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Abstract. The recently proposed mechanism for the formation of the Roper resonance, in
which a dynamically generated state as well as a genuine three-quark resonant state play
an equally important role, is confronted with the model proposed almost twenty years ago
in which the Roper is pictured as a molecular state of the nucleon and the σmeson.

Our recent investigation on the nature of the Roper resonance [1] has been mo-
tivated by the results of lattice QCD simulation in the P11 partial wave by the
Graz-Ljubljana and the Adelaide groups [2, 3] that have included beside three-
quark interpolating fields also operators for πN in relative p-wave and σN in
s-wave, and have found no evidence for a dominant three-quark configuration
below 1.65 GeV. In our research we use a coupled channel approach which has
been previously successfully applied to describe meson scattering and photo-
and electro-production in several partial waves in the intermediate energy re-
gion [4–9]. In the present analysis of the Roper resonance we include the πN,
π∆, and σN channels and solve the Lippmann-Schwinger equation for the me-
son amplitudes to all orders in the approximation of a separable kernel. We have
concluded that while the mass of the resonance is determined by the dynam-
ically generated state, an admixture of the (1s)2(2s)1 component at an energy
around 2 GeV turns out to be crucial to reproduce the experimental width and
the modulus of the resonance pole. The mass of the dynamically generated state
appears typically 100 MeV below the (nominal) nucleon-sigma threshold. This
result agrees well with the prediction of a completely different approach that we
studied in the 2001 paper [10] in which we discussed the possibility that the Roper
was a molecular state of the nucleon and the σmeson. In the following we review
the main features of this molecular state and its relation to the dynamically gen-
erated state emerging in the coupled channel approach.

In our early approaches to describe the nucleon and the ∆(1232) we used a
chiral version of the linear σ-model with quarks and determined the quark and
meson fields self-consistenly. This model does not work for higher nucleon exci-
tations since the energy of the excited quark turns out to be higher than the free
quark mass. In order to ensure confining we used in [10] a chiral version of the
Cromodielectric model which included, beside the σ and the pion fields, the chro-
modielectric field χ. The coupling of the χ field to the quark and meson fields is
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taken in the form:
Lint =

g

χ
q̄(σ̂+ i~τ · ~̂πγ5)q , (1)

such that for r→ ∞, χ(r) → 0, while the quark mass in this limit behaves as

mq =
gσ(r)

χ(r)
=
gfπ

χ(r)
→ ∞ ,

which means that the quarks are bound. A typical self-consistent solution for the
fields is shown in Fig. 1 a).
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Fig. 1. a) Self-consistently determined quark and boson (in units of fπ) fields in the CDM.
b) Effective potential for the σ meson and the lowest eigenvalue ε1 of the corresponding
Klein-Gordon equation (in units of GeV) for different choices of the σmass.

We next expanded the field operators of the bosons around their expectation
values in the ground state |N〉; the σ operator can be written as:

σ̂(r) =
∑
n

1√
2εn

ϕn(r)
1√
4π

[
ãn + ã†n

]
+ σ(r) , ãn|N〉 = 0 .

The stability conditions implies a Klein-Gordon equation for the σ-meson modes:(
−∇2 +m2σ +Uσ(r)

)
ϕn(r) = ε

2
nϕn(r) , Uσ(r) =

d2V(σ(r))
dσ(r)2

.

Here V stands for the potential originating from (1) and the potential parts of the
σ-model. The potential Uσ (see Fig. 1b)) is attractive and supports a bound state
which can be interpreted as a molecular state of the nucleon and (one quantum
of) the σ. The corresponding potential for the χ field turns out to be repulsive,
which means that the model does not predict glueball states.

In [10] this excitation of the σ field was confronted with the excitation of
the quark core in which one quark wass promoted to the 2s orbit. In the self-
consistent solution the 2s − 1s energy splitting turned out to be smaller than the
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corresponding vibrational energy ε1, and the conclusion of our work was that
the Roper consisted of the dominant quark excitation and a ∼ 10 % admixture
of the molecular state. However, in that work we used – in accordance with then
accepted values – a relatively large σmass between 0.7 GeV and 1.2 GeV. With the
present value ∼ 0.5 GeV, the lowest eigenmode ε1 decreases (see Fig. 1b)), while,
assuming a somewhat smaller nucleon size, the 2s − 1s splitting increases, such
that the molecular state may eventually become the dominant component of the
Roper resonance.

In our recent paper [1] we study the formation of the resonance in this partial
wave in a coupled-channel approach including the πN, π∆ and σN channels. The
Cloudy Bag Model is used to fix the quark-pion vertices while the s-wave σ-
baryon vertex is introduced phenomenologically with the coupling strength gσ
as a free parameter and two choices for the mass and the width of the σ meson,
mσ = Γσ = 0.6 GeV and mσ = Γσ = 0.5 GeV. Labeling the channels by α,β, γ,
the Lippmann-Schwinger equation for the meson amplitude χαγ for the process
γ→ α can be cast in the form:

χαγ(kα, kγ) = Kαγ(kα, kγ) +
∑
β

∫
dk
Kαβ(kα, k)χβγ(k, kγ)
ω(k) + Eβ(k) −W

.

Approximating the kernelK by a separable form, the integral equation reduces to
a system of linear equations which can be solved exactly. For sufficiently strong
coupling gσ the kernel Kmay become singular and a (quasi) bound state arises.
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Fig. 2. The lowest eigenvalue wmin for four
different values of the σN coupling.

gσ ReWp −2ImWp

[GeV] [GeV]

PDG 1.370 0.175

1.80 1.397 0.157

1.95 1.383 0.112

2.00 1.358 0.111

2.05 1.331 0.044

1.438 0.147

Table 1. Poles in the complex W-plane
for four typical values of gσ. The PDG
values are from [11].

In order to study this process we follow the evolution of the lowest eigen-
value of the matrix pertinent to the system of linear equations,wmin, as a function
of W for different values of gσ (see Fig. 2). Along with this evolution we ob-
serve the evolution of the resonance S-matrix pole in the complexW-plane using
the Laurent-Pietarinen expansion [12–15] (see Table 1). We see that the lowest
eigenvalue indeed touches the zero line for gσ = 2.0, the pole, however, emerges
already for considerably weaker couplings and starts approaching the real axis.
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Beyond the critical value, wmin crosses zero twice, producing two poles in the
complex energy plane. It is interesting to note that for the values below the crit-
ical value, the real part of the pole position almost coincides with W at which
wmin reaches its minimum. This value of W is of the order of 100 MeV below the
nominal σN threshold. The result agrees well with the molecular picture of the
Roper resonance discussed in the first part of this contribution. Let us note that
because the σN channel is coupled to other channels, the molecular state has a
finite width (i.e. finite ImWp) even for gs greater than the critical value.

In the present approach we have also studied the influence of including a
genuine three quark state with one quark excited to the 2s orbit. Using gσ ≈ 1.5,
the results for the position as well as the modulus and the phase come close to
the PDG value [11], and are rather insensitive to the mass of the genuine three-
quark state. This leads us to the conclusion that the mass of the S-matrix pole
is determined by the energy of the molecular state while its detailed properties
may still considerably depend on the three-quark excited state. The simple model
discussed in the first paper provides a simplified picture which enables a deeper
insight into the mechanism of the resonance formation, hindered by the complex
formalism of the coupled-channel approach.
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