven modelling offer the possibility of analysing the relevant data about a groundwater system, in fact, learning from available data, which incorporates the so far unknown dependencies between a system's inputs and outputs (Mitchell, 1997; Price & SOLOMATINE, 2000). Materials in methods Modelling of the groundwater vulnerability to pollution is generally understood as probability modelling or a mathematical representation of a random phenomenon. Most com- monly used methods of the classification modelling are neural networks and fuzzy logic methods, statistical method of logistic regression and closely related Bayesian approaches to classification. In the Lower Savinja Valley case study, we have used the neuro-fuzzy approach for the data classification NEFCLASS-J (Nauck & Kruse, 1995), and weights-of-evidence method for combining evidence in support of a hypothesis Arc-WofE (Kemp et al., 1999). The results of these two data-driven methods were compared with the results of the SINTACS parametric point count relative rating as ground-water contamination potential (Uhan et al., 2008), coupling with the results of the agricultural nitrate hazard index IPNOA (Pehan, 2008). The SINTACS scheme of aquifer pollution vulnerability mapping incorporates seven parameters, relevant for the contaminant attenuation and vertical flow capacity (Table 1). The grid square cell structure of the SINTACS input data has been designed in order to use several weight strings in order to satisfactorily describe the effective hy-drogeological and impacting situation as set up by the sum of data (Civita & De Maio, 2000). For each grid squares, element normalized SINTACS index was calculated and coupled with the agricultural nitrate hazard index (IP-NOA). The IPNOA method integrates two categories of parameters (Table 1): the hazard factors representing farming activities and the control factors which adapt the hazard factors to the characteristics of the site (Padovani & Trevisan, 2002). Neuro-fuzzy system is an identification method that combines the methods of neural networks and fuzzy logic. The neural networks classify among the »black box« methods, where the model is set solely on the basis of measured data without an insight into the dynamics of the process. Fuzzy logic on the other hand classifies among the »grey box« methods, where the model structure is given as a parameterized mathematical function that is at least partially based on the laws of physics. Both systems have been developed independently, and only later great advantages have been recognised in their joint use, especially for the classificatory purposes (Nauck & Kruse, 1995), as well as in the area of groundwater vulnerability to pollution (Dixon, 2001). Bayesian classifier uses attribute independence assumption and estimates the conditional probabilities (coefficients in the model) on the basis of counting the cases in a particular class. Although the Bayesian classifier probabilistic model is based on the assumption, which the practice does not support, the empirical evidence shows that this has no major impact on its classifi-catory accuracy (Domingos & Pazzani, Table 1. List of used evidential themes in groundwater nitrate pollution vulnerability assessment case study SINTACS IPNOA NEFCLASS WofE Deep to the groundwater Use of fertilizers Hydrogeological homogeneous units Hydrogeological homogeneous units Effective infiltration Application of livestock and poultry manure Irrigation and drainage areas Irrigation and drainage areas Unsaturated zone attenuation capacity Food industry wastewater and urban sludge Development of the river networks Development of the river networks Soil/overburden attenuation capacity Topographic slope Long-term groundwater recharge Long-term groundwater recharge Hydrogeological characteristics of the aquifer Climatic conditions Nitrogen load in seepage water Nitrogen load in seepage water Coefficient of hydraulic conductivity Agronomic practices Groundwater flow velocity in saturated zone Groundwater flow velocity in saturated zone Topographic slope Figure 1. Groundwater nitrate measurements in central part of Lower Savinja Valley, used as a training dataset 1997; Kononenko, 2001). Advantages of this method are in better response for problems with a small number of training points and missing attribute values, and in greater clarity of the resulting model. Mainly due to an easier interpretation of the results, the weights-of-evidence method, which is based on the Bayesian theorem, has been successfully used also for the assessment of groundwater vulnerability to pollution (Arthur et al., 2005; Baker et al., 2006; Masetti et al., 2007; Sorichetta et al., 2008). In both cases of data-driven modelling of groundwater vulnerability to nitrate pollution, NEFCLASS-J modelling and Arc-WofE modelling, we have used the same evidential themes, including also process-based modelling outputs of groundwater recharge, groundwater flow velocity and nitrate leached from the soil profile (Table 1). In the vulnerability assessment procedure, the central part of the Lower Savinja Valley (30.8 km2) was dis-cretised with a regular mesh grid of 100 m x 100 m. Randomly chosen 173 groundwater nitrate in-situ measurements have been used as a training points dataset. Monitoring sites have been classified for further analysis into two or three groups on the basis of distribution of groundwater nitrate concentration with 20 mg/l as antopogenic impact concentration or 50 mg/l as EU threshold value. Results and discussion Groundwater intrinsic vulnerability assessment of Lower Savinja Valley shallow aquifer using SINTACS parametric method (Uhan et al., 2008) identified two classes with different vulnerability degrees. The first zone with higher vulnerability is characterised mainly by the lower terrace with shallow ground-water, high surface/groundwater interaction and a thin protective soil layer. The second zone with medium vulnerability is characterised mainly by the upper terraces with deeper groundwater and thick soil layer with increased clay component. The most sensitive parameters are depth to the groundwater and effective infiltration action. The results of single-parameter sensitivity analysis enable better understanding of the vulnerability model results, enable consistent evaluation of the analytical result and give a new orientation for further methodological contamination research by using statistical and numerical model results with selected SINTACS ground-water vulnerability parameters. It is pointed out that detailed vulnerability mapping, including analysis of hydro-chemical data, especially nitrate concentration in groundwater, linked to the assessment of pressures and impacts, is a very good basis for establishing detailed monitoring programmes and programmes of measurement to achieve the WFD objectives of good groundwater status for groundwater bodies at risk. The intrinsic nitrate contamination risk from agricultural sources, assessed using the IPNOA methodology, is high for the 87 % of the study area, whereas the 11 % of the southern parts of the area indicate a diffuse and extremely high potential risk. The greatest discrepancies between the estimates of the potential risk of groundwater contamination by nitrates from agricultural activities and the results of groundwater nitrate field measurements have been identified on the northern part of the study area. Here the nitrate levels in groundwater are in many places markedly below the expectations, given the high level of potential risk for ground-water contamination by nitrates from agricultural activities (Pehan, 2008). These findings have highlighted the need for further study of spatial variability in conditions of nitrogen cycle processes, which affect the reduction processes in groundwater. In the Lower Savinja Valley ground-water vulnerability model, we have, in light of the results of an extensive sensitivity analysis of the NEFCLASS-J model (Dixon, 2004), used the triangular membership function and three fuzzy sets structure. The model discovered a total of 36 possible learning rules, of which five of the best rules for a particular classificatory range were used for the grid. Additional optimization of the network resulted in the 93.02 % accuracy for the classification of the learning data patterns, 75.58 % accuracy for the validation, and 84.30 % accuracy for the classification of the entire data series into two classes of groundwater nitrate level. When modelling the three-class fuzzy grid (<20 mg/l, 20-50 mg/l, >50 mg/l), the model accuracy was somewhat lowered, yet the classificatory accuracy improved. The model classified all of the 3,079 spatial cells, namely: 978 in the first group (31.76 %), 689 in the second group (22.38 %), and 1412 in the third group (45.86 %) of the spatial cells. The hydrogeological boundary between the middle and the highest terrace markedly stood out at this classification (Figure 2). WofE modelling technique combines known occurrences of phenomenon (training points) with available spatial data (predictor evidence) in a predictive response (phenomena occurrences conditional probability map). Six evidential themes were applied to generate the response theme with posterior probability values ranging from 0 to 0.312 (Figure 3). The response theme values describe the relative probability that a 100 m x 100 m spatial unit will have a groundwater nitrate concentration higher than the training points threshold values with regard to the prior probability value of 0.057. Based on the definition of the training point, higher posterior probability values correspond with more ground- Figure 2. Neuro-fuzzy prediction of groundwater nitrate pollution in central part of Lower Savinja Valley (threshold values: <20 mg/l, 20-50 mg/l and >50 mg/l) Figure 3. WofE posterior probability prediction of groundwater nitrate pollution in central part of Lower Savinja Valley (threshold value: 20 mg/l; prior probability = 0.057) Table 2. Statistics of ROC analysis Model output Area under the ROC curve (%) Standard error 95 % confidence interval SINTACS x IPNOA 75.7 0.041 0.685-0.820 WofE 82.9 0.034 0.756-0.877 NEFCLASS (3 classes) 84.4 0.031 0.779-0.895 riiiiitiiiiiiiiiiiiiiii 0 20 40 60 80 100 False Positive rate (100-Specificity) Figure 4. Predictive reliability of different classification schemes in ROC diagram water vulnerable cells and lower posterior probability values correspond to less vulnerable areas. The highest probability of groundwater nitrate vulnerability zones has been found to be generally in the central part of the study area. According to the calculated confidence value, the most important contribution to the final response theme was assessed for the groundwater flow velocity evidential theme, followed by the groundwater recharge evidential theme. Conditional independence as an important assumption of the WofE model was within the range that generally indicates no dependence amongst evidential themes (Baker et al., 2007). The predictive reliability of the applied models has been verified by the receiver operating characteristic analysis (Metz, 1978), which through the sensitivity and specificity assessment provides the area under curve (AUC) in receiver operating characteristic diagram (ROC). Receiver operating characteristic curves were developed in the field of statistical decision theory and assess the value of diagnostic/prediction tests by providing a standard measure of the ability of a test to correctly classify subjects or phenomena. The ROC curve reflects the probability of correct and incorrect positive findings of the phenomenon and can be illustrated in space with the coordinates for sensitivity and specificity. Sensitivity is defined as the probability that the highly vulnerable spatial aquifer cell is correctly classified, whereas specificity is defined as the probability of the correct classification of the moderately vulnerable spatial cell. The rate of false negative value is given by 1-specificity. The discrete three-class classification of the model of neuro-fuzzy network NEFCLASS-J and the linear distribution of the WofE posterior probability of increased groundwater nitrate levels in the studied area of Lower Savinja Valley has been compared also with the results of the SINTACS and IPNOA analysis (Figure 4). The area under ROC curve (AUC) was the lowest for SINTACS x IPNOA prediction model (75.7). According to the ROC analysis, the best results were achieved by the neuro-fuzzy model, within which the highest value of the parameter AUC (84.4) was achieved (Table 2). When comparing it to the weights-of-evidence model through the k statistical comparison of matching between the measured and the predicted categories (Jenness & Wynne, 2007), the differences were, however, very small. conclusion When comparing the results of classification schemes, the neuro-fuzzy method was proven somewhat more effective for predicting the groundwater nitrate concentration and thereby predicting the groundwater vulnerability in Lower Savinja Valley. However, the discrete character of this model result has to be emphasised, whereas the weights-of-ev-idence method enables the assessment of the probability of groundwater nitrate pollution while not sacrificing much the quality of the results. The assessment of the probability of groundwater nitrate pollution can be of great service for mapping the groundwater vulnerability to nitrate pollution. Data-driven models cover the relationships between the relevant input and output variables and are very effective if it is difficult or not possible to build knowledge-driven simulation models. Case study in Lower Savinja Valley aquifer indicates the possibilities and the directions of incorporation of data-driven models into the decision support frameworks. Acknowledgment The author gratefully dedicates this article to B. Sc. Mentor prof. dr. Dušan Kuščer, to M. Sc. Mentor prof. dr. Simon Pirc and to Ph. D. Mentor prof. dr. Jožef Pezdič and returns thanks for their invaluable pedagogical work and a wonderful example of professionalism. References Arthur J. D., Kaker, A. E., Gchon, J. R., Wood, H. A. R. & Rudin, A. (2005): Florida Aquifer Vulnerability Assessment (FAVA): Contamination potential of Floridas principal aquifer systems. Florida Deaprtment od Environmental Protection : Report submitted to Division of Water Resouce Management, 148 p. Baker, A. E., Wood, A. R. & Gchon, J. R. (2007): The Marion County Aquifer Vulnerability assessment. Marion County Project No. SS06-01, 42 p. Bračič-Železnik, B., Frantar, P., Janža, M. & Uhan, J. (2002): Ranljivost podzemne vode. In: Podtalnica Ljubljanskega polja. Rejec Brancelj, I. (ed.), Smrekar, A. (ed.), Kladnik, D. (ed.), Perko, D. (ed.). Geografija Slovenije, 10, Založba ZRC, Ljubljana, pp.61-72. civita, M. (1990): La valutazi-one della vulnerabilità degli acquiferiall'inquinamento = Assessment of aquifer vulnerability to contamination. Proc 1st Conv. Naz. Pro-tezione e Gestione delle Acqe Sotter- ranee: Metodologie, Technologie e Obiettivi. Marano sul Panaro, V.3, pp. 39-86. civita, M., De Maio, M. (2000): SINTACS R5. Quaderni di tecniche di protezione ambientale. Bologna: Pitagora Editrice 72, 226 p. Domingos, P., Pazzani, M. (1997): On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, pp. 103-130. Dixon, B. (2001): Application of Neuro-fuzzy techniques to predict ground water vulnerability in NW Arkansas. Doctoral Dissertation, University of Arkansas, Environmental Dynamics, 265 p. Dixon, B. (2004): Prediction of ground water vulnerability using integrated GIS-based neuro-fuzzy techniques. Journal od Spatial Hydrology, Vol. 4, No. 2, 38 p. Gogu, c., Dassargues, A. (2000): Current trends and future challenges in ground-water vulnerability assesment using overlay and index methods. Environmental Geology, 39 (6), pp. 549-559. Janža, M., Prestor, J. (2002): Ocena naravne ranljivosti vodonosnika v zaledju izvira Rižane po metodi SINTACS. Geologija 15/2, Ljubljana, pp. 401406. Jenness, J., Wynne, J. J. (2007): Cohens Kappa and Classification Table Metrics 2.1: An ArcView Extension for Accuracy Assessment of Spatially-Explicit Models. Dostopno na svetovnem spletu: Kemp, L. D., Bonham-carter, G. F., Raines, G. L. (1999): Arc-WofE: Arcview ex- tension for weights of evidence mapping. Dostopno na svetovnem spletu: Kononenko, I. (2001): Machine learning for medical diagnosis : history, state of the art and perspective. Artif. intell. med., Vol. 23, No. 1, pp. 89-109. Masetti, M., Poli, S., Sterlacchini, S. (2007): The Use of the Weights-of-Evidence Modeling Technique to Estimate the Vulnerability of Groundwater to Nitrate Contamination. Natural Resources Research, 16/2, pp. 109-119. Mali, N., Janža, M. (2005): Ocena naravne ranljivosti vodonosnika s SINTACS modelom v GIS okolju. Geologija 48/1, Ljubljana, pp. 127-140. Metz, C. E. (1997): Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8, pp. 283-298. Mitchell, T. M. (1997): Machine Learning. McGraw-Hill, New York, 417 p. Nauck, U., Kruse, R. (1995): NEFCLASS - A neuro-fuzzy approach for the classification of data. V Proceedings of the 1995 ACM symposium on Applied computing, Nashville, pp. 461-465. Padovani, L., Trevisan, M. (2002): I nitrati di origine agricola nelle acque sotterranee. Un indice parametrico per l individuazione di aree vulnerabili. Bologna, Pitagora Editrice, 103 p. Pehan, S. (2008): Ocena vpliva antropo-genega vnosa dušika na kakovost podzemne vode v Spodnji Savinjski dolini : diplomsko delo. Ljubljana, 67 P. Price, R. K., Solomatine, D. P. (2009): A brief guide to hydroinformatics. UN-ESCO-IHE Institute for water education, Delft, 28 p. Sorichetta, A., Sterlacchini, S., Bla-hut, J., Poli, S., Masetti, M. (2008): Groundwater vulnerability assessment: influence of using two subsets of wells, respectively with nitrate concentration above and below an established threshold, as training points in the weight of evidence (WofE) model. Geophysical Research Abstracts, 2 p. Dostopno na spletnem naslovu: . Uhan, J., Pezdič, J. & civita, M. (2008): Assessing groundwater vulnerability by SINTACS method in the Lower Savinja Vally, Slovenia = Ocenjevanje ranljivosti podzemne vode z metodo SINTACS v Spodnji Savinjski dolini, Slovenija. RMZ, št. 55/3, Ljubljana, str. 363-376. Uhan, J. (ed), Dobnikar Tehovnik, M. (ed) & Pavlič, U. (ed) (2010): Vode v Sloveniji. Ocena stanja voda za obdobje 2006-2008 po določilih okvirne direktive o vodah. Agencija RS za okolje, Ljubljana, 62 p. Uhan, J. (2011): Ranljivost podzemne vode na nitratno onesnaženje v aluvialnih vodonosnikih Slovenije. Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Ljubljana, doktorska disertacija, 163 p. Uhan, J. (2012): Modeliranje ranljivosti podzemne vode in določanje nitratno ranljivih območij v Sloveniji. Slovenski vodar, Ljubljana, št. 25, pp. 107110. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy, 2000, OJ L 327, 22.12.2000, pp. 1-73. Hydrochemical characteristics of groundwater from the Kamniškobistriško polje aquifer Hidrokemijske značilnosti podzemne vode vodonosnika Kamniškobistriškega polja Janko Urbanc1, *, Sonja Cerar1, Aleš Stražar2 1Geološki zavod Slovenije, Dimičeva 14, SI-1000 Ljubljana, Slovenia 2JKP Prodnik, d. o. o., Savska cesta 34, SI-1230 Domžale, Slovenia Corresponding author. E-mail: janko.urbanc@geo-zs.si Received: September 24, 2012 Accepted: October 10, 2012 Abstract: The article describes basic chemical properties of the Kamniškobistriško polje aquifer groundwater. The aquifer is composed of the upper aquifer in sand and gravel deposits of the Kamniška Bistrica river and of the lower, dolomite aquifer. The water of both aquifers differs significantly as to its chemical composition. Compared to the lower aquifer, the water of the upper aquifer is more mineralized, which is reflected in a higher electrical conductivity and concentrations of HCO3, calcium and magnesium. The water from the upper aquifer is also more loaded with pollutants originating from agricultural activities. On the basis of chemical properties of groundwater from both aquifers it can be concluded that the recharge area of both aquifers is different; the upper aquifer is recharged mainly by precipitation and infiltration of the Kamniška Bistrica river, while the larger quantity of water from the lower aquifer is estimated to originate from carbonate rocks on the western fringes of the Kamniškobistriško polje. Izvleček: V članku so prikazane osnovne značilnosti kemijske sestave podzemnih vod vodonosnika Kamniškobistriškega polja. Ta vodonosnik sestavljata zgornji vodonosnik v peščeno-prodnih sedimentih reke Kamniške Bistrice ter spodnji dolomitni vodonosnik. Po kemijski sestavi se vode obeh vodonosnikov občutno razlikujejo. V primer- javi s spodnjim vodonosnikom je voda zgornjega bolj mineralizirana, kar se izraža v večji elektroprevodnosti ter koncentraciji HCO3, kalcija in magnezija. Prav tako je voda zgornjega vodonosnika bolj obremenjena z onesnaževali, ki večinoma izhajajo iz kmetijske dejavnosti. Na osnovi kemijskih značilnosti podzemnih vod iz obeh vodonosnikov ocenjujemo, da je napajalno območje obeh vodono-snikov različno; zgornji vodonosnik se napaja pretežno iz padavin ter infiltracije reke Kamniške Bistrice, medtem ko ocenjujemo, da je v spodnjem vodonosniku večji delež vode iz karbonatnih kamnin zahodnega obrobja Kamniškobistriškega polja. Key words: Kamniškobistriško polje, aquifer, groundwater, chemical composition Ključne besede: Kamniškobistriško polje, vodonosnik, podzemna voda, kemijska sestava Introduction Our research was aimed at determining the basic chemical properties of groundwater of the Kamniskobistrisko polje aquifer. The aquifer is composed of two parts: the upper, intergranular aquifer, and the lower, fissured aquifer in dolomite rocks. It is recharged by precipitation, by the Kamniska Bistrica river, flowing into the aquifer from the east, and by inflows from the hills along the aquifer's western border. Chemical analyses of groundwater from different parts of the aquifer were used for a more detailed determination of the influence of recharge, lithologi-cal factors and anthropogenic pollution on the chemical composition of groundwater. Description of the Kamniškobistriško polje aquifer The Kamniškobistriško polje alluvial plain extends on the gravel fan of the Kamniška Bistrica river between cities Kamnik, Mengeš and Domžale. Its surface is inclined in the north-south direction, with an altitude of 340 m at Šmarca in the north, and 285 m at Dragomelj in the south. The Kamniška Bistrica river flows along the eastern edge of the Kamniškobistriško polje approximately in direction north-south. At Jarše, the Pšata stream, originating outside the research area at the foot of the Kamnik Alps, flows into the Kamniška Bistrica from the west. The Radomlja stream flows into the Kamniška Bistrica from the east. The surface of the gravel fan of the Kamniška Bistrica is formed by an 8-12 m thick layer of pure gravel. South of the road Trzin-Domžale the gravel is partly covered by a several meter-thick layer of sand and silt, deposited by the Pšata stream. The upper gravel layer is underlain with older Pleistocene gravel deposits with inlays of conglomerate and clay. These deposits reach a depth from 35 m to over 70 m in the central part of the plain between the factory Lek and the Depala vas. Along the southern edge of the plain, Pleistocene gravel deposits are 35 m to 45 m deep, while they are less massive on the eastern outskirts, reaching 15 m to 40 m depth. The base of the sand-gravel deposits contains dolomite which represents a carbonate aquifer with fissure porosity. Deep wells located between Mengeš and Domžale reach the carbonate aquifer at a depth of 50 m to 80 m, and the impermeable base composed of Carboniferous and Permean clayey shales and sandstones lies 160 m below surface in this area (Rogelj & Petauer, 1993, Rogelj, 1998, 1993, Harahodžič, 2011). The groundwater table in the northern part of the plain is relatively deep under the surface -22 m to 31 m at low-water conditions. In the central part of the plain between Jarše and Mengeš the table at low-water conditions is about 22 m deep. In the area between Trzin and Domžale the groundwater table at low water is at 7 m to 12 m, while it is at 2.5 m to 6.5 m in the southern part of the plain near Pšata. The fluctuation range of groundwater in the area of Kamniškobistriško polje gradually decreases from north to south, amounting to about 7 m in the north and only to about 1 m in the southern part of the area. The water-bearing gravel layer in the Kamniškobistriško polje is quite thick, amounting to between 32 m and 42 m in the northern part, and to approximately 80 m in the central part between Mengeš and Jarše. The thickness of the water-bearing layer in the Trzin-Domžale profile is about 40 m, decreasing to about 8-40 m in the south between Dragomelj, Pšata and Ihan. Groundwater balance calculation in the upper aquifer shows an inflow of about 140 l/s of groundwater from Kranjsko polje into the Kamniškobistriško polje at medium-water conditions (Mencej, 1991). The groundwater flow in the central part at the intersection with the Trzin-Domžale aquifer is estimated at 170 l/s, and at about 400 l/s in the southern part of the plain, in the Drag-omelj-Ihan profile. Materials and Methods Chemical and isotopic properties of groundwater from the Kamniskobistrisko polje were observed at the following monitoring points: Monitoring point Type of object Aquifer DG-1 pumping well lower VDG-2 observation well lower VDG-3 observation well lower VDG-4 observation well lower C-2 pumping well upper C-3 pumping well upper C-4 pumping well upper Lek pumping station pumping well upper DG-3 observation well upper K-1 observation well upper L-6 observation well upper L-9 observation well upper M-1 pumping well dolomite Locations of monitoring points are evident from the map in Figure 1. The groundwater samples were obtained by sampling pump Grundfos MP1. Two groundwater sampling campaigns were carried out in April and May 2011 in the Kamniskobistrisko polje aquifer. A graphical presentation of average values from both samplings is given below in this article. Chemical analyses of groundwater samples were carried out in the laboratory of JP Vo-dovod-Kanalizacija, d. o. o., Ljubljana. Results and discussion Electrical conductivity Electrical conductivity of ground-water in unpolluted groundwater is usually in correlation with the concentration of dissolved carbonates in water, i.e. with carbonate hardness of water. Measurement results of electrical conductivity of groundwater of the Kamniskobistrisko polje are presented in Figure 2. Figure 1. Monitoring point locations in the Kamniškobistriško polje Figure 2. Electrical conductivity of groundwater of the Kamniskobistrisko polje aquifer Most values of electrical conductivity in the groundwater of the Kamniskobistrisko polje range between 500 pS/cm and 600 pS/cm. Significantly lower values between 300 pS/cm and 350 pS/cm were measured in water from the deep dolomite aquifer, in well M-1, which also comprises the dolomite on the western fringes of the Kamniskobistrisko polje, and in piezometer K-1, which is located in the northern part of the Kamniskobistrisko polje near Duplica. The lower values of electrical conductivity in the wells from the lower dolomite aquifer reflect a lesser quantity of dissolved carbonates in groundwater, which indicates that the hydrochemical properties of both aq- uifers are distinctly different due to their different recharge areas of precipitation. A deviation from the typical values of electrical conductivity in the lower dolomite aquifer is observed only in the deep well VDG-4, which has a slightly lower value than water from other observation points in the upper Kamniskobistrisko polje aquifer, and higher than water from the lower aquifer. Similar characteristics of well VDG-4 are observed also with regard to other hydrochemical and isotope parameters, which are presented further in this report. Thus it can be concluded that water from the lower and upper aquifer of the Kamniskobistrisko polje is mixed in this well. Figure 3. Concentration ofHCO3 ingroundwaterfrom the Kamniskobistrisko polje aquifer HCO3 in groundwater It is evident from Figure 3 that a higher concentration of HCO3 is observed in groundwater from the upper Kamniskobistrisko polje aquifer, where HCO3 concentrations range between 300 mg/l and 380 mg/l, whereas water from deep wells in the lower dolomite aquifer shows lower concentrations of HCO3, between 220 mg/l and 250 mg/l. A higher concentration of HCO3 reflects a low-altitude aquifer recharge area in the Kamniskobistrisko polje, where the production of soil CO2 is bigger due to a higher average soil temperature. This in turn results also in a higher mineralization of groundwater. Map on Figure 4 shows spatial characteristics of the HCO3 pa- rameter in groundwater from Kamniškobistriško polje aquifer. the Because the HCO3 parameter, similar as electrical conductivity, reflects the quantity of dissolved carbonate in water, a considerable degree of correlation between the two parameters may be expected. Figure 5 shows the relation between electrical conductivity and the concentration of HCO3 in groundwater from the Kamniskobistrisko polje. The chart also clearly shows the substantial difference between the carbonate chemistry of water from the upper and lower aquifer of the Kamniskobistrisko polje. Calcium and magnesium Figure 6 presents the characteristics of calcium and magnesium distribution in 220 urbanc, j., cerar, s., strazar, a. Figure 4. Spatial characteristics of HCO3 concentration in groundwater from the Kamniskobistrisko polje aquifer Figure 5. Relation between electrical conductivity and HCO3 content in groundwater from the Kamniškobistriško polje Figure 6. Calcium and magnesium content in the Kamniškobistriško polje groundwater the Kamniskobistrisko polje ground-water. Values of calcium content in ground-water from the lower aquifer are about 50 mg/l, whereas they are considerably higher in the upper aquifer, approximately between 80 mg/l and 110 mg/l. Compared to calcium, magnesium concentration in groundwater from the Kamniskobistrisko polje show a substantially smaller span, from 19 mg/l to 24 mg/l. In this case the difference between groundwater from the upper and lower aquifer is not as pronounced. The characteristics of the molar ratio between calcium and magnesium in the groundwater of the Kamniskobistrisko polje are shown in Figure 7. Most values of the Ca/Mg molar ratio in the upper aquifer lie in the interval between 2.5 and 3.5, which means a marked predominence of calcium from limestone in the aquifer's recharge area. In the lower aquifer the molar ratio is between 1.3 and 1.6, which is close to the theoretical ratio typical of dolomites. On the basis of these facts it can be concluded that dolomites prevail in the recharge area of the lower aquifer, while the upper aquifer's recharge area is composed of considerably more limestone rocks. We can assume that the lower aquifer mainly recharges in the dolomites outcropping on the western border of the Kamniskobistrisko polje in the area of Dobeno, Debeli Vrh and Sinkov Turn. Groundwater nitrate Nitrates in groundwater usually originate from the use of fertilizers on agricultural areas or from the influence of waste water on the aquifer. Because waste water drainage is regulated in this area, we assume that nitrates in the Kamniskobistrisko polje aquifer mostly originate from agricultural activities. Figure 8 shows average nitrate concentrations in individual monitoring facilities in the area of the Kamniskobistrisko polje. Most nitrate concentrations in the upper Kamniskobistrisko polje aquifer lie within the interval between 25 mg/l and 40 mg/l. Markedly lower nitrate concentrations are observed in the lower Kamniskobistrisko polje aquifer, where they average at 6 mg/l at the most. Sodium and chlorides The average concentration of sodium and chlorides in the groundwater of the Kamniskobistrisko polje is presented in Figure 10. The lowest sodium and chloride contents are found in groundwater from the lower Kamniskobistrisko polje Figure 7. Molar ratio between calcium and magnesium in the groundwater of the Kamniskobistrisko polje 45 -40 35 - 30 £25 « a 20 52 15 -10 5 -0 < ...... ...... ..... ..... — n - n [—i \ % ^ > 'V 'b > 'b te \ \ P /// c c c v- Zn or Ni > Pb > Cu or Co. The highest values of Co, Cr and Zn are found in the Sticna grasslands, Ni in the Zapla-na forest and Pb in the Dolic forest. The lowest values of all elements are Max SD CV Skew. Kurt. S-W 65 14.293 53.0 0.68 -0.05 yes 250 55.233 43.2 0.09 -0.93 yes 117 17.137 59.0 3.53 15.63 no 133 30.873 47.7 0.04 -0.69 yes 255 39.160 94.5 4.06 19.60 no 710 103.739 127.2 4.96 28.43 no 43 10.210 50.55 0.55 -0.47 yes 190 49.569 47.85 0.36 -1.01 yes 117 23.463 84.04 3.05 9.64 no 133 35.008 61.90 0.51 -0.58 yes 255 46.574 106.43 4.15 19.31 no 275 50.398 80.82 3.35 13.80 no 65 14.752 43.75 0.36 -0.56 yes 250 50.470 33.19 -0.14 -0.65 yes 50 6.817 22.60 0.90 2.43 yes 119 24.145 33.17 -0.17 -0.39 yes 165 30.831 78.81 3.10 11.76 no 710 136.610 135.53 4.06 17.90 no always found in forests - Co, Cr, Cu and Zn in Dolic, Ni in Postojna and Pb in Dole. The variation sequence according to CV also differs for all data, forest and grassland, but the values are very high in all cases. For all data, it is Zn > Pb > Cu > Co > Cr > Ni, for forest Pb > Cu > Zn > Ni > Co > Cr and for grassland Zn > Pb > Co > Cr > Ni > Cu. Most statistical analyses demand a normal distribution of the data. The normality of the distribution was tested visually from histogram and normal probability plots, with comparisons of the mean, geometric mean and median, testing of skewness and kurtosis and with Shapiro-Wilk's test, as proposed by Madansky (1988). The distribution is not normal for Co, Cr and Ni and extremely positively skewed for Cu, Pb and Zn. For all three elements, the deviation from normality is mainly caused by five outliers (s3, s13, s25, s30 and s40), with three of them being in forests (Postojna, Stična, Dolič) and two in meadows (Postojna and Stična). Except in outlier s3 where only the Cu, and s40 where only the Zn content is very high, in the rest of them two elements exhibit extreme values - in s13 Cu and Zn, in s25 and s30 Pb and Zn. Omitting outliers from the datasets improves the distribution to normal. Coefficients of variation remain around 30 due to the very low values recorded for every analysed element. As it was uncertain if the extreme values are real or perhaps just the consequence of an error, we transformed all the data to a more symmetric distribution with a Box-Cox transformation (Box & cox, 1964). This transformation improved the normality of the distribution of all variables except Pb, which remained a little skewed. If we replace the outliers of critical elements with mean values for the appropriate vegetation type (forest Cu 28, Pb 44, Zn 62, and meadow Pb 39, Zn 101), the distributions become normal for all elements except Zn. All of the statistical analyses were performed with parametric statistics for the Box-Cox transformed data and the data with outliers changed by mean values - so-called corrected data. The results with the original data are presented in the box-whisker diagrams. The correlations were computed on raw data (Table 3), mean-replaced outliers data, and Box-Cox transformed data with a nonparametric Spearman correlation coefficient as proposed by Swan & Sandilands (1995). All three matrices are similar, showing a really good correlation among Co - Cr - Ni and a less persuasive one of Cu with this group of elements, and Zn and between Pb, and Zn. Table 3. Nonparametric Spearman correlation coefficients of raw data (n = 50). The 95 % statistically significant values are in bold. Co Cr 0.79 Cr Cu 0.54 0.54 Cu Ni 0.73 0.78 0.39 Ni Pb 0.01 0.08 0.05 -0.12 Pb Zn 0.18 0.18 0.46 0.01 0.45 The comparison of the metal content in soils covered with different types of vegetation was first assessed with a t-test. The Box-Cox transformed data results (Table 4) indicate statistically significant differences in Co, Cr, Cu and Ni content between the forest and grassland soils. Data with the replaced outliers (Table 4) give the same result for Co, Cr and Cu as the Box-Cox transformed data, but show no differences in Ni and in addition differences in Zn. Raw data (Table 2, Figure 1) generally show a lower mean content of all elements, except Pb in the forest soils and the high variability of Cu and Pb in the forest and Zn in the meadow soils. Enrichment in meadow soils is most pronounced for Co (1.7-times), followed by Zn (1.6-times), Cr (1.5-times), Ni (1.3-times ) and Cu (1.1-times ). If we disregard the outliers, the sequence is Co (1. 7-times ), Cr (1.5-times ), Cu (1.4-times ) = Zn (1.4-times ) and Ni (1.3-times ). In both cases, the Pb values are just a little higher in the forest soils. Table 4. t-test and F-test results of Box-Cox transformed (first row) and corrected (second row) data. Statistically significant results are in bold. t P F P Co -3.76 0.00 1.14 0.76 -3.77 0.00 2.09 0.08 Cr -3.44 0.00 1.16 0.72 -3.43 0.00 1.04 0.93 Cu -2.55 0.01 5.53 0.00 -4.14 0.00 1.05 0.91 Ni -2.03 0.05 2.26 0.05 -1.91 0.06 2.10 0.07 Pb 0.04 0.97 1.90 0.12 0.28 0.78 1.12 0.78 Zn -1.73 0.09 1.08 0.85 -2.47 0.02 2.64 0.02 The high variability of the data and/ or the existence of outliers seem to hinder the interpretation so a hierarchical nested analysis of variance was performed taking the influence of not only vegetation into consideration, but also the geographical position of the sampling location, the place of the sample in each sampling profile and analytical replications. A method using the expected MS and a Type III calculation of SS was applied. The results for the Box-Cox transformed data and corrected data are presented in Table 5 and Figure 2. It is obvious that the vegetation type is never the main source of variation for any element. The influence of vegetation is highest for corrected values of Cu (28 %), where it is also statistically significant. For Co and Cr, the proportion for the vegetation level is around 15 %, but not significant, for corrected Zn around 10 %, and practically 0 for Ni, Pb and non-corrected Zn. The statistical significance of the corrected Zn is unreliable due to high analytical error. The same is true for the corrected Pb and non-corrected Zn results so any further statistical inference regarding these two elements is limited. A quite obvious feature of the data is the statistically significant variability at a small scale, i.e. comparison of 0 m and 1 m, for Co, Cr, Cu, Ni and it seems that it could also hold true for Pb and Zn. It is significant and within a range of between 10 % for Co to 75 % (50 % for cor- rected data) for Cu. For Co, the next and for Cr and Ni it is location. For all statistically significant source of vari- of them, variance at the location level ance is variability on a 100 m scale, comprises 20-60 %. (■west mMiioAF meadmv Figure 1. Box-whisker graphs of metals (mg kg1) in the forest and meadow soils. Entral dot - Mean, box - Mean ± Standard error, whisker - Non-Outlier Range, external dots - outliers. Table 5. Hierarchical nested ANOVA results for Box-Cox (first row) and replaced outliers (second row) data. Statistically significant differences at 95 % probability are shown in bold. Vegetation Location 100 m 10 m 1 m Analytics Co 13.8 41.4 24.4 5.6 9.8 5.0 15.2 37.9 32.2 0.0 10.2 4.5 Cr 15.6 47.6 14.0 0.4 15.1 7.3 16.3 42.5 16.0 0.0 16.8 8.4 Cu 8.6 12.2 0.0 0.0 75.1 3.7 28.0 5.0 14.9 0.0 47.9 4.2 Ni 0.0 57.1 15.4 0.0 25.3 2.3 0.0 57.2 17.7 0.0 22.7 2.4 Pb 0.0 8.5 29.4 0.0 47.9 14.2 0.0 33.2 0.0 10.2 25.5 31.1 Zn 1.5 0.0 56.0 3.4 0.0 39.2 9.7 0.0 0.0 19.4 18.9 52.0 Co Cr Cu Ni Pb Zn Figure 2. Estimated relative variance (%) the contributions of vegetation, location, 100 m, 10 m, 1 m and analytical error factors for metals in soils. Discussion Before making any conclusions about the role of vegetation cover in metal content in soils, it is important to establish that we are dealing with natural values and that the soils are not polluted due to human activity. The observed Co, Cr and Ni values are quite high. Their mean values for both vegetation types and even median values for the meadows are above the Slovenian legal limit (Uradni list RS, 1996) and in the case of Cr and Ni even above the action value (Table 6). They are also above the Slovenian (Pirc & Šajn, 1997) and European median values (De Vos & Tarvainen, 2006). For Cu, Pb and Zn the mean and median values are within the normal range for Slovenia and Europe (Table 6). Only 19 individual Co values are below 20 mg kg1, with the majority of them being sampled in forest at the Dolič location. Four values higher than 50 mg kg1 were all sampled in Stična (three) and Dole (one) grasslands. The high Co values in soil are very often geogene, related to mafic or ultramafic rocks, but they could also be the result of adsorption and coprecipitation processes with Fe and/or Mn from lithologies rich in these metals. Co may also bind to humic and fulvic acids and inorganic colloids (Qian et al., 1998). The karst soils of Slovenia exhibit a high Co content > 14.4 mg kg-1 that is probably related to the bauxite and Fe-Mn rich rocks (De Vos & Tarvainen, 2006). Nearly the same 19 samples have Cr values above the limit value of 100 mg kg-1 and 19 samples, again mainly sampled in the meadows, have values above the action value of 150 mg kg-1. In soils, Cr behaviour is governed by pH, Eh and organic matter. Its adsorption by clays is also highly dependent on pH. The dominant effect of organic matter is the stimulation of the reduction of Cr64" to Cr3+, the rate of which increases with soil acidity (Kabata-Pendias & Pendias, 2001). De Vos & Tarvainen (2006) reported that high Cr values in Slovenia are found over carbonate rocks so the observed contents seem to be natural. Also for Ni, only 17 values below the limit (50 mg kg-1) are observed mainly in the forest soils and at the Dolic location. Twenty-five values mainly from the Zaplana and Dole forests and grasslands are even above the action value (70 mg kg1). Organic matter can contain Ni concentrations in excess of 50 mg kg1, but high values of Ni (>37.4 mg kg1) are found in Slovenia in residual soils over carbonate rocks (De Vos & Tarvainen, 2006). Several authors (De Vos & Tarvainen, 2006; Zhang et al., 2002) have established a strong correlation between Co, Ni, Cr and Cu, which is also the case in our study. Spearman's correlation coefficients above 0.7 support a similar geochemical behaviour and origin of Co, Cr and Ni. The observed high values seem to be natural and not influenced by human activity. Cu content is above the limit value of 60 mg kg1 only in one forest sample from Stična and one from Postojna. In both sampling areas no obvious pollution source was documented and the nearby samples also do not exhibit any Cu increase. The reason for the elevated Cu could be analytical error or natural local concentration due to one or a combination of reasons. In unmineralised sediments, Cu concentrations are principally determined by mafic detritus, secondary Fe and Mn oxides (Forbes et al., 1976), clay minerals (Heydeman, 1959) and organic matter (Stevenson & Ardakani, 1972). Further, the affinity of Cu for natural organic matter has been widely documented (Rashid, 1974; Rippey, 1982). Table 6. A comparison of the forest and meadow soils' metal content (mg kg 1) with other work. All values are rounded off to the nearest integer value: a - Uradni list RS, 68/96 (1996), b- Pirc & Sajn (1997), c - De Vos & Tarvainen (2006) Co This study Me forest 16 Me meadow 32 This study Mean forest 20 Mean meadow 34 Slovene Lawa Limit Value 20 Slovene Lawa Action value 50 Slovene Lawa Critical Value 240 Sloveniab Me Europec Me 8 The quality of the Pb and Zn analytics is not sufficient to allow any serious interpretation. In spite of this, some comments are presented. Just two Pb values, one from a Postojna meadow and the other from a Dolič forest, are above the Slovenian legal action value. In both cases, this could be just an analytical error or a natural reason. Pb in soils is mainly associated with clay minerals, Mn oxides, Fe and Al hydroxides and organic matter. In some soil types, Pb may be highly concentrated in Ca carbonate particles (Ka-bata-Pendias & Pendias, 2001). In the same two samples the Zn limit value is also exceeded. In one sample from the Stična meadows the Zn content is very close to the critical value. Zn content in soil depends on the nature of the parent rocks, texture, organic matter and pH, and ranges from 10 mg kg-1 to 300 mg kg-1 (Mihaljevic, Cr Cu Ni Pb Zn 98 21 48 36 52 160 29 74 33 63 104 28 57 44 62 152 30 73 39 101 100 60 50 85 200 150 100 70 100 300 380 300 210 530 720 42 23 31 34 77 60 13 18 23 52 1999). Since Zn is easily adsorbed by mineral and organic components in most soil types, it normally accumulates in the surface horizons (Kabata-Pendias & Pendias, 2001). High Zn values (>76 mg kg1) occur in karstic Slovenia (De Vos & Tarvainen, 2006). The three observed values are above this, but could still be just a coincidence and do not prove pollution. No possible contamination was established at the mentioned locations and the samples from very near positions have a normal Zn content. In subsoil and topsoil Pb is strongly correlated with Zn (Baize & Stercke-man, 2001), which is also true for our data. A simple comparison of the forest and meadow metal contents in the soils indicates lower values of Co, Cr, Cu, Ni and Zn in forest soils and the nearly equal content of Pb in both types. For the first four elements, the difference is statistically significant at a 95 % probability level. An analysis of variance was unable to confirm the result, except for Cu, due to the very high variability at lower levels, especially the location, 100 m and 1 m. Our results are in line with Bai et al. (2010) who established a relatively large difference in the effect of the accumulation of Cr, Ni, Cu, and Zn in soils under different land use patterns (i.e. greenhouse, vegetable field, maize field and forest field), except Pb, with less accumulation in the forest soils. The agricultural chemical compound and application of manures, especially the quantity and quality of the applied fertilisers, is a main factor leading to the different accumulation of metals in soils (Bai et al., 2010), which could at least also hold true for the meadows. On the contrary, in their study Zhang et al. (2002) claimed that the total concentrations of trace elements followed the pattern: farmland ~ shrub > forests > meadow > prairie > marsh and others. Also some other authors have found higher values of some elements in forest compared with grassland or agricultural soils, for example Baize & Sterckeman (2001) for Zn and Cd and Rusjan et al. (2006) for Cd and Co. In the latter case, the differences were not statistically significant. Baize & Sterckeman (2001) explain the difference as a consequence of unequal inheritance between the thinner very clayey soils below the wood, and the thicker less clayey soils of the cultivated part. It seems that to make a detailed interpretation of metals in soils a precise determination of the pedological and mineralogical characteristics should also be considered, i.e. the type and content of clay minerals, organic matter and soil pH. Conclusions The influence of vegetation cover, i.e. forest and meadow, on the Co, Cr, Cu, Ni, Pb and Zn content in soils was tested at five locations where four samples were taken at different distances from the starting point. According to the added standard materials and replicate samples, the analytics proved satisfactory for Co, Cr, Cu, and Ni, but was less good for Pb and Zn. The metal abundance sequence is in most cases Cr > Zn or Ni > Pb > Cu or Co. The data variation is quite high with extremely low and high values. When considering the whole dataset it is Zn > Pb > Cu > Co > Cr > Ni. Due to the outliers, the distribution of no elements for all samples is normal. Normality was achieved by a Box-Cox transformation and by replacing extremely high values with mean values for selected elements in appropriate soils, i.e. grass or forest covered. Although Co, Cr and Ni exhibit very high absolute values, which even exceed the limits permitted by Slovenian law in the majority of samples, one can be relatively confident that they are not caused by pollution. They are probably related to bauxite and Fe-Mn rich carbonates, which are typical for some karstic soils developed on carbonates. They are also highly correlated, which could support their common origin. The Cu, Pb and Zn values are higher than expected just in a few cases. We could not establish any pollution source so we interpret these values as accidental. It is unsure if the observed values are some kind of analytical error or just natural variability in clay and/or organic matter content in soils. The analysis of variance helped reveal very variable geochemical conditions on a small scale, i.e. the statistically different element content of samples from the same location and under the same vegetation cover in the profiles where samples were just 1 m, 10 m or 100 m apart. Moreover the variance component due to different sampling locations (Postojna, Zaplana, Stična, Dole and Dolič) is quite high (approximately 30 % to 60 %) for Co, Cr, Ni and Pb, but statistically significant only for Cr and Ni, as for the other three elements the high variability at lower levels (Co on 100 m, Cu on 1 m, Pb on 1 m or analytics and Zn on 100 m and analytics) prevented any statistically significant confirmation of higher factors. The high variability at lower levels is also a reason why the analysis of variance did not prove the influence of vegetation cover on metal content in soil, except for Cu in the case of corrected data. The share of variance in the case of the corrected Cu data is nearly 30 %, but half of that for Co and Cr, practically zero for Ni and Pb, and around 10 % for the corrected Zn. In spite of this, a t-test managed to show statistically significantly higher values of all elements, except Pb, in the soils covered by grassland. The reason for the higher metal content in the meadow soils could be the application of manures. In our study, the meadow soils are 1.7-times enriched with Co, 1.6-times with Zn, 1.5-times with Cr, 1.3-times with Ni, and 1.1-times with Cu regarding the forest soil. If we disregard the outliers, the sequence is Co (1.7 -times ), Cr (1.5-times ), Cu (1.4-times ) = Zn (1.4-times ) and Ni (1.3-times ). In both cases, the Pb values are just a little higher in the forest soils. In the case of Pb and Zn, the results are merely indicative due to the low analytical quality. We can still conclude that, where possible, vegetation cover should be considered when designing the sampling and interpreting the data. References Abbey, S. (1983). Studies in "Standard Samples" of silicate rocks and minerals 1969-1982. Geological Survey of Canada, Ottawa, 114 p. Allcot, G. & Lakin, H. (1978): Tabulation of geochemical data furnished by 109 laboratories for six geochemical exploration reference samples. United States Department of the Interiory Geological Survey, Washington, 199 p. Bai, L., Zeng, X., LI, L., Pen, C. & Li, S. (2010): Effects of land use on heavy metal accumulation in soils and sources analysis. Agricultural Sciences in China, Vol. 9, pp. 1650-1658. Baize, D. & Sterckeman, T. (2001): Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, Vol. 264,pp. 127-139. Bini, C., Sarton, G., Wahsha, M. & Fontana, S. (2011): Background levels of trace elements and soil geochemistry at regional level in NE Italy. Journal of Geochemical Exploration, Vol. 109, pp.125-133. Box, G. E. P. & Cox, D. R. (1964): An analysis of transformations. Journal of the Royal Statistical Society (B), Vol. 26, pp. 211- 252. De Vos, W. & Tarvainenen, T. (Chief editors) (2006): Geochemical Atlas of Europe, Part 2. Inetrpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Geological Survey of Finland. Espoo, 690 p. Forbes, E. A., Posner, A. M. & QuiVK, J. P. (1976): The specific adsorption of divalent Cd, Co, Cu, Pb, Zn on goe-thite. Journal of Soil Science, Vol. 27, pp.154-165. Heydeman, A. (1959): Adsorption aus sehr verdunnten Kupferlosungen an reinen Tonmineral. Geochimica et Cosmochimica Acta, Vol. 15, pp. 305329. Imrie, C. E., Korre, A., Munoz-Melen-dez, G., Thornton, I. & Durucan, S. (2008): Application of factorial krig-ing to the FOREGS European topsoil geochemistry database. Science of the Total Environment, Vol. 393, pp. 96-110. Kabata-Pendias, A. & Pendias, H. (2001): Trace Elements in Soils and Plants. 3th ed. CRC Press, Boca Raton, 413 p. Küfmann, C. (2003): Soil types and eo-lian dust in high-mountainous karst of the orthern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany). Catena, Vol.53, pp. 211-227. Madansky, A. (1988): Prescriptions for Working Statisticians. Springer-Verlag, New York, 295 p. Mihaljevic, M. (1999). Zinc. In: Marshall, C. P. & Fairbridge, R. W. (eds.), Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 51 p. Pirc, s. & Šajn, R. (1997): Vloga geokem-ije v ugotavljanju kemične obremenitve okolja. - Kemizacija okolja in življenja - Do katere mere?. Zbornik projekta Evropskega leta varstva narave 1995, Slovensko ekološko gibanje, Ljubljana, pp. 165-186. Qian, J., Xue, H. B., Sigg, L. & Albrecht, A. (1998): Complexation of cobalt by natural ligands in fresh water. Environmental Science and Technology, Vol. 32, pp. 2043-2050. Rashid, M. A. (1974): Adsorption of metals on sedimentary and peat humic acids. Chemical Geology, Vol. 13, pp. 115-123. Rippey, B. (1982): Sediment-water interactions of Cu, Zn and Pb discharged from a domestic waste source into a bay of Lough Neagh, Northern Ireland. Environmental Pollution (B), Vol. 3, pp. 199-214. Rusjan D., Strlič M., Pucko D., Selih V. S. & KoroSec-Koruza Z. (2006): Vineyard soil characteristics related to content of transition metals in a sub-Mediterranean winegrowing region of Slovenia. Geoderma, Vol. 136, pp. 930-936. Stevenson, F. J. & Ardakani, M. S. (1972): Organic matter reactions involving micronutritiens in soils. In: Mortveldt, J. J., Giordano, P. M. & Lindsay, W. L. (Eds.), Micronutritiens in agriculture. Soil Science Society of America, Madison, Wisconsin, pp. 79-104. Swan, A. R. H. & Sandilands, M. (1995): Introduction to Geological Data Analysis. Blackwell Science, Oxford, 446 p. Uradni list RS (68/1996): Uredba o mejnih, opozorilnih in kriticnih emisijskih vrednostih nevarnih snovi v tleh, Ljubljana. Xia, X., Chen, X., Liu, R. & Liu, H. (2011): Heavy metals in urban soils with various types of land use in Beijing, China. Journal of Hazardous Materials, Vol. 186, pp. 2043-2050. Zhang, X. P., Deng, W. & Yang, X. M. (2002): The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. Journal of Asian Earth Sciences, Vol. 21, pp. 167-174. Zhao Y. G., Zhang G. L., Zepp H. & Yang J. L. (2007): Establishing a spatial grouping base for surface soil properties along urban-rural gradient - A case study in Nanjing, China. Catena, Vol. 69, pp. 74-81. ki v mr^-- aLi ' V'-' f Sedemdeset let življenja in dela profesorja geologije v dr. Jožeta Carja Jože Čar se je rodil 23. aprila 1942 v Idriji. Po diplomi iz geologije leta 1968 se je zaposlil v rudniku živega srebra v Idriji. Kot rudniški geolog, na koncu tudi vodja rudniške geološke službe, je bil v zelo kompleksnih geoloških razmerah rudišča vrsto let odgovoren za reševanje operativnih problemov, ki so pogosto zahtevali sprotni odziv, predvsem pa izjemno geološko znanje, prostorsko predstavo in veliko natančnost, sistematičnost in profesionalnost pri geološkem delu. Ob Ivanu Mlakarju in Ladislavu Placerju je postal eden od nosilcev te neformalne idrijske geološke šole, ki ji slovenska geološka znanost zelo veliko dolguje. Njegova osnovna specializacija je bila sedimentologija; za to področje se je usposabljal tudi v Nemčiji. Leta 1985 je zagovarjal doktorsko disertacijo Razvoj srednjetriasnih sedimentov v idrijskem tektonskem jarku. Vmes je bil nekaj časa, sledeč svojemu drugemu velikemu zanimanju, geologiji krasa, zaposlen kot raziskovalec na Inštitutu za raziskovanje krasa v Postojni. Leta 1989 je z nazivom izrednega profesorja na študiju geologije na takratni Fakulteti za naravoslovje in tehnologijo začel predavati predmeta Sedimentna petrologija in Facielna analiza, kasneje še predmet Tektonika. Njegova predavanja so bila vedno skrbno pripravljena in podajana, saj je imel pravo žilico in veliko veselje do pedagoškega dela, saj je pred zaposlitvijo na fakulteti ob opravljanju geološkega poklica celo 8 let poučeval geologijo na gimnaziji v Idriji. Zelo skrbno je pripravljal terenske vaje pri svojih predmetih, ki jih je najraje organiziral v območju Idrije in njene okolice, ki ga pač iz svoje prakse najbolje pozna, in kjer smo študenti tudi imeli kaj videti in spoznati. Njegove terenske vaje niso bile izleti, ampak trdo delo, pri katerem smo študenti pridobivali dragoceno praktično znanje in izkušnje. Gorje študentu, ki je na terenskih vajah »zabušaval« ali ki je oddal malomarno izdelano poročilo! Profesor je vložil veliko časa in truda, da je študentska poročila pregledal in popravil, tudi slovnično, in nas s tem navajal k doslednemu in profesionalnemu strokovnemu delu. Kot mentor je kar najpogosteje poudarjal pomen natančnega terenskega dela, zlasti geološkega kartiranja, in je študente upravičeno opozarjal, da je to neobhodna podlaga kakršnega koli tehtnega raziskovalnega dela v geologiji. S svojimi študenti, pa tudi s študenti, ki so pri njem le opravljali kak podiplomski izpit, ali pa so ga preprosto prosili za pomoč, je na terenu preživel neštete ure in nanje prenašal svoje izjemno znanje in izkušnje iz kartiranja. Vedno je zelo zavzeto in brez zadržka podpiral svoje študente pri razvijanju novih idej in dopolnjevanju znanja v tujini. Na oddelku za geologijo, pa tudi v širši strokovni javnosti je imel veliko avtoriteto. Vedno je bil zelo takten in diplomatski, vendar pa je nepopustljivo zagovarjal strokovna in etična načela, ki se jih je trudil vzpostaviti v pedagoškem in raziskovalnem delovanju na fakulteti in v geološki stroki. Po našem mnenju se je vse prehitro upokojil konec leta 1998, ker so mu to omogočala leta zaposlitve v rudniku. A tudi pri tem je sledil svoji trezni življenjski modrosti, saj se je želel ukvarjati še s čim drugim kot z vse bolj stresnim profesorskim delom na fakulteti. Profesor spada v krog uglednih idrijskih intelektualcev in se je vse življenje udejstvoval tudi na kuturnem področju, med drugim je denimo urejal Idrijske razglede in revijo Kaplje. Veliko deluje na področju popularizacije geologije v širši javnosti, precejšen je tudi njegov prispevek pri raziskavah zgodovine geoloških in naravoslovnih raziskav, zlasti seveda v območju njegove Idrije. Vseeno se tudi po upokojitvi občasno ukvarja z raziskovalnimi nalogami in ekspertizami in, kot prostodušno prizna, »kartira, ker ga veseli in da ostane v formi«. Še dolgo časa po upokojitvi se je zavzeto angažiral pri izvedbi terenskih vaj za študente na »njegovih« terenih. Njegov znanstveni prispevek je največji na področju triasne sedimentologije in tektonike, posebej iz območja srednjetriasnega Idrijskega tektonskega jarka. Na tem prodročju je prispeval nekaj ključnih del. Bil je pionir, v svetovnem merilu, pri preučevanju vpliva geoloških struktur na oblikovanje kraških jam in vrtač. Njegovo zadnje veliko delo je geološka karta idrijsko-cerkljanskega ozemlja v merilu 1 : 25 000, ki je po eni strani spomenik idrijski geološki šoli, po drugi strani pa zakladnica geoloških podatkov, ki bo še dolgo časa navdihovala nadaljnje raziskave tega zanimivega in geološko pomembnega dela Dinaridov. Še na mnoga leta, Jože! Marko Vrabec Geophysical evidence of recent activity of the Idrija fault, Kanomlja, NW Slovenia Geofizikalni dokazi za recentno aktivnost Idrijskega preloma v dolini Kanomlje Miloš Bavec1, *, Marjeta Car2, Robert Stopar2, Petra Jamšek1 & Andrej Gosar3, 4 Geological Survey of Slovenia, Dimičeva 14, SI-1000 Ljubljana, Slovenia 2Geoinženiring, d. o. o., Dimičeva 14, SI-1000 Ljubljana, Slovenia 3University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, SI-1000 Ljubljana, Slovenia 4Slovenian Environment Agency, Seismology and Geology Office, Dunajska 47, SI-1000 Ljubljana, Slovenia Corresponding author. E-mail: milos.bavec@geo-zs.si Received: October 3, 2012 Accepted: November 5, 2012 Abstract: In the Kanomlja valley NW of Idrija, previous geomorpho-logical survey indicated a site where (sub)recent activity of the Idrija fault may be best preserved in relatively young succession of terrestrial deposits. In 2011 a set of geophysical investigations followed geological reconnaissance of the narrowest area of interest. A small alluvial plain of the Kanomlja tributary was surveyed by electrical resistivity tomography and seismic refraction tomography. The results showed remarkably clear and converging evidence of potential activity of the fault in (sub)recent time. A paleoseis-mological trench is foreseen at the site in late 2012 to further investigate this phenomenon. Izvleček: V Srednji Kanomlji so predhodne geomorfološke raziskave nakazale lokacijo, kjer bi se lahko v sorazmerno mladih terestrič-nih sedimentih ohranila sled (sub)recentne aktivnosti Idrijskega preloma. V letu 2011 smo zato v okolici sistema teras Kanomljine-ga pritoka Bratuševa grapa izvedli geološki in geomorfološki pregled, ki so mu sledile geofizikalne raziskave z metodama električ- ne upornostne tomografije in refrakcijske seizmične tomografije. Rezultati nakazujejo relativno mlado aktivnost Idrijskega preloma na tem območju. S preiskavo smo omejili območje največjih deformacij in nakazali območje verjetno najmlajše deformacije, kjer bomo pred koncem leta 2012 naredili paleoseizmološki jarek. Key words: Idrija fault, paleoseismology, active tectonics, Kanomlja Ključne besede: Idrijski prelom, paleoseizmologija, aktivna tektonika, Kanomlja Introduction The Idrija fault is one of the most, if not the most, prominent NW-SE oriented ("Dinaric-trending") structural features in W Slovenia. It enters the country at its NW tip, passes the town of Idrija, the Planina and Cerknica karst poljes, after which its trace seemingly disappears within the Dinaric thrust structures further to the south. The Idrija fault was first described by Lipold (1857), and its tectonic importance and its significance in seismo-tectonics have been investigated ever since. In the neighborhood of Idrija, the fault plane dips 65° to 75° toward the NE (čar, 2010). The estimated average dip along the full length of the fault is 77.5° and its maximum depth is estimated to 14 km (Kastelic & Carafa, 2012). The fault formed during the Miocene as an obliquenormal fault, and was reactivated as a dextral strike slip fault at the transition from the Miocene to the Pliocene (Vrabec & Fodor, 2006; Čar, 2010). Its activity has been quantified by several methods. From the cumulative displacement of the mercury ore body in the Idrija mine, amounting to 480 m in vertical direction and 2414 m in horizontal direction (Placer, 1982), a long-term slip-rate at around 0.5 mm per year can be postulated. 8-year continuous measurements of recent displacements with a TM-71 exten-someter in the Učja valley in NW Slovenia yield average slip-rates at 0.26 mm per year with extreme values up to 0.54 mm per year (Gosar et al., 2011; čar & Gosar, 2011). By modeling active fault displacements in the eastern Adriatic region using a thin-shell finite element method Kastelic & carafa (2012) calculated slip-rates between 0.06 mm and 0.22 mm per year for the Idrija fault with 0.10 mm per year on the average. The strongest historic seismic event on the Idrija fault might be the destructive W Slovenia earthquake in 1511 (estimated magnitude 6.8 and maximum intesity X EMS-98; Cecic, 2011). It has to be noted that the his- toric data does not allow univocal allocation of this particular event to the fault itself (Živčic et al., 2011) and that alternative interpretations of the seismic source are also proposed for the 1511 event (Camassi et al., 2011; Košir & Cecic, 2011). In the Kanomlja valley, 5 km NW of the town of Idrija, airborne LiDAR survey disclosed several geomor-phic indicators of Idrija fault recent activity, such as displaced streams, truncated fluvial terraces, dry val- leys, bent ridges, etc. (Cunningham et al., 2006). This was the first application of airborne laser scanning for the purpose of mapping active faults in Europe. Detailed geomorphic field surveying confirmed the suggestion of Cunningham et al. (2006) to focus paleoseismological study to the area south of Kapa hill (Figure 1). We conducted a geophysical survey in this area in order to investigate indications of recent activity and to find an appropriate location for paleoseis-mological trenching. Figure 1. Location map on the 2 m grid Digital Elevation Model of bare ground from the LiDAR survey (Cunningham et al., 2006). Geologic setting By detailed geomorphological and geological mapping of the near vicinity of the target area proposed by Cunningham et al. (2006), we first defined an approximate location such that the fault trace is well expressed and where young sediments are available, for paleoseismological investigations fault deformations must be investigated in young and datable sediments. Both demands were met in the Bratuseva grapa system of fluvial terraces and its near vicinity (Figure 2 and 3). In the W part of the terrace system the Mesozoic carbonate rocks (pre-Quaternary bedrock) outcrop along the stream channel and are covered by a thin veneer of loose terrestrial deposits of fluvial and slope mass wasting origin (young deposits). Toward the E, the bedrock does not outcrop along the stream anymore; instead the whole outcrop consists of young deposits. We infer that the fault is located where the thickness of young deposits changes from negligible to significant (Figure 4 and 5). At the same locality, the topographically best expressed fault trace crosses the system of fluvial terraces (Figure 3) and the fault probably affects their for- Figure 2. Location of geophysical sections A-A' and B-B'. Location of this map is shown as an inset in Figure 1. mation. Additionally, a stream channel bend, suggesting a dextral offset of ap-prox. 40 m, is located immediately to the SE of the locality (Figure 3). All these observations lead us to focus geophysical investigations to this area. Methods In an attempt to better constrain the area of maximum and/or most recent deformation along the selected segment of the Idrija fault, we applied four geophysical methods along two sections crossing the inferred fault trace: electrical resistivity tomography (ERT), seismic refraction tomography (SRT), ground penetrating radar (GPR) and active multichannel analysis of surface waves (MASW). In lack of borehole data, vertical electrical sounding (VES) was also conducted in order to estimate typical resistivity of hard rock and young deposits for further use in ERT. Due to field conditions (presence of low velocity layers, clay content, ground water), GPR and MASW did not yield consistent results, therefore we describe here only results of VES ERT and SRT methods. Figure 3. Outline of main geomorphic features within the Bratuseva grapa terrace system on the 2 m grid Digital Elevation Model of bare ground from the LiDAR survey (Cunningham et al., 2006). Vertical electrical sounding (VES) was conducted using the Schlumberger array with maximum half-distance of probes AB/2 at 10-100 m. Seven VES were performed along the ERT sections and on the outcropping carbonate in the near vicinity of these sections. The measured data were inverted by using RESIXPlus software (Interpex Ltd.). Two methodologically identical ERT sections were measured using the Wenner array. The unit probe spacing was set at 2 m and the total number of levels accomplished was 15. Each section was 190 m long (lines A and B, Figure 2). In this way we believe to achieve the requested depth penetration of 10-12 m. SYSCAL-R2 resistivity meter and compatible Multinode system (both BRGM) were used. Measurements were conducted in stable weather after a long dry period. Data were modeled by applying various 2D algorithm techniques available in RESIX2DI (Interpex Ltd.) software. Along the same trace as the ERT, SRT sections A and B were measured (Figure 2). Geophone spacing was 2 m; shot points were selected at every 3rd geophone. An 8 kg sledgehammer with metal plate was used as a seismic source and two 24-channel ABEM Terraloc VI seismographs were used to record the signal from 4.5 Hz vertical geophones. Relatively good signal-to-noise ratio lead to very accurate first arrival picking and consequently to reliable results. The elevation of each geophone was measured in the field with a leveling instrument for later topographic correction. A three-layer seismic model and velocities were computed by Wayfront method using Rayfract 3.19 software from Intelligent Resources Inc. Same application was further used to compute the final velocity model by 2D WET (Wavepath Eikonal Traveltime) tomography. Geophysical observations ERT- electrical resistivity tomography Electrical resistivity of sediments along both sections varies from few tens ohm-meters to over 1000 Q m (Figure 4). Given the geological context and VES data, we relate modeled resistivities to three lithological equivalents: 1) 40-100 Q m: topsoil, clay and silt with gravel; 2) 100-400 Q m: gravel, clayey/silty gravel, sand and possibly also carbonate bedrock with more terrigenous component; and 3) >400 Q m: relatively highly-resistive carbonate bedrock with minor terrigenous component. Resistivity model (Figure 4) shows four distinctive units that appear in both sections: The surface layer (up to 2 m thick) with low specific electrical resistivity (40-100 Q m) is interpreted as overbank deposit of the Bratuseva grapa creek and organic-rich topsoil. Relatively homogenous high-resistivity unit (>800 Q m) underlying the surface layer in the SW part of both sections and exceeding the surveying target depth of 12 m is interpreted as Mesozoic (carbonate) bedrock. Heterogeneous unit with patchy distribution of subunits of very low resistivity (few tens ohm-meters) and subunits of resistivity between 100 Q m and 250 Q m is interpreted as a sequence of mass wasting events (landslides, sedimentary mass flows), potentially interfin-gered with fluvial sediments of Bratuseva grapa creek. • Heterogeneous unit at 60-95 m in section A (missing in section B) that may resemble a faulted zone (marked as transition zone in Figure 4) within the bedrock. SRT- seismic refraction tomography The final result of SRT is presented on Figure 5. Atop the sections is a thin (1-1.5 m) low-velocity layer (veloc- Figure 4. Electrical resistivity tomography sections A and B. (Stopar & Car, 2011). The main trace of the Idrija fault is inferred at between 60 m and 95 m in section A and between 70 m and 80 m in section B. ity at around 500 m/s) that stretches along the full length of both sections. It is interpreted as overbank deposit of the Bratuseva grapa creek and organic topsoil. Underneath this low-velocity layer, the velocity increases to above 1000 m/s in a layer that stretches along the full length of both sections. The reason for this could be lithological as well as the increase in groundwater content. Below these two layers lies a layer with a significantly higher velocity (above 3000 m/s). This high-velocity layer appears close to the surface (approx. 5 m deep) in the SW parts of both sections, but is much deeper towards the NE. A sharp change in depth of the high-velocity layer is observed between 80 m and 100 m distance in section A, and between 70 m and 80 m distance in section B. The lateral decrease in velocity observed within the layer could be interpreted as a presence of tectonically crushed bedrock, or as juxtaposition of two different bedrock lithologies. Both interpretations are consistent with the fault crossing the sections. Figure 5. Seismic refraction tomography sections A and B. (Stopar & Car, 2011). The main trace of the Idrija fault is inferred at between 80 m and 100 m in section A and between 70 m and 80 m in section B. Interpretation and conclusions Joint interpretation of the two independent geophysical methods is fully consistent with geological and geo-morphological observations, that indicate the presence of a recently active fault. Both methods show a significant change in geophysical properties underneath the surface layer at a depth between 1 m and 5 m. A drastic drop in electrical resistivity coincides with a drop in seismic velocities within that zone, which is only few meters to tens of meters (at most) wide. SW of this zone both sections are interpreted to consist of relatively solid bedrock covered by a veneer of gravel and overbank deposits. NE of the zone the geophysical signature is much more heterogeneous compared to the SW parts. We attribute this geophysical heterogeneity to heterogeneous lithology within the upper few meters of section. Given the geologic setting, we interpret the NW part to consist of deposits of mass wasting (consecutive landslides and/or mass flow events) that are possibly in-terfingered with gravely deposits of the Bratuseva grapa creek. Geophysical surveying indicated a contact between the Mesozoic bedrock and relatively young terrestrial deposits in the area of Bratuseva grapa terrace system, which we attribute to (sub)recent activity of the Idrija fault. However, the amount of displacement can not be inferred from these data. Given the promising result we aim to continue the study by paleoseis-mological trenching in late 2012. According to geophysical observations, a paleoseismological trench should be located between 70 m and 100 m distance along the section A, and between 70 m and 80 m distance along the section B. A potential trenching target is also the area of low resistivity between 55 m and 75 m in the section A. However, for the final decision on a trench site, geomorphic and geologic indicators will also be taken into account in search for the youngest (and not necessarily most prominent) deformation. Acknowledgements This work was supported by the Slovenian Research Agency (P1-0011 - Program Regional Geology and L1-2383 - Project Seismotectonic Model of the Ljubljana Basin) and by the Slovenian Environment Agency (project Elaboration of Geologic Maps). Many thanks go to reviewer Marko Vrabec for his helpful suggestions. We would also like to thank the editorial board for giving us the opportunity to participate in this important special issue. MB, a former graduate of Prof. Jože Čar, would specifically like to express his gratitude to Prof. Čar for showing him at the very beginning of his professional career the beauty of basic geology and the importance of including basic research results in applied geology. References Camassi, R., Caracciolo, C. H., Castel-li, v., Slejko, D. (2011): The 1511 Eastern Alps earthquakes: a critical update and comparison of existing macroseismic datasets. Journal of Seismology, Vol. 15, p. 191-213. Cecic, I. (2011): Idrijski potres 26. marca 1511 : kaj pravzaprav vemo o njem? Geografski obzornik; Vol. 58, No. 1, pp. 24-29, Ljubljana. Cunningham, D., Grebby, S., Tansey, K., Gosar A. & Kastelic, V. (2006): Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophysical Research Letters; Vol. 33, No. 20, L20308, pp. 1-5, Washington. Čar, J. (2010): Geološka zgradba idri-jsko-cerkljanskega hribovja: Tolmač h Geološki karti idrijsko-cerkljan-skega hribovja med Stopnikom in Rovtami v merilu 1: 25 000 = Geological structure of the Idrija - Cerkno hills : Explanatory book to the Geological map of the Idrija - Cerkljansko hills between Stopnik and Rovte 1: 25 000. Geological survey of Slovenija, Ljubljana. Čar, J. & Gosar, A. (2011): Idrijski prelom in premiki ob njem. Idrijski razgledi. Anno Domini 1511; Vol. 56, No. 1, pp. 105-118, Idrija. Gosar, A., Šebela, S., Koštak, B., Stem-berk, J. (2011): On the state of the TM 71 extensometer monitoring in Slovenia : seven years of micro-tectonic displacement measurements. Acta geodynamica et geomaterialia; Vol. 8, No. 4, pp. 389-402. Kastelic, V. & Carafa, M. M. C. (2012): Fault slip rates for the active External Dinarides thrust-and-fold belt. Tectonics; Vol. 31, TC3019, pp. 1-18, Washington. Košir, M., Cecic, I. (2011): Potres 26. marca 1511 v luči novih raziskav. Idrijski razgledi 56/1, p. 90-104. Lipold, M. V. (1857): Bericht über die geologischen Aufnamen in Ober-Krein im Jahre 1856. Jahrbuch k. k. geol. R. A. VII.; pp. 205-226, Wien. Placer, L. (1982): Tektonski razvoj idrijskega rudišča = Structural history of the Idrija mercury deposit. Geologija; Vol. 25, No. 1, pp. 7-94, Ljubljana. Stopar, R. & Car, M. (2011): Geofizikalne preiskave na območju idrijskega preloma v Logu pri Srednji Kanomlji. Internal report, Geoinženiring, Ljubljana. Vrabec, M. & Fodor, L. (2006): Late Cenozoic tectonics of Slovenia : Structural styles at the Northeastern corner of the Adriatic microplate. The Adria microplate: GPS geodesy, tectonics and hazards. NATO Science Series. IV, Earth and Environmental Sciences; Vol. 61, pp. 151168, Dordrecht. Živčic. M., Čarman, M., Gosar, A., Jesenko, T. & Zupančič, P. (2001): Potresi ob Idrijskem prelomu. Idrijski razgledi. Anno Domini 1511; Vol. 56, No. 1, pp. 119-126, Idrija. Characteristics of the Predjama fault near Postojna, SW Slovenia Značilnosti Predjamskega preloma pri Postojni, JZ Slovenija stanka Šebela1, * !ZRC SAZU Karst Research Institute, Titov trg 2, SI-6230 Postojna, Slovenia Corresponding author. E-mail: sebela@zrc-sazu.si Received: August 31, 2012 Accepted: October 10, 2012 Abstract: The course of the Dinaric oriented (NW-SE) Predjama fault in the area of the northern Pivka valley and through Javorniki mountain is not well determined. The position of the Predjama fault through the Pivka flysch valley is mostly determined hypothetically. In the area of Javorniki hills the fault is divided into several parallel strands and accompanied by mostly cross-Dinaric (NE-SW) oriented faults. Pred-jama fault in the area of Postojna was probably not the seismogenic source of Postojna MLV = 3.7 earthquake in 2010. Micro-tectonic deformations detected by TM 71 extensiometers in Postojna cave system on the other hand show minor ongoing aseismic displacements in northern NW-SE oriented fault, which is parallel to the Predjama fault. Izvleček: Potek dinarsko usmerjenega (SZ-JV) Predjamskega preloma na območju severnega dela Pivške kotline in čez Javornike ni dobro ugotovljen. Položaj Predjamskega preloma skozi flišno Pivško kotlino je večinoma določen hipotetično. Na območju Javornikov je prelom razdeljen na več ločenih vzporednih prelomov, ki jih spremljajo predvsem prečno dinarsko (SV-JZ) usmerjeni prelomi. Predjamski prelom na ozemlju Postojne verjetno ni bil izvir potresa MLV = 3.7 v Postojni leta 2010. Mikrotektonske deformacije, ugotovljene z ekstenziometri TM 71 v Postojnskem jamskem sistemu, pa kažejo manjše tektonske aseizmične premike na severnem SZ-JV usmerjenem prelomu, ki je vzporeden Predjamskemu. Key words: Predjama fault, Postojna, Slovenia Ključne besede: Predjamski prelom, Postojna, Slovenija Introduction Recent tectonic activity of Slovenia is driven by northward movement of the Adria microplate and its counter-clockwise rotation (e.g. Vrabec & Fodor, 2006). The NW-SE trending Predjama fault is generally not considered as important as the Raša or the Idrija fault. It is treated as a continuation of Avče fault (Janež et al., 1997). Its position east from Col, through Trnovski Gozd is clearly visible. The continuation of the fault to northern Pivka valley between Predjama and Postojna and further into Javorniki hills is less clear. The January 15, 2010 MLV = 3.7 earthquake in the area of Postojna town called attention to the fact that recently not only the area around Pivka or Snežnik Mountain is seismically active, but also the northern part of the Pivka valley at Postojna can generate strong motions. The January 1, 1926 M = 5.6 Cerknica earthquake was strongly felt inside the Postojna cave system, with reported stalagmite collapse inside the cave (Šebela, 2010). Preliminary geological interpretation of the 2010 Postojna earthquake attributed the event to sliP on the regional Predjama fault, which runs in the NW-SE orientation south of Postojna. However, the subsequently derived fault plane solutions of the event (Zivcic et al., 2011) did not confirm this idea. Therefore we review the existing geological literature with respect to the position of Predjama fault in the northern part of the Pivka valley. In this area, the precise location of the fault zone was mostly infered, resulting in mismatch from 200 m to 1500 m between the existing interpretations of the Predjama fault location. The most unclear is the SE-ward continuation of the Predjama fault towards Javorniki hills, where the fault is complicated by NE-SW oriented faults and is probably separated into several segments. predjama fault geometry in the vicinity of postojna A compilation of structural data, discussed in this section, is shown on the geological map in Figure 1. On the Postojna sheet of the 1 : 100 000 Basic geological map of SFRJ (Buser et al., 1967) the Predjama fault is terminated about 500 m west from Predjama and does not continue through the northern part of Pivka valley and through Javorniki hills. Figure 1. The basic structural-geological map of the Postojna area and position of Predjama fault. 1- town or village, 2- river and its flow direction, 3- Javorniska Kolisevka, 4- hill with above sea level in metres, 5-TM 71 extensiometer in Postojna cave system, 6- ground-plan of Postojna cave system, 7- fault/hypothetic fault, 8- thrust fault, 9- dextral horizontal strike-slip movement, 10- sinistral horizontal strike-slip movement, 11-anticline, 12- syncline, 13- Eocene flysch rocks, 14- discordant contact between flysch and limestone. The eastward continuation of the Pred- vorniki was first documented by Plac- jama fault, from Avce fault into Ja- er (1981 and 1996). On the sketch of geological structure of Postojna the Predjama fault is marked as a hypothetic subvertical fault (Placer, 1996). The fault is visible in the highway road-cut close to the Postojna railway station about 190 m north from the railway bridge. The inner fault zone is 18 m wide. Its northeastern fault plane has orientation of 25/70, with slickensides dipping 295/12. In the Hrusica area the Predjama fault shows dextral horizontal movement. In the vicinity of Postojna the NE block of Predjama fault moved towards right and slightly up with respect to the SW block. The apparent displacement on Predjama fault near Postojna is insignificant (Placer, 1996). The morphologically well-expressed contact between Upper Cretaceous limestone and Eocene flysch is, according to Placer (1996), a fault, which is running nearly parallel to the southern Predjama fault. This fault is geologically better determined in the field than the principal Predjama fault, which runs through the Pivka flysch valley. On the 1 : 500 000 geological map of Slovenia (Buser, 1989) the Predjama fault runs about 1 km south of the Nanoscica stream, and continues along the southern edge of Javorniki hills towards the Babno Polje where it approaches the Idrija fault zone. The investigations of Janež et al. (1997) and Rižnar (1997) agree with Placer's (1996) interpretation of the position of Predjama fault. According to Janež et al. (1997) the fault runs about 200 m northward of the position shown on the map of Buser (1989). They trace the Predjama fault along the southern edge of Sovič hill (677 m) near the town of Postojna and argue that the morphologicaly well-expressed scarp dividing Upper Cretaceous limestone from Eocene flysch, which runs NW-ward from Postojna towards Predjama, is controlled by a fault zone parallel to the Predjama fault. Further to the NW, west of the town of Col, the Predjama fault continues into the Avče fault (Janež et al., 1997). There, the trace of fault is much better visible both in morphological and geological sense than in the northern Pivka valley and eastward in the southern parts of Javorniki hills. The Bukovje fault, which is situated north from Predjama fault near Bukovje was determined by Čar & Šebela (2001). The fault is displacing a morphologically well expressed ap-prox. N-S oriented sinistral strike-slip fault, which runs north from Gorenje towards Hrušica. The Bukovje fault shows insignificant dextral horizontal displacement (Čar & Šebela, 2001). The structural-tectonic map of Slovenia (Poljak, 2000) traces the Predjama fault similarly to Buser et al. (1967). The fault is traced in the area NW from Postojna, where it separates Hrušica structure from Nanos structure, whereas the eastward fault continuation in the Eocene flysch of the northern Postojna valley and at the southern foot of Javorniki hills is left undefined. The detailed structural map of the area between Postojna, Planina and Cerknica (Čar & GospoDARič, 1984) was a major contribution towards understanding the tectonic structure of the area. After almost 30 years this is still the most important structural-geological map of the region. Unfortunately, the Predjama fault zone is outside the mapped territory. Active tectonics and seismicity near Postojna On January 15, 2010 at 14:20 (UTC) an earthquake occurred in the area of Postojna town. Its local magnitude was 3.7 and the highest intensity V EMS-98. The earthquake was felt in the territory of SW Slovenia and also in Jesenice, Velenje and Celje (Jesenko et al., 2011). 405 shocks occurred before and after the main earthquake. The fault plane solutions obtained from the first motion data for the main earthquake event and its strongest aftershock on March 6 2010, Mlv = 2.4, constrain a nearly vertical fault plane, which is either a SSE trending (n165° E) dextral strike-slip fault, or a WSW trending sinistral strike-slip fault (Živčic et al., 2011). Seismological data therefore suggest that the 2010 Postojna earthquake was not related to slip on the Predjama fault, but to some so far unidentified geological structure. Faults in suitable SSE-NNW orientation were mapped by Čar & Šebela (1997) around the Pivka and Črna Jama, but were at the time not interpreted as active or potentially active. Fissures and faults-orientation data from the Postojna cave system (šebela, 1998), presented in Figure 2, also demonstrate a prominent cluster of structures with NNW-SSE orientation, which is nearly as abundant as the one in the Dinaric NW-SE orientation. The major geological structures in the cave, mostly fault zones, have a Dinar-ic NW-SE orientation (Šebela, 2012). Significant fissured to broken zones (in sense of Čar & Gospodarič, 1984) are mostly SSE-NNW orientated and exhibit no slickensides. Significant displacements in the Postojna cave system are visible on NW-SE and NE-SW oriented faults, whereas the SSE-NNW oriented geological structures are generally cut by NW-SE and NE-SW oriented faults and thus represent secondary structures to those with Dinaric orientation. Figure 2. Orientations of faults and fractures in the Postojna cave system (Sebela, 1998). From the 25 m resolution Digital terrain model of the wider Postojna town area (Podobnikar, Arhiv ZRC SAZU) we infer the existence of morphologically well-expressed fault zone east from Studeno (Figure 1), which could be the NNW continuation of N165° E trending fault that was seismogenical-ly active during the January 15, 2010 earthquake (Zivcic et al., 2011). This fault could be the connective fault between the Idrija and Predjama faults, or a shorter fault connecting the southern Predjama fault and the parallel northern fault in the outer zone of the Predjama fault. General direction of the fault running east from Studeno is 10- 20° towards the north deviated from the Dinaric NW-SE orientation. The fault is morphologically very clearly expressed, similarly to the nearly N-S oriented fault north from Gorenje (Figure 1). Basic geological map (Buset et al., 1967) does not indicate a fault or a lithological contact at this location. Otherwise, micro-tectonic deformations detected by TM 71 extensiom-eters in Postojna cave system since 2004 (Figure 1) show measurable aseismic displacements on the fault, which is parallel to the Predjama fault (Gosar et al., 2011). Two instruments are placed on a Dinaric-trending NW- SE fault that builds the NE wall of the Velika gora collapse chamber. Southern instrument is situated between the cave wall and the collapse block. Generally dextral horizontal diplacement of 0.05 mm since 2004 indicates tectonic deformation and not movements due to cave collapse processes. Additionally, the down-slip movement of the NE block for 0.01 mm since 2004 suggests tectonic movements. Javorniska Kolisevka Morphologically the best expressed collapse doline in the area of Javorniki hills is Javorniska Kolisevka (Figure 1). It is a closed depression of underground origin. The big volume of the depression is due to rocks being sapped away. Closed depressions are karstic, unflooded morphological forms that are results of karst processes and removal of the rocks. Javorniska Kolisevka is situated along a Dinaric-trending fault that has already been detected by Placer (1996), which is parallel to the main Predjama fault. The bottom of the collapse doline is at 847.80 m. The southern edge of the doline is at 905 m and the northern at 953 m. Javorniska Kolisevka is at least 57.20 m deep and has a volume of about 800 000 m3. The position of Javorniska Kolisevka on one of the northern faults parallel to the main Predjama fault indicates that the wider Predjama fault zone continues into Ja-vorniki hills and that favourable rock conditions (tectonically crushed zone) are present for development of deep karst collapsed doline. Conclusions The position of the Predjama fault through the Pivka valley was mostly determined hypothetically (Placer, 1981 and 1996). In some cases (Buser, 1989; Janež et al., 1997; Rižnar, 1997; Šebela, 2005) the position is more deterministic, but there is between 200 m to 1500 m of difference between the interpretations of the fault position. Between Postojna and Javorniki hills the Predjama fault is probably dissected into separate parallel faults. One such segment runs through Javorniška Koliševka collapse doline and has probably controlled the origin of this deep karst depression. In the area SE of Javorniki hills this Dinaric oriented (NW-SE) fault parallel to Predjama fault is complicated by a prominent, mainly NE-SW oriented fault. The continuation of Predjama fault towards SE is clear at least into the area of southern slope of Javorniki hills. Regarding the seismological analyses of the Postojna MLV = 3.7 earthquake in 2010 (Živčic et ail., 2011) the Predjama fault in the area of Postojna was probably not the seismogenic source for the earthquake. Micro-tectonic deformations detected by TM 71 ex-tensiometers in Postojna cave system (Gosar et al., 2011) on the other hand show recent small tectonic aseismic displacements in one of the northern NW-SE faults parallel to the main Predjama fault. To find the seismogenic source for Postojna Mlv = 3.7 earthquake in 2010 detailed structural-lithological mapping should be the best answer. Acknowledgements The study was part of the EU FP7 INFRA project EPOS, EU FP7 IRSES project BlackSeaHazNet, "Karst Research Programme" (P6-0119), and IGCP-UNESCO Project 598 "Environmental change and sustainability in karst systems'". Many thanks go to Trevor Shaw for revision of the manuscript and to Marko Vrabec for constructive review. I am sincerely grateful to Dr. Jože Čar who was my mentor for Master's and Doctoral dissertations and who introduced me to structural geological mapping of karst areas. References Buser, S. Grad, K. & Pleničar, M. (1967): Osnovna geološka karta Ju- goslavije 1 : 100 000, list Postojna (Basic geological map of Yugoslavia, sheet Postojna). Savezni geološki zavod, Beograd. Buser, S. (1989): Geološka karta Slovenija 1 : 500 000, Geodetski Zavod Slovenije, Tiskarna PZI DAN, Ljubljana. Čar, J. & Gospodarič, R. (1984): O geologiji med Postojno, Planino in Cerknico. Acta Carsologica; Vol. 12 (1983), p. 91-106. Čar, J. & Šebela, S. (1997): Structural position of vertical karst objects on Postojnska Gmajna. Acta Carsologica; Vol. 26, No. 2, p. 295-314. Čar, J. & Šebela, S. (2001): Karst characteristics of thrust contact limestonedolomite near Predjama. Acta Carsologica; Vol. 30, No. 2, p. 141-156. Gosar, A., Šebela, S., Koštak, B. & Stemberk, J. (2011): On the state of the TM 71 extensometer monitoring in Slovenia: seven years of micro-tectonic displacement measurements. Acta Geodyn. Geomater.; Vol. 8, No. 4, p. 389-402. Janež, J., Čar, J., Habič, P. & Podobnik, R. (1997): Vodno bogastvo visokega krasa. Geologija d.o.o., Idrija, p. 167. Jesenko, T., Cecic, I., Zivčic, M., & Čarman, M. (2011): Potresi v Sloveniji leta 2010. Ujma; Vol. 25, p. 110-118. Placer, L. (1981): Geološka zgradba jugozahodne Slovenije. Geologija; Vol. 24, No. 1, p. 27-60. Placer, L. (1996): On the structure of Sovič above Postojna. Geologija; Vol. 37/38 (1994/95), p. 551-560. Podobnikar, T. Arhiv ZRC SAZU, Ljubljana. Poljak, M., (2000): Strukturno-tektonska karta Slovenije 1 : 250 000. GZS, Mladinska knjiga tiskarna, d. d., Ljubljana. Rižnar, I. (1997): Geologija okolice Postojne. Master's thesis. Ljubljana: University of Ljubljana 1997; 78 p. Šebela, S. (1998): Tektonska zgradba sistema Postojnskih jam. Založba ZRC 18, Ljubljana. Šebela, S. (2005): Tektonske zanimivosti Pivške kotline. Acta Carsologica; Vol. 34, No. 3, p. 566-581. Šebela, S. (2010): Učinki potresov v Postojnskem jamskem sistemu. Acta Carsologica; Vol. 39, No. 3, p. 597-604. Šebela, S. (2012): Postojna Planina Cave System: Encyclopedia of Caves. White W.B., and Culver D. C. (eds), Academic Press, Elsevier, pp. 618-624. Vrabec, M. & Fodor, L. (2006): Late Ce-nozoic tectonics of Slovenia: Structural styles at the North-Eastern corner of the Adriatic microplate: GPS Geodesy, Tectonics and Hazards. Proceedings of the NATO Advanced Research Workshop on The Adria Microplate, NATO Science Series, VI, Earth and Environmental Sciences, 61, Springer, p.151-168. Živčic, M., Čarman, M. & Ložar Stopar, M. (2011): Potres 15. januarja 2010 pri Postojni, p. 76-86. [cited 23 July 2012]. Available from World Wide Web: http://www.arso.gov.si/potresi/ poro%C4%8Dila%20in%20pub-likacije/potresi%20v%20letu%20 2010_I.pdf. Šebela, s. Middle to Upper Jurassic succession at Mt Kobariški Stol (NW Slovenia) Srednje- do zgornjejursko zaporedje na Kobariškem Stolu (SZ Slovenija) Andrej Šmuc1, * University of Ljubljana, NTF, Geology department, Slovenia Corresponding author. E-mail: andrej.smuc@geo.ntf.uni-lj.si Received: October 18, 2012 Accepted: October 24, 2012 Abstract: The Slovenian Basin represents a deeper-water paleogeographic unit that today extends approximately in E-W direction from Kobarid towards east. However, westward from Kobarid the successions of the Slovenian Basin are not present. Mt Kobariški Stol is located directly westward from the last outcrops of Slovenian Basin rocks. This area is in the Middle and Upper Jurassic represented by a unique facies association of nodular limestones, and abundant shallow-water carbonate resediments and corresponds to the transitional zone between the Dinaric Carbonate Platform located southeastward and northeastward located deeper marine sedimentary environments of the either Slovenian Basin or even more likely the submarine plateau named the Julian High. The Kobariški Stol area at that time represented a deeper-water current-swept plateau that was well connected to the adjacent shallow-water Dinaric Carbonate Platform. This proves the early idea that the Slovenian Basin in this part pinched out. Izvleček: Slovenski bazen je globljevodna paleogeografska enota, ki se danes od območja Kobarida razširja proti vzhodu. Zahodno od Kobarida izdanki Slovenskega bazena niso znani. Kobariški Stol se nahaja neposredno zahodno od Kobarida in bi lahko bil nadaljevanje Slovenskega bazena. Zgrajen je iz kamnin, ki tvorijo posebno faciesno združbo nodularnih apnencev in številnih presedimentiranih karbonatnih gravitacijskih tokov, ki jih gradijo plitvovodni klasti Dinarske karbonate platforme. Območje Kobariškega Stola je bilo tako v srednji in zgornji juri globljevodni podmorski plato, ki je bil dobro povezan z Dinarsko karbonatno platformo. Območje Kobariškega Stola zatorej ne pripada bazenu, marveč prehodnemu območju med plitvovodno Dinarsko karbonatno platformo na jugu ter globljevodnim območjem Slovenskega bazena ali Julijskega platoja na severovzhodu oziroma severu. To dokazuje hipotezo prejšnjih raziskav, da se je Slovenski bazen vzhodno od območja Kobarida izklinil. Key words: Slovenian Basin, Julian High, palaeogeography, Jurassic, deeper-water, transitional zone Ključne besede: Slovenski bazen, Julijski plato, paleogeografija, jura, prehodno območje Introduction Slovenian Basin (SB) represents a Mesozoic deep-water paleogeographic unit surrounded by shallow-water carbonate platforms until Middle Jurassic and later by pelagic plateau on its northern side. Today it stands for a narrow facies belt of Late Triassic to Late Cretaceous deeper-water strata extending approximately in E-W direction from Kobarid towards east (Cousin, 1970; Buser, 1989, 1996; Rožič, 2005; Rožič & Popit, 2006; Buser et al., 2008; Buser & ogorelec, 2008; Rožič, 2009; Rožič et al., 2009; Gale, 2010; Rožič & Šmuc, 2011; Goričan et al., 2012; Gale et al., in press). Westward from Kobarid the successions of the Slovenian Basin are not present. According to Buser (1996), Buser & Debeljak (1996), and Miklavič & Rožič (2008) the reason for this absence of SB deposits west of Kobarid area is that Slovenian Basin in this part pinched out (see also paleogeograph- ic reconstruction in Rožič & Šmuc, 2011). These previous studies were however based on the study of Dinaric and Julian Carbonate Platform rocks of Lower Jurassic (Buser, 1996; Buser & Debeljak 1996) or Upper Cretaceous rocks formed after the disintegration of Dinaric Carbonate Platform (Miklavič & Rožič, 2008) that outcrop north or south from the area of possible eastward continuation of the Slovenian Basin. Kobariški Stol succession, on a contrary, is located directly eastward from the last outcrops of Slovenian Basin rocks on Ozben hill (Buser, 1986, 1987), is composed of different Upper Triassic to Cretaceous shallow and deeper-water strata (Cousin, 1981) and thus represents a site of possible continuation of the Slovenian Basin. The aims of this study are to present a detailed sedimentologic and biostratigraphic study of the Middle and Upper Jurassic rocks that outcrops at the Kobariški Stol, to interpret the sedi- mentary environment in which they were formed, and shed a light on the Jurassic spatial distribution of the Slovenian Basin westward of Kobarid area. Geological Setting The studied succession is located in NW Slovenia on Mt Kobariski Stol that represents the southernmost part of the Julian Alps (Figure 1). The succession outcrops at the 1350 m of altitude, along the road that leads from Kobariski Stol peak towards the town of Kobarid. Structurally the area belongs to the Southern Alps, more exactly to the lowermost Tolmin Nappe (Buser, 1986, Placer, 2008) (Figure 1). Paleogeographically the area in the [ Julian nappe | | Tolmin nappe -çs.Kobariški Stol section Figure 1A. Location of the Julian Alps. Insert in A represents the location of B. B: Main structural elements of the region and location of the investigated sections. Figure. 2. Present-day position of paleogeographic units (compiled from Bosellini et al. 1981, Martire 1992, Buser 1989, Placer 2008) and schematic palaeogeographic cross-sections at the end of the Jurassic (Bernoulli et al. 1979). Middle and Upper Jurassic belonged to a transitional area between Dinaric Carbonate Platform to the South, Slovenian Basin to the East and Julian Plateau to the North (Miklavič & Rožič, 2008, and this study) (Figure 2). The area was investigated by cousin (1981) who distinguished following Middle and Upper Jurassic beds in Kobariški Stol: 1) upper Middle Jurassic (upper Dogger) to lower Upper Jurassic (lower Malmian) alternation of oolitic and crinoidal limestones, carbonate microbreccias and nodular limestones that are at places silicified; 2) Kimmeridgian to lower Tithonian Rosso Ammonitico facies; 3) Upper Tithonian/Berriasian to Valanginian micritic limestone of Biancone type. The Kobariski Stol area was also mapped for the Basic Geological Map of Yugoslavia, at a scale of 1: 100 000 by Buser (1986) (the Tolmin and Videm sheet). Kobariski Stol section: description of lithostratigraphic units The Kobariski Stol section was divided into three lithostratigraphic units named Unit 1, Unit 2, and Unit 3, respectively (Figure 3). Unit1 (U1) represents the base of the investigated succession and consists of Bathonian or Callovian to lower Kimmeridgian gray, fine-grained limestones (pack-stone/wackestone to mudstone) with intercalated fine- to coarse-grained Figure 3. Kobariski Stol section (please note that unexposed intervals between logged sections span usually for only few meters) calcarenites and fine-grained carbonate breccias. Unit 2 (U2) is represented by a gray distinctly nodular limestones with intercalated fine- to coarsegrained calcarenites and breccias of Late Kimmeridgian to early Tithonian age. Unit 3 (U3) corresponds to red nodular limestone of Rosso Ammonit-ico type of early Tithonian in age. 3.1 Unit 1 (U1): The Unit 1 represents the base of the studied succession; the contact with underlying formations is not visible. The unit is at least 15 m thick and consists of 10 cm to 1 m thick beds of fine-grained limestones (mudstone to packstone) with intercalated 15 cm to 50 cm thick beds of diverse carbonate gravity-flows (Figure 3). Fine-grained limestones The fine-grained limestones include following facies types: bioclastic wackestone, wackestone with calci-spheres, pelletoidal mudstone to packstone and silicified wackestone. Bioclastic wackestone Bioclastic wackestone to packstone is gray, thin bedded and at places nodular. Elongated grains are often oriented parallel to the bedding. It consists mainly of bioclasts of disarticulated valves of thin-shelled bivalves (Bositra sp.), echinoderm fragments, gastropod protoconch, juvenile ammonites, ammonite fragments, plank- tic foraminifera (protoglobigerinids), benthic foraminifera (Lenticulina sp., Textularidae), and unidentified sparitic bioclast fragments (Pl. 1, Figs.1, 2). Small peloids, ooids, pellets and rare micritic intraclasts are rare. At places, where the wackestone exhibit nodular aspect, the matrix between the nodules consists of Bositra sp. rich packstone. Also common are irregular fields where peloids and filaments predominate. Wackestone with calcispheres This facies is represented by a thin to thick bedded wackestone to packstone. At places beds exhibit horizontal parallel lamination. Lamination is defined by alternation of thicker packstone to wackestone laminae composed mostly of calcispheres and thinner laminae of packstone to wackestone where thin shelled-bivalves (filaments) predominate (Pl. 1, Fig. 3). Other grains are echinoderm fragments, benthic foraminifera (Lenticulina sp., Textulari-idae) and planktic foraminifera (pro-toglobigerinids). Aptychi and partly recrystallized ooids are rare. Pelletoidal mudstone to packstone Pelletoidal mudstone to packstone is thin to medium-bedded (10 cm to 70 cm), at places laminated, grains are oriented parallel to the bedding. Laminas are represented by an alternation of thin microsparitic mudstone (Pl. 1, Fig. 4) with thicker pelletoidal mudstone to Plate 1. Figure 1. Unit 1, fine-grained limestone; bioclastic wackestone with filaments and small echi-noderm fragments. Figure 2. Unit 1, fine-grained limestone; bioclastic wackestone with small benthic foraminifera, planktic foraminifera (protoglobigerinids) and filaments. Figure 3. Unit 1, fine-grained limestone; wackestone/packstone with calcispheres and filaments. Figure 4. Unit 1, fine-grained limestone; pelletoidal mudstone to packstone. Laminae of micro-sparitic mudstone. Figure 5. Unit 1, fine-grained limestone; pelletoidal packstone with abundant pellets and rare echinoderm fragments Figure 6. Unit 1, fine-grained limestone; silicified wackestone with rare calcified radiolarian moulds. packstone (Pl. 1, Fig. 5). Mudstone to packstone are composed mainly of pellets (at places cannot be distinguished from matrix) and rare echinoderm fragments and filaments. Silicified wackestone Silicified wackestone exhibits parallel, wavy parallel and wavy nonparallel laminations. Silification occurs as beds and nodules of replacement chert. At places also wackestone matrix is partly silicified. Laminae are thinner mudstone to wackestone with rare radiolarian moulds, calcispheres and echinoderm fragments (Pl. 1, Fig. 6) and thicker wackestone/packstone to grainstone with small echinoderm fragments and pellets. Matrix is mi-crosparite to sparite and at places syn-taxial overgrows around echinoderm fragments. Breccias and calcarenites Intercalated breccias and calcarenites are thin to medium bedded and range from fine-grained breccias to finegrained calcarenites. Breccia beds Thickness of breccia beds is up to 50 cm. The contact with underlying beds deposits is erosional. Additionally; at places breccias fill small channels up to 1 m wide and 20 cm deep. Breccias are poorly to medium-sorted, clast-supported and at places show inverse and normal grading. Clasts are some- times oriented parallel to the bedding. Grains are up to few cm large and include clasts of underlying bioclas-tic wackestone, mudstone with calci-spheres; and also shallow-water clasts of A) grainstone to packstone with Microproblematica, B) grainstone to packstone with peloids, echinoderm fragments, ooids, and filaments, C) pelletoidal packstone with rare benthic foraminifera, and D) oodial packstone to grainstone. Other grains in breccia are Microproblematica, partly recrys-tallized large ooids, echinoderm fragments, rare fragments of corals, and sparitic bioclast fragments (Pl. 2, Figs. 1, 2). The matrix of the breccia consists of packstone at places also grain-stone mainly with individual partly recrystallized ooids, peloids, echinoderm, algae and coral fragments, benthic foraminifera (Lenticulina sp., Textulariidae, Protopeneroplis striata Weynschenk), unidentified bioclasts, and thin-shelled bivalve fragments (Pl. 2, Figs. 1, 2). Grains are embedded in a micritic and microsparitic matrix, at places also cemented with syntaxial cements around echinoderm grains. Fine to coarse-grained calcarenites Fine to medium-grained calcarenites are medium bedded. Elongated grains are usually oriented parallel to the bedding. Normal and inverse grading and parallel laminations are sometimes present. At places also grading from breccia to calcarenites is observed. The Plate 2. Figure 1. Unit 1, limestone breccia; lager Microproblematica and partly recrystallized ooids in a packstone matrix composed of peloids, ooids, and echinoderm fragments. Figure 2. Unit 1, limestone breccia; larger clasts of Microproblematica, lithoclasts, aggregate grains, partly recrystallized ooids and Protopeneroplis striata Weynschenk in a microsparitic matrix. Figure 3. Unit 1, coarse-grained calcarenite; packstone with peloids, recrystallized ooids, echinoderm fragments and bioclasts. Figure 4. Unit 2, nodular limestone; wackestone with pellets, calcispheres, echinoderm fragments and fragmented ammonite moulds. Figure 5. Unit 2, nodular limestone; middle part of the photo is thin gray clay film between the nodules and around a packstone with echinoderms. Figure 6. Unit 2, nodular limestone; packstone with pellets, echinoderm fragments and Saccocoma sp. calcarenites are packstone to grain-stone and have the same composition as breccia, but are devoid of larger lithoclasts (Pl. 2, Fig. 3). Age of Unit 1 Based on the presence of planktic foraminifera (protoglobigerinids) and of individual tests of Protopen-eroplis striata Weynschenk the age of the Unit 1 most probably ranges from Bathonian to early Kimmerid-gian (cf. Caron & Homewood, 1983; Sartorio & Venturini, 1988; Tappan & Loeblich, 1988; Darling et al., 1997). Due to relatively small thickness of Unit 1 (15 m), it possibly records only upper part (Early Kimmeridgian) within this interval or contains hiatuses. The latter is also indicated by presence of nodular structure in fine-grained limestones. Sedimentary environment of Unit 1 Fine-grained limestones (bioclastic wackestone, wackestone with calci-spheres, pelletoidal mudstone to packstone and silicified wackestone) represent background pelagic and hemipe-lagic deposits in relatively deep-water environment as evidenced by a presence of mainly pelagic bioclasts (calcispheres, thin shelled-bivalves, radiolarians, planktic foraminifera, aptychi). Minor input from shallow-water environment is however indicated by rare shallow-water grains (ooids and also benthic foraminifera, echino-derm fragments). Presence of different laminations (parallel, wavy parallel and wavy nonparallel) present almost in all fine-grained facies suggest some sort of hydrodynamic sorting, most probably by contour currents or redeposition of the material by fine-grained turbidites. Beds at places also exhibit nodular bedding that also indicates influence of bottom-currents that caused slower sedimentation rates and early selective cementation. Sedimentary structures of breccias suggest deposition by debris flows or gravelly-high density turbidity currents. Different intraclasts (mud-chips) and also shallow-water lithoclasts indicate exhumation and partial erosion of underlying deposits. The fine-to medium grained calcarenites were deposited by sandy high-density turbidity currents. Presence of individual grains of ooids, Microproblematica, benthic foraminifera, corals and algal fragments indicates input from shallow-water areas. Unit 2 (U2) Unit 2 is up to 20 m thick and represented by gray nodular limestone with intercalated fine to coarse-grained cal-carenites and breccias. The contact with the underlying Unit 1 is covered. Nodular limestone This facies usually occur in up to 70 cm thick packages that exhibit distinct internal nodular bedding. Individual nodules are 3-7 cm thick, bedding surfaces are marked by thin brown to gray clay films. The nodules are wackestones to packstones composed of pellets, Saccocoma sp. and other echinoderm fragments, Bositra sp., calcispheres, and calcified radiolarian moulds (Pl. 2, Figs. 4, 5, 6). Benthic foraminifera, algal fragments, aptychi and poorly preserved ammonites are rare. The calcispheres at places exhibit geopetal infillings. Towards the edge of individual nodule the structure becomes tightly packed packstone with predominant echinoderm fragments (Pl. 2, Fig. 5). This facies is frequently si-licified and contain beds and lenses of replacement cherts. Common diagenet-ic feature is also the presence of pyrite that is usually concentrated between the borders of the nodules, but occurs also within the nodules. Breccias and calcarenites Intercalated breccias and calcarenites are thin to medium bedded and represented by a fine-grained breccias and fine-to coarse-grained calcarenites. Fine-grained breccias Intercalated breccias are fine-grained, matrix to clast supported, and exhibit normal and inverse grading (from medium-breccia to medium-grained calcarenite). It contains also lenses and beds of replacement cherts. Individual breccia beds are up to 70 cm thick and usually have an erosional contact with underlying deposits. Clasts are up to 3 cm large and are embedded in a matrix represented by a medium-grained calcarenite. Larger grains are composed exclusively of eroded underlying nodular limestones (mud-chips) or fragments of ammonite moulds filled with mudstone (Pl. 3, Fig. 1).Calcar-enite matrix is composed mainly of individual grains of Microproblemati-ca, small peloids, pellets, micritic and microsparitic lithoclasts and various bioclastic debris represented by fragments of corals and stromatoporoids, larger sparitic bioclasts, fragments of mollusks, brachiopods, echinoderms, benthic foraminifera, belemnites and aptychi (Pl. 3, Figs. 2, 3). Matrix is mi-crosparite or fine-grained sparitic and syntaxial cement. Fine to coarse-grained calcarenites Beds of calcarenites are up to 25 cm thick, elongated grains are oriented parallel to the bedding. Beds and lenses of replacement chert are present. Calcarenites are packstone with echinoderm fragments, small peloids, and rare benthic foraminifera (Lenticulina sp., multichambered with micritic walls), Bositra sp., bioclastic sparitic fragments, algal fragments, and also larger clay clasts (Pl. 3, Figs. 4, 5). Grains are embedded in a microsparitic matrix or cemented by fine-grained sparitic and syntaxial cement. Plate 3 Figure 1. Unit 2, breccia; large clasts of micrite filled ammonite mould in a calcarenite matrix with peloids, echinoderm fragments, and other bioclastic fragments Figure 2. Unit 2, breccia; stromatoporoid fragment in a calcarenite matrix with peloids, echino-derm fragments, and other bioclastic fragments. Figure 3. Unit 2, breccia with coral Figure 4. Unit 2, calcarenite; packstone with echinoderm fragments, peloids and rare filaments. Figure 5. Unit 2, calcarenite; packstone/grainstone composed of echinoderm fragments, peloids and rare filaments. Figure 6. Unit 3, red nodular limestone; wackestone with fragments of Saccocoma sp. Age of Unit 2 Late Kimmeridgian to early Tithonian age for Unit 2 was determined on the basis of the presence of Saccocoma sp. (according to Sartorio & Venturini, 1988). Sedimentary environment of Unit 2 Nodular limestone represents deeper-water sediment as evidenced by presence of mainly pelagic bioclasts. Nodular structure however indicates early selective cementation on a current swept sea bottom. Sedimentary structures of breccias suggest deposition by mud to debris flows. Lithoclasts of the nodular limestones indicates erosion of the underlying strata by over-riding flows. The fine-to coarse grained calcarenites were deposited by sandy high-density turbidity currents and represents top-cut-of Bouma sequences. The composition of shallow-water grains within the breccias and calcarenites indicate provenance area from adjacent contemporaneous shallow-water coral reef areas. Unit 3: Red nodular limestone of Rosso Ammonitico type The Unit 3 is at least 5 m thick; however the lower and upper contact is not visible, so the exact thickness of the Unit 3 is not known. Nodular limestones Nodular limestones are of wackestone to packstone type. Individual nodules are 3-7 cm thick, bedding surfaces are marked by thin red clay films. They are composed almost exclusively of fragments of Saccocoma sp., while other grains (aptychi, calcified radiolarian moulds, and benthic foraminifera) are extremely rare (Pl. 3, Fig. 6). Age On the basis of the stratigraphic position and abundant presence of Saccocoma sp. the age of this unit is early Tithonian (cf. Sartorio & Venturini, 1988). Sedimentary environment The red nodular lime-stones represent condensed sedimentation and are typical of sedimentation on isolated pelagic plateau. Nodules indicate presence of bottom currents that allowed micrite accumulation followed by long and repeated phases of cementation, biotur-bation and current reworking (cf. Mar-tire, 1996). The higher clay content is most probably a secondary enrichment due to the pressure dissolution of micrite (cf. Clari & Martire, 1996). Middle and upper Jurassic sedimentary evolution of the Kobariski Stol area Callovian to Kimmeridgian deposits of Unit 1 were deposited in a deeper-water environment and are dominated by carbonate background sediments (bio- clastic wackestone, wackestone with calcispheres, pelletoidal mudstone to packstone and silicified wackestone). Nodular structure that is present at places indicates that this depositional area was episodically current-swept. Unit 1 also contains abundant beds composed of shallow-water calcareous material that was resedimented by debris flows and turbidity currents. The redeposition into deeper environment was from the adjacent south lying Dinaric Carbonate Platform that at that time represented the only known shallow-water environment in the area. Additionally, the breccias also contain reworked clasts of the underlying deposits and also older shallow-water lithoclasts. This indicates an important submarine erosional event cutting into older substratum, which was probably exposed due to the normal faulting. This normal faulting could be attributed to the extensional tectonic event in Callovian, that is well documented westward in Trento plateau (see Martire, 1996). In the Kimmeridgian and early Tithoni-an the nodular limestones and carbonate resediments of Unit 2 were deposited. The Unit 2 represents quite unique facies association of nodular limestones that are usually distinctive for a current-swept isolated pelagic plateau (cf. Martire, 1989, 1992, 1996) and abundant carbonate resediments containing numerous reworked shallow-water elements (algae, coral fragments, ben- thic foraminifera etc.). Therefore the Kobariski Stol area at that time represented a current-swept plateau that was nevertheless connected to adjacent shallow-water carbonate platform as evidenced by frequent carbonate gravity flows. The composition of the resed-imented carbonates indicates an onset of coral-reef sedimentation in a provenance area and probably also progradation of reef margin, over deeper-water areas. Namely, the breccias composed mainly of coral reef fragments that are interpreted as a fore-reef facies, are well documented in Mija-Matajur Anticline (Buser, 1987) located southward of the investigated area. In early Tithonian the sedimentation of red nodular Rosso Ammonitico facies of Unit 3 started. It represents typical sediment of a current-swept pelagic plateau. It is devoid of shallow-water elements and most probably indicates a change in the mode of the deposition in Dinaric Carbonate Platform from highly productive reefs to the sedimentation of algal limestones of Tithonian age (cf. Buser, 1965; Turnsek, 1966, 1969, 1972, 1997; Strohmenger & Dozet, 1991). Correlation with the Slovenian Basin and Julian Plateau The investigated area show similarities and also differences to both: Slo- venian Basin and Julian High paleo-geographic domains. The correlation with the Slovenian Basin successions revealed that Unit 1 and 2 of the Kobariški Stol section are time and to some degree also facies equivalent to the Tolmin Formation of Slovenian Basin (Rožič, 2006, 2009, Goričan et al., 2012). The Tolmin Formation contains mainly siliceous limestones and thin-bedded radiolarian cherts with intercalated two intervals of carbonate resediments. Carbonate resediments of the Unit 1, especially ooidal packstone corresponds to the lower resedimented limestone of the Tolmin Formation, while carbonate resediments of Unit 2 correspond to the upper resedimented limestone of the Tolmin Formation (Rožič & Popit, 2006, Rožič, 2009). The main difference between Slovenian Basin and Kobariški Stol area is absence of abundant siliceous limestones and radiolarian rich cherts in the Kobariški Stol succession. This indicates that the Slovenian Basin at that time represented deeper sedimentary environment with comparison of Kobariški Stol area. On the other hand, when correlating solely the background sediments, the Units 1, 2, and 3 represent time and facies equivalent of the Prehodavci Formation of the Julian Plateau (Šmuc, 2005; Šmuc & Rožič, 2011). In both areas condensed nodular limestones are presents and indicate sediment-starved bottom current-swept deeper-water environment. The Julian Plateau however was an isolated plateau completely devoid of any shallow-water carbonate resediments, while Kobariski Stol area contains abundant calciturbidites and debris flow with shallow-water grains. This indicate that Kobariski Stol area was a site of condensed background sedimentation, but was well connected to the adjacent Dinaric Carbonate Platform and received relatively large amount of shallow-water resedimented material. conclusion The Kobariski Stol area in the Middle and Upper Jurassic represents a unique facies association of nodular limestones, and abundant shallow-water carbonate resediments. At that time it represented a deeper-water current-swept plateau that was nevertheless well connected to the adjacent shallow-water Dinaric Carbonate Platform. Compared to the contemporary, eastward lying successions of the Slovenian Basin, the Kobariski Stol clearly represents shallower-water environment, that was however still located well below photic zone. In that sense Kobariski Stol area represents a transitional zone between the Dinaric Carbonate Platform located south, the Julian High towards north and the Slovenian Basin to the east. This study thus confirms the idea that the Slovenian Basin in this part wedged out (Buser, 1996; Buser & Debeljak, 1996; Miklavic & Rožič, 2008). Acknowledgment I wish to express my sincere gratitude to prof. Jože Čar. His support, guidance, comments, and long discussion (not rarely accompanied by a bottle of wine and excellent žlikrofi of Ljuba) were regular part of my study and I thank him for this. I also like to think, that during all this years of our acquaintance we evolved from studentmentor, over colleague-colleague, to friend-friend relation. Cheers, Jože!!! I would also like to thank the anonymous reviewer for most thorough and constructing review that quite helped to improve the original version of the manuscript. References Bernoulli, D., Caron, C., Homewood, P., Kälin, o. & Stuijvenberg, J. V. (1979): Evolution of continental margins in the Alps. Schweizerische Mineralogische Petrographische Mitteilungen, Vol. 59, pp. 165-170. Bosellini, A., Masetti, D. & Sarti, M. (1981): A Jurassic '' Tongue of the ocean'' infilled with oolitic sands: the Belluno Trough, Venetian Alps, Italy. Marine Geology, Vol. 44, pp. 59-95. Buser, S. (1965): Stratigrafski razvoj jurskih skladov na južnem Primorskem, Notranjskem in zahodni Dolenjski, PhD. Thesis, University of Ljubljana. Buser, S. (1986): Basic Geological map of SFRJ 1:100 000, sheet Tolmin in Videm. Zvezni geološki Zavod, Beograd. Buser, S. (1987): Explanatory note to Basic Geological Map of SFRJ 1:100 000, list Tolmin in Videm. Zvezni geološki Zavod, 103 pp., Beograd. Buser, S. (1989): Development of the Di-naric and the Julian Carbonate Platforms and of the intermediate Slovenian Basin (NW Yugoslavia). Mem. Soc. Geol. Ital.; Vol. 40, pp. 313-320. Buser, S. (1996): Geology of Western Slovenia and its paleogeographical evolution. In: Drobne, K., Goričan, Š. & Kotnik, B. (Eds.) International workshop Postojna 1996: The Role of Impact Processes in the Geological and Biological Evolution of Planet Earth, pp.111-123. Buser, S. & Debeljak, I. (1996): Lower Jurassic beds with bivalves in south Slovenia. Geologija; Vol. 37/38 (1994/1995), pp. 23-62, Ljubljana. Buser, S., Kolar-Jurkovšek, T. & Jurkovšek, B. (2008): The Slovenian Basin during the Triassic in the light of conodont data. Boll. Soc. Geol. Ital. (Testo stamp.); Vol. 127, No. 2, pp. 257-263. Buser, S. & Ogorelec, B. (2008): Deep-water Triassic and Jurassic beds from Mt. Kobla (W Slovenia). Geologija; Vol. 51, No. 2, pp. 181-189. Caron, M. & Homewood, P. (1983): Evo- lution of early planktic foraminifera. Marine Micropaleontology; Vol. 7, pp.543-462. Clari, P. L. & Martire, L. (1996): Interplay of cementation, mechanical compaction and chemical compaction in nodular limestone of the Rosso Am-monitico Veronese (Middle-Upper Jurassic, NE Italy): Journal of Sedimentary Research; Vol. 66, pp. 447-458. Cousin, M. (1970): Esquisse geologique des confins italo-yugoslaves: leur place dans les Dinarides et les Alpes meridionales.. Bull. Soc. Geol. France; Vol 7, pp. 1034-1047. Cousin, M. (1981): Les reports Alpes-Di-narides. Les confins de l' Italie et dela Yugoslavie. Societe Geologique du Nord; Publ. 5, Vol. 2 - Annexe 521 p. Villenueve. Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. (1997): Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Marine Micropaleontology; Vol. 30, pp. 251-266. Gale, L. (2010); Microfacies analysis of the Upper Triassic (Norian) "Bača Dolomite": early evolution of the western Slovenian Basin (eastern Southern Alps, western Slovenia). Geol. Car-path. (Bratisl.); Vol. 61, No. 4, pp. 293-308. Gale, L., Kolar-Jurkovšek, T., Šmuc, A & Rožič B. (in press): Integrated Rhaetian foraminiferal and conodont biostratigraphy from the Slovenian Basin, eastern Southern Alps, Swiss journal of geosciences. Goričan, Š. Pavšič, J. Rožič, B. (2012): Bajocian to Tithonian age of radiolar- ian cherts in the Tolmin Basin (NW Slovenia). Bull. Soc. geol. Fr.; Vol. 183, No. 4, pp. 369-382. Martire, L. (1989): Analisi biostrati-graphica e sedimentologica del rosso Ammonitico Veronese dell'Altopiano di Asiago (VI), Ph D Thesis, 166 pp. Martire, L. (1992): Sequence stratigraphy and condensed pelagic sediments. An example from the Rosso Ammonitico Veronese, northeastern Italy. Paleo-geog., Paleoclim., Paleoecol.; Vol. 94, pp.169-191. Martire, L. (1996): Stratigraphy, Facies and Synsedimentary Tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Faceis; Vol. 35, pp. 209-236. Miklavič, B. & Rožič, B. (2008): The onset of Maastrichtian basinal sedimentation on Mt. Matajur, NW Slovenia. RMZ-Materials and Geoenvironment; Vol. 55, No. 2, pp. 199-214, Ljubljana. Mullins, H. T. & Cook, H. E. (1986): Carbonate apron models: alternatives to the submarine fan model for paleoen-vironmental analysis and hydrocarbon exploration. Sedimentary Geology; Vol. 48, pp. 37-79. Placer, L. (2008) Principles of the tectonic subdivision of Slovenia. Geologija; Vol. 51, No. 2, pp. 205-217. Rožič, B. (2005): Albian - Cenomanian resedimented limestone in the Lower flyschoid Formation of the Mt. Mrzli Vrh Area (Tolmin region, NW Slovenia). Geologija; Vol. 48, No. 2, pp. 193-210. Rožič, B. (2009): Perbla and Tolmin formations: revised Toarcian to Tithonian stratigraphy of the Tolmin Basin (NW Slovenia) and regional correlations. Bull. Soc. géol. Fr.; Vol. 180, No. 5, pp.411-430. Rožič, B. & Popit, T. (2006): Resediment-ed limestones in Middle and Upper Jurassic succession of the Slovenian Basin. Geologija; Vol. 49, No. 2, pp. 219-234. Rožič, B., Kolar-Jurkovšek, T., & Šmuc, A. (2009): Late Triassic sedimentary evolution of Slovenian Basin (eastern Southern Alps): description and correlation of the Slatnik Formation. Faciès: Vol. 55, No. 1, pp. 137-155. Rožič, B. & Šmuc, A. (2011): Gravity-flow deposits in the Toarcian Perbla formation (Slovenian basin, NW Slovenia). Riv. ital. paleontol. stratigr.; Vol. 117, No. 2, pp. 283-294. Sartorio, D. & Venturini, S. (1988): Southern Tethyan Biofacies. AGIP, 235 pp. Strohmenger, C. & Dozet, S. (1991): Stratigraphy and geochemistry of Jurassic carbonate rocks from Suha Krajina and Mala gora mountain (Southern Slovenia). Geologija; Vol. 33, p. 315-351. Šmuc, A. & Rožič, B. (2010): The Jurassic Prehodavci Formation of the Julian Alps: easternmost outcrops of Rosso Ammonitico in the Southern Alps (NW Slovenia). Swiss journal of geo-sciences; Vol.103, No. 2, pp. 241-255. Tappan, H. & Loeblich, A. R. (1988): Fo-raminiferal evolution, diversification, and extinction. Journal of Paleontology; Vol. 62, pp. 695-714. Turnšek, D. (1966): Zgornjejurska hidro-zojska fauna iz južne Slovenije. Razprave SAZU (IV), Vol. 9, pp. 1-19. Turnšek, D. (1969): Prispevek k paleoe-kologiji jurskih hidrozojev v Sloveniji. Razprave SAZU (IV), Vol. 12, pp. 209-237. Turnšek, D. (1972): Zgornjejurske korale iz južne Slovenije. Razprave SAZU (IV), Vol. 15, pp.145-265. Turnšek, D. (1997): Mesozoic Corals of Slovenia. Založba ZRC, 512 pp. Evidence of Quaternary faulting in the Idrija fault zone, Učja canyon, NW Slovenia Znaki kvartarne tektonske aktivnosti v coni Idrijskega preloma pri Učji Marko Vrabec1, * University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Privoz 11, SI-1000 Ljubljana, Slovenia *Corresponding author. E-mail: marko.vrabec@geo.ntf.uni-lj.si Received: October 24, 2012 Accepted: October 29, 2012 Abstract: Above the Učja river canyon, NW Slovenia, an outcrop of poorly sorted monomict Quaternary breccia, located in the fault zone of the dextral Idrija fault, is dissected by several NW-SE oriented subvertical faults and associated fault-parallel fractures. Orientation and position of the observed faults match perfectly with one of the strands of the Idrija fault that is exposed in Mesozoic rocks on the other side of the river valley. Brittle structures in Quaternary and Mesozoic rocks are consistent with N-S directed maximum horizontal compression that is believed to prevail in the region since the early Pliocene. This is the first direct evidence of Quaternary to recent deformation along the Idrija fault. Activity of the fault is further indicated by dextral offsets of the Učja river course coinciding with the strands of the Idrija fault zone. Izvleček: V prelomni coni desnozmičnega Idrijskega preloma nad kanjonom reke Učje v severozahodnem Posočju smo našli izdanek slabo sortirane monomiktne kvartarne breče, ki ga sekajo SZ-JV orientirani subvertikalni prelomi in vzporedne spremljajoče razpoke. Opisani prelomi se po legi in orientaciji popolnoma ujemajo z enim od prelomov notranje cone Idrijskega preloma, ki je razgaljen v mezozojskih kamninah na nasprotni strani reke. Lomne strukture v kvartarnih in mezozojskih kamninah so skladne z maksimalno tlačno napetostjo v smeri S-J, ki v regiji verjetno deluje od začetka pliocena. To je prvi neposredni dokaz za kvartarne do recentne deformacije ob Idrijskem prelomu. Aktivnost preloma dodatno kažejo tudi desni zamiki reke Učje ob sekundarnih prelomih cone Idrijskega preloma. Key words: Idrija fault, active tectonics, Učja/Uccea river Ključne besede: Idrijski prelom, aktivna tektonika, reka Učja Introduction The NW-SE trending Idrija fault is one of the most prominent faults in the territory of Slovenia. Along the 120 km of its trace, the fault is very clearly expressed both in topography and in geology by up to 15 km of dextral separation of geological units. Due to conspicuous geomorphic expression of the fault and its favourable orientation with respect to the regional N-S to NNW-SSE direction of principal shortening (e.g. Vrabec & Fodor, 2006; Weber et al., 2010), the Idrija fault is generally considered to be currently active. For example, the 1511 earthquake with estimated M = 6.9, one of the most devastating seismic events recorded in the Eastern Alpine region, is attributed to dextral slip on the Idrija fault (e.g. Fitzko et al., 2005), though the source and mechanism of the earthquake remain controversial (Camassi et al., 2011; Košir & Cecic, 2011). Adding to the controversy is the apparent lack of recorded instrumental seismicity along the fault trace both in map view and in cross-section (Živčic et al., 2011), implying no significant seismic slip on the fault at least for the last 50 years. Nevertheless, the 1998 and 2004 Posočje seismic sequences on the Ravne fault that runs parallel to the Idrija fault (e.g. Kastelic et al., 2008) provided direct evidence that NW-SE oriented faults of western Slovenia can be dextrally activated in the current regional stress regime. Due to the fact that the Idrija fault cuts almost exclusively through Meso-zoic rock units, it is quite difficult to confirm its neotectonic activity with conventional geological methods. As a possible indicator of neotectonic deformation, the Quaternary karst poljes located along the fault were interpreted as pull-apart structures (Vrabec, 1994). A detailed LIDAR-based morphological study of a small section of the fault trace at Kanomlja in the Idrija region revealed several geomorphic features that are implying Quaternary displacements in the fault zone (Cunningham et al., 2006). The Kanomlja site was recently investigated by geophysical profiling, which provided strong indications of recent to sub-recent faulting along the fault zone (Bavec et al., this volume). In this paper we present field observations from the NW-most part of the Idrija fault zone, which for the first time confirm Quaternary to presumably recent faulting along the fault. Geological setting The roughly E-W trending, deeply incised valley of the Ucja (Uccea) river is situated in NW Slovenia, close to the Bovec basin. Ther river canyon crosses the entire width of the Idrija fault zone, which makes it one of the few localities where direct observations of internal structure of the fault zone are possible. The Učja valley was mapped in detail by Čar & Pišljar (1993), who documented several fault strands and the accompanying fracture zones. In their map, the Idrija fault proper comprises three major NW-SE trending faults, which we name the Oslovo brdo strand, the Hlevišča strand, and the Žlebišče strand (Figure 1). Older fault sets, oriented predominately in E-W and N-S directions, also outcrop in the zone (Čar & Pišljar, 1993). Whereas the canyon mainly cuts through Late Triassic limestones and dolomites, two smaller blocks of Jurassic and Creta- Figure 1. Geographical and structural position of the investigated outcrop in the lower Učja canyon in the central part of the Idrija fault zone. Geological data after Čar & Pišljar (1993). Hatchured areas show the extent of Quaternary sediments. 1) Oslovo brdo strand of the Idrija fault zone. 2) Hlevišča strand. 3) Žlebišče strand. Topographic map from The surveying and mapping authority of the Republic of Slovenia, National topographic map at 1 : 25 000 scale. ceous rocks are wedged between the Oslovo brdo and Hlevišča strands (Buser, 1987; Čar & Pišljar, 1993), indicating significant (km-scale) displacement in this part of the Idrija fault zone. Further to the NW, the Oslovo brdo strand terminates eastward continuation of a low-angle thrust of Late Triassic limestone over the Cretaceous flyschoid formation (Buser, 1987). In 2004, a permanent extensometer was installed on the fault plane of the Hlevišča strand exposed at the bottom of the Učja valley. The 8-year time series of measurements suggests a nearly horizontal slip with the average rate of 0.25 mm per year (Gosar et al., 2011), but the results are currently controversial since the measured slip sense is sinistral, which is in conflict with other geologic and geodetic indicators. The southern side of Učja valley is predominately covered by Quaternary sediments (Buser, 1987; Čar & Pišljar, 1993; see also Figure 1). In the eastern part around Žaga village, several nested terraces in fluvial gravels and conglomerates occur. Linear terrace risers, generally following the NW-SE trend of the Idrija fault suggest possible influence of faulting on shaping of terraces. Between the Hlevišča fault strand and the Žaga village, the NW-SE oriented fault strands successively shift the E-W directed course of Učja river for 100-130 m in a dextral sense that is consistent with the Idrija fault kinematics (Figure 1). Towards the west, the steeper slopes above the terraces are covered by poorly sorted lithi-fied breccias, interpreted as glacial drift (Buser, 1987; Čar & Pišljar, 1993). A small, terrace-like remnant of such sediments is preserved also on the northern side of Učja at Hlevišča location (Figure 1), and additional large accumulations occur further to the west along the Učja river (Čar & Pišljar, 1993). We examined a large outcrop of Quaternary breccia, situated below the road that follows Učja valley from the Žaga village towards the border crossing with Italy (Figure 1). The outcrop is up to 10 m high and about 100 m in length (Figure 2), and consists of poorly sorted, partly blocky breccia, containing almost exclusively clasts of Late Triassic carbonates. The monomictic nature of the breccia and its large vertical extent along the valley slopes suggest that it may have originated from slope processes rather than from glacial deposition. At the base of the outcrop the breccia is only poorly lithified, which is manifested by a prominent erosional notch (see the right part of Figure 2). Currently we have no firm constraints on the age of the breccia. Figure 2. View of the investigated outcrop in lithified Quaternary breccia from the north. Showed is the position of faults discussed in the text. On its western side, the outcrop is bound by a small branch of the Oslovo brdo fault strand (Figure 1), which is manifested by several parallel fault planes in Late Triassic dolomite (see for example the fault plane exposed along the right border of Figure 2). Quaternary breccia is cut by several weakly-expressed fault planes that are parallel to the NW-SE trend of the Idrija fault zone (Figure 2). On its eastern side, the outcrop extends close to the Hlevisce fault strand, but due to poor exposure no faults in Quaternary deposits could be found there. structural observations We recognized four faults cutting the Quaternary breccia (Figure 2). Fault A (Figure 3) is located at the bottom of a small gully that probably originated along the fault (Figure 2). The core of the subverctical fault zone is up to 1 m wide and consists of (probably) cataclastically modified sedimentary breccia, which is less coherent and darker in color than the surrounding rock (Figure 3a). Along the core zone, prominent intragranular fractures parallel to the fault cut the breccia clasts Figure 3. Fault A (refer to Fig. 2 for location). a) View of the core of the fault zone (darker part, up to 1 m wide in the center of the picture with accompanying fracture zone. b) Fractured clasts at the SW boundary of the core zone. c) Weakly developed fault-parallel fractures. d) Fault-parallel transgranular fractures cutting boulders in breccia. Figure 4. Faults B and C (refer to Fig. 2 for location). a) View towards the SW. Both faults apparently offset the vertical cliff face for «0.5 m in a dextral sense. b) Fault B, view from the bottom up. c) Fault B, view of the fault-parallel fractures in large clasts adjacent to the fault plane. Figure 4. (continued) d) Weakly fractured zone adjacent to Fault B. Note the subvertical planar fabric which is subparallel to the fault plane. and large boulders (Figures 3 a, b, c). Along the entire length of the breccia outcrop such fractures were only found in close proximity to faults. Some of the fault-parallel fractures also cut through the whole rock (Figure 3d). An impression of weak vertical arrangement of clasts along the outer boundary of the core zone (Figures 3 c, d) suggests partial modification of the original rock structure by intergranular flow. Faults B and C (Figure 2, Figure 4a) are discrete subvertical fault planes with up to 0.5 m of apprent dextral shift of the vertical cliff face. Apart from a few very weak subhorizontal ornamentations we were not able to find any on-plane tectonic striations that would reliably constrain slip direction. Prominent subvertical fractures run parallel to the main plane, partly occuring as intragranular fractures in large boulders (Figure 4b, 4c). A weak subvertical planar fabric in breccia, manifested partly by arrangement of clasts and partly by short discrete fractures, was observed along the Fault B (Figure 4d). Fault D is a prominent feature at the westernmost edge of the outcrop, at the contact of Quaternary breccia with Late Triassic dolomite (Figure 2, Figure 5a). The fault dips moderatly Figure 5. Fault D (refer to Fig. 2 for location). a) View from the north. Note the fault scarp in Late Triassic dolomite in the lower right corner of the photo, covered by inclined strata of Quaternary breccia. b) Fault D, view from the bottom up. c) Fault D. Note how the discrete fault plane, visible in the upper half of the photo, disappears in the lower part of the oucrop which is less strongly lithified. Figure 6. Measured orientations of faults and fractures in equal area projection, lower hemisphere plot. a) Fault A, fractures parallel to the fault. b) Fault A, intragranular fractures in large boulders. c) Fault B, principal fault plane. d) Fault B, fault-parallel fractures and small-scale faults. e) Fault B, intragranular fractures in large boulders. f) Fault D, fractures and intragranular fractures in Quaternary breccia. g) Fault D, fault planes in Late Triassic dolomite below the Quaternary breccia. h) Fault-slip data in Late Triassic dolomite from the Oslovo brdo fault strand, northern slope of Ucja valley. i) Fault-slip data and derived paleostress axes orientations from the Drnohla fault zone in the western part of the Ucja valley. Circle -o1 orientation. Triangle - o3 orientation. Square - o2 orientation. steeply to the NE and forks into two branches. Apparent stratification of the breccia, manifested by weak planar structuration and by vertical changes in clast size, is dipping cca 30° towards the NE, and appears draped over the fault scarp in Triassic dolomite that is exposed below the breccia layers (Figure 5a). Otherwise, the stratification of breccia along the entire investigated outcrop, where recognized, is exclusively subhorizontal. The fault is expressed as a predominately planar, partly open fissure of the rock, without parallel fracture zones such as were observed at other faults (Figure 5b). We therefore cannot exclude that this fault originated due to gravitational mass-motion, but as the fault plane strikes nearly perpendicularly to the vertical face of the outctrop, we find this less likely. Downdip, at the foot of the outcrop, the fault plane apparently disappears in the non-lithified section of the breccia succession (Figure 5c), suggesting perhaps that here the displacement was absorbed entirely by intergranular flow. A few weak fractures parallel to the main fault plane, partly intragranular in character, were observed several meters away from the main plane. The measured orientations of fractures and fault planes from all four sites are presented in Figure 6. Orientations of structures in Quaternary breccia (Figure 6 a-f) very clearly follow the NW- SE trend of the Idrija fault and of the immediately adjacent faults in Meso-zoic rocks (Figure 6 g-h). Fault-slip data on the Oslovo brdo strand, measured in Late Triassic dolomite at a site accross the Učja valley in the direct NW-ward continuation of the faults A-D, demonstrates dextral to dextral-normal slip on subvertical to SW-ward dipping fault planes (Figure 6g). For a sample paleostress inversion of fault slip data (Figure 6i), we used the data measured in Jurassic limestone in the NW-SE oriented Drnohla fault zone (Čar & Pišljar, 1993), which is located a few km west of the study area. Inversion results confirm that the measured dextral slip directions on NW-SE oriented faults are consistent with the N-S oriented compression with E-W oriented tension that is characteristic of the post-Miocene regional stress field (Vrabec & Fodor, 2006). Discussion and conclusions The brittle deformation structures, observed in Quaternary breccia that is covering the southern slopes of the Učja river valley, are clearly related to Quaternary - recent motion on the Oslovo brdo strand of the Idrija fault zone. The faults cutting the breccia outcrop are positioned in direct continuation of the well-exposed Oslovo brdo fault zone which dissects Late Triassic dolomite on the other side of the Ucja valley. The NW-SE trending subvertical orientation of fault and fracture planes measured in breccia is identical to orientations of fault planes measured on the Oslovo brdo fault and on other strands of the Idrija fault that are crossing the Ucja valley. The origin of subvertical NW-SE trending fractures and faults observed in this study is consistent with N-S compression in a strike-slip stress regime. A single exception to this are N-S oriented fractures in breccia boulders at the site of Fault B (Figure 6e), which deviate from the prevailing NW-SE orientation. Those fractures could have originated as tensile fractures in response to N-S oriented maximum horizontal compression (e.g. Eidel-man & Reches, 1992). The preferred mode of fracturing in Quaternary breccia may depend on local stress conditions, influenced perhaps by the degree of breccia cementation. Our observations therefore provide for the first time the direct evidence for Quaternary - recent dextral slip in N-S compression along the Idrija fault zone. Due to the setting of the investigated outcrop, it will likely not be possible to constrain the fault slip rate, even with improved dating of the breccia. More favorable location for this could probably be found in the vicinity of the Žaga village, where the NW-SE trending faults apparently offset the Učja river course and shape the alluvial terraces south of Učja (e.g. Figure 1). These geomorphic features suggest that slip is distributed across the entire zone of the Idrija fault. According to mapping of Čar & Pišljar (1993) and our own geomorphological observations NW of Učja valley, the main fault of the Idrija zone is the Hlevišča strand, implying that the structures that we observed on the Oslovo brdo strand may be relatively minor with respect to the main strand. Further investigations along the strike of individual strands may provide better data on fault slip rates and, perhaps, on paleoseismic events. Acknowledgements This paper was contributed to celebrate the life and work of prof. Jože Čar on the occasion of his 70th birthday. I am highly indebted to Jože for his guidance and mentorship all the way from my diploma work to the doctoral thesis, not to mention his kind and thoughtful advice and support in matters of life in general. Jože focused a lot of his research on the Idrija fault. Not surprisingly, this paper is only a small extension of the major mapping work he did in the Učja area, and would not have been possible without it. I thank Erazem Dolžan for assistance during the field work, particularly for employing Single Rope Technique to take structural measurements from the otherwise unaccessible parts of the outcrop. Helpful comments and suggestions from the reviewer, Miloš Bavec, are gratefully acknowledged. References Bavec, M., Car, M., Stopar, R., Jamšek, P., Gosar, A. (2012): Geophysical evidence for the recent activity of the Idrija fault in Kanomlja, NW Slovenia. RMZ Materials and Geoenvironment, Vol. 59, pp. 247-256. Buser, S. (1987): Osnovna geološka karta SFRJ 1 : 100 000, lista Tolmin in Videm. Zvezni geološki zavod, Beograd. Camassi, R., Caracciolo, C. H., Castelli, V., Slejko, D. (2011): The 1511 Eastern Alps earthquakes: a critical update and comparison of existing macroseis-mic datasets. Journal of Seismology, Vol. 15, pp. 191-213. Cunningham, D., Grebby, S., Tansey, K., Gosar, A., Kastelic, V. (2006): Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, SE Alps, Slovenia. Geophysical Research Letters, Vol. 33, L20308. Čar, J., Pišljar, M. (1993): Presek Idrijskega preloma in potek doline Učje glede na prelomne strukture. Rudarsko metalurški zbornik, Vol. 40, pp. 79-91. Eidelman, A., Reches, Z. (1992): Fractured pebbles - A new stress indicator. Geology, Vol. 20, pp. 307-310. Gosar, A., Šebela, S., KoštAk, B., Stem-berk, j. (2011): On the state of the TM 71 extensometer monitoring in Slovenia : seven years of micro-tectonic displacement measurements. Acta geody-namica et geomaterialia; Vol. 8, No. 4, pp.389-402. Kastelic, V., Vrabec, M., Cunningham, D., Gosar, A. (2008): Neo - Alpine structural evolution and present day tectonic activity of the eastern Southern Alps: the case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, Vol. 30, pp. 963-975. Košir, M., Cecic, I. (2011): Potres 26. marca 1511 v luči novih raziskav. Idrijski razgledi, 56/1, pp. 90-104. Fitzko, F., Suhadolc, P., Aoudia, A., Panza, G. F. (2005): Constraints on the location and mechanism of the 1511 Western-Slovenia earthquake from active tectonics and modeling of macro-seismic data. Tectonophysics, 404, pp. 77-90. Vrabec, M. (1994): Some thoughts on the pull-apart origin of karst poljes along the Idrija strike-slip fault zone in Slovenia. Acta Carsologica, Vol. 23, pp. 158-168. Vrabec, M., Fodor, L. (2006): Late Ce-nozoic tectonics of Slovenia: structural styles at the Northeastern corner of the Adriatic microplate. In: Pinter N., Grenerczy Gy., Weber J., Stein S., Medak D. (eds.), The Adria microplate: GPS geodesy, tectonics and hazards, (NATO Science Series, IV, Earth and Environmental Sciences, vol. 61). Dordrecht: Springer, pp. 151-168. Weber, J., Vrabec, M., Pavlovcic Preseren, P., Dixon, T., Jiang, Y., Stopar, B. (2010): GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites and geodynamic implications. Tectono- physics, 483, pp. 214-222. Živčic, M., Carman, M., Gosar, A., Jesen-ko, T., Zupančič, P. (2011): Potresi ob Idrijskem prelomu. Idrijski razgledi, Vol. 56/1, pp. 119-126. Geomorfni indikatorji kvartarne aktivnosti Savskega preloma med Golnikom in Preddvorom Geomorphic indicators of Quaternary activity of the Sava fault between Golnik and Preddvor Petra Jamšek Rupnik1, *, Lucilla Benedetti2, Miloš Bavec1, Marko Vrabec3 1Geološki zavod Slovenije, Dimičeva ulica 14, 1000 Ljubljana, Slovenija 2Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement. UMR 7730 Aix Marseille Université. BP 80, Europôle Méditerranéen de l'Arbois, 13545 Aix-en-Provence Cedex 4, France 3Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Aškerčeva cesta 12, 1000 Ljubljana, Slovenija *Korespondenčni avtor. E-mail: petra.jamsek@geo-zs.si Received: November 5, 2012 Accepted: November 5, 2012 Izvleček: Z metodami tektonske geomorfologije smo raziskovali geomorf-ne značilnosti vzdolž trase Savskega preloma, ki je med pomembnejšimi aktivnimi prelomi na območju Slovenije. Različni geomorfni indikatorji med Golnikom in Preddvorom potrjujejo kvartarno aktivnost preloma. Na podlagi zamika vršajnih vrhov Kokre ocenjujemo povprečno hitrost premikanja ob prelomu na 0,6-4,1 mm na leto za obdobje 365-1 750 tisoč let pred sedanjostjo. Ta ocena se v okviru natančnosti ujema z recentno hitrostjo premikov (1,0 ± 0,5) mm na leto, ki je bila izmerjena z GPS, naša ocena dolgoročne povprečne hitrost premikov na podlagi geoloških meril pa je 1,0-5,0 mm na leto v zadnjih 20-6 milijonov let pred sedanjostjo. Abstract: We investigated geomorphic expression of the Sava fault, one of the most important active faults in Slovenia. Various geomorphic indicators along the section of the fault between Golnik and Preddvor confirm its Quaternary activity. We use offset apexes of the Kokra alluvial fan to estimate short-term slip-rate of the fault to 0.6-4.1 mm per year for the period 365-1 750 thousand years BP, which agrees with the GPS-derived recent slip-rate of (1.0 ± 0.5) mm per year, whereas the long-term slip-rate derived using geological criteria is estimated to (1.0-5.0) mm per year for the last 20-6 million years BP. Ključne besede: Savski prelom, geomorfologija, kvartarna aktivnost Key words: Sava fault, geomorphology, Quaternary activity uvod Savski prelom je med pomembnejšimi prelomi na območju Slovenije, saj ozemlje države prečka po celotni dolžini (slika 1). Na Z vstopi iz Severne Italije, kjer je poznan kot Belski prelom (Fella fault) s slemenitvijo Z-V, v Zgornjesavsko dolino kot Savski prelom in poteka prek nje do Ljubljanske kotline, kjer je njen severni rob s slemenitvijo SZ-JV. Njegovo nadaljevanje proti vzhodu naj bi bil Celjski prelom s slemenitvijo Z-V, ki prečka Tuhinjsko sinklinalo na njenem severu, poteka po južnem robu Celjske kotline (Kazmer et al., 1996; Placer, 1996; Fodor et al., 1998) in se po nekaterih interpretacijah nadaljuje do stika s Šoštanjskim in Labotskim prelomom pri Rogaški Slatini in dalje proti E (Placer, 1996; Vrabec & Fodor, 2006). Tako kot njegova slemeni -tev se spreminja tudi njegov značaj, saj ima na območju Italije prelom rever-zen do desno transpresiven značaj, ki postopoma prehaja v bolj desnozmič-nega v Zgornjesavski dolini in med Jesenicami in Preddvorom, kjer slednjič preide nazaj v desno transpresivne-ga (Vrabec, 2001; Vrabec & Fodor, 2006). Glede na podatke geološkega kartiranja vpada Savski prelom strmo proti severu (Buser, 1980; Vrabec, 2001; Kastelic, 2007). Savski prelom je najjužnejši prelom v Periadriatskem prelomnem sistemu (Vrabec & Fodor, 2006). Severno je med njim in Periadriatskim prelomom mega strižna leča z zapletenim mehanizmom notranje deformacije rotacije tektonskih lamel (Fodor et al., 1998), južno od njega pa pravokotna ravnica, zapolnjena s kvartarnimi sedimenti -Gorenjski bazen. Zadnje omenjeni je verjetno nastal kot »pull-apart« bazen v sproščujočem preskoku med Savskim in Žužemberškim prelomom na jugu (npr. Vrabec, 2001). Ugotovljene kinematske faze aktivnosti Savskega preloma si sledijo v naslednjem zaporedju (Vrabec, 2001): desni zmik z glavno fazo premika, desna transpresija in nastanek stiskajočega prevoja med Preddvorom in Stahovico, tenzijske do transtenzijske deformacije ob ugrezanju Gorenjskega bazena ter ponovna transpresija, ki traja še danes. Dolžina skupnega horizontalnega premika ob prelomu je bila na podlagi ko-relacije različnih oligocenskih forma- Slika 1. Potek Savskega preloma in poenostavljena tektonska karta območja (prirejeno po Vrabec & Fodor, 2006). Digitalni model reliefa je iz podatkov SRTM (Shuttle Radar Topography Mission), dostopnih prek Global Land Cover Facility (http://glcf.umiacs.umd.edu/index.shtml). cij vzdolž preloma ocenjena na 25 km (Hinterlechner - Ravnik & Pleničar, 1967), 40 km (Kazmer et al., 1996) oziroma 65-70 km (Placer, 1996). Savski prelom velja za aktiven prelom (Poljak et al., 2000, 2010; Vrabec & Fodor, 2006), vendar njegova kvartarna aktivnost še ni bila podrobneje raziskana. Kvartarno aktivnost sicer nakazujejo izrazita topografija in v reliefu jasno vidna trasa preloma (Vrabec, 2001; Kastelic, 2007) ter nekatere deformacije kvartarnih sedimentov (Vrabec, 2001). Potencialno recentno aktivnost preloma nakazujejo tudi hi-pocentri potresov, ki se pojavljajo na širšem območju (Poljak et al., 2000, 2010). Študija aktivnih premikov v Periadriatskem prelomnem sistemu v Sloveniji z uporabo GPS-tehnologije je ob zahodnem delu trase Savskega preloma ugotovila aktivne desne pre- mike s hitrostjo okoli 1 mm na leto (Vrabec et al., 2006). Kot aktiven prelom regionalnih razsežnosti je Savski prelom verjeten vir seizmičnih dogodkov, vendar iz zgodovinskih zapisov ne poznamo nobenega uničujočega potresa, ki bi mu ga lahko z gotovostjo pripisali. Iz kataloga potresov (Živčic, 2009) je v širšem območju Savskega preloma poznanih nekaj potresov z magnitudami med 3 in 4,9. Le-ti so se morda zgodili na Savskem, morda pa na katerem od spremljajočih prelomov, saj hipocentri niso določeni z natančnostjo, ki bi omogočala zanesljivo korelacijo potresov s posameznimi prelomi. Da bi opredelili kvartarno aktivnost Savskega preloma in s tem pripomogli k boljšemu razumevanju njegove recentne aktivnosti in potencialne po- tresne nevarnosti, smo geomorfološko analizirali njegovo traso na odseku med Golnikom in Predvorom, iskali geomorfne indikatorje za kvartarno aktivnost preloma in poskusili kvanti-ficirati hitrost premikov ob njem. Tektonsko-geomorfološka opazovanja Geomorfološko kartiranje trase Savskega preloma in tektonsko-geomorfolo-ška opazovanja deformacij ob njem smo izvedli z analizo Temeljnih topografskih načrtov meril 1 : 5 000 in 1 : 10 000 (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, TTN 5 in TTN 10, 1999), Topografskih podatkov merila 1 : 25 000 (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, GKB 25, 2005), digitalnega modela reliefa z ločljivostjo 5 m, izdelanega iz podatkov Digitalnega modela višin (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, DMV 5, 2006), letalskih posnetkov v stereo parih in satelitskih SPOT-posnetkov z ločljivostjo 2,5 m v stereo parih. Opravili smo tudi terenske oglede zanimivih lokacij. Iz podatkov DMV 5 so bili izdelani topografski profili in karta nagibov površja. Regionalna geomorfološka izraže-nost Savskega preloma Savski prelom je sicer med geomorfološko najbolj izraženimi prelomi na ozemlju Slovenije, vendar pa je tekton-sko-geomorfološko kartiranje njegove trase pokazalo, da le-ta ni povsod jasno vidna. Vzdolž Zgornjesavske doline je trasa preloma slabše izražena, kar bi lahko nakazovalo manjšo aktivnost preloma na tem odseku, še bolj verjeten razlog pa tiči v poledenitvah, predvsem v zadnji ledeni dobi, ko je Savski ledenik lahko izbrisal ves geomorfni tektonski signal, čas po umiku ledenika pa ni bil dovolj dolg, da bi se kasnejši premiki jasno izrazili v površju. Trasa Savskega preloma je nato izjemno dobro geomorfološko izražena na območju med HE Moste pri Jesenicah in Preddvorom, kjer jo definira oster lom v naklonu površja (slika 2). Na tem odseku je prelom očitno segmentiran na posamezne desnozmične segmente. Vzhodno od Preddvora preide Savski prelom v transpresiven stiskajoči pre-voj (iz angl. restraining bend, po Vrabec, 2001), ki ga sestavljajo od SZ-JV do ZSZ-VJV usmerjeni desnozmični do desnoreverzni prelomi in SV-JZ do V-Z usmerjeni reverzni prelomi in narivi (Vrabec, 2001). Trase teh prelomov so relativno jasno izražene v reliefu med Preddvorom in Godičem. Najjužnejši tak prelom je Cerkeljski pregib (po Vrabec, 2001), ki tvori do 5 m visoko stopnjo v Wurmskem prodnem vršaju Kokre. Transpresivni sistem se konča pri Godiču severno od Kamnika, kjer preko doline Kamniške Bistrice poteka več vej Savskega preloma, ki so na tem območju še jasno vidne v površju, dalje proti vzhodu pa postane trasa preloma spet slabše ge-omorfološko izražena in jo zato tu ne bomo podrobneje obravnavali. Lom v naklonu površja vzdolž prelomne trase je lahko posledica spremembe v litologiji preko preloma, vendar pa lom opažamo tudi tam, kjer litoloških sprememb ni. Zato lomlje- no površje interpretiramo kot znak aktivnosti Savskega preloma v določenem časovnem obdobju. Določeno časovno obdobje pri tem razumemo kot čas, ki je dovolj dolg za obpre-lomno oblikovanje reliefa in obenem dovolj kratek, da se tektonski relief še ohrani. V tektonski geomorfologiji navadno privzamemo, da je to časovno obdobje kar obdobje kvartarja. Ker Slika 2. Karta nagibov površja z označeno aktivno traso Savskega preloma na območju med Jesenicami in Tuhinjem, topografski profil preko Savskega preloma pri Tržiču ter ocenjeni desni zamiki tokov večjih rek. Na topografskem profilu je označeno mesto loma pobočja, kar je ena od značilnih geomorfoloških oblik na trasi aktivnih prelomov. Karta nagibov površja in topografski profil sta bila izdelana iz podatkov DMV 5 (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, DMV 5, 2006). Vir vodotokov so Topografski podatki merila 1 : 25 000, GKB 25, podatkovni sloj vode (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, GKB 25, 2005). so kvartarno aktivni prelomi v večini primerov tudi recentno aktivni, lahko spoznanja o kvartarni aktivnosti uporabimo tudi kot indikacijo recentnih premikanj. Desnozmična aktivnost Savskega preloma v daljšem časovnem obdobju je razvidna tudi iz povijanja tokov vseh večjih rek, ki ga prečkajo. Na območju med Jesenicami in Tuhinjem so to Za-vršnica, Begunjščica, Tržiška Bistrica, Kokra, Reka in Kamniška Bistrica (slika 2). Zavoji teh rek nakazujejo med okoli 1,3 km do 5,4 km desnega zmika vzdolž slemenitve preloma. Reke ob prečkanju preloma tudi drastično spremenijo svoj režim iz vrezovanja severno od preloma v akumulacijo (nasipa-vanje) južno od preloma, zaradi česar je v kvartarju južno od preloma nastal sistem rečnih teras in vršajev. Danes so te reke sicer vrezane v svoje sedimente, kar pa je (najverjetneje) predvsem posledica klimatskih sprememb in z njimi povezanim padcem erozijske baze po zadnjem glacialnem maksimumu, ne moremo pa izključiti niti regionalnega dvigovanja ozemlja. Kljub temu je Savski prelom tudi danes izrazita geomorfološka meja med goratim reliefom Karavank in Kamniško--Savinjskih Alp severno od preloma in nižinskim reliefom Ljubljanske kotline južno od njega. Iz tega sklepamo, da ima Savski prelom tudi pomembno vertikalno komponento premika (ali pa jo je imel v preteklosti). Geomorfološka analiza med Golnikom in Preddvorom Na območju med Golnikom in Preddvorom je trasa Savskega preloma ge-omorfološko zelo dobro izražena. Ge-omorfološko kartiranje potek preloma postavlja na kontakt med goratim območjem, v katerega so vrezane številne doline različnih velikostnih razredov, ter pobočjem, ki ga prekrivajo vršaji aluvialnega in koluvialnega izvora. Na tem kontaktu se naklon površja izrazito lomi. Iz poteka grebenov in vodotokov je razvidno, da je hidrološki relief razvit prečno na aktivni prelom, kar je ugodneje za ugotavljanje deformacij površja kot v primeru drenaže, razvite vzporedno s prelomom (npr. Zgor-njesavska dolina). Grebeni in doline severno od preloma so usmerjeni večinoma v smeri SV-JZ, nekaj jih ima orientacijo S-J, nekateri pa potekajo tudi v smeri V-Z. S slike 3 je razvidno, da je nekaj strug potokov ob prečkanju trase Savskega preloma rahlo povitih, kot bi bile desno zamaknjene ob prelomu z dolžino premika med 100 m in 200 m. Nekaj potokov sicer takega povijanja ne kaže. Takšen je denimo potok Belica; njegova nedeformiranost je morda posledica močnejšega pretoka, zaradi česar ima potok večjo moč uravnavanja struge sočasno s tektonskimi deformacijami, morda pa je drenažni sistem mlajši od drugih. Analiza vršajev in teras ob Belici bi lahko pokazala zgodovino deformacij ob tem potoku. Nedeformirana sta videti tudi potoka Sevnica in Stražnica, ki prečkata segment Golnik-Preddvor na njegovem SZ koncu. Mislimo, da je tam desnoz-mična deformacija zaradi prenosa premika med prelomnimi segmenti manj lokalizirana in bi bilo potrebno daljše obdobje, da bi lahko tam nastale vidne deformacije površja. Iz oblike površja so bili rekonstruirani tudi občasni vodotoki, ki se večkrat končajo v vznožju pobočja v obliki manjšega vršaja (slika 3). Prehod iz grape v vršaj se pogosto nahaja na prelomnem kontaktu; enako kot pri stal- nih vodotokih in njihovih kvartarnih vršajih. Geomorfološko kartiranje teh vršajev še poteka, vendar že njihov obstoj priča o vertikalni komponenti aktivnosti Savskega preloma v kvartarju. Vršaj Kokre Med številnimi vršaji, ki so jih ustvarile reke in potoki južno od Savskega preloma na območju Gorenjskega bazena, je vršaj Kokre daleč največji in tudi med najlepše ohranjenimi. Njegova oblika je lepo vidna iz poteka pla-stnic na dolžini okrog 10 km in širini dobrih 9 km (slika 4). Na površju ohra- Slika 3. Zamiki strug manjših vodotokov med Golnikom in Preddvorom (označeni s krožnicami) ter manjši recentni vršaji, ki nastajajo ob zaključkih pobočnih grap, po katerih tečejo hudourniki. Vir plastnic in vodotokov so Temeljni topografski načrti meril 1 : 5 000 in 1 : 10 000 (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, TTN 5 in TTN 10, 1999). Slika 4. Geomorfološka karta vršaja Kokre. Digitalni model reliefa in pla-stnice z ekvidistanco 25 m so izdelani iz podatkov DMV 5 (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, DMV 5, 2006). Vir vodotokov so Topografski podatki merila 1 : 25 000, GKB 25, podatkovni sloj vode (Javne informacije Slovenije, Geodetska uprava Republike Slovenije, GKB 25, 2005). Topografska profila 1 in 2 sta izdelana iz podatkov DMV 5. njena pahljačasta oblika vršaja je vidna na obeh straneh današnje reke Kokre, ki se vanj vrezuje. Na svojem V robu je vršaj Kokre prekrit z vršajem Reke, ki ima še lepše ohranjeno površje in je očitno mlajši. Geomorfološki pregled površja V in Z od vršaja Kokre nakazuje prisotnost podobno oblikovane površine tudi vzdolž njegovih bokov, le da ta površina leži približno 15 m nad njim in je manj ohranjena oziroma je močneje erodirana - torej starejša (slika 4). Podobno višje ležeče površje se nahaja tudi sredi vršaja Kokre in je erodirano z vseh strani. Domnevamo, da bi te površine lahko bile ostanek nekoč enotne površine starejšega vršaja Kokre. Rekonstruirana enotna površina je namreč podobnih razsežnosti kot mlajši vršaj Kokre, zaradi česar sklepamo, da jo je lahko odložila le Kokra, ki je edina dovolj velika reka na tem območju. Topografska profila v smeri padca obeh vršajev (slika 4) namreč kažeta, da imata obe površini enak se-dimentacijski padec skoraj na celotni dolžini, le da ima starejši vršaj v zgornjem delu bolj strm profil, zaradi česar bi lahko sklepali, da ga tam dodatno prekriva mlajši koluvij in/ali potočni vršaj. Starost sedimentacije opisanih vršajev je bila opredeljena z relativnimi metodami na podlagi kartiranja kvartarnih sedimentov, morfostratigrafskih značilnosti njihovih površin (Žleb-nik, 1971) in značilnosti tal (Vidic et al., 1991). Mlajši vršaj Kokre in vršaj Reke sta bila pripisana morfostrati-grafski enoti Würm I, medtem ko so bili deli starejšega vršaja Kokre pripisani enotam Riss, Mindel in Günz. Kasnejše absolutno datiranje površja s kozmogenim izotopom 10Be in z analizami paleomagnetizma na različnih lokacijah v Gorenjskem bazenu (Pavich & Vidic, 1993; Vidic & Lobnik, 1997) uvršča enoto Würm I v časovno obdobje med 50 tisoč in 70 tisoč leti, Riss med 435 tisoč in 515 tisoč leti, Mindel med 780 tisoč in milijon leti ter Günz med milijon in 1 800 milijon leti. Z uporabo morfostratigrafske korelacije te starosti lahko uporabimo tudi za vr-šaje Kokre, kar povzemamo v tabeli 1. Domnevamo, da je bila kronologija formiranja površja na območju vršajev Kokre in Reke naslednja (slika 5): a) sedimentacija starejšega vršaja Kokre, b) erozija starejšega vršaja Kokre, c) sedimentacija mlajšega vršaja Kokre, č) sedimentacija vršaja Reke, d) vre-zovanje Kokre v mlajši vršaj. V več sto tisoč letih oblikovanja površja ob sočasni aktivnosti Savskega preloma se premik ob prelomu izraža v zamiku vrhov obeh vršajev Kokre. Rekonstruirani položaj vrha starejšega vršaja se nahaja SZ od vrha mlajšega vršaja. Iz njune današnje medsebojne razdalje ocenjujemo premik ob Savskem prelomu v času med odložitvijo starejšega in mlajšega vršaja na 1,0 km do 1,5 km v smeri slemenitve preloma. Morfostratigrafska enota Absolutna starost (Vidic et al., 1991) (Vidic & Lobnik, 1997) Riss, Mindel ali Günz 435-1 800 • 103 let Würm I 50-70 • 103 let Würm I 50-70 • 103 let Slika 5. Kronologija sedimentacije vršajev Kokre pod vplivom Savskega preloma (zaporedje od leve proti desni). Tabela 1. Starost vršajev Kokre in Reke Starejši vršaj Kokre Mlajši vršaj Kokre Vršaj Reke Hitrost premikov ob savskem prelomu Aktivnost Savskega preloma je mogoče ovrednotiti z oceno hitrosti premikov ob njem, za kar je treba poznati dolžino premika in čas, v katerem je premik nastal. Povprečne hitrosti premikov (v nadaljevanju PHP) in recen-tne hitrosti premikov (v nadaljevanju RHP) ob prelomu lahko ocenimo na podlagi različnih metod. Izbira metode je odvisna od časovnega razpona, za katerega PHP oz. RHP določamo. S premiki, določenimi na podlagi geoloških meril, je praviloma mogoče oceniti PHP za daljše časovno obdobje (long-term slip-rate), z geomorfološko določenimi premiki za krajše časovno obdobje (short-term slip-rate), z geodetskimi metodami pa je mogoče določiti RHP. V literaturi so podane različne ocene za dolžino premika ob Savskem prelomu na podlagi zamika geoloških enot (Hinterlechner - Ravnik & Pleničar, 1967; Kazmer et al., 1996; Placer, 1996) in za RHP, ki je bila izmerjena z GPS (Vrabec et al., 2006). K tem podatkom dodajamo še oceno hitrosti premikov na podlagi ge-omorfoloških meril, ki jih predstavljamo v tem članku. Pregled vseh meril podajamo v tabeli 2. Pri določitvi dolžine premika na podlagi geoloških meril avtorji uporabljajo zamik zgornjeoligocenskih vulkano-klastičnih kamnin, manj pa je jasno, kakšna je zgornja starostna meja začetka aktivnosti Savskega preloma. Do sarmatija (12 milijonov let) na območju osrednje Slovenije prevladuje morska sedimentacija, prevladujoče napetostno stanje pa je tenzija v smeri približno V-Z (npr. Fodor et al., 1998), kar ne omogoča desnih premikov ob Savskem prelomu, ki so vezani na kompresijo v smeri približno S-J (Vrabec, 2001). Tudi po podatkih OGK vzhodno od Kamniške Bistrice prelomi cone Savskega preloma jasno sekajo tam razgaljene srednjemiocen-ske plasti (Premru, 1983), kar postavlja aktivnost Savskega preloma v čas po približno 14 milijoni let. Ob regionalnih prelomih v vzhodnem delu Peri-adriatskega prelomnega sistema v Sloveniji deformirane srednjemiocenske plasti in veliki zamiki srednjemiocen-skih tektonostratigrafskih enot kažejo, da so desnozmične transpresivne deformacije mlajše od srednjega mioce-na (Fodor et al., 1998). Vrabec (2001) povezuje nastanek velike prevrnjene gube v neogenskih plasteh Tunjiškega gričevja s transpresivnimi deformacijami v stiskajočem prevoju Savskega preloma pri Kamniku, kar bi glede na starost najmlajših nagubanih plasti omejilo aktivnost preloma na obdobje po sarmatiju. Na podlagi regionalne korelacije je bila glavna faza aktivnosti Savskega preloma vezana na nastop inverzijske faze v Panonskem bazenu in transpresivnega gubanja v Posavskih gubah južno od preloma pred približno 6 milijoni let na prehodu iz miocena v pliocen (Vrabec & Fodor, 2006). Vendar pa struktura prelomne cone v stiskajočem prevoju Savskega preloma severno od Kamnika kaže, da se je faza velikih premikov ob prelomu zgodila že pred nastopom transpresiv-nega povijanja ob prelomu (Vrabec, 2001), kar dopušča, da se je aktivnost preloma začela že pred 6 milijoni let. V svoji oceni smo za skupno dolžino premika ob Savskem prelomu vzeli bolj konzervativno vrednost med 20 km in 30 km, ki je po našem mnenju bolj realna (Vrabec et al., v pripravi). Za časovno obdobje, v katerem se je ta premik zgodil, privzemamo glede na zgornjo diskusijo kot zgornjo mejo 20 milijonov let, kot spodnjo pa 6 milijonov let (tabela 2, slika 6). Ocena dolgoročne PHP za Savski prelom je tako od 1,0 mm do 5,0 mm na leto. Geo-morfološko ocenjena kratkoročna PHP na podlagi naše ocene zamika vršaja Kokre je od 0,6 mm do 4,1 mm na leto, RHP, izmerjena z GPS, pa je okrog 1 mm na leto z natančnostjo okoli ±0,5 mm na leto. Pri analizi ocenjenih vrednosti je treba upoštevati, da je na ozemlju Slovenije recentna hitrost konvergence med Jadransko mikroploščo in Evrazijo 2-4 mm na leto (npr. Weber et al., 2010). Ta deformacija je porazdeljena po vseh aktivnih strukturah ozemlja, tako da lahko pričakujemo, da so maksimalne hitrosti premikov ob posameznih prelomih v območju 0,1-1,0 mm na leto. Tabela 2. Primerjava hitrosti premikov ob Savskem prelomu, pridobljenih z različnimi metodami Metoda Avtorji Zamik Starost (čas) Povprečna hitrost premika Hinterlechner-Ravnik & 25 km 6-20 • 106 let 1,3-4,2 mm Pleničar (1967) na leto Geološko Kazmer in sod. (1996) 40 km 6-20 • 106 let 2,0-6,7 mm na leto določen premik Placer(1996) 65-70 km 6-20 • 106 let 3,25-11,7 mm na leto Vrabec (2001) 30-50 km 6-20 • 106 let 1,5-8,3 mm na leto Geomorfološko določen premik ocenjen zamik vršaja Kokre (ta prispevek) 1,0-1,5 km (365-1 750 • 103 let) 0,6-4,1 mm na leto GPS Vrabec et al. (2006) Recentno (1,0 ± 0,5) mm na leto 0 Km S km 10 km 15 km 20 km 25 km 30 km 35 km 40 km dolžina premika Slika 6. Primerjava ocenjenih hitrosti premikov ob Savskem prelomu na podlagi podatkov, uporabljenih v tem članku Palinspastične rekonstrukcije postkoli-zijskih deformacij v Alpskem orogenu za zadnjih 20 milijonov let ne kažejo bistveno povečanih hitrosti tektonskih procesov, zato hitrosti premikov ob Savskem prelomu, ki bi bile bistveno višje od današnjih, verjetno niso geološko realistične. Geomorfološko določena kratkoročna PHP in geodetsko izmerjena RHP se v okviru natančnosti dobro ujemata (slika 6). Natančnejše opredelitve bodo mogoče, ko bomo podrobneje raziskali geomorfološke znake aktivnosti ob Savskem prelomu in jih ustrezno natančno datirali z absolutnimi metodami, prav tako je že v pripravi nov preračun z GPS izmerjenih hitrosti tektonskih deformacij v regiji. Geološko ocenjena dolgoročna PHP kaže, da so bile hitrosti premikov ob Savskem prelomu v geološki preteklosti verjetno vsaj nekoliko večje kot danes, saj dobimo z RHP primerljivo hitrost le, če uporabimo minimalno dolžino premika 20 km in maksimalni časovni razpon 20 milijonov let (slika 6), če pa uporabimo po našem mnenju bolj realistične vrednosti do 25 km in do 14 milijonov let, dolgoročna PHP naraste na 1,5 mm do 2,0 mm na leto. Manj je verjetno, da je skupni desni premik ob Savskem prelomu 40 km ali več, saj bi v tem primeru dobili za dvakrat do petkrat večje hitrosti premikov, ki pa najbrž niso realistične (tabela 2). Sklepi Oblikovanost površja lahko razodene mnogo informacij o načinu nastanka in razvoja površja ter o dejavnikih, ki so vplivali na procese oblikovanja. Med drugim lahko iz oblikovanosti površja prepoznamo tudi vplive tektonskih procesov. Geomorfološke informacije so ključne pri ugotavljanju kvartarne oziroma recentne aktivnosti tektonskih struktur v regionalnem in tudi v bolj lokalnem merilu. Na območju med HE Moste in Godi-čem je Savski prelom dobro geomorfo-loško izražen. Orientacija geomorfnih indikatorjev prečno na prelom in njihova kvartarna starost omogoča izvedbo tektonsko-geomorfoloških analiz, saj so indikatorji dovolj stari, da se na njih akumulirajo deformacije, hkrati pa so nastale geomorfne oblike ostale ohranjene in jih je mogoče datirati. Naše tektonsko-geomorfološke analize Savskega preloma so pokazale znake za njegovo kvartarno desnozmično aktivnost na območju med HE Moste in Preddvorom ter potrdile njegov desno transpresiven značaj med Preddvorom in Godičem. Večje reke so desno zamaknjene prek preloma za 1,3-5,4 km. Med Golnikom in Preddvorom smo ob prelomu ugotovili 100-200 m dolge desne zamike potokov, na območju kvartarne sedimentacije reke Kokre pa desni zamik vrhov njenih različno starih vršajev za 1,0-1,5 km. Ocenili smo kratkoročno in dolgoročno povprečno hitrost premikov ob Savskem prelomu. Geološko ocenjena dolgoročna PHP je od 1,0 mm do 5,0 mm na leto za obdobje v zadnjih 20-6 milijonov let pred sedanjostjo, geomorfološko določena kratkoročna PHP pa od je od 0,6 mm do 4,1 mm na leto v obdobju 365-1 750 tisoč let pred sedanjostjo, kar je v okviru z GPS izmerjene recentne hitrosti premikov (1,0 ± 0,5) mm na leto. V prihodnje nameravamo z natančnim kartiranjem geomorfnih indikatorjev vzdolž celotne trase Savskega preloma med HE Moste in Godičem in z njihovo datacijo natančneje ovrednotiti kvartarno aktivnost preloma in s tem oceniti stopnjo potresne nevarnosti, ki jo pomeni prelom. Zahvale Raziskave so bile financirane iz sredstev Javne agencije za raziskovalno dejavnost Republike Slovenije prek projektov L1-2383 Seizmotektonski model Ljubljanske kotline, J6-4016 Vzorci prilagajanja človekovih dejavnosti spremembam v okolju po zadnjem glacialnem maksimumu v Sloveniji, programa P1 - 0011 Regionalna geologija in usposabljanja mladega raziskovalca (pogodba št. 100009-310068). Viri Buser, S. (1980): Tolmač lista Celovec (Klagenfurt) L 33-53. Osnovna geološka karta SFRJ 1:100.000. Zvezni geološki zavod, Beograd. Fodor, L., Jelen, M., MArton, E., Skaber-ne, D., Čar, J. & Vrabec, M. (1998): Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic fault: Implications for Alpine-Carpathian extrusion models. Tectonics; Vol. 17, No. 5, pp. 690-709, Washington. Hinterlechner - Ravnik, A. & Pleničar, M. (1967): Smrekovški andezit in njegov tuf. Geologija; Vol. 10, pp. 219237, Ljubljana. Kastelic, V. (2007): Strukturne razmere v coni Savskega preloma na območju Zahodnih Karavank. = Structural conditions within Sava Fault zone in the Western Karavanke mountains, NW Slovenia. Geologija; Vol. 50, No. 2, pp. 323-334, Ljubljana. Kazmer, M., Fodor, L., Jazsa, S., Jelen, B., Herlec, U. & Kuhlemann, J. (1996): Late Miocene paleogeography of Slovenia and the Southern Alps: A palinspastic approach. 6. Symposium Tektonik - Strukturgeologie - Kristallingeologie; pp. 212-214, Salzburg. Pavich, M. J. & Vidic, N. (1993): Application of Paleomagnetic and 10Be Analyses to Chronostratigraphy of Alpine Glacio-fluvial Terraces, Sava River Valley, Slovenia. Climate change in continental isotopic records (Geophysical monograph; Vol. 78), pp. 263-275, Washington. Placer, L. (1996): O premiku ob Savskem prelomu. = Displacement along the Sava fault. Geologija; Vol. 39, pp. 283-287, Ljubljana. Poljak, M., GoSAR, A. & ŽlVčlC, M. (2010): Active tectonics in Slovenia. Geology of the Adriatic area : International Geological Congress on the Adriatic Area (ADRIA 2006), Urbi-no, 19-20 June 2006, University of Bologna, Department of Earth and Geological-Environmental Sciences, (GeoActa; Spec. pub. 3), pp. 15-24, Bologna. Poljak, M., ŽiVčiC, M. & Zupančič, P. (2000): The seismotectonic characteristics of Slovenia. Pure and Applied Geophysics; Vol. 157, pp. 37-55, Basel. Premru, u. (1983): Osnovna geološka karta SFRJ, list Ljubljana, 1:100.000. Zvezni geološki zavod, Beograd. Vidic, N. J. & Lobnik, F. (1997): Rates of soil development of the chrono-sequence in the Ljubljana Basin, Slovenia. Geoderma; Vol. 76, pp. 35-64, Amsterdam. Vidic, N., Pavich, M. & Lobnik, F. (1991): Statistical analyses of soil properties on a Quaternary terrace sequence in the upper Sava River Valley, Slovenia, Yugoslavia. Geoderma; Vol. 51, pp. 189-212, Amsterdam. Vrabec, M. (2001): Strukturna analiza cone Savskega preloma med Trsteni-kom in Stahovico. Doktorska diser- tacija. Univerza v Ljubljani, Naravo-slovnotehniška fakulteta, Oddelek za geologijo; 94 f., Ljubljana. Vrabec, M. & Fodor, L. (2006): Late Ce-nozoic tectonics of Slovenia : Structural styles at the north-eastern corner of the Adriatic microplate. The Adria microplate: GPS geodesy, tectonics and hazards. NATO Science Series. IV, Earth and Environmental Sciences; Vol. 61, pp. 151-168, Dordrecht. Vrabec, M., Pavlovčič Prešeren, P. & Stopar, B. (2006): GPS study (19962002) of active deformation along the Periadriatic fault system in northeastern Slovenia: tectonic model. Geologi ca Carpathica; Vol. 57, No. 1, pp. 57-65, Bratislava. Weber, J., Vrabec, M., Pavlovčič Prešeren, P., Dixon, T, Jiang, Y. & Stopar B. (2010): GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites and geodyna-mic implications. Tectonophysics; Vol. 483, No. 3-4, pp. 214-222, Amsterdam, London, New York. Živčic, M. (2009): Katalog potresov v Sloveniji. Interna dokumentacija. ARSO - Agencija Republike Slovenije za okolje, Ljubljana. Žlebnik, L. (1971): Pleistocen Kranjskega, Sorškega in Ljubljanskega polja. = Pleistocene Deposits of the Kranj, Sora and Ljubljana Fields. Geologija; Vol. 14, pp. 5-51, Ljubljana. Authors Index, Vol. 59, No. 2/3 Alijagic Jasminka Andjelov Mišo Bavec Miloš Benedetti Lucilla Car Marjeta Cerar Sonja Dobnikar Meta Gosar Andrej Gosar Mateja Jamšek Rupnik Petra Mikuž Vasja Pavšič Jernej Shields Deborah Stopar Robert Stražar Aleš Šajn Robert Šebela Stanka Šmuc Andrej Šolar Slavko Teršič Tamara Uhan Jože Urbanc Janko Vrabec Marko Zelič Urška Zupančič Nina jasminka.alijagic@geo-zs.si miso.andjelov@gov.si milos.bavec@geo-zs.si meta.dobnikar@gov.si mateja.gosar@geo-zs.si petra.jamsek@geo-zs.si vasja.mikuz@ntf.uni-lj.si jernej.pavsic@ntf.uni-lj.si Deborah.Shields@PoliTo.it robert.sajn@geo-zs.si sebela@zrc-sazu.si andrej.smuc@geo.ntf.uni-lj.si slavko.solar@geo-zs.si tamara.tersic@geo-zs.si joze.uhan@gov.si janko.urbanc@geo-zs.si marko.vrabec@geo.ntf.uni-lj.si urska.zelic@alianta.si nina.zupancic@ntf.uni-lj.si INSTRUCTIONS TO AUTHORS RMZ-MATERIALS & GEOENVIRONMENT (RMZ- Materiali in geookolje) is a periodical publication with four issues per year (established 1952 and renamed to RMZ-M&G in 1998). The main topics of contents are Mining and Geotechnology, Metallurgy and Materials, Geology and Geoenvironment. RMZ-M&G publishes original Scientific articles, Review papers, Preliminary notes, Professional papers in English. In addition, evaluations of other publications (books, monographs,...), In memoriam, Professional remarks and reviews are welcome. The Title, Abstract and Key words in Slovene will be included by the author(s) or will be provided by the referee or the Editorial Office. * Additional information and remarks for Slovenian authors: Only Professional papers, Publications notes, Events notes, Discussion of papers and In memoriam, will be exceptionally published in the Slovenian language. Authorship and originality of the contributions. Authors are responsible for originality of presented data, ideas and conclusions as well as for correct citation of data adopted from other sources. The publication in RMZ-M&G obligate authors that the article will not be published anywhere else in the same form. Specification of Contributions RMZ-M&G will publish papers of the following categories: Full papers (optimal number of pages is 7 to 15, longer articles should be discussed with Editor prior to submission). An abstract is required. • Original scientific papers represent unpublished results of original research. • Review papers summarize previously published scientific, research and/ or expertise articles on the new scientific level and can contain also other cited sources, which are not mainly result of author(s). • Preliminary notes represent preliminary research findings, which should be published rapidly. • Professional papers are the result of technological research achievements, application research results and information about achievements in practice and industry. Short papers (the number of pages is limited to 1 for Discussion of papers and 2 pages for Publication note, Event note and In Memoriam). No abstract is required for short papers. • Publication notes contain author's opinion on new published books, monographs, textbooks, or other published material. A figure of cover page is expected. • Event notes in which descriptions of a scientific or professional event are given. • Discussion of papers (Comments) where only professional disagreements can be discussed. Normally the source author(s) reply the remarks in the same issue. • In memoriam (a photo is expected). Supervision and review of manuscripts. All manuscripts will be supervised. The referees evaluate manuscripts and can ask authors to change particular segments, and propose to the Editor the acceptability of submitted articles. Authors can suggest the referee but Editor has a right to choose another. The name of the referee remains anonymous. The technical corrections will be done too and authors can be asked to correct missing items. The final decision whether the manuscript will be published is made by the Editor in Chief. The Form of the Manuscript The manuscript should be submitted as a complete hard copy including figures and tables. The figures should also be enclosed separately, both charts and photos in the original version. In addition, all material should also be provided in electronic form on a diskette or a CD. The necessary information can conveniently also be delivered by E-mail. Composition of manuscript is defined in the attached Template The original file of Template is available on RMZ-Materials and Geoenvironment Home page address: http://www.rmz-mg.com References - can be arranged in two ways: - first possibility: alphabetic arrangement of first authors - in text: (Borgne, 1955), - second possibility: [1] numerated in the same order as cited in the text: example[1] Format of papers in journals: Le Borgne, E. (1955): Susceptibilite magnetic anomale du sol superficiel. Annales de Geophysique, 11, pp. 399-419. Format of books: Roberts, J. L. (1989): Geological structures, MacMillan, London, 250 p. Text on the hard print copy can be prepared with any text-processor. The electronic version on the diskette, CD or E-mail transfer should be in MS Word or ASCII format. Captions of figures and tables should be enclosed separately. Figures (graphs and photos) and tables should be original and sent separately in addition to text. They can be prepared on paper or computer designed (MSExcel, Corel, Acad). Format. Electronic figures are recommended to be in CDR, Al, EPS, TIF or JPG formats. Resolution of bitmap graphics (TIF, JPG) should be at least 300 dpi. Text in vector graphics (CDR, Al, EPS) must be in MSWord Times typography or converted in curves. Color prints. Authors will be charged for color prints of figures and photos. Labeling of the additionally provided material for the manuscript should be very clear and must contain at least the lead author's name, address, the beginning of the title and the date of delivery of the manuscript. In case of an E-mail transfer the exact message with above asked data must accompany the attachment with the file containing the manuscript. Information about RMZ-M&G: Editor in Chief prof. dr. Peter Fajfar (phone: ++386 1 2000451) or Secretary Barbara Bohar Bobnar, univ. dipl. ing. geol. (phone: ++386 1 4704630), Aškerčeva 12, 1000 Ljubljana, Slovenia or at E-mail addresses: peter.fajfar@omm.ntf.uni-lj.si, barbara.bohar@geo.ntf.uni-lj.si Sending of manuscripts. Manuscripts can be sent by mail to the Editorial Office address: • RMZ-Materials & Geoenvironment Aškerčeva 12, 1000 Ljubljana, Slovenia or delivered to: • Reception of the Faculty of Natural Science and Engineering (for RMZ-M&G) Aškerčeva 12, 1000 Ljubljana, Slovenia • E-mail - addresses of Editor and Secretary • You can also contact them on their phone numbers. These instructions are valid from August 2009 NAVODILA AVTORJEM RMZ-MATERIALS AND GEOENVIRONMENT (RMZ- Materiali in geookolje) - kratica RMZ-M&G - je revija (ustanovljena kot zbornik 1952 in preimenovana v revijo RMZ-M&G 1998), ki izhaja vsako leto v štirih zvezkih. V reviji objavljamo prispevke s področja rudarstva, geotehnologije, materialov, metalurgije, geologije in geookolja. RMZ- M&G objavlja izvirne znanstvene, pregledne in strokovne članke ter predhodne objave samo v angleškem jeziku. Strokovni članki so lahko izjemoma napisani v slovenskem jeziku. Kot dodatek so zaželene recenzije drugih publikacij (knjig, monografij ...), nekrologi In Memoriam, predstavitve znanstvenih in strokovnih dogodkov, kratke objave in strokovne replike na članke objavljene v RMZ-M&G v slovenskem ali angleškem jeziku. Prispevki naj bodo kratki in jasni. Avtorstvo in izvirnost prispevkov. Avtorji so odgovorni za izvirnost podatkov, idej in sklepov v predloženem prispevku oziroma za pravilno citiranje privzetih podatkov. Z objavo v RMZ-M&G se tudi obvežejo, da ne bodo nikjer drugje objavili enakega prispevka. Vrste prispevkov Optimalno število strani je 7 do 15, za daljše članke je potrebno soglasje glavnega urednika. Izvirni znanstveni članki opisujejo še neobjavljene rezultate lastnih raziskav. Pregledni članki povzemajo že objavljene znanstvene, raziskovalne ali strokovne dosežke na novem znanstvenem nivoju in lahko vsebujejo tudi druge (citirane) vire, ki niso večinsko rezultat dela avtorjev. Predhodna objava povzema izsledke raziskave, ki je v teku in zahteva hitro objavo. Strokovni članki vsebujejo rezultate tehnoloških dosežkov, razvojnih projektov in druge informacije iz prakse. Recenzije publikacij zajemajo ocene novih knjig, monografij, učbenikov, razstav .(do dve strani; zaželena slika naslovnice in kratka navedba osnovnih podatkov - izkaznica). In memoriam (do dve strani, zaželena slika). Strokovne pripombe na objavljene članke ne smejo presegati ene strani in opozarjajo izključno na strokovne nedoslednosti objavljenih člankov v prejšnjih številkah RMZ-M&G. Praviloma že v isti številki avtorji prvotnega članka napišejo odgovor na pripombe. Poljudni članki, ki povzemajo znanstvene in strokovne dogodke (do dve strani). Recenzije. Vsi prispevki bodo predloženi v recenzijo. Recenzent oceni primernost prispevka za objavo in lahko predlaga kot pogoj za objavo dopolnilo k prispevku. Recenzenta izbere Uredništvo med strokovnjaki, ki so dejavni na sorodnih področjih, kot jih obravnava prispevek. Avtorji lahko sami predlagajo recenzenta, vendar si uredništvo pridržuje pravico, da izbere drugega recenzenta. Recenzent ostane anonimen. Prispevki bodo tudi tehnično ocenjeni in avtorji so dolžni popraviti pomanjkljivosti. Končno odločitev za objavo da glavni in odgovorni urednik. Oblika prispevka Prispevek predložite v tiskanem oštevilčenem izvodu (po možnosti z vključenimi slikami in tabelami) ter na disketi ali CD, lahko pa ga pošljete tudi prek E-maila. Slike in grafe je možno poslati tudi risane na papirju, fotografije naj bodo originalne. Razčlenitev prispevka: Predloga za pisanje članka se nahaja na spletni strani: http://www.rmz-mg.com/predloga.htm Seznam literature je lahko urejen na dva načina: -po abecednem zaporedju prvih avtorjev ali -po [1]vrstnem zaporedju citiranosti v prispevku. Oblika je za oba načina enaka: Članki: Le Borgne, E. (1955): Susceptibilite magnetic anomale du sol superficiel. Annales de Geophysique; Vol. 11, pp. 399-419. Knjige: Roberts, J. L. (1989): Geological structures, MacMillan, London, 250 p. Tekst izpisanega izvoda je lahko pripravljen v kateremkoli urejevalniku. Na disketi, CD ali v elektronskem prenosu pa mora biti v MS Word ali v ASCII obliki. Naslovi slik in tabel naj bodo priloženi posebej. Naslove slik, tabel in celotno besedilo, ki se pojavlja na slikah in tabelah, je potrebno navesti v angleškem in slovenskem jeziku. Slike (ilustracije in fotografije) in tabele morajo biti izvirne in priložene posebej. Njihov položaj v besedilu mora biti jasen iz priloženega kompletnega izvoda. Narejene so lahko na papirju ali pa v računalniški obliki (MS Excel, Corel, Acad). Format elektronskih slik naj bo v EPS, TIF ali JPG obliki z ločljivostjo okrog 300 dpi. Tekst v grafiki naj bo v Times tipografiji. Barvne slike. Objavo barvnih slik sofinancirajo avtorji Označenost poslanega materiala. Izpisan izvod, disketa ali CD morajo biti jasno označeni - vsaj z imenom prvega avtorja, začetkom naslova in datumom izročitve uredništvu RMZ-M&G. Elektronski prenos mora biti pospremljen z jasnim sporočilom in z enakimi podatki kot velja za ostale načine posredovanja. Informacije o RMZ-M&G: urednik prof. dr. Peter Fajfar, univ. dipl. ing. metal. (tel. ++386 1 2000451) ali tajnica Barbara Bohar Bobnar, univ. dipl. ing. geol. (tel. ++386 1 4704630), Aškerčeva 12, 1000 Ljubljana ali na E-mail naslovih: peter.fajfar@omm.ntf.uni-lj.si barbara.bohar@geo.ntf.uni-lj.si Pošiljanje prispevkov. Prispevke pošljite priporočeno na naslov Uredništva: • RMZ-Materials and Geoenvironment Aškerčeva 12, 1000 Ljubljana, Slovenija oziroma jih oddajte v • Recepciji Naravoslovnotehniške fakultete (pritličje) (za RMZ-M&G) Aškerčeva 12, 1000 Ljubljana, Slovenija • Možna je tudi oddaja pri uredniku oziroma pri tajnici. Navodila veljajo od avgusta 2009. TEMPLATE The title of the manuscript should be written in bold letters (Times New Roman, 14, Center) Naslov članka (Times New Roman, 14, Center) Name Surname1, .... , & Name Surnamex (Times New Roman, 12, Center) x University of ..., Faculty of ..., Address., Country ... (Times New Roman, 11, Center) Corresponding author. E-mail: ... (Times New Roman, 11, Center) Abstract (Times New Roman, Normal, 11): The abstract should be concise and should present the aim of the work, essential results and conclusion. It should be typed in font size 11, single-spaced. Except for the first line, the text should be indented from the left margin by 10 mm. The length should not exceed fifteen (15) lines (10 are recommended). Izvleček (Times New Roman, navadno, 11): Kratek izvleček namena članka ter ključnih rezultatov in ugotovitev. Razen prve vrstice naj bo tekst zamaknjen z levega roba za 10 mm. Dolžina naj ne presega petnajst (15) vrstic (10 je priporočeno). Key words: a list of up to 5 key words (3 to 5) that will be useful for indexing or searching. Use the same styling as for abstract. Ključne besede: seznam največ 5 ključnih besed (3-5) za pomoč pri indeksiranju ali iskanju. Uporabite enako obliko kot za izvleček. Introduction (Times New Roman, Bold, 12) Two lines below the keywords begin the introduction. Use Times New Roman, font size 12, Justify alignment. There are two (2) admissible methods of citing references in text: 1. by stating the first author and the year of publication of the reference in the parenthesis at the appropriate place in the text and arranging the reference list in the alphabetic order of first authors; e.g.: "Detailed information about geohistorical development of this zone can be found in: Antonijevic (1957), Grubic (1962), ..." "... the method was described previously (Hoefs, 1996)" 2. by consecutive Arabic numerals in square brackets, superscripted at the appropriate place in the text and arranging the reference list at the end of the text in the like manner; e.g.: "... while the portal was made in Zope environment. [3]" Materials and methods (Times New Roman, Bold, 12) This section describes the available data and procedure of work and therefore provides enough information to allow the interpretation of the results, obtained by the used methods. Results and discussion (Times New Roman, Bold, 12) Tables, figures, pictures, and schemes should be incorporated in the text at the appropriate place and should fit on one page. Break larger schemes and tables into smaller parts to prevent extending over more than one page. conclusions (Times New Roman, Bold, 12) This paragraph summarizes the results and draws conclusions. Acknowledgements (Times New Roman, Bold, 12, Center - optional) This work was supported by the ****. References (Times New Roman, Bold, 12) In regard to the method used in the text, the styling, punctuation and capitalization should conform to the following: FIRST OPTION - in alphabetical order Casati, P., Jadoul, F., Nicora, A., Marinelli, M., Fantini-Sestini, N. & Fois, E. (1981): Geologia della Valle del'Anisici e dei gruppi M. Popera - Tre Cime di Lavaredo (Dolomiti Orientali). Riv. Ital. Paleont.; Vol. 87, No. 3, pp. 391-400, Milano. Folk, R. L. (1959): Practical petrographic classification of limestones. Amer. Ass. Petrol. Geol. Bull.; Vol. 43, No. 1, pp. 1-38, Tulsa. SECOND OPTION - in numerical order [1] Trcek, B. (2001): Solute transport monitoring in the unsaturated zone of the karst aquifer by natural tracers. Ph. D. Thesis. Ljubljana: University of Ljubljana 2001;125 p. [2] Higashitani, K., Iseri, H., okuhara, K., Hatade, S. (1995): Magnetic Effects on Zeta Potential and Diffusivity of Nonmagnetic Particles. Journal of Colloid and Interface Science, 172, pp. 383-388. Citing the Internet site: CASREACT-Chemical reactions database [online]. Chemical Abstracts Service, 2000, updated 2. 2. 2000 [cited 3. 2. 2000]. Accessible on Internet: http://www.cas.org/ CASFILES/casreact.html. Texts in Slovene (title, abstract and key words) can be written by the author(s) or will be provided by the referee or by the Editorial Board. PREDLOGA ZA SLOVENSKE ČLANKE Naslov članka (Times New Roman, 14, Na sredino) The title of the manuscript should be written in bold letters (Times New Roman, 14, Center) Ime Priimek1, ..., Ime Priimekx (Times New Roman, 12, Na sredino) XUniverza..., Fakulteta., Naslov., Država. (Times New Roman, 11, Center) *Korespondenčni avtor. E-mail: ... (Times New Roman, 11, Center) Izvleček (Times New Roman, Navadno, 11): Kratek izvleček namena članka ter ključnih rezultatov in ugotovitev. Razen prve j bo tekst zamaknjen z levega roba za 10 mm. Dolžina naj ne presega petnajst (15) vrstic (10 je priporočeno). Abstract (Times New Roman, Normal, 11): The abstract should be concise and should present the aim of the work, essential results and conclusion. It should be typed in font size 11, single-spaced. Except for the first line, the text should be indented from the left margin by 10 mm. The length should not exceed fifteen (15) lines (10 are recommended). Ključne besede: seznam največ 5 ključnih besed (3-5) za pomoč pri indeksiranju ali iskanju. Uporabite enako obliko kot za izvleček. Key words: a list of up to 5 key words (3 to 5) that will be useful for indexing or searching. Use the same styling as for abstract. uvod (Times New Roman, Krepko, 12) Dve vrstici pod ključnimi besedami se začne Uvod. Uporabite pisavo Times New Roman, velikost črk 12, z obojestransko poravnavo. Naslovi slik in tabel (vključno z besedilom v slikah) morajo biti v slovenskem jeziku. Slika (Tabela) X. Pripadajoče besedilo k sliki (tabeli) Obstajata dve sprejemljivi metodi navajanja referenc: 1. z navedbo prvega avtorja in letnice objave reference v oklepaju na ustreznem mestu v tekstu in z ureditvijo seznama referenc po abecednem zaporedju prvih avtorjev; npr.: "Detailed information about geohistorical development of this zone can be found in: Antonijevic (1957), Grubic (1962), ..." "... the method was described previously (Hoefs, 1996)" 2. z zaporednimi arabskimi številkami v oglatih oklepajih na ustreznem mestu v tekstu in z ureditvijo seznama referenc v številčnem zaporedju navajanja; npr.; "... while the portal was made in Zope[3] environment." Materiali in metode (Times New Roman, Krepko, 12) Ta del opisuje razpoložljive podatke, metode in način dela ter omogoča zadostno količino informacij, da lahko z opisanimi metodami delo ponovimo. Rezultati in razprava (Times New Roman, Krepko, 12) Tabele, sheme in slike je treba vnesti (z ukazom Insert, ne Paste) v tekst na ustreznem mestu. Večje sheme in tabele je po treba ločiti na manjše dele, da ne presegajo ene strani. Sklepi (Times New Roman, Krepko, 12) Povzetek rezultatov in sklepi. Zahvale (Times New Roman, Krepko, 12, Na sredino - opcija) Izvedbo tega dela je omogočilo......... viri (Times New Roman, Krepko, 12) Glede na uporabljeno metodo citiranja referenc v tekstu upoštevajte eno od naslednjih oblik: PRVA MOŽNOST (priporočena) - v abecednem zaporedju Casati, P., Jadoul, F., Nicora, A., Marinelli, M., Fantini-Sestini, N. & Fois, E. (1981): Geologia della Valle del'Anisici e dei gruppi M. Popera - Tre Cime di Lavaredo (Dolomiti Orientali). Riv. Ital. Paleont.; Vol. 87, No. 3, pp. 391-400, Milano. Folk, R. L. (1959): Practical petrographic classification of limestones. Amer. Ass. Petrol. Geol. Bull.; Vol. 43, No. 1, pp. 1-38, Tulsa. DRUGA MOŽNOST - v numeričnem zaporedju [1] Trček, B. (2001): Solute transport monitoring in the unsaturated zone of the karst aquifer by natural tracers. Ph. D. Thesis. Ljubljana: University of Ljubljana 2001;125 p. [2] Higashitani, K., Iseri, H., Okuhara, K., Hatade, S. (1995): Magnetic Effects on Zeta Potential and Diffusivity of Nonmagnetic Particles. Journal of Colloid and Interface Science, 172, pp. 383-388. Citiranje spletne strani: CASREACT-Chemical reactions database [online]. Chemical Abstracts Service, 2000, obnovljeno 2. 2. 2000 [citirano 3. 2. 2000]. Dostopno na svetovnem spletu: http://www. cas.org/CASFILES/casreact.html. Znanstveni, pregledni in strokovni članki ter predhodne objave se objavijo v angleškem jeziku. Izjemoma se strokovni članek objavi v slovenskem jeziku. Univerza v Ljubljani, Naravoslovnotehniška fakulteta Oddelek za materiale in metalurgijo Aškerčeva cesta 12 Telefon: (01) 470 46 08, internetni naslov: 1000 Ljubljana E-pošta: omm@ntf.uni-lj.si http://www.ntf.uni-lj.si/ PREMOGOVNIK VELENJE je pomemben in zanesljiv člen v oskrbi Slovenije z električno energijo. Zavedamo se odgovornosti do lastnikov, zaposlenih in okolja. .'t t «l< I« ___ ČUT ZA PRIHODNOST Inženirska geologija Hidrogeologija Geomehanika Projektiranje Tehnologije za okolje