Two-distance transitive normal Cayley graphs*

Jun-Jie Huang © ${ }^{(1)}$ Yan-Quan Feng ${ }^{\dagger}$ © , Jin-Xin Zhou (D)
School of mathematics and statistics, Beijing Jiaotong University, Beijing 100044, P. R. China

Received 3 April 2021, accepted 10 July 2021, published online 14 April 2022

Abstract

In this paper, we construct an infinite family of normal Cayley graphs, which are 2-distance-transitive but neither distance-transitive nor 2 -arc-transitive. This answers a question proposed by Chen, Jin and Li in 2019.

Keywords: Cayley graph, 2-distance-transitive graph, simple group.
Math. Subj. Class. (2020): 05C25, 05E18, 20B25

1 Introduction

In this paper, all graphs are finite, simple, and undirected. For a graph Γ, let $V(\Gamma), E(\Gamma)$, $A(\Gamma)$ or $\operatorname{Aut}(\Gamma)$ denote its vertex set, edge set, arc set and its full automorphism group, respectively. The graph Γ is called G-vertex-transitive, G-edge-transitive or G-arc-transitive, with $G \leq \operatorname{Aut}(\Gamma)$, if G is transitive on $V(\Gamma), E(\Gamma)$ or $A(\Gamma)$ respectively, and G-semisymmetric, if Γ is G-edge-transitive but not G-vertex-transitive. It is easy to see that a G-semisymmetric graph Γ must be bipartite such that G has two orbits, namely the two parts of Γ, and the stabilizer G_{u} for any $u \in V(\Gamma)$ is transitive on the neighbourhood of u in Γ. An s-arc of Γ is a sequence $v_{0}, v_{1}, \ldots, v_{s}$ of $s+1$ vertices of Γ such that v_{i-1}, v_{i} are adjacent for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. If Γ has at least one s-arc and $G \leq \operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs of Γ, then Γ is called (G, s)-arc-transitive, and Γ is said to be s-arc-transitive if it is $(\operatorname{Aut}(\Gamma), s)$-arc-transitive.

For two vertices u and v in $V(\Gamma)$, the distance $d(u, v)$ between u and v in Γ is the smallest length of paths between u and v, and the diameter $\operatorname{diam}(\Gamma)$ of Γ is the maximum distance occurring over all pairs of vertices. For $i=1,2, \ldots, \operatorname{diam}(\Gamma)$, denote by $\Gamma_{i}(u)$

[^0]the set of vertices at distance i with vertex u in Γ. A graph Γ is called distance transitive if, for any vertices u, v, x, y with $d(u, v)=d(x, y)$, there exists $g \in \operatorname{Aut}(\Gamma)$ such that $(u, v)^{g}=(x, y)$. The graph Γ is called (G, t)-distance-transitive with $G \leq \operatorname{Aut}(\Gamma)$ if, for each $1 \leq i \leq t$, the group G is transitive on the ordered pairs of form (u, v) with $d(u, v)=i$, and Γ is said to be t-distance-transitive if it is $(\operatorname{Aut}(\Gamma), t)$-distance-transitive.

Distance-transitive graphs were first defined by Biggs and Smith in [2], and they showed that there are only 12 trivalant distance-transitive graphs. Later, distance-transitive graphs of valencies $3,4,5,6$ and 7 were classified in [2, 10, 14, 25], and a complete classification of distance-transitive graphs with symmetric or alternating groups of automorphisms was given by Liebeck, Praeger and Saxl [18]. The 2-distance-transitive but not 2-arc-transitive graphs of valency at most 6 were classified in [4, 16], and the 2-distance-primitive graphs (a vertex stabilizer of automorphism group is primitive on both the first step and the second step neighbourhoods of the vertex) with prime valency were classified in [15]. By definition, a 2 -arc-transitive graph is 2 -distance-transitive, but a 2 -distance-transitive graph may not be 2 -arc-transitive; an example is the Kneser graph $K G_{6,2}$, see [16]. Furthermore, Corr, Jin and Schneider [5] investigated properties of a connected ($G, 2$)-distance-transitive but not $(G, 2)$-arc-transitive graph of girth 4 , and they applied the properties to classify such graphs with prime valency. For more information about 2 -distance-transitive graphs, we refer to [6, 7].

For a finite group G and a subset $S \subseteq G \backslash\{1\}$ with $S=S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$, the Cayley graph $\operatorname{Cay}(G, S)$ of the group G with respect to S is the graph with vertex set G and with two vertices g and h adjacent if $h g^{-1} \in S$. For $g \in G$, let $R(g)$ be the permutation of G defined by $x \mapsto x g$ for all $x \in G$. Then $R(G):=\{R(g) \mid g \in G\}$ is a regular group of automorphisms of $\operatorname{Cay}(G, S)$. It is known that a graph Γ is a Cayley graph of G if and only if Γ has a regular group of automorphisms on the vertex set which is isomorphic to G; see [1, Lemma 16.3] and [24]. A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is called normal if $R(G)$ is a normal subgroup of $\operatorname{Aut}(\Gamma)$. The study of normal Cayley graphs was initiated by Xu [27] and has been investigated under various additional conditions; see [8, 22].

There are many interesting examples of arc-transitive graphs and 2-arc-transitive graphs constructed as normal Cayley graphs. However, the status for 2-distance-transitive graphs is different. Recently, 2-distance-transitive circulants were classified in [3], where the following question was proposed:

Question 1.1 ([3, Question 1.2]). Is there a normal Cayley graph which is 2-distancetransitive, but neither distance-transitive nor 2-arc-transitive?

In this paper, we answer the above question by constructing an infinite family of such graphs, which are Cayley graphs of the extraspecial p-groups of exponent p of order p^{3}.
Theorem 1.2. For an odd prime p, let $G=\langle a, b, c| a^{p}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=$ $[c, b]=1\rangle$ and $S=\left\{a^{i}, b^{i} \mid 1 \leq i \leq p-1\right\}$. Then $\operatorname{Cay}(G, S)$ is a 2-distance-transitive normal Cayley graph that is neither distance-transitive nor 2-arc-transitive.

A clique of a graph Γ is a maximal complete subgraph, and the clique graph Σ of Γ is defined to have the set of all cliques of Γ as its vertex set with two cliques adjacent in Σ if the two cliques have at least one common vertex. Applying Theorem 1.2, we can obtain the following corollary.

Corollary 1.3. Under the notation given in Theorem 1.2, let $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ be the graph with vertex set $\{\langle a\rangle g \mid g \in G\} \cup\{\langle b\rangle h \mid h \in G\}$ and with edges all these coset pairs
$\{\langle a\rangle g,\langle b\rangle h\}$ having non-empty intersection in G. Then $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is the clique graph of $\operatorname{Cay}(G, S)$, and $\operatorname{Cay}(G, S)$ is the line graph of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$. Furthermore, $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is 3-arc-transitive.

The graph $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ was first constructed in [19] as a regular cover of $\mathrm{K}_{p, p}$, where it is said that $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is 2 -arc-transitive in [19, Theorem 1.1], but not 3-arctransitive generally for all odd primes p in a remark after [19, Example 4.1]. However, this is not true and Corollary 1.3 implies that $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is always 3 -arc-transitive for each odd prime p. In fact, $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is 3 -arc-regular, that is, $\operatorname{Aut}(\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle))$ is regular on the set of 3 - arcs of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$. Some more information about the structure and symmetry properties of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ are given in Lemma 3.2.

2 Preliminaries

In this section we list some preliminary results used in this paper. The first one is the well-known orbit-stabilizer theorem (see [9, Theorem 1.4A]).

Proposition 2.1. Let G be a group with a transitive action on a set Ω and let $\alpha \in \Omega$. Then $|G|=|\Omega|\left|G_{\alpha}\right|$.

The well-known Burnside $p^{a} q^{b}$ theorem was given in [12, Theorem 3.3].
Proposition 2.2. Let p and q be primes and let a and b be positive integers. Then a group of order $p^{a} q^{b}$ is soluble.

The next proposition is an important property of a non-abelian simple group acting transitively on a set with cardinality a prime-power, whose proof depends on the finite simple group classification, and we refer to [13, Corollary 2] or [26, Proposition 2.4].
Proposition 2.3. Let T be a nonabelian simple group acting transitively on a set Ω with cardinality a p-power for a prime p. If p does not divide the order of a point-stabilizer of T, then T acts 2-transitively on Ω.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph of a group G with respect to S. Then $R(G)$ is a regular subgroup of $\operatorname{Aut}(\Gamma)$, and $\operatorname{Aut}(G, S):=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$ is also a subgroup of $\operatorname{Aut}(\Gamma)$, which fixes 1. Furthermore, $R(G)$ is normalized by $\operatorname{Aut}(G, S)$, and hence we have a semiproduct $R(G) \rtimes \operatorname{Aut}(G, S)$, where $R(g)^{\alpha}=R\left(g^{\alpha}\right)$ for any $g \in G$ and $\alpha \in \operatorname{Aut}(G, S)$. Godsil [11] proved that the semiproduct $R(G) \rtimes \operatorname{Aut}(G, S)$ is in fact the normalizer of $R(G)$ in $\operatorname{Aut}(\Gamma)$. By Xu [27], we have the following proposition.

Proposition 2.4. Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph of a finite group G with respect to S, and let $\mathrm{A}=\operatorname{Aut}(\Gamma)$. Then the following hold:
$N_{\mathrm{A}}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S) ;$
(2) Γ is a normal Cayley graph if and only if $\mathrm{A}_{1}=\operatorname{Aut}(G, S)$, where A_{1} is the stabilizer of 1 in A .

Let Γ be a G-vertex-transitive graph, and let N be a normal subgroup of G. The normal quotient graph Γ_{N} of Γ induced by N is defined to be the graph with vertex set the orbits of N and with two orbits B, C adjacent if some vertex in B is adjacent to some vertex in C in Γ. Furthermore, Γ is called a normal N-cover of Γ_{N} if Γ and Γ_{N} have the same valency.

Proposition 2.5. Let Γ be a connected G-vertex-transitive graph and let N be a normal subgroup of G. Suppose that either Γ is an N-cover of Γ_{N}, or Γ is G-arc-transitive of prime valency and N has at least three orbits on vertices. Then the following statements hold:
(1) N is semiregular on $V \Gamma$ and is the kernel of G acting $V\left(\Gamma_{N}\right)$, so $G / N \leq \operatorname{Aut}\left(\Gamma_{N}\right)$;
(2) Γ is (G, s)-arc-transitive if and only if Γ_{N} is $(G / N, s)$-arc-transitive;
(3) $G_{\alpha} \cong(G / N)_{\delta}$ for any $\alpha \in V \Gamma$ and $\delta \in V\left(\Gamma_{N}\right)$.

Proposition 2.5 was given in many papers by replacing the condition that Γ is a normal N-cover of Γ_{N} by one of the following assumptions: (1) N has at least 3-orbits and G is 2 -arc-transitive (see [21, Theorem 4.1]); (2) N has at least 3 -orbits, G is arc-transitive and Γ has a prime valency (see [20, Theorem 2.5]); (3) N has at least 3 -orbits and G is locally primitive (see [17, Lemma 2.5]). The first step for these proofs is to show that for any two vertices $B, C \in V\left(\Gamma_{N}\right)$, the induced subgraph $[B]$ of B in Γ has no edge and if B and C are adjacent in Γ_{N} then the induced subgraph $[B \cup C]$ in Γ is a matching, which is equivalent to that Γ is a normal N-cover of Γ_{N}. Then Proposition 2.5(1)-(3) follows from these proofs.

3 Proof Theorem 1.2

For a positive integer n and a prime p, we use \mathbb{Z}_{n} and \mathbb{Z}_{p}^{r} to denote the cyclic group of order n and the elementary abelian group of order p^{r}, respectively. In this section, we always assume that p is an odd prime, and denote by \mathbb{Z}_{p}^{*} the multiplicative group of \mathbb{Z}_{p} consisting of all non-zero numbers in \mathbb{Z}_{p}. Note that $\mathbb{Z}_{p}^{*} \cong \mathbb{Z}_{p-1}$. Furthermore, we also set the following assumptions in this section:
$G=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$,
$S=\left\{a^{i}, b^{i} \mid 1 \leq i \leq p-1\right\}$,
$\Gamma=\operatorname{Cay}(G, S), \quad \mathrm{A}=\operatorname{Aut}(\Gamma), \quad N=N_{\mathrm{A}}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S), \quad$ and $\mathbb{Z}_{p}^{*}=\langle t\rangle$.
By Proposition 2.4, $N_{\mathrm{A}}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S)$, and $R(g)^{\delta}=R\left(g^{\delta}\right)$ for any $R(g) \in R(G)$ and $\delta \in \operatorname{Aut}(G, S)$. Since $G=\langle S\rangle, \Gamma$ is a connected Cayley graph of valency $2(p-1)$. Let

$$
\begin{array}{ccc}
\alpha: a \longmapsto a^{t}, & b \longmapsto b, & c \longmapsto c^{t} \\
\beta: a \longmapsto a, & b \longmapsto b^{t}, & c \longmapsto c^{t} \\
\gamma: a \longmapsto b, & b \longmapsto a, & c \longmapsto c^{-1} .
\end{array}
$$

It is easy to check that a^{t}, b, c^{t} satisfy the same relations as a, b, c in G, that is, $\left[a^{t}, b\right]=c^{t},\left[c^{t}, a^{t}\right]=\left[c^{t}, b\right]=1$. By the von Dyck's Theorem (see [23, 2.2.1]), α induces an epimorphism from G to $\left\langle a^{t}, b, c^{t}\right\rangle$, which must be an automorphism of G because $\left\langle a^{t}, b, c^{t}\right\rangle=G$. Similarly, β and γ are also automorphisms of G.

Lemma 3.1. $\operatorname{Aut}(G, S)=\langle\alpha, \beta, \gamma\rangle \cong\left(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}\right) \rtimes \mathbb{Z}_{2}$, and Γ is N-arc-transitive. Furthermore, N has no normal subgroup of order p^{2}.

Proof. Since $\mathbb{Z}_{p}^{*}=\langle t\rangle$, it is easy to check that $\alpha^{p-1}=\beta^{p-1}=\gamma^{2}=1, \alpha \beta=\beta \alpha$ and $\alpha^{\gamma}=\beta$. Thus $\langle\alpha, \beta, \gamma\rangle \cong\left(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}\right) \rtimes \mathbb{Z}_{2}$. Clearly, $\alpha, \beta, \gamma \in \operatorname{Aut}(G, S)$. To prove $\operatorname{Aut}(G, S)=\langle\alpha, \beta, \gamma\rangle \cong\left(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}\right) \rtimes \mathbb{Z}_{2}$, it suffices to show that $|\operatorname{Aut}(G, S)| \leq$ $2(p-1)^{2}$.

Clearly, $\langle\alpha, \beta, \gamma\rangle$ is transitive on S, and hence Γ is N-arc-transitive. Since $G=\langle S\rangle$, $\operatorname{Aut}(G, S)$ is faithful on S. By Proposition 2.1, $|\operatorname{Aut}(G, S)|=\left|S \| \operatorname{Aut}(G, S)_{a}\right|$, where $\operatorname{Aut}(G, S)_{a}$ is the stabilizer of a in $\operatorname{Aut}(G, S)$. Note that $\operatorname{Aut}(G, S)_{a}$ fixes a^{i} for each $1 \leq i \leq p-1$. Again by Proposition 2.1, $\left|\operatorname{Aut}(G, S)_{a}\right| \leq(p-1)\left|\operatorname{Aut}(G, S)_{a, b}\right|$, where $\operatorname{Aut}(G, S)_{a, b}$ is the subgroup of $\operatorname{Aut}(G, S)$ fixing a and b. Since $G=\langle a, b\rangle$, we obtain $\operatorname{Aut}(G, S)_{a, b}=1$, and then $|\operatorname{Aut}(G, S)| \leq 2(p-1)^{2}$, as required.

Let $H \leq N$ be a subgroup of order p^{2}. Since $R(G)$ is the unique normal Sylow p subgroup of $N=R(G) \rtimes \operatorname{Aut}(G, S)$, we have $H \leq R(G)$, and since $|R(G): H|=p$, we have $H \unlhd R(G)$. Note that the center $C:=Z(R(G))=\langle R(c)\rangle$ and $C \cap H \neq 1$. Thus, $C \cap H=C$ as $|C|=p$, implying $C \leq H$. Since H / C is a subgroup of order p, and $R(G) / C=\langle R(a) C\rangle \times\langle R(b) C\rangle \cong \mathbb{Z}_{p}^{2}$, we have $H / C=\langle R(b) C\rangle$ or $\left\langle R(a) R(b)^{i} C\right\rangle$ for some $0 \leq i \leq p-1$. It follows that $H=\langle R(b)\rangle \times C$ or $\left\langle R\left(a b^{i}\right)\right\rangle \times C$ for some $0 \leq i \leq p-1$.

Suppose $H \unlhd N$. Since C is characteristic in $R(G)$ and $R(G) \unlhd N$, we have $C \unlhd N$. Recall that $R(a)^{\gamma}=R\left(a^{\gamma}\right)=R(b)$. Then $(\langle R(a)\rangle \times C)^{\gamma}=\langle R(b)\rangle \times C$. This implies that both $\langle R(a)\rangle \times C$ and $\langle R(b)\rangle \times C$ are not normal in N. Thus, $H=\left\langle R\left(a b^{i}\right)\right\rangle \times C$ for some $1 \leq i \leq p-1$. Since $H \unlhd N$, we have $H^{\beta}=H$, that is, $\left\langle R\left(a b^{t i}\right)\right\rangle \times C=H^{\beta}=H=$ $\left\langle R\left(a b^{i}\right)\right\rangle \times C$. It follows that $\left\langle R\left(a b^{t i}\right)\right\rangle=\left\langle R\left(a b^{i}\right)\right\rangle$ and then $R\left(a b^{t i}\right)=R\left(a b^{i}\right)$, which further implies $b^{t i}=b^{i}$. This gives rise to $p \mid i(t-1)$, and since $(i, p)=1$, we have $t=1$, contradicting that $\mathbb{Z}_{p}^{*}=\langle t\rangle \cong \mathbb{Z}_{p-1}$. Thus, N has no normal subgroup of order p^{2}.

For a positive integer n, n_{p} denotes the largest p-power diving n. By Lemma 3.1, $\Gamma=\operatorname{Cay}(G, S)$ is N-arc-transitive.

Lemma 3.2. The clique graph Σ of Γ is a connected p-valent bipartite graph of order $2 p^{2}$, A has a faithful natural action on Σ, and Σ is $R(G)$-semisymmetric and N-arc-transitive. Furthermore, $|\mathrm{A}|_{p}=p^{3}$.

Proof. Recall that $G=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$ and $S=\left\{a^{i}, b^{i} \mid 1 \leq i \leq p-1\right\}$. Then $\Gamma=\operatorname{Cay}(G, S)$ has exactly two cliques passing through 1, that is, the induced subgraphs of $\langle a\rangle$ and $\langle b\rangle$ in Γ. Since $R(G) \leq \operatorname{Aut}(\Gamma)$ is transitive on vertex set, each clique of Γ is an induced subgraph of the coset $\langle a\rangle x$ or $\langle b\rangle x$ for some $x \in G$. Thus, we may view the vertex set of Σ as $\{\langle a\rangle x,\langle b\rangle x \mid x \in G\}$ with two cosets adjacent in Σ if they have non-empty intersection. It is easy to see that $\langle a\rangle x \cap\langle b\rangle y \neq \emptyset$ if and only if $|\langle a\rangle x \cap\langle b\rangle y|=1$, and any two distinct cosets, either in $\{\langle a\rangle x \mid x \in G\}$ or in $\{\langle b\rangle x \mid x \in G\}$, have empty intersection. Furthermore, $\langle a\rangle$ has non-empty intersection with exactly p cosets, that is, $\langle b\rangle a^{i}$ for $0 \leq i \leq p-1$. Thus, Σ is a p-valent bipartite graph of order $2 p^{2}$. The connectedness of Σ follows from that of Γ.

Clearly, A has a natural action on Σ. Let K be the kernel of A on Σ. Then K fixes each coset of $\langle a\rangle x$ and $\langle b\rangle x$ for all $x \in G$. Since $\langle a\rangle x \cap\langle b\rangle x=\{x\}, K$ fixes x and hence $K=1$. Thus, A is faithful on Σ and we may let $\mathrm{A} \leq \operatorname{Aut}(\Sigma)$.

Note that $R(G)$ is not transitive on $\{\langle a\rangle x,\langle b\rangle x \mid x \in G\}$, but transitive on $\{\langle a\rangle x \mid x \in G\}$ and $\{\langle b\rangle x \mid x \in G\}$. Furthermore, $R(\langle a\rangle)$ fixes $\langle a\rangle$ and is transitive on $\left\{\langle b\rangle a^{i} \mid 0 \leq i \leq p-1\right\}$, the neighbourhood of $\langle a\rangle$ in Σ, and similarly, $R(\langle b\rangle)$ fixes $\langle b\rangle$
and is transitive on the neighbourhood $\left\{\langle a\rangle b^{i} \mid 0 \leq i \leq p-1\right\}$ of $\langle b\rangle$ in Σ. It follows that Σ is $R(G)$-semisymmetric. Recall that $N=R(G) \rtimes \operatorname{Aut}(G, S)$ and $\operatorname{Aut}(G, S)=\langle\alpha, \beta, \gamma\rangle$. Since $a^{\gamma}=b$ and $b^{\gamma}=a, \gamma$ interchanges $\{\langle a\rangle x \mid x \in G\}$ and $\{\langle b\rangle x \mid x \in G\}$. This yields that Σ is $R(G) \rtimes\langle\gamma\rangle$-arc-transitive and hence N-arc-transitive.

Since Σ is a connected graph with prime valency p, we have $p^{2} \nmid\left|\operatorname{Aut}(\Sigma)_{u}\right|$ for any $u \in V(\Sigma)$, and in particular, $p^{2} \nmid\left|\mathrm{~A}_{u}\right|$. Note that $p\left|\left|\mathrm{~A}_{u}\right|\right.$. By Proposition 2.1, $|\mathrm{A}|=|\Sigma|\left|\mathrm{A}_{u}\right|=2 p^{2}\left|\mathrm{~A}_{u}\right|$. This implies that $|\mathrm{A}|_{p}=p^{3}$.

Lemma 3.3. $\mathrm{A}=\operatorname{Aut}(\Gamma)=R(G) \rtimes \operatorname{Aut}(G, S)$.
Proof. By Lemma 3.2, $|\mathrm{A}|_{p}=p^{3}$, and since $|V(\Gamma)|=p^{3}$ and A is vertex-transitive on $V(\Gamma)$, the vertex stabilizer A_{1} is a p^{\prime}-group, that is, $p \nmid\left|\mathrm{~A}_{1}\right|$. To prove the lemma, by Proposition 2.4 we only need to show that $R(G) \unlhd \mathrm{A}$, and since $R(G)$ is a Sylow p-subgroup of A, it suffices to show that A has a normal Sylow p-subgroup.

Let M be a minimal normal subgroup of A. Then $M=T_{1} \times T_{2} \cdots \times T_{d}$, where $T_{i} \cong T$ for each $1 \leq i \leq d$ with a simple group T. Since $|V(\Gamma)|=p^{3}$, each orbit of M has length a p-power and hence each orbit of T_{i} has length a p-power. It follows that $p||T|$. Assume that $|T|_{p}=p^{\ell}$. Then $|M|_{p}=p^{d \ell}$ and $d \ell=1,2$ or 3 as $|\mathrm{A}|_{p}=p^{3}$.

We process the proof by considering the two cases: M is insoluble or soluble.
Case 1: M is insoluble.
In this case, T is a non-abelian simple group. We prove that this case cannot happen by deriving contradictions. Recall that $d \ell=1,2$ or 3 .

Assume that $d \ell=1$. Then $|M|_{p}=p$. By Lemma 3.2, $M \unlhd \mathrm{~A} \leq \operatorname{Aut}(\Sigma)$, and since $|V(\Sigma)|=2 p^{2}, M$ has at least three orbits. Since Σ has valency p, Proposition 2.5 implies that M is semiregular on $V(\Sigma)$ and hence $|M| \mid 2 p^{2}$. By Proposition 2.2, M is soluble, a contradiction.

Assume that $d \ell=2$. Since $R(G)$ is a Sylow p-subgroup of A and $M \unlhd \mathrm{~A}, R(G) \cap M$ is a Sylow p-subgroup of M and hence $|R(G) \cap M|=|M|_{p}=p^{2}$. Since $R(G) \unlhd N$ and $M \unlhd \mathrm{~A}, M \cap R(G)$ is a normal subgroup of order p^{2} in N, contradicting to Lemma 3.1.

Assume that $d \ell=3$. Then $(d, \ell)=(1,3)$ or $(3,1)$. Since $|M|_{p}=p^{3}=|\mathrm{A}|_{p}$, we deduce $R(G) \leq M$ and hence M is transitive on Γ.

For $(d, \ell)=(1,3), M$ is a non-abelian simple group. Since $M_{1} \leq \mathrm{A}_{1}$ is a p^{\prime}-group, Proposition 2.3 implies that M is 2 -transitive on Γ, forcing that Γ is the complete graph of order p^{3}, a contradiction.

For $(d, \ell)=(3,1)$, we have $M=T_{1} \times T_{2} \times T_{3}$. Then $|M|_{p}=p^{3}$, and since $M \unlhd \mathrm{~A}$, we derive $R(G) \leq M$. By Lemma $3.2 M \leq \operatorname{Aut}(\Sigma)$, and Σ is $R(G)$-semisymmetric. Since M has no subgroup of index $2, M$ fixes the two parts of Σ setwise, and hence Σ is M-semisymmetric. Noting that γ interchanges the two parts of Σ, we have that Σ is $M\langle\gamma\rangle$ -arc-transitive. Since γ is an involution, under conjugacy it fixes T_{i} for some $1 \leq i \leq 3$, say T_{1}. Then $T_{1} \unlhd\langle M, \gamma\rangle$ and by Proposition 2.5, T_{1} is semiregular on Σ. This gives rise to $\left|T_{1}\right| \mid 2 p^{2}$, contrary to the simplicity of T_{1}.

Case 2: M is soluble.
Since $p\left||M|\right.$, we have $M=\mathbb{Z}_{p}^{d}$ with $1 \leq d \leq 3$. If $d=3$ then A has a normal Sylow p-subgroup, as required. If $d=2$ then $M \leq R(G) \leq N$ and N has a normal subgroup of order p^{2}, contrary to Lemma 3.1. Thus, we may let $d=1$, and since $M \leq R(G)$ and $R(G)$ has a unique normal subgroup of order p that is the center of $R(G)$, we derive that $M=\langle R(c)\rangle$.

Now it is easy to see that the quotient graph $\Gamma_{M}=\operatorname{Cay}(G / M, S / M)$ with $S / M=$ $\left\{a^{i} M, b^{i} M \mid 1 \leq i \leq p-1\right\}$. Note that $G / M=\langle a M\rangle \times\langle b M\rangle \cong \mathbb{Z}_{p}^{2}$. Then Γ_{M} is a connected Cayley graph of order p^{2} with valency $2(p-1)$, so Γ is a normal M-cover of Γ_{M}. By Proposition 2.5, we may let A/M $\operatorname{Aut}\left(\Gamma_{M}\right)$ and Γ_{M} is A/M-arc-transitive.

Let H / M be a minimal normal subgroup of A / M. Then $H \unlhd \mathrm{~A}$ and $H / M=L_{1} / M \times$ $\cdots \times L_{r} / M$, where $L_{i} \unlhd H$ and $L_{i} / M(1 \leq i \leq r)$ are isomorphic simple groups. Since $\left|\Gamma_{M}\right|=p^{2}$, we infer $p||H / M|$ and similarly, $p|\left|L_{i} / M\right|$. Let $\left|L_{i} / M\right|_{p}=p^{s}$. Then $|H / M|_{p}=p^{r s}$, and since $|\mathrm{A} / M|_{p}=p^{2}$, we obtain that $s r=1$ or 2 .

We finish the proof by considering the two subcases: H / M is insoluble or soluble.
Subcase 2.1: H / M is insoluble.
In this subcase, L_{i} / M are isomorphic non-abelain simple groups. We prove this subcase cannot happen by deriving contradictions. Recall that $s r=1$ or 2 .

Let $s r=1$. Then $|H / M|_{p}=p$, and therefore $|H|_{p}=p^{2}$. Since $H \unlhd \mathrm{~A}, H \cap R(G)$ is a Sylow p-subgroup of H, implying $|H \cap R(G)|=p^{2}$, and then $R(G) \unlhd N$ yields that $H \cap R(G)$ is a normal subgroup of order p^{2} in N, contrary to Lemma 3.1.

Let $r s=2$. Then $|H / M|_{p}=p^{2}$ and $|H|_{p}=p^{3}$. This yields $R(G) \leq H$ and H is transitive on Γ, so H / M is transitive on $V\left(\Gamma_{M}\right)$. Note that $(r, s)=(1,2)$ or $(2,1)$.

For $(r, s)=(1,2), H / M$ is a nonabelian simple group. By Propostion 2.5, $(H / M)_{u}$ for $u \in V\left(\Gamma_{M}\right)$ is a p^{\prime}-group because $H_{1} \leq \mathrm{A}_{1}$ is a p^{\prime}-group, and by Proposition 2.3, H / M is 2-transitive on $V\left(\Gamma_{M}\right)$, forcing that Γ_{M} is a complete group of order p^{2}, a contradiction.

For $(r, s)=(2,1), H / M \cong L_{1} / M \times L_{2} / M$, where L_{1} / M and L_{2} / M are isomorphic nonabelain simple groups and $\left|L_{i} / M\right|_{p}=p$. It follows that $|H|_{p}=p^{3}$ and $\left|L_{i}\right|_{p}=p^{2}$ for $1 \leq i \leq 2$. Since $H \unlhd \mathrm{~A}$, we derive $R(G) \leq H$. Note that H has no subgroup of index 2 . Since Σ is bipartite, it is H-semisymmetric. Let Δ_{1} and Δ_{2} be the two parts of Σ. Then $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=p^{2}$, and H is transitive on both Δ_{1} and Δ_{2}.

Suppose $\left(L_{1}\right)_{u}=1$ for some $u \in V(\Sigma)=\Delta_{1} \cup \Delta_{2}$. By Proposition 2.1, $\left|L_{1}\right|=\left|u^{L_{1}}\right|$, and since $L_{1} \unlhd H$ and $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=p^{2}$, we derive $\left|L_{1}\right|=p$ or p^{2}, contrary to the insolubleness of L_{1}. Thus $\left(L_{1}\right)_{u} \neq 1$. Since Σ has prime valency p, H_{u} is primitive on the neighbourhood $\Sigma(u)$ of u in Σ, and since $\left(L_{1}\right)_{u} \unlhd H_{u},\left(L_{1}\right)_{u}$ is transitive on $\Sigma(u)$, which implies that $\left|\left(L_{1}\right)_{u}\right|_{p}=p$. Since $\left|L_{1}\right|_{p}=p^{2}$, each orbit of L_{1} on Δ_{1} or Δ_{2} has length p.

Let $x \in \Delta_{1}$ and $y \in \Delta_{2}$ be adjacent in Σ, and let Δ_{11} and Δ_{21} be the orbits of L_{1} containing x and y, respectively. Then $\left|\Delta_{11}\right|=\left|\Delta_{21}\right|=p$. Since $\left(L_{1}\right)_{x}$ is transitive on $\Sigma(x), x$ is adjacent to each vertex in Δ_{21}, and therefore, each vertex in Δ_{11} is adjacent to each vertex in Δ_{21}, that is, the induced subgroup [$\Delta_{11} \cup \Delta_{21}$] is the complete bipartite graph $\mathrm{K}_{p, p}$. It follows that $\Sigma \cong p \mathrm{~K}_{p, p}$, contrary to the connectedness of Σ.

Subcase 2.2: H / M is soluble.
In this case, $|H|=p^{2}$ or p^{3}. Recall that $H \unlhd \mathrm{~A}$. If $|H|=p^{2}$ then $H \leq R(G)$ and N has normal subgroup of order p^{2}, contradicts Lemma 3.1. Thus, $|H|=p^{3}$ and A has a normal Sylow p-subgroup, as required. This completes the proof.

Now we are ready to finish the proof.

Proof of Theorem 1.2. By Lemmas 3.1 and 3.3, Γ is a arc-transitive normal Cayley graph. In particular, Γ is 1-distance transitive. Since $S=\left\{a^{i}, b^{i} \mid 1 \leq i \leq p-1\right\}, \Gamma$ has girth 3 , so it is not 2 -arc-transitive.

Recall that $G=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$. Clearly,

$$
\begin{aligned}
& \Gamma_{1}(1)=S=\left\{a^{i}, b^{i} \mid 1 \leq i \leq p-1\right\} \\
& \Gamma_{2}(1)=\left\{b^{j} a^{i}, a^{j} b^{i} \mid 1 \leq i, j \leq p-1\right\} .
\end{aligned}
$$

Note that $\operatorname{Aut}(G, S)=\left\langle\alpha, \beta, \gamma \mid \alpha^{p-1}=\beta^{p-1}=\gamma^{2}=1, \alpha^{\beta}=\alpha, \alpha^{\gamma}=\beta\right\rangle$, where $a^{\alpha}=a^{t}, b^{\alpha}=b, c^{\alpha}=c^{t}, a^{\beta}=a, b^{\beta}=b^{t}, c^{\beta}=c^{t}, a^{\gamma}=b, b^{\gamma}=a$ and $c^{\gamma}=c^{-1}$. Then $(b a)^{\alpha^{i} \beta^{j}}=b^{t^{i}} a^{t^{j}}$, and since $\mathbb{Z}_{p}^{*}=\langle t\rangle$, we obtain that $\langle\alpha, \beta\rangle$ is transitive on the set $\left\{b^{j} a^{i} \mid 1 \leq i, j \leq p-1\right\}$. Similarly, $\langle\alpha, \beta\rangle$ is transitive on $\left\{a^{j} b^{i} \mid 1 \leq i, j \leq p-1\right\}$. Furthermore, γ interchanges the two sets $\left\{b^{j} a^{i} \mid 1 \leq i, j \leq p-1\right\}$ and $\left\{a^{j} b^{i} \mid 1 \leq i, j \leq\right.$ $p-1\}$. It follows that $\operatorname{Aut}(G, S)$ is transitive on $\Gamma_{2}(1)$ and hence Γ is 2-distance transitive.

Noting that $a b=b a c$, we have that $b^{-1} a b=a c \in \Gamma_{3}(1)$ and $a b a=b a^{2} c \in \Gamma_{3}(1)$. Also it is easy to see that $(a c)^{\operatorname{Aut}(G, S)}=(a c)^{\langle\alpha, \beta, \gamma\rangle}=\left\{a^{i} c^{j}, b^{i} c^{j} \mid 1 \leq i, j \leq p-1\right\}$. Now it is easy to see that $b a^{2} c \notin(a c)^{\operatorname{Aut}(G, S)}$, and since $\mathrm{A}_{1}=\operatorname{Aut}(G, S)$ by Proposition 2.4, Γ is not distance-transitive.

Proof of Corollary 1.3. Recall that Σ is the clique graph of Γ. By the first paragraph in the proof of Lemma 3.2 and the definition of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ in Corollary 1.3, we have $\Sigma=\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$. Again by Lemma 3.2, Σ is $R(G)$-semisymmetric, and since $|E(\Sigma)|=\left(2 p^{2} \cdot p\right) / 2=p^{3}=|R(G)|, R(G)$ is regular on the edge set $E(\Sigma)$ of Σ. Thus, the line graph of Σ is a Cayley graph on G.

For a given edge $\{\langle a\rangle x,\langle b\rangle y\} \in E(\Sigma)$, we have $|\langle a\rangle x \cap\langle b\rangle y|=1$, and then we may identify this edge with the unique element in $\langle a\rangle x \cap\langle b\rangle y$. Note that Σ has valency $2(p-1)$. Then the edge $1=\langle a\rangle \cap\langle b\rangle$ in Σ is exactly incident to all edges in $S=\left\{a^{i}, b^{i} \mid 1 \leq i \leq\right.$ $p-1\}$, because $\left\{a^{i}\right\}=\langle a\rangle \cap\langle b\rangle a^{i}$ and $\left\{b^{i}\right\}=\langle b\rangle \cap\langle a\rangle b^{i}$. It follows that $\Gamma=\operatorname{Cay}(G, S)$ is exactly the line graph of Σ.

If $\alpha \in \operatorname{Aut}(\Sigma)$ fixes each edge in Σ then α fixes all vertices of Σ, that is, $\operatorname{Aut}(\Sigma)$ acts faithfully on Γ. Thus, we may view $\operatorname{Aut}(\Sigma)$ as a subgroup of $\operatorname{Aut}(\Gamma)$. By Lemmas 3.2 and 3.3, we have $\operatorname{Aut}(\Gamma)=\operatorname{Aut}(\Sigma)=R(G) \rtimes \operatorname{Aut}(G, S)$.

Recall that $\operatorname{Aut}(G, S)=\langle\alpha, \beta, \gamma\rangle$ and Σ is arc-transitive. Since $a^{\beta}=a, b^{\beta}=b^{t}$ and $c^{\beta}=c^{t}$, where $\mathbb{Z}_{p}^{*}=\langle t\rangle,\langle\beta\rangle$ fixes the arc $(\langle a\rangle,\langle b\rangle)$ in Σ and is transitive on the vertex set $\left\{\langle a\rangle b^{i} \mid 1 \leq i \leq p-1\right\}$, where $\{\langle a\rangle\} \cup\left\{\langle a\rangle b^{i} \mid 1 \leq i \leq p-1\right\}$ is the neighbourhood of $\langle b\rangle$ in Σ. Thus, Σ is 2 -arc-transitive. Since $a^{\alpha}=a^{t}, b^{\alpha}=b$ and $c^{\alpha}=c^{t},\langle\alpha\rangle$ fixes the $2-\operatorname{arc}(\langle a\rangle,\langle b\rangle,\langle a\rangle b)$ and is transitive on the vertex set $\left\{\langle b\rangle a^{i} b \mid 1 \leq i \leq p-1\right\}$, where $\{\langle b\rangle\} \cup\left\{\langle b\rangle a^{i} b \mid 1 \leq i \leq p-1\right\}$ is the neighbourhood of $\langle a\rangle b$ in Σ. It follows that Σ is 3 -arc-transitive. It is easy to see that the number of 3 -arcs in Σ equals to $|A|=2 p^{3}(p-1)^{2}$, A is regular on the set of 3 -arcs of Σ.

ORCID iDs

Jun-Jie Huang (D) https://orcid.org/0000-0002-9250-0672
Yan-Quan Feng (D) https://orcid.org/0000-0003-3214-0609
Jin-Xin Zhou (iD https://orcid.org/0000-0002-8353-896X

References

[1] N. Biggs, Algebraic Graph Theory, Camb. Math. Libr., Cambridge University Press, Cambridge, 1993, doi:10.1017/cbo9780511608704.
[2] N. Biggs and D. Smith, On trivalent graphs, Bull. Lond. Math. Soc. 3 (1971), 155-158, doi: 10.1112/blms/3.2.155.
[3] J. Chen, W. Jin and C. H. Li, On 2-distance-transitive circulants, J. Algebr. Comb. 49 (2019), 179-191, doi:10.1007/s10801-018-0825-3.
[4] B. P. Corr, W. Jin and C. Schneider, Two-distance-transitive but not two-arc-transitive graphs, in press.
[5] B. P. Corr, W. Jin and C. Schneider, Finite 2-distance transitive graphs, J. Graph Theory 86 (2017), 78-91, doi:10.1002/jgt. 22112.
[6] A. Devillers, M. Giudici, C. H. Li and C. E. Praeger, Locally s-distance transitive graphs, J. Graph Theory 69 (2012), 176-197, doi:10.1002/jgt. 20574.
[7] A. Devillers, M. Giudici, C. H. Li and C. E. Praeger, Locally s-distance transitive graphs and pairwise transitive designs, J. Comb. Theory, Ser. A 120 (2013), 1855-1870, doi:10.1016/j.jcta. 2013.07.003.
[8] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebr. Comb. 39 (2014), 903-918, doi:10.1007/s10801-013-0472-7.
[9] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, Berlin, 1996, doi:10.1007/ 978-1-4612-0731-3.
[10] A. Gardiner and C. E. Praeger, Distance-transitive graphs of valency five, Proc. Edinb. Math. Soc., II. Ser. 30 (1987), 73-81, doi:10.1017/s0013091500017983.
[11] C. D. Godsil, On the full automorphism group of a graph, Combinatorica $\mathbf{1}$ (1981), 243-256, doi:10.1007/bf02579330.
[12] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980, https:// books.google.si/books?id=bxRrwQEACAAJ.
[13] R. M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81 (1983), 304-311, doi:10.1016/0021-8693(83)90190-4.
[14] A. A. Ivanov, A. V. Ivanov and I. A. Faradzhev, Distance-transitive graphs of valency 5, 6 and 7, Eur. J. Comb. 7 (1986), 303-319, doi:10.1016/0041-5553(84)90010-7.
[15] W. Jin, Y. Huang and W. J. Liu, Two-distance-primitive graphs with prime valency, Appl. Math. Comput. 357 (2019), 310-316, doi:10.1016/j.amc.2019.03.052.
[16] W. Jin and L. Tan, Finite two-distance-transitive graphs of valency 6, Ars Math. Contemp. 11 (2016), 49-58, doi:10.26493/1855-3974.781.d31.
[17] C. H. Li and J. Pan, Finite 2-arc-transitive abelian Cayley graphs, Eur. J. Comb. 29 (2008), 148-158, doi:10.1016/j.ejc.2006.12.001.
[18] M. W. Liebeck, C. E. Praeger and J. Saxl, Distance transitive graphs with symmetric or alternating automorphism group, Bull. Aust. Math. Soc. 35 (1987), 1-25, doi:10.1017/ s0004972700012995.
[19] J. Pan, Z. Huang and Z. Liu, Arc-transitive regular cyclic covers of the complete bipartite graph $\mathrm{K}_{p, p}$, J. Algebr. Comb. 42 (2015), 619-633, doi:10.1007/s10801-015-0594-1.
[20] J. M. Pan and F. G. Yin, Symmetric graphs of order four times a prime power and valency seven, J. Algebra Appl. 17 (2018), 12, doi:10.1142/s0219498818500937, id/No 1850093.
[21] C. E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc., II. Ser. 47 (1992), 227-239, doi: 10.1112/jlms/s2-47.2.227.
[22] C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc. 60 (1999), 207-220, doi:10.1017/s0004972700036340.
[23] D. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1995, doi:10. 1007/978-1-4419-8594-1.
[24] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-438, doi:10.1007/ bf01304186.
[25] D. H. Smith, Distance-transitive graphs of valency four, J. Lond. Math. Soc., II. Ser. 8 (1974), 377-384, doi:10.1112/jlms/s2-8.2.377.
[26] Y. Wang, Y.-Q. Feng and J.-X. Zhou, Cayley digraphs of 2-genetic groups of odd prime-power order, J. Comb. Theory, Ser. A 143 (2016), 88-106, doi:10.1016/j.jcta.2016.05.001.
[27] M. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309-319, doi:10.1016/s0012-365x(97)00152-0.

[^0]: *The work was supported by the National Natural Science Foundation of China (11731002, 12011540376, $12011530455,12071023,12161141005$) and the 111 Project of China (B16002).
 ${ }^{\dagger}$ Corresponding author.
 E-mail addresses: 20118006@bjtu.edu.cn (Jun-Jie Huang), yqfeng @bjtu.edu.cn (Yan-Quan Feng), jxzhou@bjtu.edu.cn (Jin-Xin Zhou)

