
Informatica 32 (2008) 341–357 341

The Cross-Entropy Method for Policy Search in Decentralized POMDPs

Frans A. Oliehoek and Julian F.P. Kooij
Intelligent Systems Lab, University of Amsterdam
Amsterdam, The Netherlands
E-mail: {faolieho,jkooij}@science.uva.nl, www.science.uva.nl/~faolieho

Nikos Vlassis
Dept. of Production Engineering and Management
Technical University of Crete
Greece
E-mail: vlassis@dpem.tuc.gr, http://www.dpem.tuc.gr/vlassis

Keywords: multiagent planning, decentralized POMDPs, combinatorial optimization

Received: March 15, 2008

Decentralized POMDPs (Dec-POMDPs) are becoming increasingly popular as models for multiagent plan-
ning under uncertainty, but solving a Dec-POMDP exactly is known to be an intractable combinatorial op-
timization problem. In this paper we apply the Cross-Entropy (CE) method, a recently introduced method
for combinatorial optimization, to Dec-POMDPs, resulting in a randomized (sampling-based) algorithm
for approximately solving Dec-POMDPs. This algorithm operates by sampling pure policies from an ap-
propriately parametrized stochastic policy, and then evaluates these policies either exactly or approximately
in order to define the next stochastic policy to sample from, and so on until convergence. Experimental
results demonstrate that the CE method can search huge spaces efficiently, supporting our claim that com-
binatorial optimization methods can bring leverage to the approximate solution of Dec-POMDPs.

Povzetek: Prispevek opisuje novo metodo multiagentnega načrtovanja.

1 Introduction

The construction of intelligent agents is one of the major
goals in Artificial Intelligence. In the last two decades more
and more research has concentrated on systems with mul-
tiple intelligent agents, or multiagent systems (MASs). In
this article we focus on the recently proposed model of de-
centralized partially observable Markov decision processes
(Dec-POMDPs) (7). A Dec-POMDP is a generalization
to multiple agents of the well-known POMDP model for
single-agent planning under uncertainty (19).

The Dec-POMDP model presents a decision theoretic
formalization of multiagent planning under uncertainty. It
models a team of cooperative agents that individually re-
ceive observations of their environment and cannot com-
municate. It is a very general model which has for instance
been applied in the context of cooperative robotics (5; 14),
communication networks (30), and sensor networks (26).
The Dec-POMDP does not explicitly consider communica-
tion, but communication actions can be modeled as regular
actions. Also, there are extensions that do explicitly incor-
porate communication (32), which can typically be used to
share observations.

In this paper we focus on the regular Dec-POMDP set-
ting in which the agents have to select their action based on
their private observation histories. During an off-line plan-

ning phase we try to find a policy for a fixed number of time
steps for each agent. The profile of all individual policies is
collectively called a joint policy. The policies should be se-
lected such that, when they are executed jointly during the
on-line execution phase, the resulting behavior is (near-)
optimal according to a predefined performance measure.

In the single-agent (i.e, POMDP) case, the history of ob-
servations results in a ‘belief’ (a probability distribution)
over states, which forms a sufficient statistic for the history
and can therefore be used to base the action choice on (19).
In the multiagent case, however, no such simplification is
possible, and the agents have to base their actions on their
entire history. This means that the number of possible de-
terministic policies for a single agent is finite, but grows
doubly exponentially with the planning horizon. Planning
for a Dec-POMDP requires finding a profile of such poli-
cies, one for each agent, which defines a very challenging
combinatorial optimization problem.

In this paper we examine the Cross-Entropy (CE)
method, a recently introduced and promising method for
combinatorial optimization problems (12) and its applica-
tion to Dec-POMDPs. The CE method provides a frame-
work for finding approximate solutions to combinatorial
problems, and has gained popularity for various applica-
tions (24; 9; 1; 11), due to its ability to find near-optimal
solutions in huge search spaces. Because of the combinato-



342 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

rial nature of the decentralized setting, the CE method may
be a valuable tool in many algorithms for Dec-POMDPs.

In this paper we show how the CE-method can be ap-
plied in the setting of Dec-POMDPs using a relatively di-
rect translation of the general CE optimization method.
This, however, is not entirely trivial, so we discuss the
difficulties and propose solutions. Our primary goal in
this paper is not to provide a state-of-the art method for
solving Dec-POMDPs. In fact, there are some algorithms
which are more advanced than the one we present here
(14; 35; 34; 3; 28). Rather, we show how the CE method
can be use to tackle the combinatorial nature of the prob-
lem. This will allow for improvement of existing algo-
rithms in two related ways. First, existing methods may
rely on exhaustive evaluation of restricted sets of (partial)
policies. The CE method may help to speed up these parts
of algorithms. Second, such speed-up may allow the con-
sideration of less restricted sets of policies, increasing the
accuracy of the method.

1.1 Related work

In the last decade, planning for multiagent systems under
uncertainty has received considerable attention. The Dec-
POMDP model has been introduced by Bernstein et al.
(6, 7), who also proved that finding a solution for a fi-
nite horizon Dec-POMDP is NEXP-complete. The infinite
horizon problem is undecidable, as it is for the single agent
case (i.e., solving a regular POMDP) (23). Pynadath and
Tambe (32) introduced the multiagent team decision prob-
lem (MTDP), an equivalent model to the Dec-POMDP and
a communicative extension, the COM-MTDP.

There are three main algorithms for the optimal solu-
tion of finite-horizon Dec-POMDPs apart from brute-force
policy search. Hansen et al. (17) proposed dynamic pro-
gramming (DP) for Dec-POMDPs, an algorithm that works
by incrementally constructing policies for longer horizons.
The second is multiagent A* (MAA∗), a form of heuris-
tic search (38). Finally Aras et al. (4) recently proposed a
method based on mixed integer linear programming.

Due to the complexity results for Dec-POMDPs, how-
ever, the focus of much research has shifted to two other
topics. First, people have tried to identify special instances
of the problem that are less hard. For instance, a lot
of research has focused on the case where there are spe-
cial assumptions on observability and/or communication
(10; 16; 21; 33; 36). Becker et al. (5) considered the spe-
cial case of Dec-POMDPs were agents have their local state
spaces and transitions and observations are independent.
Similar assumptions are made by Nair et al. (26); Kim et al.
(20); Varakantham et al. (39) who exploit resulting locality
of interaction in the context of sensor networks. Other spe-
cial cases are identified by Goldman and Zilberstein (15).

Second, research has focused on methods that find ap-
proximate solutions. For example, joint equilibrium search
for policies (JESP) is a method that settles for a local opti-
mum (25). Emery-Montemerlo et al. (13) proposed to con-

struct a policy by approximating the Dec-POMDP with a
series of compressed Bayesian games (BGs). Both Szer
and Charpillet (37) and Seuken and Zilberstein (35, 34)
proposed approximate extensions of DP for Dec-POMDPs.

Except for JESP, all these approximate methods in one
way or another restrict the search space to provide leverage.
This reduced search space is then searched exhaustively to
find the best approximate solution. In this work, rather than
searching a constrained policy space exhaustively, we ex-
amine ways to search the entire space approximately. In
particular, we show how the CE method can be used to
directly search spaces of up to 10243 joint policies fairly
effectively.

1.2 Overview of article

Section 2 provides a background on decentralized decision
making and formally introduces the Dec-POMDP frame-
work. In section 3 we treat the background of the CE
method. Section 4 introduces direct CE policy search for
Dec-POMDPs, detailing how we apply the CE method to
Dec-POMDPs. Section 5 introduces an extension of our al-
gorithm with approximate evaluation. In section 6 we give
an experimental evaluation and finally section 7 concludes
and discusses future work.

2 Decentralized POMDPs

Here we provide a formal background of decentralized
POMDPs. We start by introducing the decentralized tiger
(DEC-TIGER) problem, which is a standard benchmark.
Next, we introduce the formal Dec-POMDP model. Fi-
nally, we formalize histories, policies and the optimality
criterion and we discuss naive (i.e., brute force) policy
search.

2.1 The decentralized tiger problem

In the DEC-TIGER problem, two agents standing in a hall-
way are confronted with two doors. Behind one door lies
a treasure, while behind the other there is a tiger. As such,
there are two possible states the world can be in: sl, the
tiger is behind the left door, and sr the tiger is behind the
right door. Initially, these states have equal probability.
The goal is to open the door that holds the treasure, which
would result in a positive reward. But if at least one of them
opens the other (wrong) door they receive a large penalty.

Both agents can take three actions, namely OpenLeft

(aOL) and OpenRight (aOR) to open the left or right door,
and Listen (aLi) to try to observe carefully behind what
door the tiger growls. The two possible observations
HearLeft (oHL) and HearRight (oHR) indicate whether the
agent heard the tiger behind the left or right door respec-
tively. Observations are received at every time step but are
random and uninformative unless both agents performed
Listen, in which case they hear the tiger behind the correct
door with high probability (each agent has a 85% chance of



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 343

getting the correct observation). The action Listen has a
small cost associated with it, but can decrease the agents’
uncertainty about the state (which remains unchanged).

Furthermore, the rewards are specified such that it is al-
ways beneficial for the agents to act jointly: it is better to
open the wrong door jointly than doing it alone. After one
or both agents has opened a door, rewards are given and
the situation is reset to a random state. More details on the
DEC-TIGER problem are provided by Nair et al. (25).

2.2 The formal model

The decentralized partially observable Markov decision
process (Dec-POMDP) describes a stochastic, partially ob-
servable environment for a set of cooperating agents.

Definition 2.1. A Dec-POMDP is a tuple
〈Ag,S,A, T, R,O, O〉 where:

– Ag = {1, . . . , n} is the set of agents.

– S is a finite set of states.

– The set A = ×iAi is the set of joint actions, where
Ai is the set of actions available to agent i. Every time
step one joint action a = 〈a1, ..., an〉 is taken.1

– T is the transition function, a mapping from states
and joint actions to probability distributions over next
states: T : S ×A → P(S).2

– R is the reward function, a mapping from states and
joint actions to real numbers: R : S ×A → R.

– O = ×iOi is the set of joint observations, with Oi

the set of observations available to agent i. Every time
step one joint observation o = 〈o1, ..., on〉 is received.

– O is the observation function, a mapping from joint
actions and successor states to probability distribu-
tions over joint observations: O : A× S → P(O).

A Dec-POMDP is considered at a number of discrete
time steps, or stages, t. At every such stage each agent i
takes an individual action ai. As a result of the taken joint
action a, the state then stochastically transitions from s to a
new state s′ according to T . At that point, the environment
emits a joint observation o with probability P (o|a, s′), as
specified by O. From this o each agent i observes its indi-
vidual component oi, selects a new action, etc.

In this paper we are searching for plans that specify ac-
tions for a fixed number of stages h. That is, we assume
a finite planning horizon of h time steps. Furthermore, we
assume that there is a distribution over states at the initial
stage t = 0, also called the initial ‘belief’ b0 ∈ P(S).3

1Unless stated otherwise, subscripts denote agent indices.
2We use P(X) to denote the infinite set of probability distributions

over the finite set X.
3Unless stated otherwise, superscripts denote time indices.

aLi

aLi

aOL

oHLoHL

oHL

oHRoHR

oHR

aLi

aLi

aLi

oHLoHL

oHL

oHRoHR

oHR

Figure 1: A part of an arbitrary joint policy for DEC-
TIGER. Left shows to policy for agent 1, right for agent
2. The figure shows the actions taken at stages 0, 1 and
shows the observations received at stages 1, 2.

2.3 Histories and policies

In a Dec-POMDP, an agent i only knows its own taken ac-
tions ai and observations oi. As a result it has to base its
actions on the histories of those. Therefore, before we for-
malize the notion of a policy, we first formalize these his-
tories.

Definition 2.2. The action-observation history for agent
i �θ t

i is the sequence of actions taken and observations re-
ceived by agent i until time step t:

�θ t
i =

(
a0

i , o
1
i , a

1
i , ..., a

t−1
i , ot

i

)
. (2.1)

The joint action-observation history is a tuple with the
action-observation history for all agents �θ t = 〈�θ t

1 , ..., �θ t
n〉.

The set of all action-observation histories for agent i at time
t is denoted �Θi.

Definition 2.3. The observation history for agent i is the
sequence of observations an agent has received:

�o t
i =

(
o1

i , ..., o
t
i

)
, (2.2)

�o t denotes a joint observation history and �Oi denotes the
set of all observation histories for agent i.

Now we are ready to formalize policies.

Definition 2.4 (deterministic policy). A pure or determin-
istic policy πi for agent i in a Dec-POMDP is a mapping
from observation histories to actions, πi : �Oi → Ai. A
pure joint policy π = 〈π1 . . . πn〉 is a tuple containing a
pure policy for each agent. Π is the set of all pure joint
policies.

One could expect that the most general definition of a
policy is as a mapping from action-observation histories
to actions. This is indeed the case for stochastic policies
where an action is chosen at each action-observation his-
tory with a particular probability. For a deterministic pol-
icy, however, this is unnecessary because an agent can infer
the actions it took from its observation history.

A pure policy can be visualized as a tree, as is illustrated
in Figure 1, which shows a joint policy for the decentral-
ized tiger problem. In this figure, each node marks a point



344 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

where an agent has to decide upon an action. A path lead-
ing to such a node defines the observation history, and the
depth corresponds to the stage at which the decision should
be taken. A pure policy assigns to each node one action
fromAi, thereby defining what action the agent should take
given some observation history.

Solving a Dec-POMDP amounts to finding an optimal
joint policy π∗ such that when the agents act accordingly,
their expected shared reward is maximal. The quantity that
we want the agents to maximize is the expected cumulative
reward:

π∗ = argmax
π

Eπ

(
h−1∑
t=0

R(s,a)

)
. (2.3)

Bernstein et al. (7) have shown that optimally solving a
Dec-POMDP is NEXP-complete, implying that any opti-
mal algorithm will be doubly exponential in the horizon.
This becomes apparent when realizing that the number of
pure joint policies is:

O

[(
|A∗|

(|O∗|h−1)
|O∗|−1

)n]
, (2.4)

where |A∗| and |O∗| denote the largest individual action
and observation sets.

The naive way of going about is to enumerate each of
these joint policies and evaluate their expected cumulative
reward, or value. The value of a specific (state, joint obser-
vation history) pair under a joint policy π is given by:

Vπ(st, �o t) = R(st, π(�o t)) +
∑
st+1

P (st+1|st, π(�o t))

∑
ot+1∈O

P (ot+1|st+1, π(�o t))Vπ(st+1, �o t+1) (2.5)

where �o t+1 is the new joint observation history at stage
t+1: �o t+1 = (�o t,ot+1). The total expected reward V (π),
with respect to the initial state distribution b0 is then given
by

V (π) =
∑

s

Vπ(s,�o 0)b0(s), (2.6)

where �o 0 is the initial (empty) joint observation history.
For one joint policy this calculation requires evaluation of

(2.5) for each of the
∑h−1

t=0 |O|t = |O|h−1
|O|−1 joint observation

histories and |S| states, leading to a total cost of:

O

(
|S| ·

|O|h − 1

|O| − 1

)
. (2.7)

3 Cross-entropy optimization

de Boer, Kroese, Mannor, and Rubinstein (12) described
the Cross-Entropy (CE) method as a general framework to
both rare event estimation and combinatorial optimization.
We will focus only on the application to optimization. In

particular, it has been illustrated how the CE method can
be adapted to find good policies for a particular class of
Markov Decision Processes (MDPs) (24; 12). In this sec-
tion, we first provide a brief introduction to the CE method
for optimization, followed by a description of the men-
tioned application to MDPs.

3.1 General CE Optimization

The cross entropy method can be used for optimization in
cases where we want to find a—typically large—vector x
from a hypothesis space X that maximizes some perfor-
mance function V : X → R. That is, when we are looking
for

x∗ = arg max
x∈X

V (x). (3.1)

The CE method associates an estimation problem with this
optimization. It maintains a probability distribution fξ over
the hypothesis space, parametrized by a vector ξ. In par-
ticular, CE estimates the probability that the performance
V (x) of a sample x drawn according to fξ is higher than
some γ:

Pξ(V (x) ≥ γ) =
∑
x∈X

I(V (x), γ)fξ(x), (3.2)

where I(V (x), γ) is an indicator function:

I(V (x), γ) =

{
1 , V (x) ≥ γ

0 , V (x) < γ.
(3.3)

Let γ∗ be the optimal value, i.e., γ∗ ≡ V (x∗). Consid-
ering γ = γ∗ and a uniform distribution fξ in (3.2) gives
the correspondence to the optimization problem (3.1). Also
observe that Pξ(V (x) ≥ γ∗) is most likely very small un-
der a uniform fξ, which explains the link to rare event esti-
mation.

The core of the CE method is an iterative two-phase pro-
cess:

1. Generate a set of samples X according to fξ.

2. Select the best Nb of samples Xb, and use those to
update the parameter vector ξ.4

The first step is rather trivial. The second step, however,
deserves some explanation. Let γ(j) be defined as the min-
imum performance within the selected set of samples of the
j-th iteration. I.e.,

γ(j) ≡ min
x∈Xb

V (x). (3.4)

The CE method requires that this lower bound performance
is not allowed to decrease over time: γ(j+1) ≥ γ(j). This
implies that Xb can contain less than Nb samples because

∀x∈Xb
V (x) ≥ γ(j) (3.5)

4The number of best samples is often characterized as a fraction 0 ≤

ρ ≤ 1 of the set of samples X. I.e., Nb = round(ρ · N).



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 345

is a hard requirement. The set Xb is then used to create
ξ(j+1), a maximum-likelihood estimate of the parameters.
These new parameters can be smoothed using a learning
rate 0 ≤ α ≤ 1 by interpolating with ξ(j) the parameter
vector of the previous iteration:

ξ(j+1) = αξ(j+1) + (1 − α)ξ(j). (3.6)

This reduces the probability that some components of the
parameter vector will be 0 or 1 early in the CE process,
which could cause the method to get stuck in local optima.

Usually, the iterative process is stopped when γ(j) has
not improved over some predefined number of steps. But
other conditions such as a time limit or a fixed number of
iterations can be used. When the stop condition is finally
met, the best sample x found in the entire process is re-
turned as an approximation of x∗.

3.2 The CE Method for MDPs

In their work, Mannor et al. (24) show how the CE method
can be applied to shortest paths MDPs, a class of MDPs
for which the optimal value function is stationary, i.e., the
expected value of taking a particular action in a particu-
lar state is not dependent on the stage. The optimal pol-
icy for such a MDP is a mapping from states to actions
πMDP : S → A, which can be represented as an |S|-vector.
As in section 3.1, the goal is to find the vector that max-
imizes a performance function, in this case the expected
total reward. So rewriting (3.1), we are looking for

π∗
MDP = arg max

πMDP

V (πMDP), (3.7)

where the performance function now is the value of the
MDP-policy πMDP. The CE method tackles this problem by
maintaining a parameter vector ξ = 〈ξs1 , ..., ξs|S|

〉, where
each ξs is a probability distribution over actions. Using
these probabilities it is possible to sample N trajectories:
starting from some start state actions are randomly selected
according to the probabilities as described by ξ until the
goal state is reached. Using the Nb best (highest total re-
ward) trajectories Xb, the parameter vector can be updated
as follows:

P (a|s) =

∑
x∈Xb

I(x, s, a)∑
x∈Xb

I(x, s)
, (3.8)

where I(x, s, a) is an indicator function that indicates that
action a was performed at state s in trajectory x, and
I(x, s) indicates whether s was visited in trajectory x.

After updating the parameter vector ξ, a new set X of tra-
jectories can be sampled, etc. Empirical evaluation shows
that this process converges to (near-) optimal policy in only
a few iterations (24).

4 Direct CE policy search for
Dec-POMDPs

In this section we propose an adaptation of the CE method
for Dec-POMDP policy search, which we dub direct CE
(DICE) policy search for Dec-POMDPs because it directly
searches the space of joint policies withouth first restricting
it.

DICE is a direct translation of the ideas presented in the
previous section. Still, there are some problems when try-
ing to apply the procedure as outline in the previous section
to Dec-POMDPs: First, because we consider finite horizon
Dec-POMDPs, there is no stationary value function. Sec-
ond, the policies of the agents are not defined over states,
but over their individual observation histories �o t

i , and these
are not a Markovian signal. Third, there is no clear way to
sample traces and use those to update the distribution.

In the Dec-POMDP case, the hypothesis space is the
space of deterministic joint policies Π. In order to apply
the CE method, we are required to define a distribution
over this space and an evaluation function for sampled poli-
cies. Also, we show how the distribution can be adapted
using the best policies found in each iteration. First, we
will present two methods to define the distribution over the
joint policy space. After that we describe how the param-
eter updates are performed. Finally, a we give a summary
and complexity analysis of the DICE algorithm.

4.1 Policy distributions

In the case of Dec-POMDPs fξ denotes a probability dis-
tribution over pure joint policies, parametrized by ξ. We
will represent this probability as the product of probability
distributions over individual pure joint policies:

fξ(π) =

n∏
i=1

fξi
(πi). (4.1)

Here ξi is the vector of parameters for agent i, i.e., ξ =
〈ξ1, ..., ξn〉.

The question is how to represent the probability distri-
butions over individual pure policies. One clear solution
is to enumerate all the pure policies for an agent i and to
maintain an explicit discrete probability distribution over
this set of policies. I.e., the distribution is represented as
a mixed policy (31). However, this approach suffers from
two drawbacks. First, the number of pure individual poli-
cies πi might be huge, making such an explicit distribution
impractical to represent. Second, this representation is hard
to parametrize in a meaningful way using some vector ξi,
as it gives no access to the internals of the policies: param-
eters would specify probabilities for entire pure policies,
rather than specifying behavior for particular observation
histories as in figure 1.

Therefore, rather then using a mixed policy representa-
tion, we will use a behavioral- (31) or stochastic policy (22)
description: a mapping from decision points to probability



346 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

ξ()

ξ(o1)
ξ(ō1)

o1o1

o1

ō1ō1

ō1

P (a1)

P (ā1)

Figure 2: A part of a stochastic policy for an agent of a
fictitious Dec-POMDP.

distributions over actions. Note that this is similar to the
approach for MDPs, as described in section 3.2, were the
states are the decision points.

4.1.1 Observation history based

The simplest way to represent a policy distribution is to
make a direct translation from CE for MDPs: instead of
maintaining a simple probability distribution over actions
for each state, we now maintain one for each observation
history (OH). Figure 2 illustrates such a representation of
the policy distribution. It shows that for each observation
history �o t

i a parameter ξ�o t
i
, that specifies the distribution

over actions, is maintained:

∀ai
ξ�o t

i
(ai) ≡ P (ai|�o

t
i ). (4.2)

Note that the distribution differs only from a pure policy
(Figure 1) by keeping distributions over actions instead of
a single action at the nodes of the tree. Consequently, the
parameter vector for agent i is defined as ξi ≡ 〈ξ�o t

i
〉�o t

i ∈
�Oi

,
and the probability of a particular policy πi for agent i as

fξi
(πi) =

∏
�o t

i ∈
�Oi

ξ�o t
i
(πi(�o

t
i )). (4.3)

We refer to this policy distribution representation as the
OH-based representation.

4.1.2 Action-observation history based

Defining the parameters as in section 4.1.1 is the most
straightforward approach, but does not take into account
the action history: the choice for action πi(�o

t
i ) has no in-

fluence on the choice for the action at the next time step
πi(�o

t+1
i ). As explained in section 2, in general a stochastic

policy does take into account the taken action. However,
we know that there is at least one deterministic joint pol-
icy for a Dec-POMDP (which consists of individual poli-
cies that are a mapping from observation histories to ac-
tions). Moreover, in previous research we did investigate

an action-observation history (AOH) based representation,
but the influence appeared to be minor (27). Therefore we
will not consider this further in this work.

4.2 Sampling and Evaluation

Unlike the MDP case, in the setting of Dec-POMDPs there
is no trivial way to sample some trajectories given the joint
policy distribution fξ and use that to update the distribu-
tion. Rather we propose to sample complete joint policies
and use those for the parameter update.

Selecting a random sample of joint policies from the dis-
tribution is straightforward. For all the observation histo-
ries �o t

i of an agent i an action can be sampled from action
distribution ξ�o t

i
. The result of this process is a determin-

istic policy for agent i. Repeating this procedure for each
agent samples a deterministic joint policy. The evaluation
of a joint policy can be done using (2.6).

4.3 Parameter update

We described how to represent and sample from the proba-
bility distribution over policies. This section describes how
the set of best policies Xb sampled from the previous dis-
tribution fξ(j) , can be used to find new parameters ξ(j+1).

Let I(πi, �o
t
i , a) be an indicator function that indicates

whether πi(�o
t
i ) = a. In the OH-based distribution the

probability of agent i taking action at ∈ Ai after having
observed �o t

i can be re-estimated as:

ξ
(j+1)

�o t
i

(at) =
1

|Xb|

∑
π∈Xb

I(πi, �o
t
i , at), (4.4)

where |Xb| normalizes the distribution since

∀�o t
i

∑
a∈Ai

∑
π∈Xb

I(πi, �o
t
i , a) = |Xb|. (4.5)

Note that the thus computed new parameter vector ξ(j+1)

will afterward be smoothed using the learning rate α ac-
cording to (3.6).

4.4 Summary and complexity analysis

Algorithm 1 summarizes the DICE policy search
method. To start it needs I , the number of iterations, N ,
the number of samples taken at each iteration, Nb, the num-
ber of samples used to update ξ, and α, the learning rate.
The outer loop of lines 3–17 covers one iteration. The in-
ner loop of lines 5–13 covers sampling and evaluating one
joint policy. Lines 14–16 perform the parameter update.
Because the CE method can get stuck in local optima, one
typically performs a number of restarts. We have not incor-
porated these in the algorithm itself, however.

Now we consider the complexity of this algorithm. For
each iteration we draw N joint policies. The sampling of



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 347

Algorithm 1 The DICE policy search algorithm
Require: CE parameters: I, N, Nb, α

1: Vb ← −∞
2: initialize ξ(0) {typically uniform random}
3: for i ← 0 to I do
4: X ← ∅
5: for s ← 0 to N do
6: sample π from fξ(i)

7: X ← X ∪ {π}
8: V (π) ← Evaluate(π)
9: if V (π) > Vb then

10: Vb ← V (π)
11: πb ← π
12: end if
13: end for
14: Xb ← the set of Nb best π ∈ X

15: Compute ξ(i+1) {using (4.4) }
16: ξ(i+1) ← αξ(i+1) + (1 − α)ξ(i)

17: end for
18: return πb

such a joint policy involves, for each agent, selecting an ac-
tion for each of its observation histories and has complexity

O(n · |A∗| · | �O∗|) = O

(
n · |A∗| ·

|O∗|h − 1

|O∗| − 1

)
,

where ∗ denotes the agent index with the largest obser-
vation and action set respectively. The complexity of up-
dating ξ is similar, but includes the term Nb (rather then
being performed N times). Evaluation (i.e., computing
the total expected reward) of a policy V (π), is performed
by evaluating equation (2.6) and (2.5) from the last stage
h − 1 up to the first 0. The complexity of this calcula-
tion for a single pure joint policy scales exponentially with
the planning horizon, as explained in section 2. Because
|O| = O(|O∗|

n
) , we can rewrite (2.7) as

O

(
|S| ·

|O∗|
nh − 1

|O∗|
n − 1

)
,

This latter term typically dominates the complexity of sam-
pling and updating ξ, therefore the total time complexity of
DICE is given by

O

[
I · N ·

(
|S|

|O∗|
nh − 1

|O∗|
n − 1

)]
.

5 Approximate Evaluation

The complexity analysis showed that the time required for
DICE scales exponentially with the planning horizon, and
that policy evaluation forms the bottleneck of our algo-
rithm. In order to alleviate this bottleneck, we examine
the application of approximate evaluation. The idea is that
rather than computing the expected value, we sample this

value by simulating r episodes, or traces, and using the av-
erage of outcomes as an estimate Ṽ (π) for the actual value
V (π). We will refer to the resulting method as DICE policy
search with approximate evaluation (DICE-A).

Clearly, this approximation might introduce errors. No-
tice, however, that the CE method does not discriminate
between policies within the set Xb of best samples. There-
fore, as long as the relative ordering is preserved, the same
policies are used to update the policy distribution, yielding
the same results. In fact, only when the ranking of poli-
cies is disturbed near the cut-off threshold (around the Nb-
th joint policy), will approximate evaluation influence the
distribution updating process.

There is a second potential source of error, though.
When the fraction of best samples Xb is used to update γ
using (3.4), the new γ might in fact be an over-estimation.
This could make it very difficult to sample new instances
with a higher (approximate) value. In previous work, we
therefore also considered a version of our algorithm that
did not use the hard threshold γ, but rather always used the
best Nb samples (27). The results, however, did not show
a significant improvement, nor did we encounter any such
difference in further experiments we performed. Therefore
we will not consider this further in this paper.

5.1 Complexity

Simulating one trace of a joint policy involves looking up
the actions for each of the n agents and sampling one of
|S| successor states and one of |O| = O(|O∗|

n
) joint ob-

servations at each of the h stages. Such a simulation is
performed r times, so the time complexity of performing
approximate evaluation of a single joint policy is:

O (r · h · n · |O∗|
n · |S|) . (5.1)

DICE-A performs such an evaluation for each of the N
sampled policies in each of the I iterations. Therefore, to-
tal time complexity of DICE with approximate evaluation
is given by

O (I · N · r · h · n · |O∗|
n · S) , (5.2)

as long as approximate evaluation dominates the time
needed to sample a policy and update the parameter vec-
tor ξ.

5.2 Error bounds

The estimated value Ṽ (π) is only an approximation of the
true value V (π). However, we are able to establish bounds
on this error. In particular, we know that V (π) is bounded
when the immediate reward function is bounded. Let us
write Rmin, Rmax for the lower and upper bound of the re-
ward function, that is, ∀s,a R(s,a) ∈ [Rmin, Rmax]. Then
the value of a policy is bounded by

V (π) ∈ [hRmin, hRmax].



348 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

Wassily Hoeffding (18) proved that the probability that the
sum of r independent random variables X1, ..., Xr, each
bounded Xi ∈ [ai, bi], exceeds the expectation (of the sum)
with rε or more is bounded by

P ((X1 + ... + Xr) − E [X1 + ... + Xr] ≥ rε) ≤

exp

(
−

2r2ε2∑r
i=1 (bi − ai)

2

)
,

for any ε > 0.
In our setting, each Xi denotes the outcome of the simu-

lation of the i-th episode, and is an unbiased estimate of
V (π). Also, in our setting we are interested in a two-
sided error bound, and all Xi respect the same bound
Xi ∈ [hRmin, hRmax]. Therefore we can write

P (|(X1 + ... + Xr) − E [X1 + ... + Xr]| ≥ rε)

=P

(∣∣∣∣(X1 + ... + Xr)

r
−

E [X1 + ... + Xr]

r

∣∣∣∣ ≥ ε

)
=P

(∣∣∣∣∣1r
r∑

i=1

Xi − E(X)

∣∣∣∣∣ ≥ ε

)
=P

(∣∣∣Ṽ (π) − V (π)
∣∣∣ ≥ ε

)
≤2 exp

(
−

2r2ε2

r (hRmax − hRmin)
2

)
.

Using this result we can control the lower bound on the
probability that an error of size less than ε is made. Suppose
we want to approximate V (π) with accuracy ε with at least
probability δ. I.e., δ = �P (error < ε)� is the lower bound
on the probability of an error smaller than ε, yielding

P (error ≥ ε) = 1 − P (error < ε)

P (error ≥ ε) ≤ 1 − �P (error < ε)�

= 1 − δ.

Then we must have that

P

(∣∣∣∣∣1r
r∑

i=1

Xi − E(X)

∣∣∣∣∣ ≥ ε

)
≤

2 exp

(
−

2r2ε2

r (hRmax − hRmin)
2

)
≤ 1 − δ.

Solving the right-hand side for r goes as follows:

−
2r2ε2

r (b − a)2
≤ ln

(
1 − δ

2

)
2rε2 ≥ − (b − a)

2
ln

(
1 − δ

2

)
r ≥

(b − a)
2

2ε2
ln

2

1 − δ
.

with
(b − a)2 = h2 (Rmax − Rmin)2 .

So, to guarantee an error smaller than ε (with probability
δ), the required number of traces grows only quadratically
with the horizon.

5.3 Post-evaluation

When using DICE with approximate evaluation, the end re-
sult is a joint policy and its estimated value. In order to
know the true quality of the joint policy, an exact evalua-
tion can be started at this point. However, due to the expo-
nential complexity of such an exact evaluation, this is not
always feasible. In settings where it is not, we propose to
do a more accurate sample based estimation of the value of
the joint policy.

Of course, it may happen that the new exact (or more ac-
curately determined) value of the joint policy is less than
the previous estimate, and perhaps also less than the es-
timated value of other joint policies encountered during
DICE. To prevent this, one may keep a list of the best k
joint policies encountered. At the end of the procedure,
one can then exactly evaluate all these k joint policies and
select the best one. Alternatively, the CE process can be
augmented with one additional iteration, where all sampled
policies are evaluated exactly (or more accurately).

6 Experiments

Here we give an empirical evaluation of the proposed algo-
rithm. The implementation of DICE follows the description
without any further remarks. In our DICE-A implementa-
tion we have not implemented an additional evaluation iter-
ation or list of k best policies as suggested. We only apply
post-evaluation to the best ranked joint policy. This post-
evaluation consists of a more accurate evaluation of 20, 000
runs when the value function consists of more than 20, 000
(s,�o)-pairs, and exact evaluation otherwise.

First we examine the influence of all parameters of the
CE optimization procedure. Next, we briefly discuss some
benchmark problems and investigate the performance on
these benchmark problems of different horizons and com-
pare it to dynamic programming JESP. Finally, we investi-
gate how DICE scales with respect to the number of agents,
again comparing to JESP.

6.1 Different CE parameters

The CE method has quite a few configurable parameters:
the learning rate α, the number of iterations I , the number
of samples drawn per iteration N , the fraction of best sam-
ples kept for update ρ and the induced number of samples
used for this update Nb = ρ · N . We have empirically in-
vestigated different settings of these parameters for DICE

policy search. Additionally, for DICE-A we investigate the
parameter r for the number approximation simulations.

The results reported in this section are all obtained on the
DEC-TIGER problem. The non-varying parameters in these
experiments were set as follows α = 0.2, I = 30, N =
50, Nb = 5.

First we examine the influence of the learning rate α.
Figure 3 shows that low α (0.2) results in low variance,
but if too low (α = 0.1) the CE process cannot converge



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 349

0.2 0.4 0.6 0.8
-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

α

Dec-Tiger h = 4 for different α

0.2 0.4 0.6 0.8
-70

-60

-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

α

Dec-Tiger h = 5 for different α

Figure 3: Performance for varying α. Top: horizon 4. Bot-
tom: horizon 5.

to a good solution within a limited number of iterations.
Also shown is that DICE on DEC-TIGER with 30 iterations
α = 0.3−0.4 gives the best trade-off between learning and
convergence.

Next, we examine the number of CE iterations. The
complexity analysis shows that this parameter should affect
the running time linearly and this was experimentally con-
firmed. Figure 4 shows the value obtained by the algorithm
for different numbers of iterations. It indicates that the al-
gorithm converges after a fixed number of iterations. As
we might expect, convergence requires less iterations for
a smaller horizon (compare top and bottom figure). How-
ever, in both cases we see that the performance grows very
rapidly when first increasing the number of iterations and
then levels out. This indicates that even with a limited num-
ber of iterations, CE might be able to obtain fairly good
results fast.

Figure 5 shows the values obtained by varying N, the
number of joint policies sampled per iteration, which also
increases the complexity linearly. The results were ob-
tained using a fixed update fraction ρ = 0.1. Here too,
we see that improvement is strong initially, and then flat-
tens out later. Also note that the higher variance for h = 5
can be explained by looking at the performance for I = 30
in Figure 4.

The number of samples used to update the parameter
vector ξ only marginally influences the run-time, and we
were not able to determine this empirically. Also, using a
larger fraction ρ decreases the performance. In this case,

0 50 100 150 200
-120

-100

-80

-60

-40

-20

0

20

mean
max

V
al

ue

iterations

Dectiger h = 4 for different I

0 50 100 150 200
-160

-140

-120

-100

-80

-60

-40

-20

0

20

mean
max

V
al

ue

iterations

Dectiger h = 5 for different I

Figure 4: Performance for varying number of CE iterations.
Top: horizon 4. Bottom: horizon 5.

the quality of the sampled joint policies used to re-estimate
the distribution parameters degenerates and CE will not
converge towards good solutions. The results in figure 6
indicate optimal performance for ρ between 0.05 and 0.1.
We omitted the nearly identical graph for h = 5.

In case DICE-A is used for policy search, the number of
approximation runs influences the run time linearly. In fig-
ure 7 we can clearly see that the quality of the approximate
evaluation converges quickly for horizon 4. For horizon
5 the size of the policies increases exponentially and more
runs are needed to maintain approximation quality, but also
here we see no improvement beyond r = 1000.

6.2 Results on different problems

Here we report the results of the performance of DICE

on different Dec-POMDP problems and different horizon
lengths. In particular we consider the following problems:
BROADCAST CHANNEL, DEC-TIGER, MEETING ON A

GRID and FACTORED FIREFIGHTING. The DEC-TIGER

problem was discussed section 2.1. For the other problems
we now provide a brief description.

The BROADCAST CHANNEL problem involves two
agents that control a broadcast channel. Each agent decides
at every stage whether or not to send a message across it.
When both agents send a message at the same time a col-
lision occurs. When a message is successfully transmitted,
the agents get a reward of +1. More information can be
found in (30; 17).



350 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

20 40 60 80 100
-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

N

Dectiger h = 4 for different N

20 40 60 80 100
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

mean
max

V
al

ue

N

Dectiger h = 5 for different N

Figure 5: Performance under varying number of samples
per CE iteration. Top: horizon 4. Bottom: horizon 5.

MEETING ON A GRID was introduced by Bernstein et al.
(8) and considers two robots on a 2x2 grid. Their goal is to
occupy the same square which gives them a +1 reward, but
they have imperfect sensors and actuators which compli-
cates the task. We consider the version with 2 observations
per agent (2).

Finally, FACTORED FIREFIGHTING is a problem with 3
agents that have to fight fires at 4 houses (29). Each agent
has 2 different houses it can go to (the sets are overlapping,
but not equal). Every stage each agent should choose which
of its 2 associated houses it wants to fight fire at. For each
house that is burning, the agents receive a penalty of −1 or
−2, depending on the level of fire.

Before showing results of the proposed CE approaches,

Dec-Tiger Broadcast Grid FFF

n 2 2 2 3
|S| 2 4 16 81
|Ai| 3 2 5 2
|Oi| 2 2 2 2

2 7.290e02 6.400e01 1.563e04 5.120e02
3 4.783e06 1.638e04 6.104e09 2.097e06
4 2.059e14 1.074e09 9.313e20 3.518e13
5 3.815e29 4.612e18 2.168e43 9.904e27
6 1.310e60 8.507e37 1.175e88 7.846e56
7 1.545e121 2.895e76 3.454e177 4.925e114
8 2.147e243 3.352e153 Inf 1.941e230

Table 1: The number of joint policies for different problems
and horizons. Inf denotes a value beyond double machine
precision.

0.0 0.1 0.2 0.3 0.4 0.5
-35

-30

-25

-20

-15

-10

-5

0

5

10

mean
max

V
al

ue

ρ (= Nb/N)

Dectiger h = 4 for different ρ

Figure 6: The fraction of samples ρ used to update the dis-
tribution fξ on horizon 4.

0 500 1000 1500 2000
-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

r

Dectiger h = 4 for different r

0 500 1000 1500 2000
-70

-60

-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

r

Dectiger h = 5 for different r

Figure 7: Performance for varying number of approximate
evaluation runs. Top: horizon 4. Bottom: horizon 5.



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 351

we first report the size of the joint policy space for differ-
ent considered problems in Table 1. Clearly we are dealing
with huge search spaces here. In fact for h = 8 MEET-
ING ON A GRID the number of joint policies was not rep-
resentable by a double precision float (the maximum repre-
sentable being 1.7977e+308). We emphasize that DICE di-
rectly searches these spaces, without first restricting them.

We report the results of DICE and DICE-A on these dif-
ferent test problems. We also compare against dynamic
programming JESP which was proposed by Nair et al. (25).
This method starts with a random joint policy and then
iterates over the agents, computing a best-response pol-
icy for the selected agent while keeping the other agents
fixed. The term “dynamic programming” indicates that
this best-response is computed by solving an augmented
POMDP for the selected agent. The reason to compare
against JESP is that, as mentioned in the introduction, it is
the only other approximate method that does not constrain
the search space in any way.

The settings for DICE used in these experiments are: a
learning rate of α = 0.2, N = 50 joint policies per itera-
tion, using the Nb = 5 best for update (i.e. ρ = 0.1). For
DICE-A we used the same settings and the approximation
was based on 1000 simulations. The results in this section
are averaged over 100 random initializations, or restarts, of
each solution method. However, due to the time needed for
higher horizons, we have not always restarted 100 times
for the highest horizon considered. The numerical results
and the number of restarts over which they are obtained are
listed in the appendix. The reported timing results are cpu-
user times and obtained on an Intel Xeon 3.4 GHz machine
with 2GB memory running Debian linux.

The results for the DEC-TIGER problem are shown in
Figure 8. Note that the run-time results in the right figure
use a log scale. Our evaluation shows that for low hori-
zons (h < 6) DICE outperforms JESP but has taken, under
these settings, more time to finish. However, the run-time
of JESP increases much faster for larger horizons: for hori-
zon 8 it is about ten times slower than DICE. The run-time
of DICE-A is affected least by the value of the horizon.

In terms of quality of the found policy, DICE outper-
forms JESP for lower horizons: although all methods found
(near-)optimal solutions for h = 2, 3, 4 within the 100
restarts, the variance of JESP is much higher. Unfortu-
nately, the joint policies found by DICE for h > 5 are not
very good, as the performance drops below JESP. How-
ever, this exposes the potential of approximate evaluation:
which allows for much more iterations in less time than
regular DICE. We also ran DICE-A with 200 iterations (20
restarts). While using approximation with the same set-
tings does not seem to significantly change the results of the
CE method by itself (DICE and DICE-A wth 50 iterations
perform roughly equal), it does allow for more iterations,
leading to good overall results while keeping the run-time
acceptable. Only for h = 8, JESP really seems to achieve a
better result, but with high variance, and high run-times.

For BROADCAST CHANNEL the results are shown in

Figure 9. It shows that CE achieves a higher mean value
and less variance with again little difference between DICE

and DICE-A. The run-time of DICE-A on the other hand
increases again much slower than the other two approaches,
which eventually is more beneficial.

As indicated by Table 1, the MEETING ON A GRID prob-
lem is somewhat larger than the previous problems. This
quickly makes exact evaluation problematic. For example,
to compute the value of a horizon 6 joint policy 2.18e4
(s,�o)-pairs have to be evaluated. Figure 10 shows that
while JESP requires much more time than DICE, it does not
result in better performance. The rightmost plot shows that
the run-time of DICE-A is significantly lower from hori-
zon 5 on. However, starting at h = 6 DICE-A seems to get
trapped in a local optimum. Still, it is the only method to
compute a policy for horizons 7 and 8.

The last problem, FACTORED FIREFIGHTING , is even
larger. Because there are now 3 agents, the number of
joint observation histories, and thus the number of entries
to compute for exact evaluation and for JESP grows much
faster. This is reflected by the results as the graphs in Fig-
ure 11 show. DICE and JESP can only find solutions for
at maximum h = 3 and h = 4 respectively. Again this
demonstrates the power of DICE-A, which does not en-
counter any problems computing results up to h = 8.

In general DICE and DICE-A seem to perform quite well
in comparison to JESP. Although JESP’s maximum value
is usually equal or greater than the maximum value found
by the DICE methods, its mean value is lower and the stan-
dard deviation is high. This indicates the need for many
restarts in order to find a good solution and performing a
lot of restarts becomes problematic for higher horizons, be-
cause of the exponential increase in run-time. The results
of DICE, however, have a much lower standard deviation,
indicating that less restarts are necessary. It still shares
the burden of exponentially increasing run-times, though.
DICE-A has proven to be a very powerful method. Even
though the standard deviations are somewhat greater than
regular DICE, it is able to trade off run-time and accuracy
and thus achieves reasonable results even for higher hori-
zons, when the other methods fail.

6.3 Varying the number of agents

In the previous section we investigated the ability of DICE

to scale with respect to the horizon. Here we investigate
the scaling behavior with respect to the number of agents.

So far, almost all available Dec-POMDP problems in-
volve only two agents. Two exceptions are the FIREFIGHT-
ING problem introduced by Oliehoek et al. (28), and the
FACTORED FIREFIGHTING already mentioned. Here we
will use the former (non-factored) version, since this al-
lows us to vary the number of agents, while keeping the
number of houses (and thus the number of states) constant.

Again we examined the performance of DICE, DICE-
A and JESP for this problem, now varying the number of
agents. We did this at two chosen horizons h = 3 and



352 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

2 3 4 5 6 7 8
-120

-100

-80

-60

-40

-20

0

20

DICE 50iter
DICE-A. 50iter
DICE-A. 200 iters
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
-100

-80

-60

-40

-20

0

20

DICE 50iter
DICE-A. 50iter
DICE-A. 200 iters
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-4

10-3

10-2

10-1

100

101

102

103

104

DICE 50iter
DICE-A. 50iter
DICE-A. 200 iters
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 8: The DEC-TIGER problem. Left: average value. Middle: maximum value. Right: average run-time.

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
2

3

4

5

6

7

8

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-4

10-3

10-2

10-1

100

101

102

103

DICE exact
DICE approx.
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 9: The BROADCAST CHANNEL problem. Left: average value. Middle: maximum value. Right: average run-time.

2 3 4 5 6 7 8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-2

10-1

100

101

102

103

DICE exact
DICE approx.
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 10: The MEETING ON A GRID problem. Left: average value. Middle: maximum value. Right: average time.

2 3 4 5 6 7 8
-11

-10

-9

-8

-7

-6

-5

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
-9.5

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-1

100

101

102

103

DICE exact
DICE approx.
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 11: The FACTORED FIREFIGHTING problem with several restarts. Left: average value. Middle: maximum value.
Right: average run-time.



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 353

T
im

e(
s)

n

Mean time
V
al

ue

n

Mean value

Figure 12: Performance for varying number of agents for
h = 3 of the FIREFIGHTING problem.

h = 4, the results for which are shown in respectively Fig-
ure 12 and Figure 13. We used the same settings for the
DICE algorithms as before. The number of restarts for all
methods was set to 20.

The figures show that, for this problem, all methods per-
formed very well in terms of achieved value. The maxi-
mum found value of all policies coincided (therefore these
plots are omitted), which may indicate that these are true
global optima. More interesting are the run time results.
For h = 3, we see that JESP outperforms the DICE algo-
rithm for all number of agents. However, its increase of run
time when increasing the number of agents is higher than
for DICE and particularly DICE-A. This is emphasized by
the results for h = 4, that clearly show that run time for
JESP, but also for exact DICE, grow so fast that they are
unable to compute results for 5 agents within reasonable
time.5 The run times of the two different settings of DICE-
A, however, grow much slower and as a consequence these
methods are able to find a good solution for 5 agents. Note
that in accordance with (5.2), the run time still increases
exponentially in the number of agents, simply because sim-
ulating an episode (sampling joint observations) takes time
exponential in the number of agents. In problems that ex-
hibit observation independence (such as FIREFIGHTING),
it is possible to work around this. We have not consid-
ered this efficiency increasing measure further, but stress

5Each algorithm was given 8 hours to compute all results for a given
horizon.

T
im

e(
s)

n

Mean time

V
al

ue

n

Mean value

Figure 13: Performance for varying number of agents for
h = 4 of the FIREFIGHTING problem.

that the efficiency of DICE-A could be further improved
for such problems.

7 Discussion and future work

This article has focused on decentralized decision making
formalized in the Dec-POMDP framework. We argued that
planning in such settings in principle is a complex combi-
natorial decision process. We demonstrated how to apply
the CE-method, a recently introduced method for combina-
torial optimization, for policy search in Dec-POMDPs.

We detailed the resulting algorithm, direct CE (DICE)
policy search for Dec-POMDPs, and performed a complex-
ity analysis, which identified the exact evaluation of sam-
pled joint policies as a bottleneck. Consequently we pro-
posed DICE-A which performs an approximate evaluation,
and showed that, under some assumption, its time complex-
ity is polynomial in the CE parameters. We also presented
a formalization of the error bounds for this approximate
evaluation.

We presented an empirical evaluation of the influence
of the different CE parameters on policy search and also
tested performance on different test problems from litera-
ture, over different horizons. In these latter experiments
we compared against JESP, which, to our knowledge, is the
only other approximate planning method for Dec-POMDPs
that does not restrict the search space in any way. The re-
sults of this comparison were generally favorable for CE.



354 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

In particular, a nice feature of CE is that by adjusting the
parameters, one is able to control the run-time. On the
other hand, because JESP has no parameters, it is somewhat
more easy to apply. In a final comparison we investigated
how well the mentioned algorithms scale with respect to
the number of agents. Although still exponential, DICE-A
outperforms the other methods for larger problems.

However, this work does not intend to present a new
state-of-the-art Dec-POMDP solver: we compare against
JESP, which is one of the older Dec-POMDP algorithms,
and more advanced methods have since been proposed.
Rather our work shows that viewing these problems as
combinatorial optimization problems and applying corre-
sponding methods (such as CE optimization) can bring
leverage to the planning process.

An interesting direction for future work is the application
of the CE method (and potentially other methods for com-
binatorial optimization) in more recent algorithms. For in-
stance, a Dec-POMDP can be approximated by solving for
each stage t a pruned Bayesian game (BG) (13) or a com-
pressed BG (14). The optimal solution of such BGs, how-
ever, involves enumeration of all the corresponding joint
policies. CE might prove to be very effective to find ap-
proximate solutions for the BGs fast. In particular, it might
turn out that the pruning/compression is no longer neces-
sary for the same horizon when applying CE, and that when
combining pruning/compression and CE, the algorithm can
scale to higher h.

Another example is the method proposed by Seuken and
Zilberstein (34). This method is an extension of dynamic
programming for Dec-POMDPs that fixes the maximum
number of policy trees that are retained in each iteration
to a parameter maxTrees. The authors report that:

“Even for a small problem 2 actions and 5 ob-
servations, setting maxTrees=5 would be pro-
hibitive because (2 · 52)2 = 39, 062, 500 policy
tree pairs would have to be evaluated.”

It might be possible to apply CE to this smaller policy
search problem that occurs in each iteration of the DP pro-
cess. This could lead to in improved efficiency, or the space
could be less restricted in order to find a better approximate
solution.

Other directions for future research would involve im-
proving the efficiency of the CE method itself. One idea for
this would be to use crude value approximation in the first
iterations to quickly increase the probabilities of promising
policies. In the course of the process, evaluation can be per-
formed more accurately. Exact evaluation can most likely
be accelerated by caching (intermediate) evaluation results
of (parts of) joint policies. Also, the joint policies result-
ing from CE search might be improved by using those as
a starting point for JESP, leading to a hybrid optimization
scheme for multiagent settings.

Finally, and somewhat related, the success of approx-
imate evaluation raises the question whether it is neces-
sary to sample complete joint policies if they are only par-

tially inspected during approximate evaluation. The CE ap-
proach could benefit from a construction that samples parts
of (joint) policies.

Acknowledgments

We would like to thank Matthijs T.J. Spaan for his help and ad-
vice. The research reported here is part of the Interactive Col-
laborative Information Systems (ICIS) project, supported by the
Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

References

[1] G. Alon, D. Kroese, T. Raviv, and R. Rubinstein. Ap-
plication of the cross-entropy method to the buffer
allocation problem in a simulation-based environ-
ment. Annals of Operations Research, 134(1):137–
151, 2005.

[2] C. Amato, D. S. Bernstein, and S. Zilberstein. Opti-
mal fixed-size controllers for decentralized POMDPs.
In Proc. of the AAMAS Workshop on Multi-Agent
Sequential Decision Making in Uncertain Domains
(MSDM), May 2006.

[3] C. Amato, A. Carlin, and S. Zilberstein. Bounded
dynamic programming for decentralized POMDPs.
In Proc. of the AAMAS Workshop on Multi-Agent
Sequential Decision Making in Uncertain Domains
(MSDM), May 2007.

[4] R. Aras, A. Dutech, and F. Charpillet. Mixed inte-
ger linear programming for exact finite-horizon plan-
ning in decentralized POMDPs. In The International
Conference on Automated Planning and Scheduling,
2007.

[5] R. Becker, S. Zilberstein, V. Lesser, and C. V. Gold-
man. Solving transition independent decentralized
Markov decision processes. Journal of Artificial In-
telligence Research (JAIR), 22:423–455, December
2004.

[6] D. S. Bernstein, S. Zilberstein, and N. Immerman.
The complexity of decentralized control of Markov
decision processes. In Proc. of Uncertainty in Artifi-
cial Intelligence, pages 32–37, 2000.

[7] D. S. Bernstein, R. Givan, N. Immerman, and S. Zil-
berstein. The complexity of decentralized control of
Markov decision processes. Math. Oper. Res., 27(4):
819–840, 2002.

[8] D. S. Bernstein, E. A. Hansen, and S. Zilberstein.
Bounded policy iteration for decentralized POMDPs.
In Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2005.



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 355

[9] Z. Botev and D. P. Kroese. Global likelihood opti-
mization via the cross-entropy method with an appli-
cation to mixture models. In WSC ’04: Proceedings
of the 36th conference on Winter simulation, pages
529–535, 2004.

[10] C. Boutilier. Planning, learning and coordination in
multiagent decision processes. In TARK ’96: Pro-
ceedings of the 6th conference on Theoretical aspects
of rationality and knowledge, pages 195–210, San
Francisco, CA, USA, 1996. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-417-9.

[11] I. Cohen, B. Golany, and A. Shtub. Manag-
ing stochastic finite capacity multi-project systems
through the cross-entropy method. Annals of Oper-
ations Research, 134(1):183–199, 2005.

[12] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Ru-
binstein. A tutorial on the cross-entropy method. An-
nals of Operations Research, 134(1):19–67, 2005.

[13] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observ-
able stochastic games with common payoffs. In Proc.
of Int. Joint Conference on Autonomous Agents and
Multi Agent Systems, pages 136–143, 2004.

[14] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Game theoretic control for robot teams. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1175–1181, 2005.

[15] C. V. Goldman and S. Zilberstein. Decentralized con-
trol of cooperative systems: Categorization and com-
plexity analysis. Journal of Artificial Intelligence Re-
search (JAIR), 22:143–174, 2004.

[16] C. Guestrin, D. Koller, and R. Parr. Multiagent plan-
ning with factored MDPs. In Advances in Neural In-
formation Processing Systems 14, pages 1523–1530,
2002.

[17] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dy-
namic programming for partially observable stochas-
tic games. In Proc. of the National Conference on
Artificial Intelligence, pages 709–715, 2004.

[18] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, Mar. 1963.

[19] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence, 101(1-2):99–134,
1998.

[20] Y. Kim, R. Nair, P. Varakantham, M. Tambe, and
M. Yokoo. Exploiting locality of interaction in net-
worked distributed POMDPs. In Proceedings of the
of the AAAI Spring Symposium on Distributed Plan
and Schedule Management, 2006.

[21] J. R. Kok and N. Vlassis. Using the max-plus algo-
rithm for multiagent decision making in coordination
graphs. In RoboCup-2005: Robot Soccer World Cup
IX, Osaka, Japan, July 2005.

[22] D. Koller and A. Pfeffer. Representations and solu-
tions for game-theoretic problems. Artificial Intelli-
gence, 94(1-2):167–215, 1997.

[23] O. Madani, S. Hanks, and A. Condon. On the un-
decidability of probabilistic planning and infinite-
horizon partially observable Markov decision prob-
lems. In Proc. of the National Conference on Artifi-
cial Intelligence, pages 541–548, 1999.

[24] S. Mannor, R. Rubinstein, and Y. Gat. The cross en-
tropy method for fast policy search. In Proc. of the In-
ternational Conference on Machine Learning, pages
512–519, 2003.

[25] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and
S. Marsella. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent set-
tings. In Proc. of the Int. Joint Conf. on Artificial In-
telligence, pages 705–711, 2003.

[26] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of dis-
tributed constraint optimization and POMDPs. In
Proc. of the National Conference on Artificial Intel-
ligence, pages 133–139, 2005.

[27] F. A. Oliehoek, J. F. Kooij, and N. Vlassis. A cross-
entropy approach to solving Dec-POMDPs. In In-
ternational Symposium on Intelligent and Distributed
Computing, pages 145–154, Oct. 2007.

[28] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Op-
timal and approximate Q-value functions for decen-
tralized POMDPs. Journal of Artificial Intelligence
Research, 32:289–353, 2008.

[29] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and
N. Vlassis. Exploiting locality of interaction in fac-
tored Dec-POMDPs. In Proc. of Int. Joint Confer-
ence on AutonomousAgents and Multi Agent Systems,
pages 517–524, 2008.

[30] J. M. Ooi and G. W. Wornell. Decentralized control
of a multiple access broadcast channel: Performance
bounds. In Proc. 35th Conf. on Decision and Control,
1996.

[31] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, July 1994.

[32] D. V. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing team-
work theories and models. Journal of AI research
(JAIR), 16:389–423, 2002.



356 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

[33] M. Roth, R. Simmons, and M. Veloso. Exploiting
factored representations for decentralized execution
in multi-agent teams. In Proc. of Int. Joint Confer-
ence on Autonomous Agents and Multi Agent Systems,
pages 467–463, May 2007.

[34] S. Seuken and S. Zilberstein. Improved memory-
bounded dynamic programming for decentralized
POMDPs. In Proc. of Uncertainty in Artificial In-
telligence, July 2007.

[35] S. Seuken and S. Zilberstein. Memory-bounded dy-
namic programming for DEC-POMDPs. In Proc. of
the Int. Joint Conf. on Artificial Intelligence, pages
2009–2015, 2007.

[36] M. T. J. Spaan and F. S. Melo. Interaction-driven
Markov games for decentralized multiagent planning
under uncertainty. In Proc. of Int. Joint Conference on
Autonomous Agents and Multi Agent Systems, pages
525–532, 2008.

[37] D. Szer and F. Charpillet. Point-based dynamic pro-
gramming for DEC-POMDPs. In Proc. of the Na-
tional Conference on Artificial Intelligence, 2006.

[38] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In Proc. of Uncertainty in Artificial Intel-
ligence, 2005.

[39] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and
M. Yokoo. Letting loose a SPIDER on a network of
POMDPs: Generating quality guaranteed policies. In
Proc. of Int. Joint Conference on Autonomous Agents
and Multi Agent Systems, 2007.

Appendix

Tables 2 to 5 give a numerical overview of the results pre-
sented in section 6.2 and 6.3.

DEC-TIGER

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 -4.08 0.78 -4.00 0.02
3 5.19 0.00 5.19 0.08
4 3.81 1.28 4.80 0.34
5 -1.58 4.15 4.58 1.37
6 -22.75 4.40 -13.20 6.05
7 -57.11 5.85 -46.56 27.93
8 -98.23 8.47 -80.09 147.73

DICE-A (50 iterations)
2 -4.19 0.70 -4.00 5.90
3 5.19 0.00 5.19 8.43
4 3.35 2.76 4.80 10.55
5 -1.56 3.11 3.45 12.90
6 -24.05 5.14 -12.22 15.60
7 -59.45 6.61 -45.43 18.58
8 -103.59 8.04 -83.27 23.02

DICE-A (200 iterations)
2 -4.14 0.60 -4.00 23.26
3 5.19 0.00 5.19 33.54
4 4.16 0.87 4.80 40.20
5 2.50 1.93 5.63 48.10
6 -2.17 3.42 4.53 56.69
7 -11.46 4.39 -5.28 66.94
8 -31.30 4.38 -21.21 80.40

JESP

2 -17.09 10.22 -4.00 0.00
3 -21.36 10.76 5.19 0.00
4 -27.58 19.26 4.80 0.04
5 -22.72 17.44 7.03 0.49
6 -23.28 20.57 10.38 11.32
7 -21.42 19.16 9.99 144.21
8 -16.20 18.26 12.22 1741.39

Table 2: Results for the DEC-TIGER problem. Statistics
over 100 restarts, except for DICE-A with I = 200 (which
we performed with 20 restarts) and horizon 8 JESP (which
only completed 30 restarts).



CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 357

FACTORED FIREFIGHTING

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 -5.21 0.00 -5.21 36.45
3 -6.66 0.01 -6.65 347.89

DICE-A (50 iterations)
2 -5.22 0.02 -5.21 9.89
3 -6.69 0.03 -6.65 13.27
4 -7.74 0.12 -7.48 17.05
5 -8.46 0.22 -8.05 20.77
6 -9.05 0.25 -8.53 25.57
7 -9.51 0.35 -8.83 30.92
8 -9.88 0.44 -9.14 36.81

JESP

2 -5.28 0.09 -5.21 0.73
3 -6.71 0.06 -6.65 17.41
4 -7.52 0.07 -7.46 308.36

Table 3: Results for the FACTORED FIREFIGHTING prob-
lem over 100 restarts.

BROADCAST CHANNEL

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 2.00 0.00 2.00 0.05
3 2.93 0.05 2.99 0.26
4 3.80 0.08 3.89 1.08
5 4.69 0.09 4.79 4.45
6 5.52 0.09 5.67 18.37
7 6.34 0.08 6.48 79.89
8 7.03 0.09 7.26 384.23

DICE-A (50 iterations)
2 2.00 0.00 2.00 6.38
3 2.92 0.05 2.99 8.32
4 3.80 0.07 3.89 10.20
5 4.65 0.09 4.79 12.26
6 5.50 0.08 5.66 14.47
7 6.28 0.08 6.46 16.93
8 6.98 0.11 7.22 19.74

JESP

2 1.92 0.21 2.00 0.00
3 2.59 0.44 2.99 0.01
4 3.43 0.48 3.89 0.04
5 4.27 0.47 4.79 0.36
6 5.04 0.55 5.69 3.03
7 5.88 0.57 6.59 24.71
8 6.81 0.59 7.49 202.46

Table 4: Results for the BROADCAST CHANNEL problem
over 100 restarts.

MEETING ON A GRID

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 0.91 0.00 0.91 0.71
3 1.55 0.01 1.55 3.43
4 2.23 0.02 2.24 15.37
5 2.91 0.07 2.96 67.60
6 3.57 0.06 3.64 292.88

DICE-A (50 iterations)
2 0.91 0.00 0.91 10.77
3 1.54 0.01 1.55 16.51
4 2.21 0.02 2.24 21.86
5 2.85 0.05 2.93 27.19
6 2.64 0.07 2.73 32.86
7 2.97 0.06 3.07 37.66
8 3.23 0.09 3.37 42.63

JESP

2 0.86 0.08 0.91 0.02
3 1.38 0.17 1.55 0.50
4 1.97 0.24 2.24 12.11
5 2.53 0.30 2.97 287.02

Table 5: Results for the MEETING ON A GRID problem
over 100 restarts.

FIREFIGHTING

n avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 −5.76 0.02 −5.74 13.77
3 −2.41 0.04 −2.39 59.07
4 −1.08 0.01 −1.07 249.88
5 −0.51 0.00 −0.51 1101.54

DICE-A (50 iterations)
2 −5.80 0.04 −5.74 17.86
3 −2.48 0.05 −2.39 35.05
4 −1.09 0.02 −1.07 91.02
5 −0.51 0.01 −0.51 263.92

JESP

2 −5.76 0.04 −5.74 0.47
3 −2.41 0.03 −2.39 4.17
4 −1.08 0.01 −1.07 20.15
5 −0.51 0.00 −0.51 83.61

Table 6: Results for the h = 3 FIREFIGHTING problem
with varying number of agents over 20 restarts.

FIREFIGHTING

n avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 −6.66 0.06 −6.58 68.03
3 −2.52 0.02 −2.45 490.58
4 −1.07 0.00 −1.07 4227.08

DICE-A (50 iterations)
2 −6.81 0.08 −6.67 23.07
3 −2.59 0.08 −2.45 45.22
4 −1.09 0.02 −1.07 121.37
5 −0.51 0.00 −0.50 350.04

JESP

2 −6.62 0.03 −6.58 6.71
3 −2.45 0.03 −2.44 110.57
4 −1.08 0.01 −1.07 1040.75

Table 7: Results for the h = 4 FIREFIGHTING problem
with varying number of agents over 20 restarts. For n = 4
is DICE shows an average over 4 completed runs and JESP

over 18 completed runs.


