
Informatica 22 (1998) 69-74 6 9

Patterns in a Hopfield Linear Associator
as Autocorrelatory Simultaneous Byzantine Agreement

Paule Ecimovic
University of Ljubljana, Department of Philosophy, Aškerčeva 2, Ljubljana, Slovenia
Phone: +386 61 176 9200 int. 386
E-mail: ecimovicSctklj . c t k . s i

Keywords: PDP, neural networks, Byzantine Agreement, patterns, attractors, Interactive
consistency, convergence, fault tolerance, k-resilience, distributed protocols, two-phase commit, Ising spin quan-
tum computers

Edited by: Rudi Murn
Received: April 16, 1997 Revised: December 8, 1997 Accepted: February 23, 1998

In the first part, the Byzantine Agreement problem in paraUel distributed processing is formulated
for generaJized, complete}y-interconnected networks of interacting processors. An overview of the
main cases of this problem are presented in brief. Among standard optimal algorithms for reaching
Simultaneous Byzantine Agreement, only the two-phase commit protocol is set out in any detail.
In the second part, the process of pattern formation in Hopfield linear associators, realized as
single-layer neural net\vorks with Hebbian \veight adjustment rules, is discussed. The main result
of the paper is then presented, according to \vhich pattern formation in Hopfield linear associators
is a solution to a form of Simultaneous Byzantine Agreement. In conclusion, it is argued that
such associative memory solutions to interactive consistency problems in generalized transaction
processing systems may finally prove viable, despite decades of neglect due to inavailability or
prohibitive expense of sufhcient processing po\ver for their large-scale implementation.

1 Introduction commonly realized as a fully-connected, single-layer
neural network, where the connection strengths are

The transaction processing problem^ of achieving determined by a form of Hebb's learning rule.^ Before
and/or maintaining interactive consistency, as typi- expanding on the close analogy between BA and as-
fied by the Byzantine Agreement (BA) scheme (Pease sociative pattern formation in the Hopfield LA, let us
et al. 1980), (Lamport et al. 1982), formulated consider the BA scheme, its most prevalent instances,
below, is exemplary among workable approaches to and some round-optimized protocols for reaching var-
the design and implementation of fault-tolerant dis- ious instances of BA.
tributed protocols in parallel distributed processing
(PDP) (transaction) systems. Wide-spread commer-
cial applications, especially in banking, depend crit- 2 Byzantine Agreement (BA)
ically on guaranteeing a minimally-sufhcient reliabil-
ity of correct execution of distributed protocols in the 2.1 Fundamental Definitions
presence of faults, be they faulty connections or faulty
(or ill-synchronized) processors, or combinations of ^he fundamental mgredients of problem of reaching
both (Wang 1995: p.420). In particular, achieving in- Byzantine agreement are the following. We take a pro-
teractive consistency among inter-connected and dis- '"''^°' *° ^^ ̂ "^ ' 'l*^^^^ Turing machine capable of
tributed processors in the presence of faults is an im- '^^''^'''S °^* ^"'"^ ^̂ ^̂ ^̂ ^̂ ^ elementary instruction-set.
portant problem to which standard round-optimized Theoretically, this can be construed as a universal Tur-
s o l u t i o n s ex i s t , s u c h as t h e Dwork -MoseS p r o t o c o l or 2 ^ 6 have deliberately avoided establishing an "understood"
t h e tW0-phase c o m m i t p r o t o c o l . T h e t i m e m i g h t well transition to neural networks per se in order to facilitate realiza-
h a v e COme, howeve r , t o (re -)cons ide r t h e a d v a n t a g e s tions of the Hopfield LA scheme in otherphysicalsystems,which

r • ,- J. i. • i •£ J 1 TT J2 1 11 1- might not behave "neurally" at ali, in anv currently-simulated
of associative strategies typined by Hopheld s linear " ,,, <• i n, * v̂,' • u <.u i • f J

° •' ̂ .1 r- sense. We teel that this gives both neural inrormation process-
a s s o c i a t o r (LA) w i t h a H e b b i a n a s s o c i a t i o n ru le , m o s t ing researchers an opportunity to reappraise the (in)adequacy

of their neuron, models from an Information processing point of
^The author is currently funded by the Slovene Science Foun- view as well as the neuro-biological community a breather from

dation, while pursuing a master's degree in logic at the College computational neuron-modelling strategies, vvhich have recently
of Philosophy, at the University of Ljubljana, where he is also been shown to miss a vast arrayof interaction detail. See: (Koch
engaged in research. 1997) for hints.

file:///veight
file:///vhich

70 Informatica 22 (1998) 69-74 P. Ecimovic

ing machine. Practically, this can be anything as sim-
ple as an "intelligent" bistable switch enhanced with
some automated processing logic, e.g., a McCullough
and Pitts binary neuron, or something as complex as
a human operator sitting at a computer terminal con-
nected to a local area network. Some interconnected
network of such processors is required across which to
distribute and on which to execute a protocol thus dis-
tributed. By distributed protocol, we are to understand
any non-contradictory set of instructions P which can
be divided into n parts P^ such that

^ = U{^^}

each part of which is assigned to a given processor
in the course of a task designation phase of (pre-
)processing of the protocol. Atop this layer, we must
have a meta-layer for regulating and monitoring inter-
processor communication in such a vvay as to achieve
Interactive consistency, which means in this context
that none of the processors contradicts any action(s)
of other processors on their data or on its own data or
of itself on its own data. Figuratively speaking, if one
were to set a team of people to sweep a room, there
would be a supervisor to ensure that no member of the
team throws dust on an area just swept by another
member or by the member him- or her- self, thereby
guarding against "stupid mistakes" (Novak,1993:p.27).
We also assume a global clock (generator of regular
events) relative to which ali inter-processor communi
cation in the PDP network is synchronized and mea-
sured. A round of computation is defined as the time
interval (number of regular events) generated by the
global clock required for ali the parts Pj of protocol
P to be executed by the corresponding processors pi
once. ^ Informally, a run is the entire state transition
history of aH the states in \vhich ali the processors
were in the course of aH rounds of computation of a
given protocol P from some arbitrary starting tick of
the global clock to some other arbitrary tick, i.e., in
some time interval as measure on the global clock.'*
For practical reasons, we often normalize the clock
ticks to coincide with rounds of computation of a given
protocol, making the obvious execution uniformity as-
sumptions. By crash failure is meant the state of a
PDP system in which execution of a protocol'from a
certain round onward generates results incompatible
with any admissible run of the given protocol. ^ The
class of parallel-distributed processing (PDP) systems

^Henceforth, processors will be denoted by lower čase sub-
scripted p's, whereas the part of a given protocol P aissigned to
each by upper čase subscripted P's.

''Formally, this can be defined in terms of the modal logic
Ss, where it is possible to define the set of ali possible state
transitions and quantify over them with possibility and necessity
operators. (Halpern 1986)

® Crash failure could be defined more "severely" and abso-
lutely as a state of a PDP system after which the system ceases

to be considered for the rest of the paper is defined
by ali PDP systems, which satisfy the follovving five
conditions (Wang 1995: p.420): For natural numbers
k and n, such that n > k + 2:

PDPl There are n processors, at most k of which are
faulty with respect to a given semantics, whether
functional, operational, or declarative (elaborated
below), without incurring crash-failure of the sys-
tem in executing a given distributed protocol P

PDP2 the processors can communicate directly with
each other through message exchange in a fully-
connected network (FCN)

PDP3 the message sender is always identifiable by
the receiver

PDP4 an arbitrary set of processors are chosen as
sources and their initial value v^ is broadcasted
to other processors and to themselves at the start
of parallely-distributed execution of P

PDP5 The only faulty components considered are
processors.

PDP4 is a significant generalization from the PDP
specifications presented in (Wang,1995: p.20), since it
allows for more than one processor to carry the initial
state which is to be distributed to and agreed upon by
the entire PDP network. This is critical for our LA
realization, because it admits the čase of an "initial
configuration", see the next section, being distributed
initially across the entire network. PDPl , mutatis mu-
tandis, can be taken as a general definition of what it
means for some protocol P to be k-resilient. In other
words, a protocol P is k-resilient if, and only if, for
k<n-|-2, (at most) k processors can fail and P stili ex-
ecutes and terminates correctly. Thus, k-resilient dis
tributed protocols are prime examples of fault-tolerant
design. The following are ways in which a processor
can be faulty. A processor pi is termed faulty if it
satisfies either or both of the follovving conditions:

— it fails to send appropriate messages (defined ei
ther by a monitoring meta-level algorithm or at
the object protocol level and just monitored "from
above")

- it fails to send otherwise appropriate messages at
a time on the global clock foreseen for it in a given
protocol.

A processor which is not faulty is termed healthy.

to function. This definition is vague and thus prone to aH sorts
of error and might better be avoided.

file:///vhich

ASSOCIATIVE PATTERNS AS SBA Informatica 22 (1998) 69-74 71

2.2 The BA Scheme and it s major
variants

An n-processor PDP system, satisfying PDPl-5 of
which at most k processors are or prove faulty, in the
above sense, reach Byzantine Agreement if, and
only if, (Wang,1995: p.20):

BAl Every healthy processor computes the common
value v which is used to determine the agreement

BA2 If the source, in the sense of PDP4, is healthy,
then the common value should be the source's ini-
tial value v«.

There are two major variants to the above general
scheme, which we call BA. The one which we will
consider is called Simultaneous Byzantine Agree
ment and is obtained from the above scheme by
adding the following condition:

SBA3 Ali healthy processors reach agreement in the
sense of BAl & BA2 in the same round of com-
putation.

We mention the other major .variant in passing,
namely, Eventual Byzantine Agreement, which
is obtained by adding the following requirement to
BA1,BA2:

EBA3 Each healthy processor will reach agreement
with aH other healthy processors, in the sense of
BAl & BA2 in some round of computation, if the
run lasts long enough viith respect to the global
clock.

2.3 Round-optimized BA Solution
Algorithms

The solution algorithms for BA mentioned or pre-
sented here impose more stringent restrictions on the
number of faulty processors than we imposed in the
framework above, in which solutions, let alone opti-
mal solutions, are not guaranteed. In this respect, the
above framework can be taken heuristically a means of
exploring the problem space, rather than the solution
space. In their original treatment, Pease, Shostak, and
Lamport see (Pease et al. 1980) solved the so-called
Byzantine Agreement problem for a fully-connected
network. The formulation of the problem axioma-
tized as BAl and BA2 above along with its vari
ants are derived from (Pease et al. 1980), (Lamport
1982), (Halpern 1986), and (Wang 1995). For a fully-
connected system of n units, BA is reachable if, and
only if, n>3k-|-l. This formulation leaves malicious
units anonymous (unidentified) in the sense of (Novak
1993: p.22). For n=4 and k = l , two "phases" (rounds
of computation) sufRce to reach BA. In our notation,
the situation is as follows, denoting messages sent by
processor p, by mj. See (Novak 1993) for a diagram

and re-label accordingly. Here the specification of P
and its partitioning is unimportant, since it applies to
most" ali parallelly-distributable protocols, with some
solvability and other application-specific restrictions.
Processors pi, P2, and ps send their messages, mi,
m2,and ms to the other three processors respectively,
whereas processor p4 sends m4 only to p2 and ps, but
not necessarily to pi. Instead, p4 sends pi some mes-
sage X. Assuming that for ie{l,2,3}, pi is fault-free
and that p4 is faulty in the above sense as well as being
"maliciously" faulty, i.e., sending some message X, and
claiming it sent the expected message, m4, with the
claim not being necessarily true (Novak 1993). Thus,
the algorithm for reaching BA in this čase proceeds in
the following two phases:

TPSl Each processor pj sends its message to ali the
other processors

TPS2 Verification of message correctness.

Thus BA is reached, according to the above specifica-
tions, and pi can claim to have received message X
from p4 as a result of the TPS2 phase, vvhereas p4,
being "malicious" can claim that it sent m4. Thus we
have reached "Byzantine" agreement, agreeing, within
reason, to disagree, while stili getting the job done.
Comparison TPSl and TPS2 with the two-phase
commit protocol for distributed databases (McFad-
den 1994: p.481) reveals a similar pattern, with some
modification relating to the application domain, etc.
Suffice it for our purposes to interpret "site" as "pro
cessor" and "commit" as "agree on value a common v
as per BAl" For explication of the broadcast variant
of BA, see (Wang,1995).

TPCl A message is broadcast to every participating
site, asking whether that site is willing to commit
to its portion of the transaction at that site. Each
site returns an "OK" or "not OK" message.

TPC2 The originating site coUects messages from ali
sites. If ali are "OK," it broadcasts a message
to aH sites to commit the transaction (come to
agreement). If one or more responses are "not
OK," it broadcasts a message to ali sites to abort
the transaction.

Obviously, this is a "no non-sense" (fault intoler-
ant) specification which could be generalized to ad-
mit one or more failures to respond "OK" in which
čase it would amount to a direct solution to BA.
However, non-sense at the level of automated teller
machines savings/checking account transactions and
corresponding account balance updates is not taken
lightly by the customer on the street who is likely
to complain angrily at the slightest "irregularity",
let alone fault. At this level, fault-tolerance and k-
resilience are not to affect the end user, but rather
only the processing system and its administrators.

72 Informatica 22 (1998) 69-74 P. Ecimovic

3 Hopfield's Linear Associator
(LA) and its Convergence
Properties

In this section, we define Hopfiekrs linear associator
(LA) in terms of discrete-time dynamical systems (ef-
fectively, finite state automata) and vveighted graphs,
thus avoiding this systems usual interpretation as a
neural network. The reason for this will become ap-
parent in the final two sections of this paper.

3.1 Specification of the Hopfield
Linesir Associator

The topology and architecture of Hopfield's LA (HLA)
are specified as follows (Bruck 1990:p.247):

HLAl A Hopfield LA is a discrete-time dynamical
system represented by a vveighted graph

HLA2 Each edge of the graph is assigned a weight
and each node a threshold value.

HLA3 The weighted graph is fully connected.

The order of the HLA is defined to be the number
of no'des in the corresponding graph. Thus, if N is
an HLA of order n, written henceforth NeHLA(n),
then, according to HLAl-3, the ordered pair (W,T)
determines the topology and architecture N uniquely
to vvithin a renaming, where W and T are defined as
follovvs. For natural number n:

— W is an n X n matrix, the elements Wjj of which
represent the weight assigned to the edge joining
the i-th and j-th nodes.

- T is a vector of dimension n, the components tj
of which denote the threshold assigned to the i-th
node.

The processing element represented by any node can
be in one of two possible states, either -1 or -1-1, and the
state is denoted by Si{t), where t is a natural number
to be interpreted as a certain discrete number of ticks
of a clock analogous to the global clock defined above.
The n-dimensional vector s{t) of ali elements s,(t) rep-
resents the state of N(n). The vector s is called the
state vector of the HLA N(n). Thus, the order of N is
determined by the dimensionality of its state vector.
Purthermore, the state vector represents the states of
aH individual processing elements ("processors", for
short) represented by the nodes of the graph. Thus,
the state vector s{t) is defined by the equation

S{t) : = (S i , S 2 , - - - ,Sn) - (1)

varies from 1 to n by ones and n is some finite natural
number, forms a state space. The evolution equation
of the dynamical system, i.e., the equations governing
the transition of the system from one state s{to) to
the next state s{to + 1) are given componentwise as
follows:

Si{to + 1) = sgn{Hi(to)), (2)

where the function sgn{x) is the sign of the number x
defined as -t-1, if a; > O and -1 , othervvise, and

Hiito) = ^Wj,iSj{to) - t j . (3)

Accordingly, each processor at a given node is a linear
threshold element, which adds its input signals from
ali other elements, at ali other nodes in the system.
Thus, each linear threshold element acts here as an
"adder". To complete the specification of HLA, we
must state a Hebbian weight adjustment rule and an
energy function as follows (Hopfield 1982: p.2556).

AWj.i = [Si{t)Sj{t)]average, (4)

where the average is calculated over past history, and

(5)

and the change in energy AE due to a change in state
AE due to change in the state of an individual pro
cessor Asi is given by

AE = —Asi 2_] Wj^iSj. (6)

Ali the set of ali possible state vectors of a suitably-
chosen set of individual processor states Sj, where i

Apart from particular initial conditions, which depend
on the specific problem instance in question, this com-
pletes our specification of HLA.

3.2 Convergence Proper t ies of the
HLA

The feature property of the HLA for the purposes of
reaching BA and, more specifcally, SBA, is that since
its state space is finite, the HLA dynamical system
\vill always coverge to either a stable state/cycles in
state space (Bruck 1990). A specific value of the state
vector s{t) at a given time t is called a configuration.
Stable states (or for a given t, configurations) of the
HLA are called patterns (or pattem configurations, re-
spectively). Thus, the proces s of n processors reaching
SBA reduces to the convergence of the HLA to a pat-
tern or pattem configuration.

file:///vill

A S S O C I A T I V E P A T T E R N S AS SBA Informatica 2 2 (1998) 69-74 7 3

4 Reaching Simultaneous
Byzantine Agreement with
Hopfield's L A

In this section, we state the main result of this paper,
which in the terminology introduced above, may be
stated as SBA can be represented by a pattern
in an HLA. This impHes that the process of reaching
SBA can be represented by convergence of an HLA
to a stable configuration, i.e., to a pattern. Now, we
must just State some facts about the stability of states
and configurations in order to indicate corresponding
conditions for achieving SBA as well as fiush out a key
property of HLA's which corresponds to k-resilience
and realizes fault tolerance.

4.1 Stability of Configurations
A necessary and sufRcient condition for a state of an
HLA to be stable is the following (Bruck 1990: p.247)
(in vectorial form):

s{t) is stable <^ s{t) - sgn{Ws{t) - T) , (7)

where W is an n x n matrix 'of weights and T is an
n-dimensional vector of node thresholds. This is crit-
ical in determining patterns, since for a given tirne t,
the state s{t) becomes a configuration, which, if it is
stable, is a pattern.

4.2 k-resilience and Fault Tolerance in
HLA

As is evident from the HLA specification given above,
the next state at time io + 1 of an HLA is computed
componentwise from its current state at some time
to applying equation (2) to each component Si{t) of
s{t). This yields the state of the HLA at time ô + I,
i.e., s{to + 1). One of the most prominent features of
the HLA model which make it well suited to the im-
plementation of fault-tolerant distributed protocols is
that s{to + 1) can be computed from a proper suhsef
of ali processors in the system (Bruck 1990). This is
analogous to k-resilient protocols where, by definition
(Kilmer 1995), at most k processors could fail, yet the
protocol continues to execute and terminates correctly.
Specifically, if S is the set of indices of processors from
whose States the state of N{n) is computed, then

and

cardinality{S) < n

cardinality{complement{S)) = k,

(8)

(9)

vvhere n and k have the same meanings as in the PDP
and SBA specifications in the previous sections.^

5 Conclusion

In this paper, we have demonstrated that Simulta
neous Byzantine Agreement can be represented by a
Hopfield hnear associator. We have done so without
interpreting Hopfield's system as a neural network, but
rather as a discrete dynamical system. This allows
for implementations in other physical systems, which
have possibly greater coraputational power (as mea-
sured by the classes of problems which can be solved
by means of such systems) than the current coraputa
tional models and systems used to implement artificial
neural networks. This will be the topic of a forthcom-
ming paper.

Acknowledgenients

The author is delighted to acknowlege the many eye-
opening discussions he has had in the past few years
on the subject of PDP and Byzantine Agreement. Spe-
cial thanks go to Dieter Gawlick of Oracle (California),
who shared with me his enthusiasm for new ideas and
Creative solutions to computer science problems. Bob
Jackson of IBM Santa Teresa Laboratory (California)
for drawing my attention to two-phase commit in this
context, to my mentor of many years, Prof. Dr. An
drej Ule, for introducing me to Byzantine Agreement
in the first plače, to Mitja Peruš, who drove the point
home about the interrelation between neural networks
and quantum systems, to Dr. Joseph Halpern of IBM's
Almaden Research Center (California), who, in an in-
spiring telephone conversation when I needed it most,
made me aware of uncharted territory in the Byzantine
Agreement enterprise, to Dr. Franc Novak, of IJS, for a
stimulating discussion on identifying faulty processors
in Byzantine environments, to Damjan Bojadžiev, of
Institute Josef Štefan, in Ljubljana, who read through
and corrected an earlier version of this paper, and to
one of editors. Prof. Dr. Matjaž Gams, of IJS, for his
advice on formatting and style as well as encouraging
me to submit a paper in the first plače. Most of ali,
I would like to thank my father, who introduced me
to computers many years ago, when they were not at
ali commonplace household items and, over the years,
gave me an osmotic course in Information processing.
To these and many others, the author extends warmest
gratitude.

^If set A is a subset of set B, then every element of A is an
element of B. A set C is a proper subset of set B if B contains
at least one element which is not contained in set C.

^The cardinality of a set is the number of elements contained
in the set, and the complement of a given set is the set of ali
those elements which are not contained in the given set.

74 Informatica 22 (1998) 69-74 P. Ecimovic

References

[1] Bruck J. (1990) On the Covergence Properties of
the Hopfield Model Proceedings IEEE, Vol. 78, No.
10, Oct., p. 1579-1585.

[2] Chakrabarti B.K., Dutta A., & Sen P. (1996)
Quantum Ising Phases and Transitions in Trans-
verse Ising Models, Berlin: Springer-Verlag.

[3] Halpern J. (ed.) (1986) Theoretical Aspects of Rea-
soning about Knoinledge, Proceedings of the 1986
Conference, Los Altos: Morgan Kaufmann.

[4] Kilmer W. L. (1995) Self-Repairing Processor
Modules IEEE TRANSACTIONS ON RELIABIL-
ITY, Vol. 44, No. 2, June

[5] Koch C. (1997) Computation and the single neu-
ron, Nature, V ol. 35, 16 January, p. 207-210.

[6] Lamport L., et al (1982) The Byzantine Generals
Problem ACM Trans. Programing Languages, Syst.,
Vol.4, No.3, pp. 382-401, July.

[7] McFadden F.R. & Hoffer, J.A. (1994) Modem
Datahase Management, 4th ed., Redwood City: The
Benjami/Cummings Pubhshing Company, Inc.

[8] Novak F. & Klavžar S. (1993) An Algorithm for
Identification of Maliciously Faulty Units, Interna
tional Journal of Computer Mathematics, Vol. 48,
p.21-29.

[9] Pease M., Shostak R., and Lamport L. (1980)
Reaching agreement in the presence of faults JACM,
Vol.27, No.2, pp.228-234, April.

[10] Wang S.C, Chin Y.H., & Yan K.Q. (1995) IEEE
TVansactions on Parallel and Distributed Systems,
Vol.6, No.4, April, p.420-427.

