Univerza v Ljubljani, Fakulteta za elektrotehniko University of Ljubljana, Faculty of Electrical Engineering 25. SEMINAR RADIJSKE KOMUNIKACIJE 2022 Ljubljana, 2. do 4. februarja 2022 Z B O R N I K 25TH SEMINAR ON RADIO COMMUNICATIONS 2022 Ljubljana, 2 to 4 February 2022 P R O C E E D I N G S UREDILA/EDITORS: Tomi Mlinar, Boštjan Batagelj ____________________________________________________ Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID 97036291 ISBN 978-961-243-433-5 (PDF) _____________________________________________________ URL: http://srk.fe.uni-lj.si/zborniki/SRK2022.pdf Copyright © 2022 Založba FE. All rights reserved. Razmnoževanje (tudi fotokopiranje) dela v celoti ali po delih brez predhodnega dovoljenja Založbe FE prepovedano. Založnik: Založba FE, Ljubljana Izdajatelj: Fakuleta za elektrotehniko, Ljubljana Urednik: prof. dr. Sašo Tomažič 1. elektronska izdaja Gradivo za interno uporabo na 25. seminarju Radijske komunikacije SRK 2022. Material for internal use at the 25th Seminar on Radio Communications SRK 2022. Razmnoževanje dela v celoti ali po delih brez predhodnega dovoljenja založnika je prepovedano. Copyright © 2022 Založba FE. All rights reserved. Uredila / Editors: Tomi Mlinar, Boštjan Batagelj Založnik / Publisher: Založba FE, Ljubljana, 2022 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 3/541 Predgovor Spoštovana bralka, spoštovani bralec zbornika 25. seminarja Radijske komunikacije, pred vami je zbornik prispevkov, ki obravnavajo obsežno področje radijskih komunikacij. Od prvih ugotovitev o obstoju elektromagnetnih valov škotskega fizika Jamesa Clerka Maxwella in poznejših poskusov Heinricha Rudolfa Hertza, ki je Maxwellovo teorijo potrdil, je minilo več kot 150 let. Malo za tem, konec 19. stoletja, je Nikola Tesla izumil in patentiral prvi radio, njegovo odkritje pa je Guglielmo Marconi uporabil za prve komunikacije – prenašal je telegrafske signale v obliki Morsejeve abecede, ker prvi oddajniki še niso bili primerni za prenos govora ali zvoka. Prve radijske postaje smo dobili v dvajsetih letih 20. stoletja, razvoj pa je šel strmo navzgor po letu 1947, ko so v Bellovih laboratorijih izumili tranzistor. Radijske naprave se je dolga desetletja uporabljalo predvsem za poslušanje radia, pozneje gledanje televizije, pa tudi v vojaške in druge namene. Pravi razmah radijskih komunikacij za zasebno rabo, ki je omogočil dvosmerno komunikacijo, se je začel s pojavom mobilnih celičnih komunikacij v začetku osemdesetih let prejšnjega stoletja. Danes ''živimo'' generacijo pet, prvo smo ugasnili, druga, tretja in četrta pa so še vedno v uporabi. Raziskovalci že razmišljamo naprej, o šesti, sedmi in naslednjih generacijah. V slednjih naj bi bile uporabljene tehnologije, ki so danes še v fazi razvoja, čez deset ali dvajset let pa bi bile lahko povsem običajen del komunikacijskih naprav. Te, po nekaterih napovedih, naj ne bi imele več oblike in funkcionalnosti, ki jo imajo danes. V tem zborniku boste našli veliko zanimivih tem o sodobnih in novih tehnologijah, povezanih z radijskimi komunikacijami. V prvem delu zbornika so obdelane aktivnosti, povezane z RF-spektrom avtoric Janje Varšek in Mete Pavšek Taškov, sledi prispevek o prihodnjih sistemih radijskih komunikacij za železnice, avtorjev Romana Osredkarja in Matjaža Jelena, avtor Guillaume Noel piše o omrežju generacije 0 v Sloveniji – Sigfoxu, sledi prispevek o uporabi radijskih komunikacij pri napredku športnikov avtorja Antona Kosa in prispevek Luke Snoja o komunikaciji z nevtroni. Temu sledita dva prispevka o tehnologiji WiFi, najprej avtorjev Mitje Golja in Gorazda Penka in nato Klausa Samardžića, prvi del pa zaključujeta prispevka Marjane Senčar Srdič o uvajanju video analitike v pametna mesta in Rudolfa Sušnika o testiranju omrežij 5G, ki so v uporabi v industrijskih vertikalah. Drugi del zbornika začenjata dva prispevka Matjaža Vidmarja, prvi o meritvah smernosti anten in drugi o pozabljeni anteni cigari. Temu sledi prispevek Boštjana Batagelja o sistemu satelitov Starlink, nato prispevek o komunikacijskih tehnologijah interneta stvari Boštjana Snoja, prispevek Boža Mišovića o uporabi govornih aplikacij v 4G/5G in prispevek Draga Majcna o standardizaciji na področju tehnologije DECT. Drugi del zaključujejo prispevki velikih ponudnikov telekomunikacijske opreme: Tamas Boday piše o zasebnih omrežjih 5G, Csaba Novak o časovno-kritičnih komunikacijah, Iva Lesić o odprtem radijskem dostopovnem omrežju in Marko Grebenc o nesamostojnem omrežju 5G. V zadnjem delu zbornika je šest prispevkov: Mirko Ivančič piše o sistemih za avtomatsko detekcijo radijskega prostora, Aleš Švigelj in Tomaž Javornik o uporabi mobilnega telefona za oceno odtisa radijskega okolja, Filip Turčinović o razvoju SAR platforme za avtonomno detekcijo objektov, Sanja Marković o ocenjevanju elektromagnetnih sevanj, Darko Lekić o pomembnosti sinhronizacije v TK omrežjih in Attila Hilt o gigabitnih prenosnih radijskih sistemih. Zadnji prispevek v zborniku je o razvoju in uporabi metamaterialov v radijskih komunikacijah avtorja Marka Bosiljevca. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 3/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 4/541 Znanstveniki in inženirji smo vsekakor lahko ponosni na dosežke znanosti, ki je omogočila človeštvu udobno življenje in jih hkrati tudi veliko obvarovala. Po drugi strani pa moramo prevzeti del odgovornosti za to, da smo ljudje v resničnem svetu vedno bolj odtujeni drug od drugega. Množice komunikacijskih naprav, ki zmorejo skoraj vse, so nas ujele v mehurček, v virtualni svet, v katerega vstopimo, ko vzamemo v roke pametni telefon, tablico ali se usedemo pred zaslon računalnika. Seveda so vse omenjene naprave nujno povezane v svetovni splet, noč in dan, vse dni v letu. Kljub močni navezanosti nanje – ne bi se jim odrekli za nobeno ceno –, se v ljudeh vseeno rojevajo črvički dvoma o njihovi koristnosti ali škodljivosti. In prav zato moramo strokovnjaki sestopiti z naših znanstvenih "prestolov" in uporabnikom v poljudnem, vsakomur razumljivem jeziku pojasniti sicer tehnično zapletene dosežke znanosti in tehnologije. In to ponavljati znova in znova. Kot je že rekel veliki Albert Einstein: "Večina temeljnih idej znanosti je v bistvu preprosta in se praviloma lahko izrazi v vsem razumljivem jeziku". Organizatorji seminarja se zahvaljujemo vsem predavateljem za njihov neprecenljiv prispevek, prav tako pa tudi domačim podjetjem in posameznikom za sodelovanje in pomoč pri pripravi ter izvedbi seminarja. Zahvala gre odgovornim v naših podjetij in institucijah, ki so svojim strokovnjakom omogočili udeležbo na seminarju in s tem podprli to dejavnost. Želiva vam, da v zborniku 25. seminarja Radijske komunikacije najdete uporabne vsebine, ki vam bodo koristile vsak dan. In če končava še z eno domislico Alberta Einsteina: "Izobraževanje je tisto, kar ostane, ko človek pozabi, kaj se je učil v šoli". Ljubljana, februarja 2022 Tomi Mlinar in Boštjan Batagelj urednika 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 4/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 5/541 Foreword Dear reader of the proceedings of the 25th seminar on Radio Communications, here is a collection of 25 papers covering diverse areas of radio communications. More than 150 years have passed since the first description of electromagnetic waves by the Scottish physicist James Clerk Maxwell and the subsequent experiments of Heinrich Rudolf Hertz, who confirmed Maxwell's theory. Shortly afterwards, at the end of the 19th century, Nikola Tesla invented and patented the first radio. His invention was used by Guglielmo Marconi for the first communications. Marconi was experimenting with transmittion of telegraphic signals in the Morse code over the distance. Transmitters at that time were not able to transmitt speech or sound. First radio stations started to broadcast in the 1920s. After the invention of transistor in 1947 at Bell Laboratories the development of radio communications steeply increased.. For many decades, radio devices were used mainly for radio listening, watching television, and also for military and similar purposes. The real boom in radio communications for private use, which enabled two-way communication, began with the introduction of the first generation of mobile cellular communications in the 1980s. Today, we are "living" generation five, the first has been shut down, the second, third and fourth are still in use. Researchers are already considering ahead, about the sixth, seventh and next generations. The latter are supposed to use technologies that are still in the development phase today, but in ten or twenty years they could become normal part of communication devices. These, according to some predictions, are no longer supposed to have the form and functionality they have today. In this proceedings you will find many interesting topics on modern and developing technologies related to radio communications. The first part of the proceedings covers the following papers: Activities related to the RF spectrum by Janja Varšek and Meta Pavšek Taškov, Future radio communication systems for railways by Roman Osredkar and Matjaž Jelen, Construction of 0G network in Slovenia - Sigfox by Guillaume Noel, The use of radio communications in sports applications by Anton Kos, and Neutron communications - an alternative to radio communications by Luka Snoj. These are followed by two papers on WiFi technology, the first by Mitja Golja and Gorazd Penko and the second by Klaus Samardžić. The first part concludes with papers Introduction of video analytics in smart cities by Marjana Senčar Srdič and Testing 5G networks used in industrial verticals by Rudolf Sušnik. The second part of the proceedings begins with two papers by Matjaž Vidmar, the first on measurements of antenna directivity and the second on the forgotten cigar antenna. These are followed by Boštjan Batagelj's paper on the Starlink satellite system, Boštjan Snoj's paper on Internet of Things communication technologies, Božo Mišović's paper on the use of 4G/5G voice applications and Drago Majcen's paper on DECT standardization. The second part concludes with contributions from telecommunications equipment providers: Tamas Boday's paper covers Private 5G networks, Csaba Novak's paper is on Time-critical communications, Iva Lesić's paper deals with Open RAN and Marko Grebenc's paper is on Non-standalone 5G network. There are six articles in the last part of the proceedings: Mirko Ivančič's on systems for automatic detection of radio space, Aleš Švigelj's and Tomaž Javornik's on the use of mobile phones to assess the footprint of the radio environment, Filip Turčinović's on the development of SAR platform for autonomous detection of objects, Sanja Marković's on assessment of electromagnetic radiation, Darko Lekić's on the importance of synchronization in 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 5/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 6/541 telecommunication networks and Attila Hilt's on Gigabit radio for anyhaul. The last article in the proceedings is on the development and use of metamaterials in radio communications by Marko Bosiljevec. Scientists and engineers can certainly be proud on the achievements of science, which have enabled humanity to live more comfortable and can sometimes even protect people's lifes. On the other hand, scientists need to take responsibility for making people increasingly alienated from each other in the real world. Crowds of communication devices, capable of almost anything, have caught us in a bubble, a virtual world we enter when we pick up a smartphone, tablet, or sit down in front of a computer screen. Of course, all these devices must be connected to the Internet, night and day, 365 days a year. Despite user's strong attachment to these devices - they would not stop using them for anything in the world - doubts about their usefulness or harmfulness are still present. And that is why experts need to step down from their scientific "thrones" and explain technically complex achievements of science and technology to users, in understandable language. And repeat this over and over again. As the great scientist Albert Einstein said: "Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone." The organizers of the seminar thank all the lecturers for their invaluable contribution, as well as companies and individuals for their cooperation and assistance in the preparation and implementation of the seminar. Thanks go to those responsible in our companies and institutions who enabled their experts to participate in the seminar and thus supported this activity. We wish you to find the content of the proceedings of the 25th seminar on Radio Communications useful in your everyday life, either professional or private. Let us conclude this foreword with another quote of Albert Einstein: "Education is what remains after one has forgotten what one has learned in school." Ljubljana, February 2021 Tomi Mlinar and Boštjan Batagelj, editors 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 6/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 7/541 Seznam prispevkov Avtor(ji) Naslov predavanja Stran 1 Janja Varšek, Meta Pavšek Taškov Aktivnosti na področju upravljanja z RF spektrom 10 FRMCS - Prihodnji sistem radijskih komunikacij za 2 Roman Osredkar, Matjaž Jelen 26 železnice 3 Guillaume Noel 0G - a key enabler of the circular economy 40 4 Anton Kos, Anton Umek Uporaba radijskih komunikacij v športnih aplikacijah 57 Komunikacija z nevtroni - alternativa radijskim 5 Luka Snoj, Aljaž Čufar, Klemen Ambrožič 72 komunikacijam? Tehnologija WiFi 6 / WiFi 6 Mesh - od razvoja do 6 Mitja Golja, Gorazd Penko 84 prenosa v realno okolje One global network of Wi-Fi networks based on the 7 Klaus Samardžić 101 open roaming architecture and business model Pogled na uvajanje video analitike v koncept pametnih 8 Marjana Senčar Srdič 118 mest 9 Rudolf Sušnik, Janez Sterle, Luka Koršič Testing and optimizing 5G for industrial verticals 136 10 Matjaž Vidmar Meritev smernosti anten 153 11 Matjaž Vidmar Pozabljena antena cigara 164 12 Boštjan Batagelj Starlink - satelitski internet v nizki zemeljski tirnici 175 13 Boštjan Snoj Komunikacijske tehnologije interneta stvari 190 14 Božo Mišović Arhitekturni nivoji 4G/VoLTE v primerjavi z 5G/VoNR 216 15 Drago Majcen Standardizacija na področju DECT 243 16 Csaba Novak Time-critical communication for 5G 376 17 Ivan Lesić O-RAN: Open path as baseline for future networks 386 18 Tamas Boday 5GtoB Private network solution 394 19 Marko Grebenc, Boštjan Batagelj Nesamostojno omrežje 5G 426 20 Mirko Ivančič Sistemi za avtomatsko detekcijo radijskega signala 441 Uporaba mobilnega telefona za oceno odtisa radijskega 21 Aleš Švigelj, Tomaž Javornik 457 okolja Development of 24 GHz SAR platform for autonomous 22 Filip Turčinović, Marko Bosiljevac 469 object 23 Sanja Marković, Darko Lekić EMF exposure and synchronization challenges in 5G 480 24 Attila Hilt Gbit radios for the mobile anyhaul 505 From Metamaterials to Smart materials - Overview of 25 Marko Bosiljevac 516 meta-concepts in microwave applications Na avtentikaciji temelječe priložnosti rabe signalov P1 Franc Dimc 536 sistema Galileo Teraherčna spektroskopija za avtomatsko prepoznavo P2 Andrej Sarjaš, Blaž Pongrac, Dušan Gleich pigmenta v plastiki s pomočjo globokih nevronskih 537 mrež Regresijska nevronska mreža za oceno vlažnosti tal s P3 Dušan Gleich, Blaž Pongrac, Andrej Sarjaš 523 pomočjo polarimetričnega radarja z umetno odprtino P4 Danijel Šipoš Zračno sklopljen radar za detekcijo eksplozivnih teles 539 P5 Jure Janez Markovič, Boštjan Batagelj MIMO komunikacije 540 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 7/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 8/541 Table of contents Author(s) Article Page 1 Janja Varšek, Meta Pavšek Taškov RF spectrum management update 10 2 Roman Osredkar, Matjaž Jelen FRMCS - Future Railway Mobile Communication System 26 3 Guillaume Noel 0G, a key enabler of the circular economy 40 4 Anton Kos, Anton Umek The use of radio communications in sports applications 57 Neutron Communications - An Alternative to Radio 5 Luka Snoj, Aljaž Čufar, Klemen Ambrožič 72 Communications? WiFi6/WiFi6 Mesh technology from development to 6 Mitja Golja, Gorazd Penko 84 commercial launch One global network of Wi-Fi networks based on the 7 Klaus Samardžić 101 Open Roaming architecture and business model A look at introducing video analytics into the concept of 8 Marjana Senčar Srdič 118 smart cities 9 Rudolf Sušnik, Janez Sterle, Luka Koršič Testing and optimizing 5G for industrial verticals 136 10 Matjaž Vidmar Antenna directivity measurements 153 11 Matjaž Vidmar The forgotten cigar antenna 164 12 Boštjan Batagelj Starlink - Satellite internet in Low Earth Orbit 175 13 Boštjan Snoj Internet of Things communication technology 190 14 Božo Mišović Architectural levels of 4G/VoLTE compared to 5G/VoNR 216 15 Drago Majcen Standardization in the field of DECT technology 243 16 Csaba Novak Time-critical communications for 5G 376 17 Ivan Lesić O-RAN: Open path as baseline for future networks 386 18 Tamas Boday 5GtoB Private network solution 394 19 Marko Grebenc, Boštjan Batagelj Non-standalone 5G network 426 20 Mirko Ivančič Automatic radio signal detection systems 441 21 Aleš Švigelj, Tomaž Javornik Use of a mobile phone for radio environment fingerprint 457 Development of 24 GHz SAR platform for autonomous 22 Filip Turčinović, Marko Bosiljevac 469 object 23 Sanja Marković, Darko Lekić EMF exposure and synchronization challenges in 5G 480 24 Attila Hilt Gbit radios for the mobile anyhaul 505 From Metamaterials to Smart Materials - Overview of 25 Marko Bosiljevac 516 meta-concepts in microwave applications P1 Franc Dimc Authentication-based Galileo signaling opportunities 536 A Terahertz spectroscopy for automated inorganic P2 Andrej Sarjaš, Blaž Pongrac, Dušan Gleich 537 pigment classification with deep neural network Regression neural network for soil moisture estimation P3 Dušan Gleich, Blaž Pongrac, Andrej Sarjaš 523 using fully polarimetric synthetic aperture radar data Air coupled ground penetrating radar for detection of P4 Danijel Šipoš 539 explosive devices P5 Jure Janez Markovič, Boštjan Batagelj MIMO Communications 540 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 8/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 9/541 PRISPEVKI ARTICLES I. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 9/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 10/541 Aktivnosti na področju upravljanja z RF spektrom RF spectrum management update Janja Varšek, Meta Pavšek Taškov Agencija za komunikacijska omrežja in storitve Republike Slovenije janja.varsek@akos-rs.si, meta.pavsek-taskov@akos-rs.si Povzetek A. V časovnem obdobju 2021 - 2023 spremljati Agencija za komunikacijska omrežja in storitve razvoj na trgu MMDS/BWA in po potrebi (AKOS) upravlja z radijskim spektrom v Republiki preverjati interes za morebitni nov javni razpis Sloveniji na podlagi javnega pooblastila skladno z nepodeljenega spektra v pasovih 10 GHz in 12 Zakonom o elektronskih komunikacijah. Poleg GHz za lokalno uporabo in v primeru izraženega učinkovite izrabe radiofrekvenčnega spektra in interesa javni razpis izvesti zagotavljanja učinkovite konkurence na trgih B. V obdobju 2021 - 2023 po sprejetju izvedbenih brezžičnih storitev elektronskih komunikacij so sklepov Evropske komisije za radijske frekvence njene prednostne naloge predvsem uporaba za javno mobilno tehnologijo, ki so na voljo po radiofrekvenčnega spektra za dosego največjega WRC-19, izvesti javno povpraševanje po interesu možnega družbeno ekonomskega napredka, za frekvence v pasu 40,5-43,5 GHz in za zagotovitev stabilnega okolja za uporabnike preostanek civilnega 26 GHz pasu, ter v primeru radijskega spektra, vzpodbujanje naložb in razvoja interesa začeti postopek priprave javnega razpisa ter čim hitrejše uvajanje novih tehnologij skladno z C. V obdobju 2021 - 2022 podeliti del spektra v usmeritvami na EU in nacionalnemu nivoju. radiofrekvenčnih pasovih 2300 MHz in 3600 MHz V letu 2001 se je Slovenija povzpela na lestvici za lokalno uporabo, in sicer za zagotavljanje javnih DESI indeksa iz 16. mesta v letu 2020 na 13. komunikacijskih storitev končnim uporabnikom ali mesto predvsem zaradi uspešno izvedenega za vertikale preko javnih mobilnih ali zasebnih javnega razpisa z javno dražbo. S splošno oceno mobilnih omrežij 53,2 za povezljivost uvršča na deveto mesto v EU D. V primeru prejema pobude v obdobju 2021 - in ima dodeljenih 98% spektra 5G. Agencija želi v 2023 izvesti podelitev radijskih frekvenc v pasovih okviru svojih pristojnosti prispevati k temu, da bi 3800 – 4200 MHz, 28 GHz in 32 GHz za vertikale bila Slovenija med vodilnimi državami glede oziroma za tehnološko/storitveno nevtralno povezljivosti. podelitev za lokalno uporabo ter pri tem zaščititi V osnutku Strategije upravljanja z ostale storitve skladno z EC/CEPT radiofrekvenčnim spektrom 2021 - 2023, so za E. V obdobju 2021 - 2022 v primeru pobude izboljšanje povezljivosti, zmanjšanje digitalnega izvesti podelitev radijskih frekvenc v razkoraka in digitalizacije slovenskega radiofrekvenčnem pasu 410-430 MHz za podelitev gospodarstva predvidene naslednje akcije: spektra za vertikale oziroma za 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 10/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 11/541 tehnološko/storitveno nevtralno podelitev za ter pri pripravi regulative za uporabo teh tehnologij področje Republike Slovenije v na novo dodeljenih radiofrekvenčnih pasovih. F. V obdobju 2022 - 2023 v primeru pobude Abstract pristojnim organom pomagati pri izvedbi In accordance with the Electronic postopkov podelitev spektra za PPDR v 700 MHz Communications Act the Agency for in 450 MHz pasu (vključno z organizacijo Communications Networks and Services (AKOS) is morebitnih posvetovanj z deležniki). on the basis of a public authorization, beside other G. Spremljati regulativo za cestne inteligentne activities, responsible as well for managing the transportne sisteme ITS in mestno železnico ter radio frequency spectrum of the Republic of vključiti v Splošni akt o načrtu uporabe radijskih Slovenia. This means that in addition to frequency frekvenc allocation and assignment it is responsible for the H. V obdobju do konca 2025 izvesti prehod iz efficient use of the radio frequency spectrum and uporabe frekvenc v spektru 450 MHz na uporabo the provisions of effective competition in the harmoniziranega spektra v okviru CEPT/EU markets for wireless electronic communications (874,4-880 MHz/919,4-925 MHz in 1900-1910 services. The Agency's tasks in this field are MHz ) na podlagi vloge po upravnem postopku ali primarily the use of radio frequency spectrum to pa te storitve vključiti v PPDR vertikalo achieve the greatest possible socio-economic I. V okviru strategije Evropa do leta 2030: benefit, ensuring a stable environment for radio Digitalni kompas za digitalno desetletje 2030 (ang. spectrum users, promotion of competition, »Digital Compass: the European way for the investments and development, the introduction of Digital Decade"), ki temelji na štirih stebrih: 1. new technologies as soon as possible. znanje in spretnosti, 2. varne in trajnostne digitalne In 2001, Slovenia rose from the 16th place in 2020 infrastrukture, 3. digitalna preobrazba podjetij, 4. to the 13th place with regards to the DESI index digitalizacija javnih storitev. Agencija želi benchmark, mainly due to a successfully conducted prispevati tudi k ciljem za doseganje brezogljične public tender with a public auction for the 5G družbe z že omenjenim prostim spektrom za frequency bands. With an overall score of 53.2 for vertikale namenjenim digitalizaciji gospodarstva, connectivity, it ranks 9th in the EU as it has omejevanju negativnega okoljskega vpliva allocated 98% of the 5G spectrum. Within its elektronskih komunikacijskih omrežij, na način, da competences, the Agency wants to contribute to the spodbuja čimprejšnjo uvedbo novih okolju goal that Slovenia becomes one of the leading prijaznejših tehnologij in uvedbo novih modelov countries in the field of connectivity. souporabe. The draft Radio Spectrum Management Strategy J. Glede frekvenčnega spektra za 5G in 2021 - 2023 envisages the following actions to prihajajočega 6G ter ostale nove tehnologije improve connectivity, reduce the digital divide and Agencija na nivoju RSPG in CEPT sodeluje pri digitize the Slovenian economy: pripravi na svetovno radijsko konferenco WRC-23 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 11/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 12/541 A. In the time frame of 2021-2023, monitor (including the organization of possible stakeholder developments in the MMDS / BWA market and, if consultations). required by stakeholders, verify interest for G. Monitor the regulations for ITS road intelligent possible new spectrum allocations in the 10 GHz transport systems and urban rails and implement and 12 GHz bands for local use and conduct them in the General Act on the Radio Frequency public tender with public auction in case of Use. expressed interest, H. Till the end of 2025 make the transition of B. In the time frame of 2021-2023, after adoption Railway Systems from frequencies in the 450 MHz of the European Commission Implementing spectrum to the harmonized spectrum 874.4-880 Decisions on the 40 GHz band for public mobile MHz / 919.4-925 MHz and 1900-1910 MHz in technology, which becomes available after WRC- accordance with EC/CEPT regulatory framework 19, conduct public enquiry for 40.5-43.5 GHz, the on the basis of an application under the remainder of the civil 26 GHz band and in case of administrative procedure or by inclusion of these start the procedure of public tender, services in the PPDR vertical C. In the time frame of 2021-2022, auction part of I. In accordance with Europe to 2030 Strategy: the spectrum in the 2300 MHz and 3600 MHz Digital Compass: The European Way for the bands for local usage, namely for electronic Digital Decade, which is based on four pillars: 1. communication services for end-users or for a digitally skilled population and highly skilled verticals over public mobile or private mobile digital professionals, 2. secure and sustainable networks digital infrastructures; 3. the digital D. If required by stakeholders in the time frame of transformation of companies, 4. digitalisation of 2021 - 2023, conduct assignment procedure in the public services. Agency wishes also to contribute bands 3800 - 4200 MHz, 28 GHz and 32 GHz for to the goal of limiting negative environmental verticals or for technology / service neutral local footprint of electronic communications networks usage, while protecting other services in by introducing new technologies as soon as accordance with EC / CEPT legal framework possible and implementation of new sharing E. In the time frame of 2021 - 2022, if required by models. stakeholders allocate radio frequencies in the J. In order to accommodate frequency spectrum for radio frequency band 410-430 MHz for the 5G, the upcoming 6G and other new technologies, allocation of spectrum for verticals or for the Agency participates in the preparation for the technology / service neutral allocation for the WRC-23 World Radio Conference at the level of territory of the Republic of Slovenia RSPG and CEPT and in the preparation of F. In the time frame of 2022-2023, , if required by regulatory framework for the use of these stakeholders, assist the competent authorities in technologies in newly allocated radio frequency assigning procedures for allocating spectrum for bands. PPDR in the 700 MHz and 450 MHz bands 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 12/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 13/541 Biografije avtorjev Meta Pavšek Taškov je Authors' biographies diplomirala leta 1990 in magistrirala Meta Pavšek Taškov received her BSEE and MSEE leta 1993 na Fakulteti za from University of Ljubljana, Slovenia in 1990 and elektrotehniko v Ljubljani na temo 1993 respectively. Since 1995 she was employed at Temperaturno stabilizirani AKOS (Agency for communication networks and napetostno kontrolirani kristalni oscilatorji. Od leta services of the Republic of Slovenia) in the RF Spectrum 1995 je zaposlena na Agenciji za komunikacijska management department. Since 2016 she is head of omrežja in storitve RS in sicer na področju za Mobile department in AKOS, leading preparation for radiokomunikacije oz. upravljanje radiofrekvenčnega 700 MHz Auction as well as other Auctions and from spektra. Od leta 2016 na AKOSu vodi oddelek za AKOS site leading project to support Slovene 5G mobilne zveze in je vodila priprave na 700 MHz javni initiative. She is an active member of RSCom, RSPG razpis z javno dražbo in ostale dražbe ter na strani WRC-23, ECC, CPG, ECC PT1, WGSE, SE21, HCM AKOS vodi projekt za podporo slovenski 5G iniciativi. and member of CPG-PTA, CPG-PTB, CPG-PTD, SE40. Od leta 2010 predseduje skupini HCM-TWG in Janja Varšek received her BSEE in 1989 at pripravljalni skupini v okviru CEPT ECC PT1 – DG 40 University in Ljubljana, in Electronic Engineering and GHz. Poleg tega je aktivna članica skupin RSCom, received a MSc. at the Faculty of Organizational RSPG WRC-23, ECC, CPG, ECC PT1, WGSE, SE21, Sciences, University of Maribor in 2016. She joined the HCM in članica skupin CPG-PTA, CPG-PTB, CPG- Administration for Telecommunications of the Republic PTD, SE40. of Slovenia in 1992. She worked with Janja Varšek je diplomirala leta telecommunications equipment, electromagnetic 1989 na Fakulteti za elektrotehniko compatibility and market regulation. She worked as v Ljubljani in magistrirala leta 2016 market supervisor and inspector for telecommunications na Fakulteti za Organizacijske vede for four years. She was chair of the big bang auction in Univerze Maribor. Od leta 1992 je 2014 and after successfully finished auction, she was zaposlena na Agenciji za appointed as head of radiofrequency spectrum komunikacijska omrežja in storitve RS in sicer najprej management department. She is an active member of na področju telekomunikacijske opreme, RSPG and ECC. elektromagnetne kompatibilnosti in kasneje kot vodja sektorja za regulacijo trgov. Nato je kot inšpektorica za telekomunikacije do leta 2014 delala v sektorju za nadzor telekomunikacij. Leta 2014 je bila vodja komisije za javni razpis z javno dražbo za radiofrekvenčne pasove 800/900/1800/2100/2600 MHz in postala tudi vodja sektorja za upravljanje radiofrekvenčnega spektra. Je aktivna članica skupin RSPG in ECC ter članica RSCom in RSPG podskupin. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 13/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 14/541 ŬƚŝǀŶŽƐƚŝŶĂƉŽĚƌŽēũƵ ƵƉƌĂǀůũĂŶũĂnjZ&ƐƉĞŬƚƌŽŵ ^Z<ϮϬϮϮ :ĂŶũĂsĂƌƓĞŬ͕DĞƚĂWĂǀƓĞŬdĂƓŬŽǀ >ũƵďůũĂŶĂ͕Ϯ͘ Ϯ͘ ϮϬϮϮ sƐĞďŝŶĂ hǀŽĚ WƌĞƚĞŬůĞ ĂŬƚŝǀŶŽƐƚŝ ^ƚƌĂƚĞŐŝũĂ ƵƉƌĂǀůũĂŶũĂ nj ƌĂĚŝŽĨƌĞŬǀĞŶēŶŝŵ ƐƉĞŬƚƌŽŵ EĂĚĂůũŶũĞ ĂŬƚŝǀŶŽƐƚŝ WƌŝƉƌĂǀĂ ŶĂ tZͲϮϯ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 14/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 15/541 8YRG ϱ' ŬĐŝũƐŬŝ ŶĂēƌƚ ʹ ũĞƐĞŶŝ ϮϬϭϲ ƚĞŵĞůũ njĂ ĚŝŐŝƚĂůŶŽ ŐŽƐƉŽĚĂƌƐƚǀŽ ŝŶ ĚƌƵǎďŽ͕ ŽĚůŽēŝůĞŶ ĚĞũĂǀŶŝŬ ŶĂƉƌĞĚŬĂ ŬĐŝũĞ njĂ ƵƐŬůĂũĞŶŽ ƵǀĂũĂŶũĞ ϱ' Ž ŬŽŶĐĂ ϮϬϮϬ ǀƐĂũ ĞŶŽ ŵĞƐƚŽ Ž ŬŽŶĐĂ ϮϬϮϱ ǀƐĂ ǀĞēũĂ ŵĞƐƚĂ KƐŶŽǀĂ njĂ ĚŽůŽēŝƚĞǀ ƉŝŽŶŝƌƐŬŝŚ ƉĂƐŽǀ WŽĚ ϭ ',nj ϭ ',nj ʹ ϲ ',nj EĂĚ ϲ ',nj ϱ' ƉŽďƵĚĂ dĞƐƚŝƌĂŶũĂ ϱ' ƚĞŚŶŽůŽŐŝũĞ hǀŽĚ ^ƚƌĂƚĞŐŝũĂ ƵƉƌĂǀůũĂŶũĂ nj ƌĂĚŝŽĨƌĞŬǀĞŶēŶŝŵ ƐƉĞŬƚƌŽŵ WŽĚĞůŝƚĞǀ ĨƌĞŬǀĞŶĐ njĂ ƉŽƐůŽǀŶŽŬƌŝƚŝēŶĞ ŬŽŵƵŶŝŬĂĐŝũĞ DϮD ǀ ƉĂƐƵ ϳϬϬ D,nj ʹ ŵĂũ ϮϬϮϭ WŽĚĞůŝƚĞǀ ĨƌĞŬǀĞŶĐ njĂ njĂŐŽƚĂǀůũĂŶũĞ ũĂǀŶŝŚ ŬŽŵƵŶŝŬĂĐŝũƐŬŝŚ ƐƚŽƌŝƚĞǀ ǀ ƉĂƐŽǀŝŚ ϳϬϬ D,nj͕ ϭϱϬϬ D,nj͕ ϮϭϬϬ D,nj͕ ϮϯϬϬ D,nj͕ ϯϲϬϬ D,nj ŝŶ Ϯϲ ',nj ʹ ũƵŶŝũ ϮϬϮϭ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 15/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 16/541 ^/ŝŶĚĞŬƐ ϭϲ͘ ŵĞƐƚŽ ǀ ůĞƚƵ ϮϬϮϬ ϭϯ͘ ŵĞƐƚŽ ǀ ůĞƚƵ ϮϬϮϭ͘ ƐƉůŽƓŶĂ ŽĐĞŶĂ njĂ ƉŽǀĞnjůũŝǀŽƐƚ ϱϯ͕Ϯ ĚĞǀĞƚŽ ŵĞƐƚŽ ǀ h ĚŽĚĞůũĞŶŽ ϵϴй ƐƉĞŬƚƌĂ ϱ'͘ WƌĞƚĞŬůĞĂŬƚŝǀŶŽƐƚŝ DϮDƌĂǎďĂ ʹ ϳϯϯͲϳϯϲD,njͬϳϴϴʹ ϳϵϭD,nj � ϮĚŶŝ ;ϭϬͲϭϭ͘Ϯ͘ϮϬϮϭͿ͕ϯϳŬƌŽŐŽǀ͕ϮĚƌĂǎŝƚĞůũĂ͗'/ĂŶĚĞĞ/E � /njŬůŝĐŶĂĐĞŶĂ͗ϮϮϬϬϬϬhZ͕ � <ŽŶēŶĂĐĞŶĂ͗ϵϳϬϬϬϬhZ � ŵĂŐŽǀĂůĞĐ͗ĞĞ/E � KďǀĞnjŶŽƐƚŝ͗ � WŽŬƌŝǀĂŶũĞ͗ � njĂϭϬй^ůŽǀĞŶŝũĞ͗ϭ^ĚŽ ϯϭ͘ϭϮ͘ϮϬϮϭ͕ϵϬйŬůũƵēŶŝŚůŽŬĂĐŝũǀƐĂŬĞŐĂ ƵƉŽƌĂďŶŝŬĂǀƚĞũƌĞŐŝũŝĚŽϯϭ͘ϭϮ͘ϮϬϮϱ � ĂŽƐƚĂůĂƉŽĚƌŽēũĂϳϱй^ůŽǀĞŶŝũĞ͗ϵϬйŬůũƵēŶŝŚůŽŬĂĐŝũǀƐĂŬĞŐĂƵƉŽƌĂďŶŝŬĂǀ ƚĞũƌĞŐŝũŝĚŽϯϭ͘ϭϮ͘ϮϬϮϱ ǀƐŬůĂĚƵƐƉŝƐŵŝŽŶĂŵĞƌŝǀĞŶĚĂƌŶĞŬĂƐŶĞũĞŬŽƚ ϯϭ͘ϭϮ͘ϮϬϯϬ � ĂŶĞƐůũŝǀŽƐƚŽŵƌĞǎũĂхϵϵ͕ϵϵй͕ŽĚƉƌĂǀŽŶĂƉĂŬ͕ϳϮŚĂǀƚŽŶŽŵŝũĞ͕ƉŽĚƉŽƌĂ /^Kͬ/ϮϳϬϬϭŝŶ /^Kͬ/ϮϮϯϬϭĚŽ ϯϭ͘ϭϮ͘ϮϬϮϰ � sĂƌŶŽƐƚŽŵƌĞǎũĂ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 16/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 17/541 WƌĞƚĞŬůĞĂŬƚŝǀŶŽƐƚŝ sĞēĨƌĞŬǀĞŶēŶĂĚƌĂǎďĂ ϳϬϬD,nj͕ ϳϬϬD,nj^> ϭϱϬϬD,nj ϮϭϬϬD,nj ĞůϮϯϬϬD,nj;ϮϯϮϬͲϮϯϵϬD,njͿ ĞůϯϲϬϬD,nj;ϯϰϮϬʹ ϯϴϬϬD,njͿ ĞůϮϲ',nj;Ϯϲ͕ϱͲϮϳ͕ϱ',njͿ ^ŽƵƌĐĞ͗ŚƚƚƉƐ͗ͬͬǁǁǁ͘ĂŬŽƐͲ ƌƐ͘ƐŝͬĨŝůĞĂĚŵŝŶͬƵƐĞƌͺƵƉůŽĂĚͬZĂnjƉŝƐŶĂͺĚŽŬƵŵĞŶƚĂĐŝũĂͺnjĂͺǀĞĐͺͺĨ ƌĞŬǀĞŶĐͺͺŶŽͺĚƌĂnjͺͺďŽͺE'ͺϬϱϬϮϮϬϮϭͺĨŝŶĂů͘ƉĚĨ WƌĞƚĞŬůĞĂŬƚŝǀŶŽƐƚŝ sĞēĨƌĞŬǀĞŶēŶĂĚƌĂǎďĂ K^dK:WKZ>/ds^WEKaEKsEK^d/WK ŽĚ ƌĂnjƉŽůŽǎůũŝǀŽƐƚŝ ƉĂƐƵ Ͳ ƵƉŽƌĂďůũĂƚŝ ĨƌĞŬǀĞŶĐĞ ŝŶ ƉŽŶƵũĂƚŝ ƐƚŽƌŝƚǀĞ ŬŽŶēŶŝŵ ƵƉŽƌĂďŶŝŬŽŵ ŶĂ ƚĞŚ ĨƌĞŬǀĞŶĐĂŚ ǀƐĂũ ǀ ϭ ŵĞƐƚƵ ϱ > ŽĚ ƌĂnjƉŽůŽǎůũŝǀŽƐƚŝ ƉĂƐƵ Ͳ ƵƉŽƌĂďůũĂƚŝ ǀƐĞ ĨƌĞŬǀĞŶĐĞ ǀ ĐĞůŽƚŶĞŵ ƉĂƐƵ ŝŶ ƉŽŶƵũĂƚŝ ƐƚŽƌŝƚǀĞ ŬŽŶēŶŝŵ ƵƉŽƌĂďŶŝŬŽŵ ŶĂ ǀƐĞŚ ƚĞŚ ĨƌĞŬǀĞŶĐĂŚ ʹ ǀ ǀƐĂŬĞŵ ǀĞēũĞŵ ŵĞƐƚƵ Ă ĨƌĞŬǀĞŶĐĞ ǀ ƉĂƐŽǀŝŚ ϳϬϬ D,nj ^>͕ ϭϱϬϬ D,nj ^> ŝŶ Ϯϲ ',nj͗ ϱ > ŽĚ ƌĂnjƉŽůŽǎůũŝǀŽƐƚŝ ƉĂƐƵ Ͳ njĂēŶĞũŽ ƵƉŽƌĂďůũĂƚŝ ĨƌĞŬǀĞŶĐĞ ŝŶ ƉŽŶƵũĂƚŝ ƐƚŽƌŝƚǀĞ ŬŽŶēŶŝŵ ƵƉŽƌĂďŶŝŬŽŵ ŶĂ ƚĞŚ ĨƌĞŬǀĞŶĐĂŚ ǀƐĂũ ǀ ϭ ŵĞƐƚƵ WŽŶƵũĂŶũĞ ƐƚŽƌŝƚĞǀ ƉŽŵĞŶŝ ƐƚŽƌŝƚĞǀ ũĞ ŽŵŽŐŽēĞŶĂ ƉƌĞŬŽ ^͕ Ŭŝ ƉŽŬƌŝǀĂũŽ ŵŝŶ ϳϱ й ƉƌĞďŝǀĂůƐƚǀĂ ƉŽƐĂŵĞnjŶĞŐĂ ŵĞƐƚŶĞŐĂ ŶĂƐĞůũĂ͕ njĂēĞƚĞŬ ƵƉŽƌĂďĞ ŝŶ ƉŽŶƵũĂŶũĂ ƐƚŽƌŝƚĞǀ Ͳ ǀƐĂũ ƉƌĞŬŽ ϭ ^ ŶĂ ƉŽĚƌŽēũƵ ƉŽƐĂŵĞnjŶĞŐĂ ŵĞƐƚŶĞŐĂ ŶĂƐĞůũĂ͘ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 18/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 19/541 WƌĞƚĞŬůĞĂŬƚŝǀŶŽƐƚŝ sĞēĨƌĞŬǀĞŶēŶĂĚƌĂǎďĂ KdEKsEK^d/Ͳ ϳϬϬD,nj&^W ŝŶ ϯDďͬƐ h> ;ǀƐĞ ĚŽĚĞůũĞŶĞ ĨƌĞŬǀĞŶĐĞ nj Z^ZW ƐŝŐŶĂůŽŵ ;ǀ njƵŶĂŶũŽƐƚŝ njŐƌĂĚďͿ͗ ͲϭϬϴ ĚŵͿ WƌĞƚĞŬůĞĂŬƚŝǀŶŽƐƚŝ sĞēĨƌĞŬǀĞŶēŶĂĚƌĂǎďĂ KsEK^d/WK'Kds>:E:sZEK^d/ Ă ƵƐƚƌĞnjŶŽ ŽďǀůĂĚŽǀĂŶũĞ ƚǀĞŐĂŶũ njĂ ǀĂƌŶŽƐƚ ŝŶĨŽƌŵĂĐŝũƐŬŝŚ ƐŝƐƚĞŵŽǀ͕ ŽŵƌĞǎŝũ ŝŶ ƐƚŽƌŝƚĞǀ hƉŽƓƚĞǀĂƚŝ ƌĞůĞǀĂŶƚŶŽ ŶĂĐŝŽŶĂůŶŽ ŝŶ ĞǀƌŽƉƐŬŽ njĂŬŽŶŽĚĂũŽ ŵĞĚŶĂƌŽĚŶŽ ƉƌŝnjŶĂŶĞ ƐƚĂŶĚĂƌĚĞ ŝŶ ĚŽďƌĞ ƉƌĂŬƐĞ Ɛ ƉŽĚƌŽēũĂ ǀĂƌŶŽƐƚŝ ŽŵƌĞǎŝũ ŝŶ ƐƚŽƌŝƚĞǀ ŶĞƉƌĞŬŝŶũĞŶĞŐĂ ƉŽƐůŽǀĂŶũĂ snjƉŽƐƚĂǀŝƚŝ ŝŶ ǀnjĚƌǎĞǀĂƚŝ hƐƚƌĞnjŶĞ ŝŶ ƐŽƌĂnjŵĞƌŶĞ ŽƌŐĂŶŝnjĂĐŝũƐŬĞ ŝŶ ƚĞŚŶŝēŶĞ ƵŬƌĞƉĞ WƌĞƚĞŬůĞĂŬƚŝǀŶŽƐƚŝ sĞēĨƌĞŬǀĞŶēŶĂĚƌĂǎďĂ >KdE^WũƵďůũĂŶĞ ʹ Zϯ ŝŶ ŶĂ ŽďŵŽēũŝŚ ǀnjŚŽĚ ZϮ ŝŶ njĂŚŽĚ ZϮ͘ ŬĐŝũĂ ϮϮ͗ ^ƉŽĚďƵũĂƚŝ ŽƉĞƌĂƚĞƌũĂ ŽŵƌĞǎũĂ͕ ĚĂ njĂŐŽƚŽǀŝ ƐƉƌĞũĞŵ ƚƵĚŝ ǀ ƉƌĞĚŽƌŝŚ ŶĂ ŬůũƵēŶŝŚ ƉƌŽŵĞƚŶŝŚ ƉŽǀĞnjĂǀĂŚ͘ ŬĐŝũĂ Ϯϯ͗ EĂĚĂůũĞǀĂƚŝ nj ĂŬƚŝǀŶŽƐƚŵŝ ŶĂ ŵĞĚŶĂƌŽĚŶŝ ƌĂǀŶŝ njĂ njĂŐŽƚŽǀŝƚĞǀ ĚŽĚĂƚŶŝŚ ƉƌĂǀŝĐ njĂ ŽŵƌĞǎũĂ͘ ŬĐŝũĂ Ϯϰ͗ WŽƐƉĞƓĞǀĂƚŝ ƵƉŽƌĂďŽ ͕ ŽnjĂǀĞƓēĂƚŝ ƵƉŽƌĂďŶŝŬĞ ŝŶ ƉƌŽĚĂũĂůĐĞ Ž ŽďǀĞnjŶŝ ǀŐƌĂĚŶũŝ ƐƉƌĞũĞŵŶŝŬŽǀ ŬĐŝũĂ Ϯϱ͗ ^ƉƌĞŵůũĂƚŝ ŝŶƚĞƌĞƐ ŶĂ ƚƌŐƵ ƚƌŐĂ ŝŶ ƐƉƌŽƚŶŽ ŽĚnjŝǀĂŶũĞ ŶĂ ƉŽƚƌĞďĞ ƚƌŐĂ ŶĂ ƉŽĚƌŽēũƵ sͲd 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 23/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 24/541 ^ƚƌĂƚĞŐŝũĂ <ůŝĐŶŝnjŶĂŬŝ͕ŶĞůŝĐĞŶĐŝƌĂŶƐƉĞŬƚĞƌ ŬĐŝũĂ Ϯϲ͗ snjƉŽƐƚĂǀŝƚĞǀ ƉŽǀĞnjĂǀ nj ƵƐƚƌĞnjŶŝŵŝ ŝŶƐƚŝƚƵĐŝũĂŵŝ njĂ ůĂǎũŽ ŝnjĚĂũŽ ĚŽǀŽůũĞŶũ ƌĂĚŝŽĂŵĂƚĞƌũĞŵ͕ ƉůŽǀŝůŽŵ ŝŶ njƌĂŬŽƉůŽǀŽŵ ŬĐŝũĂ Ϯϳ͗ WƌĞĚůĂŐĂƚŝ ƐƉƌĞŵĞŵďĞ ŝŶ ĚŽƉŽůŶŝƚĞǀ ŽďƐƚŽũĞēĞ njĂŬŽŶŽĚĂũĞ͕ Ŭŝ ďŽ ŽŵŽŐŽēŝůĂ ǀnjƉŽƐƚĂǀŝƚĞǀ ďĂnjĞ ƉŽĚĂƚŬŽǀ Ž W>ͬ>d͘ ŬĐŝũĂ Ϯϴ͗ ^ŽĚĞůŽǀĂƚŝ ŶĂ ƚĞŚŶŝēŶŝŚ ƐŬƵƉŝŶĂŚ ǀƌŽƉƐŬĞ hŶŝũĞ ŝŶ Wd ŝŶ ǀ ēŝŵ ŬƌĂũƓĞŵ ēĂƐƵ ŽŵŽŐŽēŝƚŝ ƵƉŽƌĂďŽ ŶŽǀŝŚ ƚĞŚŶŽůŽŐŝũ͕ Ŭŝ ƐĞ ďŽĚŽ ƵƉŽƌĂďůũĂůĞ ǀ ƉƌĞŶŽƐŶŝŚ ŶĂƉƌĂǀĂŚ͘ ŬĐŝũĂ Ϯϵ͗ ^ƉƌĞŵůũĂƚŝ ƌĂnjǀŽũ ƉƌĂǀŶŝŚ ƉŽĚůĂŐ njĂ ƉŽĚƉŽƌŶĞ ƐŝƐƚĞŵĞ ϱ' ĚŽůŽēŝƚŝ ŶĂũƉƌŝŵĞƌŶĞũƓŝ ŶĂēŝŶ ůŝĐĞŶĐŝƌĂŶũĂ njĂ ůŝĐĞŶēŶŝ ĚĞů ƐƉĞŬƚƌĂ͘ ŬĐŝũĂ ϯϬ͗ s ƉŽĚƉŽƌŽ ĂǀƚŽŵŽďŝůƐŬŝ ŝŶĚƵƐƚƌŝũŝ ƐůĞĚŝƚŝ ŶŽǀŽƐƚŝŵ ŶĂ ƉŽĚƌŽēũƵ ďƌĞnjǎŝēŶĞŐĂ ƉŽůŶũĞŶũĂ ŝŶ ŶĂ ƚĞŵ ƉŽĚƌŽēũƵ ĂŬƚŝǀŶŽ ƐŽĚĞůŽǀĂƚŝ ŶĂ ŵĞĚŶĂƌŽĚŶĞŵ ;/dhͿ ŝŶ ĞǀƌŽƉƐŬĞŵ ;WdͿ ŶŝǀŽũƵ ŬĐŝũĂ ϯϭ͗ ^ŽĚĞůŽǀĂƚŝ ǀ ƐƚƌŽŬŽǀŶŽͲƚĞŚŶŝēŶŝŚ ƐŬƵƉŝŶĂŚ ǀ ŽŬǀŝƌƵ Wd͕ ƚŽ ƐƚĂ ^Ϯϰ ŝŶ ^ZͬD'͕ ŬũĞƌ ƐĞ ŶŽǀŽƐƚŝ ŽnjŝƌŽŵĂ ƐƉƌĞŵĞŵďĞ ƌĂĚŝũƐŬĞ ŽƉƌĞŵĞ͕ ŶĂ ƉŽĚůĂŐŝ ŚĂƌŵŽŶŝnjŝƌĂŶŝŚ ƐƚĂŶĚĂƌĚŽǀ͕ ƉƌŝůĂŐĂũĂũŽ ƵƉŽƌĂďŝ ƌĂĚŝũƐŬĞŐĂ ƐƉĞŬƚƌĂ ǀ Z^ ŝŶ njĂŐŽƚĂǀůũĂƚŝ ƵƐƚƌĞnjŶĞ ƉŽŐŽũĞ njĂ ƵƉŽƌĂďŽ ^Z ŬĐŝũĂ ϯϮ͗ s ƐŽĚĞůŽǀĂŶũƵ nj ŽƌŐĂŶŝ njĂ ƵƉƌĂǀůũĂŶũĞ ůĞƚĂůƐŬĞŐĂ ƉƌŽŵĞƚĂ ƐŬƌďĞƚŝ njĂ ŝŶƚĞƌŽƉĞƌĂďŝůŶŽƐƚ ŝŶ ƵƐŬůĂũĞŶŽƐƚ ƌĂĚŝŽĨƌĞŬǀĞŶēŶĞŐĂ ƉƌŽƐƚŽƌĂ nj ƌĂďŽ ƌĂĚŝũƐŬĞŐĂ ƐƉĞŬƚƌĂ ǀ h njĂ ƉŽƚƌĞďĞ ĚĞůŽǀĂŶũĂ hs ŶĂƉƌĂǀ͘ ŬĐŝũĂ ϯϯ͗ <Ž ďŽ ĚŽŬŽŶēĂŶĂ ƚĞŚŶŝēŶĂ ƌĞŐƵůĂƚŝǀĂ njĂ ƉƌŽĨĞƐŝŽŶĂůŶĞ hs ǀ ƉĂƐŽǀŝŚ ϭϴϴϬͲϭϵϬϬ D,nj͕ ϭϵϬϬͲϭϵϮϬ D,nj ŝŶ ϱϬϬϬͲϱϬϭϬ D,nj͘ EĂĚĂůũŶũĞĂŬƚŝǀŶŽƐƚŝ :ĂǀŶŝ ƌĂnjƉŝƐ nj ũĂǀŶŽ ĚƌĂǎďŽ ƐƉĞŬƚƌĂ njĂ ůŽŬĂůŶŽ ƵƉŽƌĂďŽͬǀĞƌƚŝŬĂůĞ ;ĚĞů ϮϯϬϬ D,nj ŝŶ ĚĞů ϯϰϬϬ D,njͿ ^ƉƌĞŵůũĂŶũĞ ŶĂůŽǎĞŶŝŚ ŽďǀĞnjŶŽƐƚŝ ^ƉůŽƓŶĞ ŽďǀĞnjŶŽƐƚŝ ƉŽŬƌŝǀĂŶũĂ ŽĚĂƚŶĞ ŽďǀĞnjŶŽƐƚŝ Ͳ ϳϬϬ D,nj & ƐƉĞŬƚĞƌ KďǀĞnjŶŽƐƚŝ ƉŽŬƌŝǀĂŶũĂ Ͳ ͩ ϱ' ŬĐŝũƐŬŝ ŶĂēƌƚͨ ŬƚŝǀŶŽƐƚŝ ǀ njǀĞnjŝ nj ĚŝŐŝƚĂůŶŝŵ ŬŽŵƉĂƐŽŵ ;^ƚƌĂƚĞŐŝũĂ ǀƌŽƉĞ ĚŽ ůĞƚĂ ϮϬϯϬ͗ ŝŐŝƚĂůŶŝ ŬŽŵƉĂƐ njĂ ĚŝŐŝƚĂůŶŽ ĚĞƐĞƚůĞƚũĞ ϮϬϯϬ ;ĂŶŐ͘ ͩŝŐŝƚĂů ŽŵƉĂƐƐ͗ ƚŚĞ ƵƌŽƉĞĂŶ ǁĂLJ ĨŽƌ ƚŚĞ ŝŐŝƚĂů ĞĐĂĚĞΗͿ njŶĂŶũĞ ŝŶ ƐƉƌĞƚŶŽƐƚŝ͕ ĚŝŐŝƚĂůŶĂ ƉƌĞŽďƌĂnjďĂ ƉŽĚũĞƚŝũ͕ ǀĂƌŶĞ ŝŶ ƚƌĂũŶŽƐƚŶĞ ĚŝŐŝƚĂůŶĞ ŝŶĨƌĂƐƚƌƵŬƚƵƌĞ͕ ĚŝŐŝƚĂůŝnjĂĐŝũĂ ũĂǀŶŝŚ ƐƚŽƌŝƚĞǀ͕ Ă njŵĂŶũƓĂŶũĞ ŽŬŽůũƐŬĞŐĂ ŽĚƚŝƐĂ ^ƉŽĚďƵũĂŶũĞ ƐŽƵƉŽƌĂďĞ ĨŝnjŝēŶĞ ŝŶĨƌĂƐƚƌƵŬƚƵƌĞ ŽŵƌĞǎŝũ ;ĂŬƚŝǀŶŽ ŝŶͬĂůŝ ƉĂƐŝǀŶŽ ǀŬůũƵēŶŽ nj njĚƌƵǎĞǀĂŶũĞŵ ƐƉĞŬƚƌĂͿ ƉĂƐŝǀŶĞ ŝŶĨƌĂƐƚƌƵŬƚƵƌĞ ůŽŬĂůŝnjŝƌĂŶŝ ƐƉŽƌĂnjƵŵŝ Ž ŐŽƐƚŽǀĂŶũƵ hƉŽƌĂďĂ ĞŶĞƌŐĞƚƐŬŽ ƵēŝŶŬŽǀŝƚŝŚ ƉƌŽĐĞƐŽǀ Ͳ ƉƌĞĚůŽŐŝ njĂ ƵēŝŶŬŽǀŝƚŽ ŽĚnjŝǀĂŶũĞ ŶĂ ŝnjnjŝǀĞ ƌĞŐƵůĂĐŝũĞ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 24/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 25/541 EĂĚĂůũŶũĞĂŬƚŝǀŶŽƐƚŝ WƌŝƉƌĂǀĂŶĂtZͲϮϯ EŽǀŝ ƐƉĞŬƚĞƌ njĂ /Dd͗ /ϭ͘Ϯ ;ϲϰϮϱͲϳϭϮϱ D,njͿ͕ /ϭ͘ϱ ;ϲϬϬ D,njͿ͕ ϵ͘ϭ͘Đ͕ ŝŶƚĞƌĞƐ ƚƵĚŝ /ϭ͘ϯ͕ /ϭ͘ϰ͕ ƌƚ͘ Ϯϭ sĂƌŶŽƐƚŶĞ ƐƚŽƌŝƚǀĞ ;WdͿ ŶĂŶƐƚǀĞŶĞ ƐƚŽƌŝƚǀĞ ;WdͿ ,ǀĂůĂnjĂƉŽnjŽƌŶŽƐƚ :E:sZa< DdWsa 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 G1+G GSM-R G1 2 G3 FRMCS F1 F2 F3 F4 F5 F6 F7 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 33/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 34/541 Iskratel Digital Solutions portfolio Operational Buss SORM System Safe City Industry Data Mgmt Comms Comms LI 112 Smart City Digitalisation . ed ts reservhg IIoT platform/Data ll ri vIMS/Comm . Ael rat Isk© pLTE/5G private network connectivity Iskratel Cloud Platform From GSM-R to FRMCS – GSM-R is a railways success story – A standardized railways communications system based on 2G – Approaches end-of-life . – Iskratel and other GSM-R suppliers committed to support GSM-R until 2030 and ed ts reserv beyond 2030 on a per contract basis hg ll riA el. rat Isk© – FRMCS – Future Railway Mobile Communication System – New generation of standardized railways communication system – Introducing Mission critical Voice, Video and Data – Enabler for Railways Digitalization – Based on 3GPP and ETSI specifications 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 34/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 35/541 Railways dedicated focus From GSM-R to FRMCS: a full engagement in the evolution . ed ts reservhg ll ri . Ael rat Isk© GSM-R Migration Coexistence FRMCS S&T Group leading Radio spectrum management and FRMCS definition Railways - Migration towards FRMCS Independence from HW as an evolution Æ Virtualisation, vIMS, Dispatcher Introduction of IP technology in core, radio SCP and FRMCS services convergence . & transmission through common Application Server ed ts reservhg ll riA el. rat Isk Introduction of COTS platforms , Network Introduction of ETCS over GPRS. Packet © Function Virtualization (NFV) Core for multi access evolution R4 core network for interworking Distributed BTS allowing for flexible site capabilities with FRMCS deployments. Multi technology option 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 35/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 36/541 IMS – evolution towards FRMCS Mobile Terminals OBU GSM-R BSS Radio Access GSM-R NSS . ed 5G core MSC MGW HL ts reservhg R ll ri . A DSS1, SMPP, location… HSS SIP, el rat Diameter Isk IMS © TDM / NGN MC Dispatcher system X AS AS TAS IMS core Railway apps Disp MGC (Dispatcher, recorder,..) C MGW Local redundancy Recorde SBC AGCF SRV F S r ETSI NFV SIP/SIP-R, ISDN PRI, analogue signalling Fixed Line Access & Legacy Fixed Terminals Iskratel Partners Migration Phases T0 Transmission Network Core Dispatcher Migration Strategy . ed dependant ts reservh Radio Access per region, line by line… g ll riA el. rat Isk© Onboard Subsystem Migration Strategy Terminals dependant Communication Application Operational Services 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 36/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 37/541 Virtualization / NFV architecture Functionalities: - Orchestration - High availability - Geo-redundancy . ed ts reservhg ll ri . A Enabler for: el rat Isk© - HW independence (COTS) - Flexibility - New services - Fast exploitation (ETSI NFV architecture) E2E Mission-critical solution from Iskratel and S&T Group MCX Application Server IMS-based SIP core 5G SA core & RAN MCX clients/5G UEs • providing MC Push-To-Talk • Providing CSCFs • Providing full solution for 5G • Dispatcher terminals, voice, MC Data and MC Video functionality, SIP/RTP SA different UE’s and Cab services proxy, SIP registration, • Multiple RAN Options Options • integration all MCX logical service selection, IWF • 5G SA Cloud Native Core nodes and common services Solution • . for authorisation and Monitoring & Measurement ed authentication, registration, ts reserv configuration and security hg ll riA el. rat Isk© MCX and 5G Solution ready to support Railway collaboration 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 37/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 38/541 5G network Railway Data management • Fleet Management • Remote Access On-board activities • Remote Maintenance • Travel info • Early problem detection • Passenger commodity • Communications • Diagnostics . ed ts reservhg ll ri . Ael rat Isk© • Wayside data evaluation for monitoring and control • Safety critical data exchange train-land Pre-FRMCS / FRMCS project timeline – Today Æ focus on Specification and Standards and first demonstrators – Ongoing Pre-FRMCS project – Deutsche Bahn (DB) . ed ts reservhg ll riA – DB FRMCS Call for Research and Development Collaboration (Jan. 2021) el. rat Isk© – First migrations to FRMCS planned for 2024-2025 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 38/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 39/541 Reference case: Deutsche Bahn Gefo DB awarded S&T in January 2022 (Kontron Transportation, Iskratel) Scope: - Dispatchers - Virtualization platform (ETSI NFV) . ed - Communications core (IMS) ts reservhg ll ri - Mission Critical Communications (MCX) . Ael rat Isk - Management © 2 central locations Berlin and Frankfurt 5 regional fully autonomous locations Hanover, Oberhausen, Leipzig, Stuttgart and München Dokumentacija o FRMCS – UIC o FRMCS FRMCS | UIC - International union of railways https://uic.org/rail-system/frmcs/ – TR 103 333 - V1.1.1 - System Reference document (SRDoc); GSM-R networks evolution (etsi.org) https://www.etsi.org/deliver/etsi_tr/103300_103399/103333/01.01.01_60/tr_103333v010101p.pdf . ed – Uporabniški primeri za FRMCS: Microsoft Word - FU-7100-5.0.0 (uic.org) ts reservhg https://uic.org/IMG/pdf/frmcs_user_requirements_specification-fu_7100-v5.0.0.pdf ll riA el. rat Isk© – 5GRail:PowerPoint Presentation (5grail.eu) https://5grail.eu/wp-content/uploads/2021/06/5GRAIL_IEEE_CAM21_v4.pdf – ETSI 3GPP Release 18 (3gpp.org) https://www.3gpp.org/release18 – [SPEC] 3GPP TR 22.990 – Study on off-network for rail – iTecTec https://itectec.com/archive/3gpp-specification-tr-22-990/ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 39/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 40/541 0G, a key enabler of the circular economy Guillaume Noel Heliot Europe guillaume.noel@heliotgroup.com (water meters, box and parcels,…) through very Abstract low power wireless protocols (Sigfox, LoRa, Nb- Misconceptions around the Internet of Things IoT,…). For massive IoT application like tracking (IoT) are common, and the magnitude of the of unpowered assets or smart metering, the TCO of changes that the technology brings to the the whole solution (sensor plus connectivity) may industrial world is both over-hyped (Goldman be as little as a single digit price per year per Sachs, 2014) and at the same time underestimated device as the life duration is commonly more than with its profound impact on the nitty-gritty part of 5 years, allowing the amortization of the hardware the real world underpinning day-to-day living. Far over the years. from being limited to gadgets, smart cars, smart parking, wearables, pet trackers and “smart Within the IoT ecosystem, Sigfox 0G enjoys a everything”, the IoT is bringing (1) new insights to unique position thanks to its ultra-low power consumption and seamless roaming. Sigfox 0G industries, utilities and logistics, (2) creating full wireless sensors may last to last up to 10 years accountability and responsibility for business without the need to change the batteries and have transacting locally and globally, and (3) enabling proven track record of success of improving the new business better suited for the changing business resilience of business operations and environment (sharing economy). supply chain in the following cases: Nowadays, IoT coverage is readily available - Use 0G to decrease CO2 footprint in road throughout Europe at reasonable cost through logistics (postal, automotive,..) various standards (cellular or unlicensed) and - Use 0G to decrease the waste of food (retails,…) business models (public or private network). - Use 0G to improve heating and cooling efficiency Furthermore, the European union has invested (district heating,…) more than EUR 500 mil in IoT related research, innovation and development (European Union, 2021), highlighting the strategic importance of the Author's biography domain. Broadly speaking in terms of use cases, Dr. Guillaume Noel is the head of the IoT may be divided into: (1) critical IoT, which strategy at Heliot Europe, the are applications requiring low latency high largest IoT service provider in Europe. Promoter of a very low throughput communication (autonomous energy wireless technology (named vehicles,…) and for which 5G is the standard of 0G in opposition to 5G), Heliot choice and (2) Massive IoT, which looks at Europe operates more than 1 million sensors in connecting unpowered assets to the digital world 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 40/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 41/541 Germany, Austria and Switzerland for major postal and automotive companies. Within the Heliot group, Guillaume is in charge of the innovation and technologies of the future focusing on making the sensors smaller and reducing their carbon footprint using printed batteries, energy harvesting. Previously, Guillaume worked for major telco manufacturers and operators in Europe and the USA. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 41/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 42/541 OG . IoT, a key enabler of the circular economy 25th Seminar on radio communications, Feb 2022, Faculty of Electrical Engineering Ljublijana, Slovenia Dr. Guillaume NOEL – Innovation and strategy at Heliot Europe GmbH Fourth Industrial revolution, AI, Big data and IoT 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 42/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 43/541 The outlooks seem gloomy…. 3 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 43/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 44/541 But there is hope as new technologies emerge… 5 Source: Lvivity IoT and 0G 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 44/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 45/541 Has the delivery arrived? What is the current temperature? Where is the tool on loan? How good is the air in the office? How o H w ow How can I read the consumption from a distance? nce nce?? Can the next construction phase start? Are my goods where they should be?? Has the voltage dropped below a critical value? Has the cold chain been maintained? ned? Is my home safe? Is Where is the next free parking space? spacee? Is there Is I re there a fi a re hazard due to permanently increased temperature? Where is the stolen vehicle? W le? What is Wha the current s th cur fill level? fill ent f vel? Nahezu unbegrenzt IoT makes viel your physicale Anwendungsfälle business pro und Geschäftsmodelle cesses visible Wir unterstützen Sie als größter IoT in Europa. We have the answers to your questions 7 Pole Position: who we are Sigfox is the largest Heliot Europe is the global 0G wireless exclusive operator of the network specifically Sigfox 0G network in Germany, for IoT which is designed Switzerland, Austria, Slovenia and sustainably for widespread Liechtenstein. With over 3700 accessibility and enables data radio sites*, Heliot Europe is the extraction and visualization at an largest Sigfox 0G network unbeatable low cost - it is secure, operator in Europe. lean, cost-effective, robust and efficient. it is secure, lean, cost- effective, robust and efficient. Sigfox 0G Countries ; and Regions (*as of 01/2021) 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 45/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 46/541 Sigfox 0G network: exponential growth worldwide 19M 75M registered devices Messages sent Per day Available in Coverage C ver ov Cov ag ra e g 75 6 Mkmm2kmm Countries & Regions 1.3 Bn. people Global solutions for more sustainability Sigfox is the largest IoT ecosystem operator in the world. 9 Why does your company need an "Internet of Things"? IoT Your objects of all kinds. A reliable and secure radio A universal cloud. Sophisticated data Uncomplicated visualization. Equipped with durable, network. Powerful, scalable and management made Comprehensive transparency maintenance-free 0G Global and without secure. possible by about your processes. radio transmitters. roaming costs. high-performance Efficient and sustainable at databases. the same time. Your objects themselves provide valuable data to your IT and support your decisions Global network for the digitalization of your physical business processes 10 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 46/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 47/541 IoT explained The Internet of things (IoT) describes the network of physical 1 objects -aka "things“ -that are embedded with sensors, ~102m software, and other technologies for the purpose of connecting People in DACHSL and exchanging data with other devices and systems over the Internet. Internet of Critical IoT, connecting millions of objects, communicating high «People» 2 amounts of data, at a higher data rate, with low latency and high «Critical» reliability, which mostly also results in higher power Internet consumption. We find applications in transportation (connected of Things vehicle, traffic control …), smart health (surgery, patient (with IP Address) monitoring…), and industry (real-time applications, robots, remote manufacturing). Massive IoT, connecting billions of objects, transmitting a low 3 amount of data, at a low data rate, mostly battery powered, «Massive» Internet designed to optimize energy consumption and lasting up to 15 of Things years once installed. One can find applications in many verticals (without IP Address) such as: utilities, cities, agriculture, logistics, buildings (airports, hotels, stadiums, multi-dwelling units, home, venues…), and supply chain or transportation. ~510m ~9,2bn Live connected objects (ca 5x per capita) «Identifiable» objects (ca 90x per capita) 11 0G is the key to a sustainable IoT solution Cyber surface. Radiation. Protection. Cost. Time. Data. Options. 0G is sustainable. Energy. Insight. Ultra low has much more to offer. Distance. The 0G network in Europe uses the same amount Footprint. of power than 10 x 5G base stations 12 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 47/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 48/541 The IoT jungle The IoT “jungle” 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 48/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 49/541 The IoT “jungle” The IoT “jungle” 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 49/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 50/541 Use cases and verticals Roller cage tracking Challenge DHL owns a fleet of roller cages that are critical to their business. They were unmanaged, resulting in losses, lack of visibility, and unoptimized usage. Solution Benefits • Equip roller cages with ALPS • Reduced number of lost roller Lykaner tracker cages means a positive impact on CAPEX • Using Sigfox ATLAS WiFi geolocation technology • Gain in efficiency by on-demand delivery of empty roller cages thereby reducing CO2 emissions • Calculation of an ETA (Estimated time of availability) will be possible in the future Public Customer case 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 50/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 51/541 Giving a voice to beer kegs Challenge Remove labor-intensive manual scanning bottlenecks and billing reconciliation issues to improve operational and billing efficiency across the total supply chain of the keg. For ex. 20% kegs do not get scanned every year. Solution Benefits A highly ruggedized, yet low cost, • Increase adoption - Scanless industrial grade multizone tracker is operations developed which will be fixed on the Keg dome, providing track and • Invoice reconciliation – customer trace with 5 years battery trust autonomy. The tracker eliminates • Operational efficiency to be the need for manual scanning at improved by 15% each stage of supply chain, human errors, inventory management while • Improve Keg rotation from 4 to 5 monitor ambient temperature which per annum impacts the quality of beer. • Reduction of loss kegs to be Solution is under deployment by a reduced by 50%. global Keg pooler. Public Customer case Smart metering Challenge Remotely monitor water consumption Solution Benefits Kamstrup Multical 21 • 16 years autonomy with 1 reading per day & 1 open/close Service button: The valve can be operation per month closed from a distance but can only be opened via the service button • Remote valve control after the open command has been given from the central server. • Flow reduction possibility the valve has the unique • Plug & play characteristic to allow a • Fraud resistant predetermined amount of liters per hour to pass. • IP 68 rating Contains already some alarms: • Cloud solution pluggable to Leak, Burst, Dry, Fraud, Reverse existing ERP systems flow. • Central data capturing Public Customer case 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 51/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 52/541 Usage based insurance Challenge La Parisienne is disrupting the insurance for the mobility market with cutting edge offers that are more transparent, simple and competitive. Solution Benefits Individual customers or small • Increased transparency for the business fleets subscribing to this user offer will receive a sensor to be installed very simply on their • Actual usage tracked allowing a vehicle. This object connected to precise billing Sigfox's 0G network will be • Simple implementation equipped with an accelerometer, allowing the detection of • Competitive advantage for La movements and thus providing Parisienne them with insurance based on their real usage (per minute, per hour or per km). Public Customer case Seniors life quality improvement Challenge Senior people living alone have significantly higher risks of having problems when there is nobody around that can provide help Solution Benefits Monitoring senior activity within • Improving quality of life of their home to detect potential risk Seniors situation. • Provides ability for seniors to Placing several motion and door stay safe longer at home sensors in the house allow to learn the senior lifestyle. Cloud-based • Reduce the risks of senior algorith learns senior’s behavior to citizens falling and fainting provide better care. outdoor and indoor On significant lifestyle change a • Help and provide peace of mind message is sent to the relatives. to carers Optional GPS-based device • New service being added to Vox provides additional information of Telecom product portfolio senior location when leaving home 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 52/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 53/541 Giving a voice to paintings Challenge • The MAMCO lends art pieces to other museums in Europe • How to check that the transport conditions and exhibitions are not damaging the pieces? Solution Benefits Attach a very small sensor to the paintings before shipping The sensor reports location, humidity and temperature When a threshold is crossed (excessive temperature or humidity), the MAMCO receives an alert. Public Customer case New trends 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 53/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 54/541 Smart label – flexible, compostable and recyclable 1 Scan QR code and link device ID to application 2 Cut selected temperature setting with normal scissors 3 Attach to stock (self-adhesive) Receive notification if temperature is exceeded or seal is broken 4 Public Customer case Track and trace with RFID plus (combined RFID & 0G) 26 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 54/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 55/541 Printed batteries Printed sensors 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 55/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 56/541 Any questions? Please contact us. Guillaumee NOELL Blaž Golob Innovation n and d Strategy Country manager guillaume.noel@heliotgroup.com blaz.golob@heliotgroup.com Mob. +41 76 451 08 35 Mob. +386 41 734 734 Heliott EUROPEE GmbH Bretonischer ing 6, Pavillon 3 85630 Grasbrunn, Germany HELIOT d.o.o. Trg republike 3 Research h Gatee 1000 Ljubljana, Slovenia https://www.researchgate.net/profi le/Guillaume-Noel-3 29 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 56/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 57/541 Uporaba radijskih komunikacij v športnih aplikacijah The use of radio communications in sports applications Anton Kos, Anton Umek Univerza v Ljubljani, Fakulteta za elektrotehniko Katedra za informacijsko komunikacijske tehnologije, Laboratorij za informacijske tehnologije anton.kos@fe.uni-lj.si Povzetek in great varieties regarding their properties. We Senzorji, nosljive naprave, brezžične in druge describe the most common groups of sensors and tehnologije so vse bolj prisotne v našem actuators that are used in sport and review vsakdanjem življenju. Preučujemo njihovo commercially available wireless technologies. We izvedljivost in uporabo v sistemih in aplikacijah z present the most important constraints of a biološko povratno vezavo v športu. Ti so biofeedback system operation and present a pomembni pri motoričnem učenju in spremljanju number of different biofeedback application športnega treninga. Senzorji, aktuatorji in scenarios in sports. We match the scenarios to the brezžične tehnologije so glede na njihove lastnosti most appropriate existing wireless technology that zelo raznolike. Opisujemo najpogostejše skupine is expected to sustain scalability in the number of senzorjev in aktuatorjev, ki se uporabljajo v športu, nodes or increased data rates for the expected ter podajamo pregled komercialno dostopnih application lifetime. brezžičnih tehnologij. Predstavljamo najpomembnejše omejitve delovanja sistema z biološko povratno vezavo in predstavljamo Biografija avtorja Anton Kos je doktoriral leta 2006 različne scenarije njihove uporabe v športu. na Fakulteti za elektrotehniko, Scenarije povežemo z najprimernejšo obstoječo Univerze v Ljubljani. Zaposlen je brezžično tehnologijo, za katero se pričakuje, da bo kot izredni profesor na Fakulteti za vzdrževala razširljivost v številu vozlišč ali elektrotehniko, Univerze v povečane hitrosti prenosa podatkov v pričakovani Ljubljani. Je član laboratorija za informacijske življenjski dobi aplikacije. tehnologije na katedri za Informacijsko komunikacijske tehnologije. Njegovo pedagoško in raziskovalno delo Abstract obsega področja komunikacijskih omrežij in protokolov, Sensors, wearable devices, wireless and other kakovosti storitve, pretočno podatkovnega računalništva technologies are ever more present in our daily in aplikacij, uporabe senzorjev gibanja v sistemih in life. We study their applicability and use in aplikacijah z biološko povratno vezavo, obdelave biofeedback systems and applications in sport. signalov in informacijskih sistemov. Je (so)avtor več kot Biofeedback systems are important in motor 50 člankov objavljenih v mednarodnih revijah s learning and monitoring in sports training. področja tehnike in več kot 80 člankov predstavljenih na Sensors, actuators, and wireless technologies come mednarodnih konferencah. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 57/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 58/541 Author's biography Anton Kos received his Ph.D. in electrical engineering from University of Ljubljana, Slovenia, in 2006. He is an associate professor at the Faculty of Electrical Engineering, University of Ljubljana. He is a member of the Laboratory of Information Technologies at the Department of Communication and Information Technologies. His teaching and research work includes communication networks and protocols, quality of service, dataflow computing and applications, usage of inertial sensors in biofeedback systems and applications, signal processing, and information systems. He is the (co)author of a scientific monograph, more than fifty papers published in international engineering journals, more than eighty papers presented at international conferences, and two patents. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 58/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 59/541 Uporaba radijskih komunikacij v športnih aplikacijah Anton Kos in Anton Umek Univerza v Ljubljani, Fakulteta za elektrotehniko Vsebina • Sistemi in naprave z brezžično komunikacijo v športu • Sistemi z biološko povratno vezavo v športu • Osnove delovanja in uporaba • Arhitekture • Funkcionalnost • Časovnost • Senzorji • Aktuatorji • Brezžične tehnologije • Scenariji uporabe v športu • Najprimernejša obstoječa brezžična tehnologija 2 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 59/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 60/541 Brezžični sistemi v športu • Senzorji, nosljive naprave, brezžične in druge tehnologije so vse bolj prisotne v našem vsakdanjem življenju. • Preučujemo njihovo izvedljivost in uporabo v sistemih in aplikacijah z biološko povratno vezavo v športu. • Ti so pomembni pri motoričnem učenju in spremljanju športnega treninga. • Senzorji, aktuatorji in brezžične tehnologije so glede na njihove lastnosti zelo raznolike. • Opisujemo najpogostejše skupine senzorjev in aktuatorjev, ki se uporabljajo v športu, ter podajamo pregled komercialno dostopnih brezžičnih tehnologij. • Predstavljamo najpomembnejše omejitve delovanja sistema z biološko povratno vezavo in predstavljamo različne scenarije njihove uporabe v športu. • Scenarije povežemo z najprimernejšo obstoječo brezžično tehnologijo, za katero se pričakuje, da bo vzdrževala razširljivost v številu vozlišč ali povečane hitrosti prenosa podatkov v pričakovani življenjski dobi aplikacije. 3 Kaj je biološka povratna vezava? V sistemu z biološko povratno vezavo ima oseba pritrjene senzorje za merjenje telesnih funkcij in parametrov (bio). Senzorji so povezani z napravo za obdelavo in analizo podatkov. Senzor(ji) Rezultati obdelave se sporočajo osebi (povratna vezava) preko enega od človeških čutov (tj. vida, sluha, dotika). Biološka Procesna Uporabnik povratna naprava Oseba poskuša ukrepati glede na prejeto informacijo in zanka spremeniti neko funkcijo telesa ali parameter na želeni način. Izraz biološka povratna vezava se najpogosteje opisuje Aktuator(ji) v povezavi s fiziološkimi procesi. V zadnjem času se vedno bolj uporablja tudi v povezavi s telesno aktivnostjo v smislu fizičnega gibanja. 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 60/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 61/541 Uporaba biološke povratne vezave Področja uporabe sistemov z biološko povratno vezavo so raznolika in številna. Šport • Pohitritev učenja novih gibov (motorično učenje). • Preverjanje kakovosti in natančnosti izvedbe športnih elementov. • Preprečevanje poškodb. • Zaznavanje skoraj neopaznih razlik v izvedbi. Zdravstvo • Hitrejša in bolj varna fizična rehabilitacija. • Cenejša avtonomna rehabilitacija. Drugo • Kibernetsko-fizični sistemi kjer je človek del zanke. 5 Sistemi z biološko povratno vezavo Splošna arhitektura sistema Senzorji zaznavajo aktivnost in njihovi signali se prenašajo v procesno napravo, ki poskrbi za njihovo obdelavo in analizo. Rezultati obdelave krmilijo delovanje naprave za podajanje povratne informacije. Odziv uporabnika spremeni signale senzorjev in tako sklene povratno zanko sistema. Signali in rezultati se lahko spremljajo z nadzorno napravo in shranijo v podatkovno shrambo za morebitno kasnejšo uporabo. 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 61/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 62/541 Izvedbene arhitekture Strnjen sistem Aktuator Vsi elementi sistema so na uporabniku 200 • združeni v eni napravi 172 Procesna • ali zelo blizu eden drugemu. naprava Komunikacije je navadno brezžična, lahko pa tudi žična. 150 Sistem je avtonomen. Senzor Kompromis med • procesno močjo • časom delovanja. Porazdeljen sistem Aktuator Senzorji in aktuatorji so navadno na uporabniku. Procesna naprava je na oddaljeni lokaciji. Komunikacija je brezžična. 131 Procesna 172 naprava Kompromis med: 129 • dosegom • bitno hitrostjo Senzor • zakasnitvijo Procesna moč ni problem. 7 Funkcionalnost Uporabnik (športnik) Sistem je v celoti pod nadzorom uporabnika. Procesna Nadzorna Senzor(ji) • Nosljive naprave kot so: naprava naprava • pametne ure, Aktuator(ji) • pametni telefoni, Uporabnik • namenske naprave z biološko povratno vezavo. Strokovnjak (trener) Nadzorna Lokacija A naprava Uporabnik Sistem nadzoruje strokovnjak, ki spremlja uporabnika. Procesna Senzor(ji) naprava • analizira izvedene akcije, Radijski kanal Strokovnjak • podaja povratno informacijo uporabniku Aktuator(ji) Lokacija B • spremlja statistične in druge parametre izvedbe in uporabnika. Oblak Oblak Obdelava in/ali shranjevanje podatkov v oblaku Naknadna obdelava in Podatki analiza • izvorni podatki, • izvedeni parametri, Izvorni podatki in signali Izvedeni rezultati Lokacija A • statistične analize… Meta podatki Skupinska obdelava Rezultati RT analize Rudarjenje in strojno učenje Dosegljivo preko spleta vsem z ustreznimi pravicami. - - - - - - - - Procesna Monitoring Senzor(ji) naprava device Aktuator(ji) Lokacija B Uporabnik Strokovnjak 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 62/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 63/541 Časovnost Glede na čas podajanja povratne informacije, ločimo dva osnovna načina delovanja Po aktivnosti ( terminal feedback) kjer se signali senzorjev, pridobljeni med aktivnostjo, obdelujejo po končani aktivnosti (post-processing) Med aktivnostjo ( concurrent feedback) kjer se signali senzorjev obdelujejo sočasno z izvajanjem aktivnosti (real time processing) 9 Kategorizacija sistemov z BPV Uporabnik Strokovnjak Funkcionalost Oblak Osebni Omejen Odprt Razsežnost Strnjen Porazdeljen Arhitektura Redek Po aktivnosti Čas podajanja Med aktivnostjo Težko izvedljiv povratne informacije Procesna moč 10 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 63/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 64/541 Potrebe sistemov z BPV Potrebe po procesnih in komunikacijskih virih so odvisne od številnih dejavnikov: • komunikacijske tehnologije • razdalje med elementi sistema • razpoložljive moči baterije • števila senzorjev • frekvence vzorčenja • bitne hitrosti • protokolnih skladov • ... Nosljiv senzor Aktuator Senzor v opremi Oblak BAN procesna enota BAN radijski link Reakcija uporabnika BAN PAN LAN MAN/WAN ~ 2 m ~ 10 m ~ 100 m 11 Senzorji in aktuatorji Senzor/Aktuator Bitna hitrost Zakasnitev Temperature < 100 bit/s Not critical Senzorji in aktuatorji v športu, Heart rate < 100 bit/s Seconds so zelo heterogeni. Oximeter < 100 bit/s Seconds CO2 < 100 bit/s Seconds Lahko jih razvrstimo po več kriterijih Blood sugar < 100 bit/s Not critical • izmerjena fizikalna veličina, Blood pressure < 100 bit/s Not critical • zahteve glede zakasnitve, ECG 20-100 kbit/s < 1 s • bitne hitrosti, Accelerometer 1-200 kbit/s < 50 ms • … Gyroscope 1-200 kbit/s < 50 ms Magnetometer 1-200 kbit/s < 50 ms V tabeli so navedeni najpogosteje Altimeter < 1 kbit/s Not critical uporabljeni senzorji in aktuatorji z: Strain-gauge 1-50 kbit/s < 50 ms Tactile actuator < 100 bit/s < 50 ms • razponi bitne hitrosti in • omejitvami zakasnitve. Voice 50-100 kbit/s < 50 ms Audio <1 Mbit/s < 50 ms Video < 10 Mbit/s < 50 ms 12 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 64/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 65/541 Brezžične tehnologije Brezžične tehnologije so, tako kot senzorji in aktuatorji, zelo heterogene. V tabeli so navedene najbolj razširjene brezžične tehnologije za BAN, PAN, LAN in MAN . Tehnologija Frekvenca Doseg Bitna hitrost Oddajna moč Bluetooth 2.1 + EDR 2.4 GHz 10 - 100 m 1 - 3 Mbit/s 2.5 - 100 mW Bluetooth 4.0 + LE 2.4 GHz 10 m 1 Mbit/s 2.5 mW ZigBee 868 MHz and 2.4 GHz 10 - 100 m 20 - 250 kbit/s 1 - 100 mW IEEE 802.11n 2.4 and 5 GHz 70 m 600 Mbit/s 100 mW IEEE 802.11ac 5 GHz 35 m 6.93 Gbit/s 160 mW IEEE 802.11ad 60 GHz 10 m 6.76 Gbit/s 10 mW IEEE 802.11ah 900 MHz 1 km 40 Mbit/s 100 mW IEEE 802.11af 54 - 790 MHz >1 km 1.8 - 26.7 Mbit/s 100 mW LoRaWAN 868 - 928 MHz up to 100 km 250 - 5470 bit/s 1.5 - 100 mW 13 Brezžične tehnologije Dva glavna parametra, ki se navadno upoštevata, sta • doseg in • bitna hitrost. Oboje je močno odvisno od izbrane različice sistema z biološko povratno vezavo ter obsega, načina in mesta obdelave podatkov. Nekaj primerov možne uporabe in omejitev: • Za pošiljanje podatkov senzorja iz sistema odprtega prostora sta potrebna različica LoRaWAN ali IEEE 802.11ah. • ZigBee in LoRaWAN nista primerna za prenos visoko dinamičnih signalov IMU. • Bluetooth je primeren za osebne aplikacije biološke povratne informacije, ne pa za aplikacije z biološko povratno vezavo v omejenem in odprtem prostoru. 14 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 65/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 66/541 Bitna hitrost [b/s] Senzorji in tehnologije Osebni Omejen Odprt IEEE 802.11ac 109 IEEE 802.11n 108 IEEE 802.11ah 107 Video Avdio Prikaz razpoložljivih bitnih hitrosti in 106 IEEE 802.11af Več senzorjev Bluetooth dosegov brezžičnih tehnologij iz tabele 2, Pospeškometer / Žiroskop skupaj z zahtevanimi razponi bitnih hitrosti 105 ECG različnih senzorjev in aktuatorjev iz tabele 1, ki pomagajo pri izbiri ustreznih elementov 104 Strain-gauge sistema z biološko povratno vezavo. 103 ZigBee 102 Temperatura LoRaWAN Utrip srca Taktilno 1 102 10 10 105 104 103 Range [m] 15 Primeri izvedbenih scenarijev Glede na heterogenost senzorjev in aktuatorjev ter Mobilno brezžičnih tehnologij je omrežje možnih mnogo različnih /4G/5G Oblak 3G podatki/obdelava/app scenarijev. 802.15.4 BTLE Internet 802.11ad 802. WLAN 11 BAN PAN Samostojna senzorska naprava LAN Nosljiv senzor MAN/WAN Senzor v opremi Prehod BAN radijski link 16 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 66/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 67/541 Scenarij uporabe - 1 Aplikacija z biološko povratno vezavo, ki uporablja signale nizko-dinamičnih fizioloških senzorjev, ni komunikacijsko zahtevna: • bitne hitrosti ne presegajo 1 kbit/s, • lahko se izvaja v kateri koli obravnavani tehnologiji. Na primer: • osebna različica je izvedena z Bluetooth LE, • različica za omejen prostor z IEEE 802.11af in • različica odprtega prostora z LoRaWAN. Primer uporabe v športu je spremljanje fizioloških parametrov športnika med tekom na tekalni stezi v fitnesu, na stezi ali v naravi. 17 Scenarij uporabe - 2 Aplikacija z biološko povratno vezavo, ki uporablja signale iz visoko dinamičnega IMU, je bolj zahtevna • Bitne hitrosti zlahka dosežejo nekaj sto kbit/s, ko se hkrati uporablja več IMU naprav celo več Mbit/s. • Za različico odprtega prostora je možen le prek prehoda ali mobilne naprave, če je na voljo dovolj visoka bitna hitrost Primer uporabe v športu je podajanje slušne povratne informacije telovadcu, ki izvaja vadbo na skakalnem konju. 18 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 67/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 68/541 Scenarij uporabe - 3 Aplikacija z biološko povratno vezavo, ki uporablja signale iz kombinacije visoko dinamičnega IMU, senzorjev športne opreme in aktuatorjev z video povratnimi informacijami, je lahko zelo zahtevna. • Bitne hitrosti lahko presegajo 10 Mbit/s. • Različice z omejenim prostorom so omejene na različne obsege, odvisno od uporabljene tehnologije LAN. • Različice odprtega prostora niso izvedljive. Primer uporabe v športu je podajanje video povratnih informacij v realnem času smučarju z osebno različico sistema. Pri uporabi aplikacij z BPV v skupinskih športih so možni še bolj zahtevni scenariji. 19 Primeri sistemov in aplikacij 10 S… SmartSKI 0 45 50 55 60 65 70 75 80 -10 Time [s] Ski_L_E… 45 50 55 60 65 70 75 80 -2 Time [s] Ski_L_… 45 50 55 60 65 70 75 80 -2 Time [s] 5 A… 0 45 50 55 60 Time [s] 65 70 75 80 Golf trainer Player 2 1 Player 3 0,8 0,6 0,4 0,2 0 -1 -0,5 0 0,5 1 -0,2 -0,4 -0,6 -0,8 -1 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 68/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 69/541 Primeri sistemov in aplikacij Plavanje Tenis Streljanje UWB tag z y x IMU sensor 21 Primeri sistemov in aplikacij Plezanje Odbojka 22 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 69/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 70/541 Primeri sistemov in aplikacij Protokoli za prenos podatkov pod vodo Æ Karate Kajak in kanu Sabljanje Meritve gibalnih sposobnosti • otrok • športnikov ……. 23 Nadaljnje branje Biomechanical Biofeedback Systems and Applications Avtorja: Anton Kos in Anton Umek Prva knjiga o interdisciplinarni temi sistemov in aplikacij z biomehaniko biološko povratno vezavo, s poudarkom na senzorskih sistemih za pospešeno motorično učenje in preprečevanje poškodb v športu in rehabilitaciji. Knjiga celovito pokriva naslovno tematiko, ki jo podprta tudi s študijami specifičnih primerov uporabe biološke povratne vezave v različnih športih. Podrobna študija omejitev sistemov in razpoložljivih tehnologij za njihovo izvedbo. Študije primerov vključujejo poskuse s profesionalnimi in amaterskimi športniki. Eksperimentalni rezultati kažejo koristi sistemov in aplikacij z biološko povratno vezavo, ki delujejo v realnem času, za pospešeno motorično učenje. Več izvodov knjige je na voljo v knjižnici FE in v LaIT. 24 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 70/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 71/541 Anton Kos Anton Umek anton.kos@fe.uni-lj.si anton.umek@fe.uni-lj.si 25 Hvala 26 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 71/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 72/541 Komunikacije z nevtroni - alternativa radijskim komunikacijam? The use of radio communications in sports applications Luka Snoj, Aljaž Čufar, Klemen Ambrožič Institut »Jožef Stefan«, Odsek za reaktorsko fiziko luka.snoj@ijs.si Povzetek neutrons’ unique properties. Neutrons offers Nevtroni so nevtralni delci, ki imajo popolnoma advantages for two-way communication where drugačne lastnosti širjenja in interakcije z medijem radio waves do not reach, e.g. deep mines, thick kot elektromagnetno valovanje, na katerem temelji pressure vessels, Faraday cages or during/after današnja brezžična komunikacija. Za razliko od severe space weather events. Neutron elektromagnetnega valovanja so praktično communication is well suited to systems requiring neobčutljivi na elektromagnetne motnje ter lahko large degree of resiliency and reliability such as prodrejo skozi goste in kovinske materiale. Zaradi communications in critical infrastructure. In svojih lastnosti se nevtronska komunikacija lahko summer 2021 an experiment was performed in uporablja tam, kjer običajne metode odpovedo, which the concept was demonstrated. Currently we npr. komunikacija skozi debele tlačne posode, med research limitations of neutron communications rovi v rudniku, v vesolju, skozi Faradayevo kletko regarding the bandwidth, signal propagation and ali v primeru intenzivnih vesoljsko vremenskih possibilities for signal amplification. pojavov. Nevtronska komunikacija je primerna za Biografija avtorja sisteme, ki potrebujejo visoko stopnjo odpornosti Dr. Luka Snoj je od leta 2005 in zanesljivosti kot so npr. komunikacije v kritični zaposlen kot raziskovalec na infrastrukturi. Poleti 2021 smo izvedli odseku za reaktorsko fiziko na eksperiment, s katerim smo prvi na svetu dokazali, Institutu Jožef Stefan. Njegovo da je komunikacija z nevtroni mogoča. Trenutno raziskovalno področje so teoretične raziskujemo omejitve nevtronske komunikacije in eksperimentalna reaktorska glede pasovne širine, propagacijo in možnosti za fizika povezana z uporabo na močnostnih in ojačenje signala. raziskovalnih jedrskih reaktorjih. Še posebej se posveča Monte Carlo transportu nevtronov in fotonov v jedrskih Abstract napravah. Leta 2005 je diplomiral na oddelku za fiziko Unlike radio waves, which are absorbed by Fakulteta za matematiko in fiziko Univerze v Ljubljani high-density materials, fast neutrons offer in se takoj zaposlil na Institutu Jožef Stefan.. Leta 2009 significant advantages where communication je na FMF UL doktoriral s področja fizike jedrskih needs to penetrate high-Z materials or porous reaktorjev. V letih 2010 in 2013 je bil na podoktorskem aggregates, potentially complementing or usposabljanju na centru za fuzijsko energijo v Culhamu replacing radio communications according to v Veliki Britaniji, s katerim sodeluje še danes. Leta 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 72/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 73/541 2010 je bil imenovan za vodjo raziskovalnega reaktorja TRIGA na IJS. Od leta 2014 je vodja odseka za reaktorsko fiziko na IJS. Je izredni profesor za področje radiacijske in reaktorske fizike Na Fakulteti za matematiko in fiziko Univerze v Ljubljani ter gostujoči profesor na Virginia University of technology. Author's biography Luka Snoj received the Diploma and PhD thesis in Physics from the Faculty of Mathematics and Physics, University of Ljubljana, Slovenia in 2005 and 2009, respectively. His research interest is mainly theoretical reactor physics related to practical applications in power and research reactors, in particular: Monte Carlo transport of neutrons and photons in fission and fusion nuclear reactors, integral reactor experiments, criticality experiments and calculations. In 2010 has been appointed head of TRIGA reactor at the Jozef Stefan Institute (JSI). Since 2014 he has been head of reactor physics division at the Jozef Stefan Institute. He is very active in teaching; reactor and radiation physics, experimental reactor physics at the Faculty of mathematics and physics where in 2019 he was elected associate professor. He is also an adjunct professor at the Virginia University of technology. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 73/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 74/541 Komunikacije z nevtroni - alternativa radijskim komunikacijam? >ƵŬĂ^ŶŽũ͕ůũĂǎƵĨĂƌ͕<ůĞŵĞŶŵďƌŽǎŝē L.Snoj Odsek za reaktorsko fiziko 2. 2. 2022 Vsebina • Motivacija • O nevtronih • Viri nevtronov • <ŽŵƵŶŝŬĂĐŝũĂ z nevtroni • hƉŽƌĂďĂ • ĞŵŽŶƐƚƌĂĐŝũĂ • ^ŝŵƵůĂĐŝũĞ • KũĂēĞŶũĞ • Izzivi za prihodnost • ĂŬůũƵēĞŬ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 74/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 75/541 Nevtroni masa [g] atomska naboj magnetni spin razpolovni masa, moment ēĂƐ za m.e.* razpad ɴ proton 1.672×10-24 1.00728 +e ** 0 2.79 ʅj ½ Ŝ stabilen nevtron 1.674×10-24 1.00866 0 -1.91 ʅj ½ Ŝ 10.2 min • Nevtroni – delci ďƌĞnj ĞůĞŬƚƌŝēŶĞŐĂŶĂďŽũĂ, ki sestavljajo jedra ĂƚŽŵŽǀ • Interakcija s snovjo preko jedrskih reakcij – sipanje, ĂďƐŽƌƉĐŝũĂ • DŽēŶĂ jedrska sila • EĞŽďēƵƚůũŝǀŝ na ĞůĞŬƚƌŝēŶŽ ter ŵĂůŽ ŽďēƵƚůũŝǀŝ na ŵĂŐŶĞƚŶŽ polje • /ŽŶŝnjŝƌĂũŽēĞ sevanje *m.e. = masna enota = m (C12)/12 =1.660×10-24 g = 931.5 MeV/c2 **ȝ = jedrski magneton = e ƫ2m = 3.2×10-8 eV/T j 0 p Viri nevtronov • Viri nevtronov: – Radioaktivni (252Cf, ŵ-Be, Ra-Be, Pu-Be) – Jedrski reaktor (235U, 239Pu) E ੣ (2 ŵĞs - 2 MeV) – Pospeševalniški (DT, DD, pn) E ੣ (2 MeV - 20 MeV) • Modulacija: – Mehansko: zaslonka iz ĂďƐŽƌďĞƌũĂ nevtronov (B,Cd, In, Au,…) – ůĞŬƚƌŝēŶŽ: pulzni pospeševalniki 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 75/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 76/541 Interakcija nevtronov s snovjo ƚĞƌŵŝēŶŝ͕хϭeV Hitri, E > 1 MeV Komunikacija z nevtroni • Majhna atenuacija pri prehodu skozi ŐŽƐƚĞŵĂƚĞƌŝĂůĞnjĞŵůũĂ, ďĞƚŽŶ, kovine. • Odpornost na EM ŵŽƚŶũĞ • Pasivno ŽũĂēĞŶũĞ – repetitorji 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 76/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 77/541 Uporaba • Preko ďĞƚŽŶƐŬŝŚ in kovinskih struktur ďƌĞnj penetracij • Faradayeva kletka • WŽƚƌĞďĂ po raznolikosti • <ƌŝƚŝēŶĂ infrastruktura • Odpornost na EM ŵŽƚŶũĞ - ĂƌƌŝŶŐƚŽŶ event, 1.-2. ƐĞƉƚĞŵďĞƌ 1859 – najintenzivnejša ŐĞŽŵĂŐŶĞƚŶĂ nevihta v znani njŐŽĚŽǀŝŶŝ – ĞůĞŬƚƌŝēŶŝ ŵƌŬ͕ znatne ƉŽƓŬĚŽďĞ ƚĞůĞŐƌĂĨƐŬŝŚ ƐŝƐƚĞŵŽǀ͕ ĞůĞŬƚƌŝēŶŝŚ ŽŵƌĞǎŝũ͕… • <ŽŵƵŶŝŬĂĐŝũĂ v ƉƌŝŵĞƌƵ ŶĞƐƌĞē͕ npr. rudarske ŶĞƐƌĞēĞ • <ŽŵƵŶŝŬĂĐŝũĂ v jedrskih elektrarnah, ďƵŶŬĞƌũŝŚ͕ trezorih,… Demonstracija 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 77/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 78/541 Demonstracija • Mehanska ŵŽĚƵůĂĐŝũĂ nevtronov iz 252Cf. • Hiter, scintilacijski detektor nevtronov • Vzpostavitev ŬŽŵƵŶŝŬĂĐŝũƐŬĞŐĂ protokola • 100% uspešen prenos ASCII znakov v zraku Joyce, et al. NIMA 1021, 165946, (2022) Raziskave na ƉŽĚƌŽēũƵ ^ŝŵƵůĂĐŝũĂƉƌŽƉĂŐĂĐŝũĞŶĞǀƚƌŽŶƐŬĞŐĂƉƵůnjĂ ƉƌĞŬŽƌĂnjůŝēŶŝŚŵĞĚŝũĞǀ͗ • :ĞŬůŽ͕ĂůƵŵŝŶŝũ͕ďĞƚŽŶ͕ŐƌĂĨŝƚ͕ǀŽĚĂ͕ŐƌĂŶŝƚ͕ ĂƉŶĞŶĞĐ͕ƐǀŝŶĞĐ͕ǀŽůĨƌĂŵ. • Študij atenuacije in razširitve pulza: – WŽƚƌĞďŶĂ jakost ƐŝŐŶĂůĂ in ŽďēƵƚůũŝǀŽƐƚ detektorja. – Ocena &t,DїHitrost prenosa podatkov. – ^ƉƌĞŵĞŵďĂ v ĞŶĞƌŐŝũŝ nevtronov 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 78/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 79/541 Raziskave na ƉŽĚƌŽēũƵ: ZĂēƵŶƐŬŝ rezultati Razširitev ŝĚĞĂůŶĞŐĂ pulza (ɷ(t)) 20 MeV nevtronov ǀϭŵďĂƌŝƚŶĞŐĂ ďĞƚŽŶĂ Raziskave na ƉŽĚƌŽēũƵ: ZĂēƵŶƐŬŝ rezultati FWHM in atenuacija pulza nevtronov v ďĂƌŝƚŶĞŵ ďĞƚŽŶƵ. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 79/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 80/541 Raziskave na ƉŽĚƌŽēũƵ: ZĂēƵŶƐŬŝ rezultati Razširitev ŝĚĞĂůŶĞŐĂ pulza 20 MeV nevtronov ǀϭŵŶĞƌũĂǀŶĞŐĂ jekla 304. Raziskave na ƉŽĚƌŽēũƵ: ZĂēƵŶƐŬŝ rezultati FWHM in atenuacija pulza nevtronov v ŶĞƌũĂǀŶĞŵ jeklu SS304. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 80/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 81/541 KũĂēanje • <ĂŬŽ ŽũĂēĂƚŝ ƐŝŐŶĂů͍ • Nekateri ŵĂƚĞƌŝĂůŝ ŝŵĂũŽ visoko verjetnost za ƉŽŵŶŽǎĞǀĂŶũĞ nevtronov (n,2n), (n,f) • KũĂēĞŶũĞ preko ƉŽĚŬƌŝƚŝēŶĞ fisijske reakcije͍ ^ŝŵƵůŝƌĂŶ ŽũĂēĞǀĂůŶŝŬ KũĂēĞŶũĞ: rezultati KƌŝŐŝŶĂůŶŝ pulz na detektorju Faktor ŽũĂēŝƚǀĞ 668 na ƉŽŬƌŝƚŝēŶŝ ŬƌŽŐůŝ235U (keff=0.999, En= 20 MeV). WƌŽďůĞŵzakasnelih nevtronov! 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 81/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 82/541 Izzivi za prihodnost • KƉƚŝŵŝnjĂĐŝũĂ izvorov & detektorjev • ĂƓēŝƚĂ pred ƐĞǀĂŶũĞŵ • Nevtronski vodniki • Diode & tranzistorji • Sklopitev z ŽƉƚŝēŶŝŵŝ ĞůĞŵĞŶƚŝ – Jedrsko ŐŶĂŶŝ polprevodniški laser – Lasersko ŐŶĂŶŝ izvori nevtronov ZĂŬůũƵēĞŬ • Nevtronska ŬŽŵƵŶŝŬĂĐŝũĂ ne ďŽ izpodrinila ŬůĂƐŝēŶĞ • Ponuja pa: – raznovrstnost, – ƌŽďƵƐƚŶŽƐƚ za ƐƉĞĐŝĨŝēŶĞ ƉŽƚƌĞďĞ – Prodornost – ^ǀĞǎ ƉŽŐůĞĚ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 82/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 83/541 Radiation mapping of a nuclear reactor with a mobile robot Nature Scientific Reports , July 2021 :ŽnjĞĨ^ƚĞĨĂŶ/ŶƐƚŝƚƵƚĞ͕>ũƵďůũĂŶĂ͕^ůŽǀĞŶŝĂ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 83/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 84/541 Tehnologija Wi-Fi6 / Wi-Fi6 Mesh od razvoja proizvajalca in prenosa v realno okolje s komercialnim zagonom operaterja WiFi6 / WiFi6 Mesh technology from manufacturer development and transfer to real environment with commercial operator launch Mitja Golja1, Gorazd Penko2 1Iskratel S&T, 2T-2 golja@iskratel.si, gorazd.penko@t-2.com Povzetek več vodilnih pozicijah v Iskratelu, med drugimi je bil V prispevku so predstavljene tehnične odgovoren za vodenje produktne linije in razvoja. značilnosti, t.i. tehnološke rešitve WiFi 6 in Wifi 6 Njegovo raziskovalno delo je osredotočeno na izboljšave uporabniške izkušnje in iskanje novih Mesh. Podana je dobra praksa sodelovanja med načinov uporabe IoT tehnologij. ponudnikom novih tehnoloških rešitev in Gorazd Penko je vodja oddelka Referenčnnega ponudnikom telekomunikacijskih storitev. Opisan laboratorija telekomunikacijskega operaterja T-2 d.o.o, je tudi empirični postopek končnih pristojnega za tehnološki razvoj fiksnih dostopovnih predprodukcijskih performančnih meritev v omrežij P2P/FTTH, xDSL in P2MP/FTTH, ter CPE realnem okolju operaterja. IAD naročniških naprav. Diplomiral je na Univerzi v Ljubljani, Fakulteti za elektrotehniko. V letu 1998 se je Abstract iz področja vzdrževanja podatkovnih omrežij preselil v The technical characteristics of the WiFi 6 and razvojni oddelek Telekoma Slovenije. Leta 2006 se je Wifi 6 Mesh technological solution is presented in pridružil podjetju T-2 d.o.o. Od leta 2007 do 2010 je bil this article. Good practice of cooperation between vodja oddelka xDSL, kjer je sodeloval pri razvoju, the provider of new technological solutions and the načrtovanju in upravljanju omrežij xDSL. Pred tem provider of telecommunications services is (2006-2007) je delal kot operater omrežja. Njegova provided. The empirical process of final pre- naloga je bila razvoj, nadzor, upravljanje in uvajanje production performance measurements in the real novih širokopasovnih tehnologij VDSL1 in VDSL2. environment of the operator are also described. Sodeluje na številnih mednarodnih konferencah na področju telekomunikacij, kot so Broadband World Forum, FTTH Council, Smart Home konferencah itd. Biografije avtorjev Bil je in je še vedno projektni vodja številnih projektov, Dr. Mitja Golja je zaposlen v podjetju Iskratel kot vključno z dostopovnimi omrežji GPON, XGS-PON in direktor razvoja poslov v poslovni enoti dostop. dostopovnimi tehnologijami naslednjih generacij. Odgovoren je za pripravo tržnih strategij in razvoja Authors' biographies poslov novih tehnologij. Ima več kot 15 let izkušenj s Dr. Mitja Golja is a Business Development Director širokopasovnimi tehnologijami in se strastno ukvarja z at Iskratel's Business Unit Broadband. He is responsible razvojem širokopasovnih produktov, poslovnih modelov for new market strategies and go-to-market initiatives in strategij. Pred vodenjem razvoja poslov je delal na for new technologies. He brings 15+ years of global 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 84/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 85/541 operating experience in the broadband-networking industry and a deep passion for product business development and strategy to Iskratel. Prior to heading business development, Mitja held various management positions within Iskratel. Amongst others he was in charge for broadband product line management and R&D. He’s research work is focused on user experience improvements and search for new IoT technology applications.. Gorazd Penko is curently working as Head Of Reference Laboratory for development P2P/FTTH, xDSL, P2MP/FTTH, xDSL and CPE IAD at T-2 telecommunication company. He graduated at University of Ljubljana, Faculty of electrical engineering. His work in telecommunications development department area started in 1998 at Telekom Slovenije with the development and commercial introduction of ADSL technolog. In 2006 he joined T-2. From 2007 to 2010 he was Head of xDSL department, where he has been involved in development, planning and management of xDSL networks. Before that (2006-2007) he worked as a Network operator; his task included development, supervision, management and introduction of new VDSL1 and VDSL2 broadband technology (among the first ones in Europe). He participates in many International Conferences in the field of telecommunications, such as Broadband World Forum Europe, FTTH Council, Smart Home conferences etc. He was and still is a project manager of many projects, including GPON, XGS-PON and next generation access networks. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 85/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 86/541 Tehnologija Wi-Fi6/Wi-Fi6 Mesh od razvoja proizvajalca in prenosa v realno okolje s komercialnim zagonom operaterja Dr. Mitja Golja, Iskratel d.o.o. Gorazd Penko, T-2 d.o.o. Agenda – Motivacija za Wi-Fi 6 – Tehnološko ozadje in standardizacija – Princip vpeljave novega CPE produkta v operatersko okolje ed. erv – Opis metodologije primerjalnih meritev Wi-Fi / Mesh Wi-Fi s res right . All – Rezultati primerjalnih „meritev“ Wi-Fi 5 in Wi-Fi 6 tel skra © I – Rezultati primerjalnih „meritev“ Wi-Fi 5 Mesh in Wi-Fi 6 Mesh v več različnih konfiguracijah – Zaključek 2 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 86/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 87/541 Zakaj Wi-Fi 6 / Wi-Fi 6 Mesh ? – „Eksplozija“ brezžičnih naprav, – Pametne naprave: Povprečno število naprav in povezav na osebo po – Telefoni, tablice, kamere, senzorji, svetu leta 2018 in 2023 IoT,… ed. – Vsebina na zahtevo: erv ts resh – l rig Časovni zamik (time shift) . Al – skratel YouTube, Netflix,… © I – Aplikacije in storitve v oblaku – Zahteve uporabnikov po Wi-Fi: – Mobilnosti, – stabilnosti, – zanesljivosti Vir: https://www.statista.com 3 Globalni IP promet po tipu naprav Ostalo (0,01%, 0,03%) Ne-pametni telefoni (0,2%, 0,1%) Tablice (7%, 7%) ed. erv M2M (4%, 7%) s res right . All TV (17%, 16%) tel skra © I PC (49%, 19%) Pametni telefoni (23%, 50%) 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 87/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 88/541 Čas med novimi IEEE standardi se je znatno zmanjšal 100000 2.4G 5G 6G ps] 802.11be [Mb 10000 2.4G 5G 6G 2022, t 5G 802.11ax 802.11ax Draft 2.0 os 802.11ac 2018, 2020, 46Gbps ed. itr erv 9.6Gbps 6GHz 1000 2013, 6.8Gbps ts resh 9.6Gbps 2.4G 5G l rig čna h . Al zi 802.11n skratel fi © I 100 2009, 600Mbps ična 2.4G 802.11g reto Wi-Fi3 e 10 t 2003, 54Mbps 6 let 4 let 5 let 2 leti 2 leti Max 1 2000 2005 2010 2015 2020 2025 5 Vpeljava Wi-Fi standardov Dobave naprav z Wi-Fi vmesnikom glede na Wi-Fi protokol Napoved dobave naprav z Wi-Fi 6 ed. erv s res right . All tel skra © I vo kosih 2018 2019 2020 2021 2022 2023 2024 V milijon Vir: Wi-Fi chipset shipment forecast by IDC towards 2023 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 88/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 89/541 Zakaj Wi-Fi 6? Izboljšave omrežne Daljša uporaba kapacitete in hitrosti baterijsko napajanih prenosa pametnih naprav ed. erv ts resh l rig . Al Izboljšana skratel Zmanjšane zakasnitve © I učinkovitost omrežja Povečan doseg zaradi vpeljave nove Varnostne izboljšave modulacije 7 Ključne izboljšave pri omrežnih kapacitetah in prenosnih hitrostih 4u večji pretok podatkov 37% višje maksimalne fizične hitrosti na posameznega uporabnika ed. 75% zmanjšana zakasnitev erv s res right . All tel skra © I – OFDM in OFDMA (polegTDMA, SDMA) – Manjši razmak med frekvencami in dinamična prilagoditev razmaka – 1024 QAM – 160 MHz kanali – Tehnika tvorbe snopa (beamforming) na 2.4 GHz in 5 GHz – Max 8u MU-MIMO prostorskih pretokov in OFDMA uplink 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 89/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 90/541 OFDM in OFDMA TDMA Modulacija enega nosilca f SNR Upor. 1 Upor. 2 Upor. 3 ed. erv ts resh f l rig t . Al fc skratel © I OFDMA Modulacija več nosilcev f Upor. 1 SNR Upor. 3 Upor. 2 f t fc 9 Sprememba modulacije 256 QAM 1024 QAM ed. erv s res right . All tel skra © I 10 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 90/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 91/541 Izboljšano pokritje, trajanje baterije, izboljšana varnost – OFDM izboljša domet in pokritje – Do 8 dB izboljšanj SNR z uporabo 2 MHz podkanalov – Pokritje dveh dodatnih sob ed. erv ts resh l rig – Izboljšanje trajanja baterije pametnih . Al skratel © I naprav – Ciljni buden čas, časovno razporejanje – Podpora baterijskih IoT senzorjev – Varnostne izboljšave – WPA3 WPA2 WPA3 11 2.4 GHz Wi-Fi kanali ed. erv s res right . All tel skra © I 12 Vir: Wikipedia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 91/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 92/541 5 GHz Wi-Fi kanali ed. erv ts resh l rig . Al skratel © I 13 Vir: Wikipedia Razširjeni Wi-Fi spekter: Wi-Fi 6E IEEE 802.11ax 6.0 – 6 GHz kanali, specifična pravila in funkcionalnosti v 6 GHz pasu ed. erv s res right . All tel skra © I 14 Vir: Extreme webinar 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 92/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 93/541 Razvoj produkta – sodelovanje proizvajalec / operater Razvoj proizvajalca 75% Operater 25% Komercialni „zagon“ Sodelovanje v zaključni fazi razvoja • Zaključna faza razvoje produkta poteka na relaciji proizvajalec / operater: • Testiranja v laboratoriju operaterja, testni uporabniki,… • IT integracija v sisteme operaterja, prilagoditev tehničnim pogojem operaterja • Upoštevanje razvojnih predlogov in izboljšav operaterja, • Rezultat: • Hitrejši prehod iz razvoja in testiranj na trg (time to market), • Boljše, stabilnejše in zanesljivejše delovanje, • Produkt „približan“ potrebam operaterja in uporabnikov 15 15 Tehnična topologija priključka Wi-Fi / Wi-Fi Mesh • Wi-Fi: • Ena Wi-Fi naprava oz. omrežni zaključek z funkcijo Wi-Fi • Wi-Fi Mesh omrežje: • Mesh Controler • Mesh Agenti 16 16 16 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 93/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 94/541 Priporočilo za Mesh vozlišča • Priporočljivo je instalirati Mesh vozlišča tako, da sprejemna moč najbližjega sosednjega Mesh vozlišča ni nižja od -65 dBm. • Skrajna meja sprejemnega signala, ki še zagotavlja kolikor toliko stabilno in zanesljivo delovanje pa je cca -70 dBm. • Mesh vozlišča izven območja -65 dBm se običajno z Mesh Controlerjem poveže z fizično z ethernet kablom 17 17 Metodologija performančnih Wi-Fi / Wi-Fi Mesh meritev v tipičnem rezidenčnem objektu • Optimalna instalacija Wi-Fi / Wi-Fi Mesh omrežja, • Za potrebe izvajanja t.i. meritev se v objektu določijo primerne merilne točke, • Objekt se razdeli za t.i. zaključene celote oz. prostore, • V vsaki točki se izvede več meritev, ter izračuna povprečje (3 meritve), • Meritev se izvede s pomočjo OOKLA hitrostnega testa na mobilnem telefonu, • Za meritev je bil uporabljen mobilni telefon s podporo Wi-Fi 6. 18 18 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 94/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 95/541 Wi-Fi 5 / Wi-Fi 6 – Primerjava v rezidenčnem objektu (1) OOKLA hitrostni IP test (speed test) 19 19 Wi-Fi 5 / Wi-Fi 6 – Primerjava v rezidenčnem objektu (2) WiFi 5 GHz - Primerjava Download hitrosti WiFi 2,4 GHz - Primerjava Download hitrosti 700 140 /s) 600 t/s) bit 120 bi 500 ti (M i (M 100 os st 400 o itr 80 h hitr 300 ad d 60 lo 200 wn ploa 40 z U Do 100 H 20 G GHz 0 5 0 5 Lokacija_1 Lokacija_2 Lokacija_3 Lokacija_4 Lokacija_5 Lokacija_6 Lokacija_7 Lokacija_1 Lokacija_2 Lokacija_3 Lokacija_4 Lokacija_5 Lokacija_6 Lokacija_7 Merilno mesto Merilno mesto Innbox U92_5 GHz_WiFi-6 Upload (Mbit/s) Innbox U92_2,4 GHz_WiFi-6 Download (Mbit/s) Innbox U92_5 GHz_BREZ-WiFi-6 Download (Mbit/s) Innbox U92_2,4 GHz_BREZ-WiFi-6 Download (Mbit/s) Innbox F60ac_5 GHz Download (Mbit/s) Innbox F60ac_2,4 GHz Download (Mbit/s) 20 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 95/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 96/541 Wi-Fi 5 / Wi-Fi 6 – Primerjava v rezidenčnem objektu (3) WiFi 5 GHz - Primerjava Upload hitrosti WiFi 2,4 GHz - Primerjava Upload hitrosti 700 140 /s) t/s) 600 120 bi (Mbit 500 (M 100 sti sti ro 400 80 tro hit hi d 300 d 60 oa 200 pl 40 wnloa U o 100 20 z DH GHz 0 4 0 4 G 2, Lokacija_1 Lokacija_2 Lokacija_3 Lokacija_4 Lokacija_5 Lokacija_6 Lokacija_7 2, Lokacija_1 Lokacija_2 Lokacija_3 Lokacija_4 Lokacija_5 Lokacija_6 Lokacija_7 Merilno mesto Merilno mesto Innbox U92_5 GHz_WiFi-6 Upload (Mbit/s) Innbox U92_2,4 GHz_WiFi-6 Upload (Mbit/s) Innbox U92_5 GHz_BREZ-WiFi-6 Upload (Mbit/s) Innbox U92_2,4 GHz_BREZ-WiFi-6 Upload (Mbit/s) Innbox F60ac_5 GHz Upload (Mbit/s) Innbox F60ac_2,4 GHz Upload (Mbit/s) 21 21 Vloge - Mesh „ Controler“ / Mesh „ Agent“ • Wi-Fi 6 Mesh • Wi-Fi 5 Mesh 22 22 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 96/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 97/541 Tehnični načrt merilnih točk primerjalne meritve Wi-Fi 5 Mesh in Wi-Fi 6 Mesh 23 23 4 različne postavitve omrežij Mesh Wi-Fi 5 / Wi-Fi 6 in primerjava med njimi (1) Wi-Fi 6 Mesh Controler / Wi-Fi 6 Mesh Agenti povezani z UTP kablom (2) Wi-Fi 6 Mesh Controler / Wi-Fi 6 Mesh Agenti povezani prek Wi-Fi (4) Wi-Fi 6 Mesh Controler / Wi-Fi 6 Mesh Agenti povezani z UTP kablom (3) Wi-Fi 5 Mesh Controler / Wi-Fi 5 Mesh Agenti povezani prek Wi-Fi konfiguracija 1 + dodaten Mesh Agent v kleti 24 24 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 97/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 98/541 I. etaža - Primerjava postavitev 1, 2, 3 in 4 (1) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (2) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani prek WiFi 01_SFP 02_kabel 03_kabel 04_kabel 05_WiFi 06_brez 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 (4) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (3) WiFi 5 Mesh Controler / WiFi 5 Mesh Agenti povezani prek WiFi konfiguracija 1 + dodaten Mesh Agent v kleti 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez 01_SFP 02_kabel 03_kabel 04_kabel 05_kabel 06_kabel Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 5 WiFi 5 WiFi 5 WiFi 5 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 Objekt - I. ETAŽA Postavitev_1 Postavitev_2 Postavitev_3 Postavitev_4 Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Vsota povprečja Vsota povprečja Vsota povprečja Vsota povprečja Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) 498 427 925 219 166 385 183 163 346 480 399 879 25 25 II. etaža - Primerjava postavitev 1, 2, 3 in 4 (1) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (2) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani prek WiFi 48 NADSTROPJE P-08 P-11 P-14 P-13 01_SFP 02_kabel 03_kabel 04_kabel 05_WiFi 06_brez 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez 23 15 Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje 19 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 47 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 16 22 P-10 18 (4) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (3) WiFi 5 Mesh Controler / WiFi 5 Mesh Agenti povezani prek WiFi P-09 P-12 konfiguracija 1 + dodaten Mesh Agent v kleti 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez 01_SFP 02_kabel 03_kabel 04_kabel 05_kabel 06_kabel 04 Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje 20 21 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 5 WiFi 5 WiFi 5 WiFi 5 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 17 Postavitev_1 - II. ETAŽA Postavitev_1 Postavitev_2 Postavitev_3 Postavitev_4 Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Vsota povprečja Vsota povprečja Vsota povprečja Vsota povprečja Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) 452 368 820 387 316 703 254 263 518 471 409 880 26 26 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 98/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 99/541 Klet - Primerjava postavitev 1, 2, 3 in 4 (1) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (2) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani prek WiFi KLET P-15 P-17 P-21 P-20 01_SFP 02_kabel 03_kabel 04_kabel 05_WiFi 06_brez 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez 24 27 35 Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje 33 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 P-16 34 25 26 32 (4) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (3) WiFi 5 Mesh Controler / WiFi 5 Mesh Agenti povezani prek WiFi konfiguracija 1 + dodaten Mesh Agent v kleti P-18 P-19 29 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez 01_SFP 02_kabel 03_kabel 04_kabel 05_kabel 06_kabel Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje 28 31 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 30 WiFi 5 WiFi 5 WiFi 5 WiFi 5 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 06 Postavitev_1 - Klet Postavitev_1 Postavitev_2 Postavitev_3 Postavitev_4 Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Vsota povprečja Vsota povprečja Vsota povprečja Vsota povprečja Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) 73 37 110 29 22 51 55 31 86 338 258 596 27 27 Zunanja okolica objekta – Primerjava postavitev 1, 2, 3 in 4 (1) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (2) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani prek WiFi Shema zunanje okolice objekta s prikazanimi merilnimi točkami Shema zunanje okolice objekta s prikazanimi sektorji in merilnimi točkami 01_SFP 02_kabel 03_kabel 04_kabel 05_WiFi 06_brez 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez 38 41 37 Mesh WiFi brezžično omrežje Mesh WiFi brezžično omrežje Z-02 38 41 37 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 06 03 Z-03 Z-01 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 m 04 06 03 2 42 04 01 Tloris objekta 40 ca C 42 40 01 Tloris objekta 02 05 02 05 (4) WiFi 6 Mesh Controler / WiFi 6 Mesh Agenti povezani z UTP kablom (3) WiFi 5 Mesh Controler / WiFi 5 Mesh Agenti povezani prek WiFi konfiguracija 1 + dodaten Mesh Agent v kleti m 39 43 36 01_SFP 02_WiFi 03_WiFi 04_kabel 05_WiFi 06_brez Z-04 39 43 36 01_SFP 02_kabel 03_kabel 04_kabel 05_kabel 06_kabel ca 10 Mesh WiFi brezžično omrežje C Mesh WiFi brezžično omrežje 45 44 45 44 Z-05 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 6 WiFi 5 WiFi 5 WiFi 5 WiFi 5 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 LAN 1 Postavitev_1 - Zunanja okolica Postavitev_1 Postavitev_2 Postavitev_3 Postavitev_4 Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Povprečen prenos v etaži (skica objekta) Vsota povprečja Vsota povprečja Vsota povprečja Vsota povprečja Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) Down (Mbit/s) Up (Mbit/s) Down+Up (Mbit/s) 142 83 225 99 75 174 98 50 148 246 199 445 28 28 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 99/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 100/541 Zaključek • Kabelske povezave elementov Mesh omrežja omogočajo maksimalno zmogljivost in izkoristek pasovnih širin, • Wi-Fi povezovanje elementov Mesh omrežja omogoča vzpostavitev tudi v objektih, kjer ni razpoložljivih kabelskih povezav, • Wi-Fi 6 bistveno poveča zmogljivost in doseg: ~20-30% • Novejši „chip-set“ zagotavljajo boljše delovanje na osnovi najnovejših standardov Wi-Fi, • Napovedane so že nove generacije Wi-Fi: Wi-Fi 6E, Wi-Fi 7,… 29 Dodatek: Covid-19 (2020) vpliv na dinamiko prodaje 30 30 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 100/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 101/541 One global network of Wi-Fi networks based on the Open Roaming architecture and business model Klaus Samardžić Smart Com, d. o. o. klaus.samardzic@smart-com.si with MU-MIMO (multi-user, multiple input, Abstract multiple output) functionality. This allows the user The importance and value of a communication to experience the quality of service QoE (Quality network depends on the number and quality of of Experience) as used to from the 4G or 5G communication services offered and the area in mobile networks. The efficient provision of which the services are accessible to users. Most communication services achieved through the technologies for building communication networks implementation of these technologies is described. have made their way from offering services in a OpenRoaming provides a way to seamlessly and specific area limited by signal parameters or secure offer services globally between Wi-Fi communication protocols and standards to global networks owned by different organisations. accessibility. Wi-Fi technology is no exception. Architecture of such a global network consisting of Today, more than two-thirds of user data traffic is local Wi-Fi networks and the implemented transmitted over Wi-Fi access networks. protocols are described. The role of ANP (Access Nevertheless, Wi-Fi is synonymous with WLAN Network Provider) and IDP (Identity Provider) in (Wireless Local Area Network). Hotspot 2.0 the WBA (Wireless Broadband Alliance) technology has provided the technological basis OpenRoaming Federation is explained. The for the most significant step in offering presented material addresses the question of communication services over Wi-Fi access whether the existing Wi-Fi networks used in networks. In May 2020 Wireless Broadband different organization can offer services in Alliance (WBA) launched OpenRoaming. Based on accordance with the OpenRoaming business model Hotspot 2.0 technology, the OpenRoaming is an and for which role in the WBA (Wireless architecture and business model for the Broadband Alliance) OpenRoaming Federation the provisioning of communication services through a organisation should apply. global network (WGAN - Wireless Global Area Network) of Wi-Fi networks. The very importance of the realization of such a network depends on the Biografija avtorja quality of offered communication services, which is Klaus Samardžić ima tridesetletne izkušnje pri provided by the introduction of the IEEE 802.11 ax razvoju in implementaciji komunikacijskih sistemov. (Wi-Fi 6) standard. Wi-Fi 6 uses an advanced way Prvih deset let je sodeloval ali vodil razvoj komunikacijskih sistemov. V podjetju Fotona, takrat of multiplexing signals OFDMA (Orthogonal uveljavljenemu podjetju na področju optičnih sistemov, Frequency Division Multiple Access) and antennas 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 101/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 102/541 je sodeloval pri razvoju komunikacijskega sistema za operators and wishes of communication services users. prenos po optičnih vlaknih, ki je bil uspešno When participating in marketing activities or evaluating implementiran v Sloveniji in Sovjetski zvezi. V podjetju the future development of provisioning communication Smart Com, vodilnem sistemskem integratorju, že services such understanding of the demands and wishes dvajset let sodeluje pri realizaciji komunikacijskih gives him the opportunity to offer solutions of mutual omrežij, z implementacijo optičnih in radijskih benefits for all involved parties. komunikacijskih sistemov v Sloveniji in na območju Jadranske regije. Kot pooblaščeni inženir Inženirske Zbornice Slovenije, z izkušnjami pri realizaciji projektov, ima vpogled v vse faze življenjskega cikla projekta, od načrtovanja, izvedbe in preizkusa sprejemljivosti do prehoda v operativno fazo. Takšne izkušnje mu omogočajo razumevanje potreb operaterjev komunikacijskih omrežij in želja uporabnikov komunikacijskih storitev. Razumevanje potreb vseh vpletenih strani mu pride prav pri sodelovanju v tržnih dejavnostih ali pri evaluaciji prihodnjega razvoja komunikacijskih storitev. Author's biography Klaus Samardžić has thirty years of experience in the development and implementation of communication systems. The first ten years he has participated or led the development of communication systems. In Fotona, at that time an established vendor of optical systems he colaborated in development of an optical fiber communication system and its successfull implementation in Slovenia and the Soviet Union. In Smart Com, a leading system integrator he has been involved in the realization of communication networks, implementing optical and radio communication systems in Slovenia and the Adriatic region for twenty years. As a Certified and Authorized Engineer for electrical engineering in civil works at Engineering Chamber of Slovenia with experience in the realization of communication networks projects he has insight into all phases of the project life cycle, from planning, implementation and acceptance testing to the transition into the operational phase. Such experiences allows him to understand the demands of communication networks 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 102/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 103/541 Globalno omrežje Wi-Fi omrežji na osnovi arhitekture in poslovnega modela OpenRoaming Klaus Samardžić 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 103/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 104/541 ‘‘Svet ni eden, svetova sta dva!‘‘ LTE Wi-Fi Različne arhitekture Wi-Fi WLAN omrežji skozi čas 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 104/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 105/541 Wi-Fi 6 • Danes se več kot pol uporabniškega podatkovne prometa prenaša skozi Wi-Fi dostopovna omrežja. Wi-Fi je sinonim za WLAN (Wireless Local Area Network). • Tehnologija Hotspot 2.0 je podala tehnološko osnovo za najbolj pomemben korak v ponujanju komunikacijskih storitev skozi Wi-Fi dostopovna omrežja. Na osnovi Hotspot 2.0 tehnologije je zasnovana OpenRoaming arhitektura in poslovni model ponujanja storitev skozi globalno omrežje Wi-Fi omrežji (WGAN - Wireless Global Area Network). • Sam pomen realizacije takšnega omrežja je odvisen od kvalitete komunikacijskih storitev, ki je omogočena z uvajanjem IEEE 802.11 ax (Wi-Fi 6) standarda. Wi-Fi 6 uporablja sodoben način multipleksiranja signalov OFDMA (Orthogonal Frequency Division Multiple Access ) in antene z MU-MIMO (multi-user, multiple input, multiple output) funkcionalnostjo, ki omogočajo izkušnjo kvalitete storitve QoE – (Quality of Experience) podobno kot v mobilnih omrežjih 5G. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 105/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 106/541 Wi-Fi 6 IEEE 802.11 ax OFDMA – Orthogonal frequency-division multiple access Wi-Fi 6 IEEE 802.11 ax • BSS Coloring 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 106/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 107/541 Wi-Fi 6 IEEE 802.11 ax TWT – Target Wake Time Wi-Fi 6 in Wi-Fi 6Extended • Wi-Fi 6E standard, ki ga je določil IEEE (Institute of Electrical and Electronics Engineers) 802.11 ax je Wi-Fi 6 standard, razširjen v na novo sproščen spekter 6 GHz. • Konec aprila 2020 je FCC ( Federal Communications Commission) Združenih držav izglasoval, da dovoli nelicencirano uporabo pasu 6 GHz. To je omogočilo 1200 MHz (5,925 do 7,125 GHz) spektra za naprave, kot so Wi-Fi dostopovne točke. • Ta dodani spekter je največja sprememba v Wi-Fi brezžičnih omrežjih, odkar je bila prvotna dodelitev ISM (Industrial, Scientific and, Medical) frekvenčnih pasov leta 1985. • EU je sprejela odločitev, da članice odobrijo uporabo spektra 5,945-6,425 GHz v pasu 6 GHz. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 107/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 108/541 Wi-Fi 6, Wi-Fi 5 in starejši standardi • Starejše generacije Wi-Fi, kot sta 802.11n in 802.11ac, so temeljile na modulaciji OFDM (Orthogonal frequency-division multiplexing), kjer je bil vsak kanal v celoti rezerviran za enega samega uporabnika za vsak prenos. • OFDMA kanal razdeli na podkanale, znane tudi kot enote virov (RU). To omogoča, da več uporabnikov komunicira hkrati, namesto da čaka na vrsto. Vsakič, ko naprava Wi-Fi 5 ali starejša naprava oddaja v omrežju Wi-Fi 6, se način prenosa vrne nazaj na standardni OFDM z enim uporabnikom, ki zasede celoten spekter. • Preklapljanje naprej in nazaj med OFDM in OFDMA zmanjša učinkovitost delovanje Wi-Fi omrežje za vse, še posebej za naprave Wi-Fi 6. Delovanje postane še počasnejše, ko se v mešanici starejših naprav z nizko hitrostjo prenosa podatkov najdejo naprave, ki podpirajo samo 802.11b ali 802.11g. Wi-Fi 6 in Wi-Fi 6Extended • Večina omrežij Wi-Fi 6E bo dvo - ali tripasovnih, kar bo starejšim odjemnim napravam omogočilo povezavo s starim spektrom, medtem ko bodo izključno odjemne naprave 6E omogočile delovanje v frekvenčnem spektru 6 GHz. • To bo zagotovilo veliko prednosti. Vse Wi-Fi 6E naprave v omrežju podpirajo tehnologije, kot sta OFDMA ( Orthogonal frequency-division multiple access) in Target Wake Time, zaradi česar bodo prenosi učinkovitejši. • OFDMA zahteva, da so vse naprave, ki sodelujejo pri prenosu, sinhronizirane. Čas, frekvenca in oddajna radijska moč delovanja naprav morajo biti sinhronizirani med Wi-Fi dostopovno napravo (Access Point) in odjemno napravo - klijentom. OFDMA postane popolnoma učinkovit šele, ko ga uporabljajo vse odjemne naprave in Wi-Fi dostopovne točke. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 108/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 109/541 Wi-Fi 6E radijski kanali v 6 GHz obsegu Wi-Fi 6 in Wi-Fi 6Extended 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 109/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 110/541 Wi-Fi 6Extended • Temno zelena in rdeča so področja kje je odobrena uporaba spektra 6 GHz za Wi-Fi 6E. Za področja označena z svetlo zeleno ali rdečo je postopek odobritev sprožen. Nadzor delovanja omrežja in uporabnikov 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 110/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 111/541 Nadzor delovanja omrežja in uporabnikov Vpliv naključne izbire MAC naslova • Apple je leta 2014 svojim napravam dodal naključno izbiro MAC naslovov. Sledila sta Google Android OS in Windows OS s podobno funkcionalnostjo. • Zadnja sprememba je bila leta 2020. Apple je dodal podporo za naključno izbiro MAC naslova za omrežja v operacijskem sistemu iOS 14, iPadOS 14 in watchOS 7. • Generiranje naključnih MAC naslovov je urejeno v skladu s pravili, ki jih določi IEEE. V MAC OUI delu naslova se za označevanje naključnega/lokalno upravljanega naslova uporabi drugi znak. Če je drugi znak 2, 6, A ali E, potem je to naključni naslov. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 111/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 112/541 Wi-Fi 6E in 5G mobilna omrežja ‘‘Brez vas ni nas!‘‘ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 112/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 113/541 Brez uporabnikov ni omrežij! • Pomen in vrednost komunikacijskega omrežja je odvisna od števila in kvalitete komunikacijskih storitev, ki se ponujajo ter področja v katerem so storitve dostopne uporabnikom. • Večina tehnologij za graditev komunikacijskih omrežjih je naredila pot od ponujanja storitev v določenem področju omejenem s parametri signalov ali komunikacijskimi protokoli in standardi do globalne dostopnosti. Tehnologija Wi-Fi ni nobena izjema. • OpenRoaming omogoča nemoteno in varno ponujanje storitev po vsem svetu med omrežji Wi-Fi v lasti različnih organizacij. Brez uporabnikov ni omrežij! • OpenRoaming je struktura industrijskih partnerstev, tehničnih standardov in sodelovanja zasebnih in javnih podjetij, ki omogoča kateremkoli uporabniku naprave s preverjeno pristnostjo z Wi-Fi vmesnikom, da se poveže s ponudnikom identitete, ki ima v lasti ali zagotavlja konfiguracijo te naprave za dostop do storitev skozi Wi-Fi dostopovno omrežje. • OpenRoaming uporabnikom Wi-Fi dostopovnih omrežji avtomatično ponuja zaščiteno povezavo v komunikacijsko omrežje neodvisno od lokacije podobno izkušnjam mobilnih uporabnikov v javnih 4G ali 5G omrežjih. • OpenRoaming aplikacija za mobilne naprave: • Apple iOS 13.3 => • Android 9 => • Operacijski Sistem mobilnih naprav podpira OpenRoaming: • Samsung Android 10 => • Google Pixel Android 11 => 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 113/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 114/541 WBA OpenRoaming WBA kot neodvisni administrator • WBA (Wireless Broadband Alliance) je ustvaril OpenRoaming Federation. Arhitektura takšnega globalnega omrežja, ki ga sestavljajo lokalna Wi-Fi omrežja in implementirani protokoli vsebuje naslednje subjekte: • ANP (Access Network Provider) • IDP (Identity Provider) • Broker • Pogoj za delovanje OpenRoaming Federation z obstoječimi ali novimi Wi-Fi omrežji so sodobne dostopovne točke (Access Point), ki podpirajo Hotspot 2 funkcionalnost in uporabniške naprave z ustrezno funkcionalnostjo. • Ponujajo se različne storitve v skladu s poslovnim modelom OpenRoaming. Posamezna organizacija se odloči za vlogo v WBA (Wireless Broadband Alliance) OpenRoaming Federation na osnovi lastnih interesov. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 114/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 115/541 Varno povezovanje v dostopovno omrežje OpenRoaming federacija Identitet Brokeri ekosistema HotSpot 2.0 in varnostna politika autentifikacija, politika, obračunavanje Ponudnik Identitet Autentifikacija TLS enkripcija na osnovi EAP Wi-Fi Dostopovno omrežje Avtomatizacija postopka s Hotspot 2.0 Hotspot Hotspot 2.0 Z uporabo Pred uporabo Izbira omrežja Manualno 802.11u 802.11u 802.11u (SSID) Autentifikacija Captive Portal 802.1X uporabnika Enkripcija radijskega NE AES-CCMP signala 802.11i Medsebojna NE EAP-SIM/AKA, autentifikacija EAP-TLS, EAP-TTLS Kibernetska zaščita NE 802.1X/EAP 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 115/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 116/541 OpenRoaming implementacija politik • Kombinirani 36-bitni identifikatorji organizacije - Roaming ConsortiumOI (RCOI) • Dva 24-bitna edinstvena identifikatorja organizacije določena s strani IEEE. • 12-bitna razširitev WBA kontekstualni identifikatorji. • Trenutno opredeljeni RCOI so: • OpenRoaming –– Brezplačni RCOI (5A-03-BA-xx-x) • Za ponudnike omrežja (ANP), ki ne pričakujejo plačila za storitve Wi-Fi. • OpenRoaming - RCOIS, urejeni s poravnavo (BA-A2-D0-xx-x) • Za ponudnike omrežja (ANP), ki zahtevajo poravnavo za storitve Wi-Fi. https://wballiance.com/openroaming/join/ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 116/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 117/541 email: klaus.samardzic@smart-com.si twitter: @klaussamardzic Tel: +386 40 882 594 www. smart-com.si 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 117/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 118/541 Pogled na uvajanje video analitike v koncept pametnih mest A look at introducing video analytics into the concept of smart cities Marjana Senčar Srdič A1 Slovenija marjana.sencar.srdic@a1.si Povzetek important component of them. Researchers Pametna mesta predvidevajo zbiranje ogromne comparing the development strategies of several količine podatkov iz različnih sistemov, zato so smart cities note that t. i. security theater is one of politike razvoja in upravljanja s podatki njihova the main drivers of development in this area. While pomembna komponenta. Raziskovalci ob in the general public, video analytics mostly has a primerjavi razvojnih strategij več pametnih mest negative connotation and is equated with opažajo, da je t. i. privid varnosti (security theater) surveillance, and many criticize decision-makers eno glavnih gonil razvoja na tem področju. for focusing their investments in the smart city Medtem, ko ima v splošni javnosti video analitika concept on video surveillance and neglecting other večinoma žal negativen pridih in se jo enači z aspects of smart cities (eg Brussels, London and nadzorom ter mnogi odločevalcem očitajo, da se Belgrade), in my paper I focused on the pri svojih investicijah v koncept pametnega mesta technological development and potential of video osredotočajo predvsem na področje video-nadzora analytics in smart cities. The emphasis is on in zanemarjajo ostale vidike pametnih mest (npr. "smart areas" - entities that effectively use all Bruselj, London in Beograd), sem se v svojem available information for optimal use of resources, prispevku osredotočila na tehnološki razvoj in global trends, urban and mega-urban potencial video analitike v pametnih mestih. development, integrated data flow architecture, Poudarek je na »pametnih območjih« – entitetah, transport security, control of housing and utilities, ki efektivno koristijo vse razpoložljive informacije video analysts in education and unified payment za optimalen izkoristek resursov, globalnih trendih, systems. razvoja mest in mega-mest, arhitekturi združenega podatkovnega pretoka, transportni varnosti, kontroli bivališč in Biografija avtorja komunalnih servisov, video Marjana Senčar Srdič je vodja analitiki v izobraževanju in poenotenih plačilnih oddelka tehnologij interneta stvari in sistemih. inovacij v podjetju A1 Slovenija. Od Abstract leta 2001 je pridobivala delovne Smart cities provide for the collection of huge izkušnje na področju informacijskih amounts of data from different systems, so data tehnologij in telekomunikacij, tako v manjših, kot velikih, mednarodnih podjetjih (nekdanji development and management policies are an Hermes SoftLab, Hewlett Packard). V okviru A1 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 118/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 119/541 Slovenija je že nekaj let vključena v raziskovalne in inovacijske projekte ter uvajanje novih tehnologij. Je registrirana raziskovalka pri Agenciji za raziskovalno dejavnost RS (ARRS), aktivna v raziskovalni organizaciji, vodi vertikalo Mobilnost, transport in logistika v okviru strateškega razvojnega inovacijskega partnerstva (SRIP) Pametna mesta in skupnosti (PMiS). Author's biography Marjana Senčar Srdič is Head of IoT Technology and Innovations department at A1 Slovenia. She has been gaining work experience in the field of information and telecommunications technologies, in both small and large, international companies (former Hermes SoftLab, Hewlett Packard) since 2001. Within A1 Slovenia, she has been involved in research and innovation projects and roll-out of new technologies for several years. She is a registered researcher at the Research Agency of the Republic of Slovenia (ARRS), active in a research organization and leads the Mobility, Transport and Logistics vertical within SRIP PMiS (Strategic Research & Innovation Partnership for the Smart Cities and Communities topic). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 119/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 120/541 2. februar 2022 Marjana Senčar Srdič POGLED NA UVAJANJE VIDEO ANALITIKE V KONCEPT PAMETNIH MEST Cilj implementacije tehnologije mora biti: Boljša kakovost življenja Boljše poslovno okolje Trajnostni razvoj Velika množica mestnih informacij v realnem času, ki jih bodo omogočala tipala, omrežja ter spletne in mobilne aplikacije. Marjana Sencar Srdic 2 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 120/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 121/541 Porast glasovnega ras o st glasovnega in podatkovnega in pod datko prometa, nadpovprečno obremenjeno omrežje Koncept „pametnega mesta” oblak Upravljanje sistemskih nastavitev naprave Naprava Povezljivost Uporabniške aplikacije Sprejem in Dashboardi in IoT platforma obdelava vizualizacija podatkov User in entity Poslovne management aplikcije Smart cities 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 121/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 122/541 Odprta, pov Odprt ezljiva a, povezlji lj va komunikacijska platforma komu Odprti Odprti API AP -ji Loč Lo i č tev podatk tev o podatk v o v od aplikacij Upravljanje naprav Uporaba standardnih gradnikov Data lake (podatki iz vseh povezanih služb) & data management & data management (o . ur . ado ur v i adov n in IoT) IoT) Marjana Sencar Srdic 5 Prebivalci najbolj poznajo svoj kraj � Podatkovna avtonomija in lastništvo podatkov � Podatki morajo v čim večjem obsegu ostati v lastništvu mest, ki naj bi dostop do njih (na varen in s področjem varovanja osebnih podatkov skladen način) ponudila svojim prebivalcem. � Prebivalci najbolj poznajo svoj kraj in lahko prispevajo zanimive predloge za izboljšave. � In nenazadnje najbolj vedo, kakšen prikaz informacij jim najbolj ustreza. 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 122/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 123/541 „PAMETNA MESTA“ koncept/ potreba po uvajanju video analitike � zbiranje ogromne količine podatkov iz različnih sistemov - pomembnost politik razvoja in upravljanja s podatki. � Je privid varnosti (security theater) eno glavnih gonil razvoja na tem področju (npr. Bruselj, London in Beograd)? � video analitika = nadzor? � Potencial video analitike v pametnih mestih = nudi informacije za optimalen izkoristek virov, transportno varnost, kontrolo bivališč in komunalnih servisov, boljši pregled nad dogajanjem v mestu, hitrejšo prilagodljivost različnim situacijam in možnost zgodnjega reagiranja na različne situacije. 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 123/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 124/541 CCTV in 5G � S 5G podprta „Pametna CCTV“, razširja možnosti, ki smo jih imeli z uporabo na 4G. � Večja hitrost (10-krat hitrejša od trenutne na 4G) in nizka latenca (manj kot pol sekunde med prenosom in sprejemom) namigujeta, da je CCTV morda idealen primer uporabe za 5G, saj izjemno nizka zakasnitev omogoča zelo hiter reakcijski čas. � Omogoča nam boljše in čistejše slike, ki se bodo prenašale skoraj v realnem času. � S pomočjo podatkov in omogočenih algoritmov bo zmožnost razumevanja videnega pomenila, da pametna CCTV ne bo imela možnosti le zaznati vedenja, temveč ga bo tudi sledila in nato ovrednotila. Z drugimi besedami, informacije bodo hitro podane v sistem, ki se lahko skoraj takoj odzove, ustvarja opozorila ali sprejema druge odločitve. Marjana Sencar Srdic V „pametnem mestu“ „veliki brat“ pazi na vsak tvoj korak � Medtem ko ima pametna CCTV očitne koristi tako za družbo kot za posameznike, bo prišlo do številnih izzivov, pri čemer bo zasebnost eden največjih. � S povečane zmožnosti za sledenje in spremljanje prebivalstva � Ravnanje z ogromno količino podatkov, ki bodo ustvarjeni, bo še en izziv, tako z vidika stroškov kot s stališča shranjevanja. � Aplikacije 5G IoT v realnem času bodo zahtevale sisteme, ki so na robu in so povezani z zalednim repozitorijem, kot je oblak. Marjana Sencar Srdic 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 124/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 125/541 „PAMETNA MESTA“ koncept/ potreba po uvajanju video analitike � Poenotena informacijska platforma pretoka upravljanja � Poenoten plačilni sistem � Javna varnost � Upravljanje prometa � Preventiva v prometni varnosti � Upravljanje javnega prevoza � Vpogled v bivalne in komunalne servise ter resurse gospodinjstev � Spremljanje ekoloških razmer � Digitalizacija v zdravstvu � E-izobraževanje 11 “PAMETNO OBMOČJE/REGIJA” – območje, ki učinkovito uporablja vse razpoložljive informacije za optimalno uporabo svojih virov Promet/logistika Socialna infrastruktura � Prometna infrastruktura mestna, prometna vozlišča � Poenotene podatkovne baze prebivalstva � EKO-prevoz � Digitalne/elektronske storitve � Operativno upravljanje z vsemi vrstami prevozov � Delovni pogoji � Kvaliteta življenja Javna varnost Zagotavljanje virov/varčevanje z viri � CCTV sistemi � Visokotehnološke predelava podatkov � Alarmni sistemi � Tehnologije obnovljivih virov energije � Nujna govorna komunikacija � Ponovna uporaba � GIS � Nadzor nad gibanjem in predelavo odpadkov Znanost in izobraževanje Gradbeništvo � Oddaljeno izobraževanje in e-izobraževanje � Tehnologije varčevanja z energijo � Raziskovalni centri � Krajinsko oblikovanje � Zaščita intelektualne lastnine � Upravljanje stavb na daljavo � 24/7 nadzor objektov v razmerah 12 nezadostno razpoložljivega omrežja 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 125/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 126/541 Vpogled v prihodnost »PAMETNIH MEST«, upoštevaje globalne trende in trende razvoja mest in mega-mest Globalni trendi Trendi pri razvoju mest Globalne informacijske vsebine Tehnologije � Razvoj sistemov pametnih domov in stopnja njihove � Razvoj/vlaganja v plačilne sisteme in stopnja interakcije z zunanjo infrastrukturo njihove integracije v ostale storitve/naprave � Razvoj sistemov za obdelavo podatkov, vklj. � Izboljšave varnostnih sistemov, vključno z video iskalnike, sisteme za analizo podatkov itd. nadzornimi sistemi, prepoznavo obrazov, itd. � Razvoj plačilnih sistemov, povečanje stopnje njihove Transport integracije z drugimi storitvami/napravami � Razvoj interneta stvari in povezane infrastrukture � Razvoj sistemov za analitiko potniškega � Nadaljnje izboljšave računalništva v oblaku in prometa in prometnih razmer sistemov za shranjevanje � Razvoj socialnih navigacijskih sistemov � Izboljšanje varnostnih sistemov, vklj. video � Razvoj „IT parkirnih sistemov“ nadzornimi sistemi, prepoznavo obrazov itd. Gradbeništvo, infrastruktura ter gospodinjske in komunalne storitve Naraščanje stopnje urbanizacije � Zaostrovanje okoljevarstvenih zahtev in nadzor uporabe virov � Naraščanje razmerja urbane populacije � Razvoj pametnih bivalnih sistemov in stopnje � Naraščanje števila mega-mest in strnjenih naselij njihovih interakcij glede na zunanjo infrastrukturo 13 � Decentralizacija urbanih strnjenih naselij Predlagani sistemi omogočajo uporabo ene IT platforme za obdelavo informacij, nadzor in upravljanje različnih življenjskih področij, upoštevaje naraščajoče številke prebivalstva Funkcionalni diagram sistemov PAMETNIH MEST Enotni plačilni sistemi Javni varnostni sistemi Enoten sistem za obdelavo informacij Spremljanje komunalnega Nadzor prometa 14 omrežja 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 126/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 127/541 Zaznavanje poškodb na vozišču – vezano na področje krepitve odpornosti infrastrukture in prometa na podnebne spremembe 15 Arhitektura sistema za združevanje toka podatkov � Lokacija objektov z video nadzorom preko realno časnih in arhiviranih video posnetkov; � Pop-up sporočilna okna, na primer; video analitika, senzor premikov; � Spremljanje sprememb v dinamiki video nadzorovanega objekta z opazovanjem realno časnega ali arhiviranega video posnetka ob določeni frekvenci; � Vizualizacija pretoka informacij, na primer; prikaz obremenitve mobilnega omrežja pri nalaganju ali vozil v prometu 16 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 127/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 128/541 Sistem javne varnosti je sestavljen iz več podsistemov za zbiranje informacij, sistema za obdelavo in shranjevanje podatkov ter sistemov AWS za dispečerske, nujne in operativne službe 17 Transportna varnost, instrumenti za nadzor tirnih vozil 9 Integracija sistemov 9 Video snemanje v 9 Govorna komunikacija 9 Prilagojene vozovnic visoki kakovosti, preko dispečerjev funkcionalnosti ekrana 9 Identifikacija voznikov podpora za do 21 9 Nadzor in integracija z v vozilu za potrebe preko dostopnih kartic Full HD video dispečerskimi sistemi v voznikov 9 Oddaljeno nalaganje in kamer; javnem transportu 9 Zvočno in svetlobno upravljanje poti 9 Video nadzor 9 Opozarjanje voznikov v opozarjanje potnikov 9 Podpora temperaturnim (prepoznavanje primerih odstopanj od v vozilih senzorjem obrazov, načrtovanih poti 9 Analiza izdihanega 9 Obdelava podatkov o štetju prepoznavanje intervencijskih vozil zraka, vezana na potnikov potniškega registrskih tablic, zaklep vžiga vozila prometa sledenje 9 Spremljanje goriva iz predmetom, iskanje senzorjev nivoja tekočine dogodkov in in/ali CAN bus predmetov v 9 Diagnostika vseh naprav arhivu); na vozilu, z opozorili voznikom ali dispečerjem v primeru zaznanih napak 18 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 128/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 129/541 Transportna varnost – nadzor infrastrukture in orodja za preprečevanje incidentov � Preiskovalna orodja - funkcija prepoznavanja avtomobilskih številk omogoča iskanje in prepoznavanje registrskih tablic avtomobilov, pa tudi iskanje v video arhivu tako po dogodkih kot po simbolih številke. � Orodja za obveščanje o izrednih razmerah, vremenskih razmerah in popravke prometnih vzorcev � Orodja za upravljanje prometa – omogočajo prilagajanje prometne obremenitve cest in avtocest � Orodja za prepoznavo kršenja prometnih pravil: - Prekoračitve hitrosti, vključno s povprečno hitrostjo - Kršitev pravil o lokaciji vozila na cestišču - Kršitev pravil prehoda križišč, prehodov za pešce, železniških tirov 19 Pametno mesto – demo okolje – pametni promet (kamera za štetje in klasifikacijo prometa) Marjana Sencar Srdic 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 129/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 130/541 � Senzorji zajamejo stanje na prometnem toku � Informacijo posredujejo v STC krmilnik � STC krmilnik � Na podlagi informacij upravlja s semaforjem � STC krmilnik podatek posreduje do komunikacijske enote 5G � Podatki se preko 5G posredujejo v platformo pametnega mesta � Istočasno se iz platforme pošiljajo informacije o vozilih na nujni vožnji za omogočanje prioritetne vožnje. Promet – ANPR (automatic number plate recognition) oz. samodejna prepoznava registrskih oznak 22 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 130/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 131/541 Nadzor stanovanjskih in komunalnih storitev in komunikacija prebivalcev s pooblaščenimi predstavniki občinskih služb � Integracija domofonskega sistema v enoten iskalni sistem z možnostjo dostopa do vseh zainteresiranih � 24 uren vizualen dostop preko ekranov � Hitro obveščanje služb pregona in drugih služb za nujne primere mesta o nastanku ali sumu situacij, ki ogrožajo življenje in zdravje ljudi, varnost njihovega premoženja, pa tudi varnost občinskega premoženja � Pomoč pri operativnem vodenju osebja med prazniki in množičnimi dogodki � Zagotavljanje arhivskih podatkov službam pregona in drugim zainteresiranim službam mesta za obnovitev poteka dogodkov, podporo izvajanju operativnih preiskovalnih ukrepov itd. � Nadzor dvigal v objektih � Obračun in nadzor virov toplote, vode in električne energije - integracija merilnikov � Vizualni nadzor osvetlitve ponoči � Nadzor nad izvajanjem ukrepov za izboljšanje bivalnega področja � Nadzor kakovosti in pravočasnosti čiščenja področja, odvoza smeti in njihove predelave 23 Primeri uporabe povezani z ekologijo � Pametno zbiranje smeti: - Ločeno zbiranje po več kot 5 kriterijih - Primarna obdelava za zmanjšanje količine skladiščenih odpadkov - Uporaba alternativnih virov energije za delovanje sistema - Samodejno obveščanje o potrebi po praznjenju in servisu zbiralnikov - Nadzor nad odstranjevanjem in recikliranjem odpadkov � Spremljanje odlagališč odpadkov, s pomočjo prikazovanja iz GIS baze podatkov � Obveščanje uporabnikov o nepredvidenih razmerah z uporabo informacijskih tabel 24 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 131/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 132/541 Zaznavanje prostih parkirnih mest z videoanalitiko Funkcionalnosti sistema: � Zaznavanje prostih parkirnih mest, � časa zasedenosti posameznih parkirnih mest, � napačno parkiranih vozil, � zaznava vozil, ki so na parkirišču prepovedana (npr. avtodomi, avtobusi), � tipa parkiranih vozil. Možnost zaznave vozil z detektorji kovin na vhodih na parkirišča, ker pokrivanje s kamerami ni mogoče, kot na primer peščena parkirišča, drevesa. Marjana Sencar Srdic 25 Funkcionalnosti sistema: Posredovanje in analiza podatkov: � na usmerjevalne table, � v nadzorni center za upravljanje parkirišč, � na prometno informacijske centre, � v redarske aplikacije, � na interne prometne spletne strani. Nadzorni center omogoča: � spremljanje trenutne slike parkirišča, � posredovanje podatkov o prekoračitvi dovoljenega časa parkiranja, � zaznava napačno parkiranih vozil, � zmožnost upravljanja usmerjevalnih tabel. Marjana Sencar Srdic 26 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 132/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 133/541 Delovanje � 24-urno delovanje. Enaka zanesljivost delovanja tako podnevi kot ponoči. � Sistem generira slike v realnem času, kar pripomore h zviševanje varnosti v prometu, zaščiti vozil pred krajo vozil ali uničevanjem infrastukture. � Prepoznava modela vozil (osebno vozilo, avtobus, kombinirano vozilo, motorno kolo, tovornjak). � Natančen in hiter dostop do informacij o zasedenosti parkirišč preko informacijskih LED-prikazovalnikov, voznikom močno olajša iskanje prostih parkirnih mest. � Uporaba aplikacije na vseh napravah: osebni računalnik, tablica in pametni telefon. � Prihranek časa pri iskanju prostega parkirnega mesta (kar do 43%) in zmanjšanje CO2 v ozračju (do 30%). � Avtomatsko obveščanje administratorjev preko e-pošte, SMS-ov ali preko centralnega sistema. � Povezljivost sistema z zunanjimi aplikacijami in rešitvami preko API � Programska oprema je v celoti skladna z določili GDRP in trenutno veljavno zakonodajo (ZVOP-2), kar zagotavlja celovito zaščito anonimnosti podatkov. � Enostavna prestavitev na drugo lokacijo. � Sistem ne izvaja klasičnega video nadzora na parkiriščih, saj so osebe in registrske tablice v programski opremi zamegljene Marjana Sencar Srdic 27 Pametno parkiranje (7 kamer in parkirni analizator) Marjana Sencar Srdic 28 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 133/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 134/541 Nadzor v izobraževalnih ustanovah in družbeno pomembnih institucijah � Prepoznavanje obrazov na vhodih izobraževalnih ustanov in kulturnih inštitucij � Obveščanje staršev o vstopih/izstopih preko mobilnih telefonov, � Integracija sistema javne varnosti z zdravstvenimi bazami podatkov za pridobitev "posebnih kontrolnih seznamov" in dodatne identifikacije državljanov � Integracija obstoječih informacijskih sistemov v tako imenovane »pametne regije« � Razporeditev delovnega časa objektov socialne infrastrukture glede na zunanje podatke okoljskih sistemov, inteligentnega transportnega sistema in drugih. � Implementacija najnovejših algoritmov video analitike, ki temeljijo na tehnologijah nevronskih omrežij za uporabo v medicini. 29 Sistem pobiranja plačil, ki optimizira delovanje obstoječe finančne infrastrukture in monetizira storitve pametnega mesta. Prednosti vgrajene plačilne rešitve Optimizacija delovanja obstoječe plačilne infrastrukture Izboljšave kvalitete življenja � Uvedba plačilnega sistema bo omogočila prehod � Prehod na enotno poravnavo gospodinjskega na en sam elektronski gospodinjski račun, kar bo računa bo izboljšal udobje plačevanja storitev optimiziralo delovanje obstoječe infrastrukture za sistema "pametnega mesta" (danes mora eno obdelavo plačil (banke in druge kreditne gospodinjstvo vsak mesec plačati 4-7 računov) organizacije, pošta itd.) Povečanje finančnega donosa iz storitev in zmanjšanje deleža neporavnanih zapadlih Povečanje »fleksibilnosti« celotnega sistema plačil � Za prejemnike plačil je enoten elektronski račun � Delujoči sistem plačil bo v prihodnosti omogočil mehanizem za neposredne obračune s plačniki, ki hitro integracijo drugih storitev v sistem zagotavlja pravočasen prejem plačila storitev, pa "pametnega mesta" in zagotovil njihovo tudi izterjavo zapadlih dolgov. monetizacijo Prisotnost vgrajenega sistema obračunavanja / obdelave plačil bo povečala stopnjo monetizacije storitev sistema "pametnega mesta" in povečala finančni donos od mestnih storitev, hkrati pa 30 zagotovila dvig kakovosti življenja prebivalcev. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 134/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 135/541 Gradnja sistema »pametnega območja« se mora začeti z izgradnjo sistema javne varnosti kot najbolj zahtevanega Zunanji faktorji Notranji faktorji Teroristične grožnje Potreba skrajševanju časa za razrešitev kaznivih dejanj Potreba po izboljšanju odzivnosti vpletenih Ponavljajoča se kriminalna dejanja organov/služb Potreba po optimizaciji preobremenjenega Povečana intenzivnost prometa operativnega osebja pri vpletenih organih Povečana gostota prebivalstva v Potreba po izboljšanju učinkovitosti pri mega-mestih preventivni obravnavi kaznivih dejanj/nujnih primerov Vpeljava tovrstnega sistema je prednostna naloga velike večine mest, namenjena predvsem preprečevanju in predvidevanju groženj in izrednih dogodkov. 31 Hvala za vašo pozornost Marjana.Sencar.Srdic@a1.si marjanasencar/ sencarsrdic 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 135/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 136/541 Testiranje in optimiranje 5G za potrebe industrije Testing and optimizing 5G for industrial verticals Rudolf Sušnik, Janez Sterle, Luka Koršič Internet Institute rudolf.susnik@iinstitute.eu Povzetek logistics, power grids, etc.), however, since not two Aplikacije za potrebe industrije so eno izmed use cases have the same requirements, combining najpomembnejših področij, ki jih naslavlja technological features to realize required service is tehnologija 5G saj funkcionalnosti prejšnjih a challenge in each single case. Due to the generacijah mobilnih tehnologij niso ravno complexity of the 5G, testing plays a critical role najbolje dosegale zahtev industrijskih aplikacij kot since the very first stages of the network so npr. pametne tovarne, avtonomna mobilnost, integration (e.g., lab testing) and remains during gosta senzorska omrežja (npr. pametna mesta), ipd. the production stage as monitoring, also serving as Vsaka aplikacija oz. storitev v 5G omrežju ima an input for the network optimization. It is a good svoje specifike in zahteve, prav tako je tudi samo idea to have ability to collect as much as possible omrežje 5G dokaj kompleksno, zato si uvajanje parameters related to the service tested, as well, it novih 5G storitev težko zamislimo brez ustreznega is also helpful to collect data in various situations, testiranja vse od zasnove storitve do njene e.g., continuous vs. on-demand testing, fixed produkcijske uporabe. Cilj testiranja je pridobiti locations testing vs. drive/flight testing. Further čim več relevantnih podatkov o delovanju storitve (AI-based) data analysis may show what data are (in tudi omrežja) v različnih okoliščinah, saj se na meaningful in a certain use case. Since services podlagi temeljite analize izmerjenih podatkov created within the 5G ecosystem tend to tightly odločamo o nadaljnjih korakih prilagajanja oz. couple communications and data processing optimiranja storitve in omrežja s ciljem čim boljše features, testing should not be limited to network uporabniške izkušnje ob sočasni optimalni izrabi parameters only, but should also include other virov. Da bi zagotovili čim bolj relevantne end-to-end service parameters/KPIs relevant for rezultate, v testnih scenarijih ne smemo pozabiti na the customer experience. In the article, we are, testiranja “end-to-end” in na realistično generiranje besides challenges and possible approaches, also testnega prometa. Poleg izzivov in možnih discussing on practical experiences gained in the pristopov k testiranju v 5G bomo v prispevku field. predstavili tudi nekaj konkretnih primerov iz prakse. Biografije avtorjev Abstract Rudolf Sušnik je vodja raziskovalnih projektov v Industry related use cases are among most podjetju Internet Institut. Ima širok nabor izkušenj iz IT promising for the 5G (e.g., factories of the future, industrije, še posebej s področja operative, razvoja in 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 136/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 137/541 raziskav ter projektnega vodenja. Izkušnje si je Extreme, Iskratel. Sodeloval je na več raziskovalnih in pridobival z delom pri telekomunikacijskih operaterjih komercialnih projektih, med katerimi izstopa razvoj ter proizvajalcih komunikacijske opreme in storitev. storitvene programabilne infrastrukture za potrebe Leta 2007 je doktoriral s področja telekomunikacij na na kritičnih komunikacij v okviru EU projekta MATILDA Fakulteti za elektrotehniko Univerze v Ljubljani, kjer je (2017-2019). Na področju 5G aktivno sodeluje še pri bil zaposlen kot mladi raziskovalec. projektih 5G-LOGINNOV, Int5Gent, EVOLVED-5G, Janez Sterle je soustanovitelj in direktor podjetja 5GASP, 5G-INDUCE, 5G-IANA v okviru programa EC INTERNET INSTITUT d.o.o. Magistriral in doktoriral 2020. je s področja telekomunikacij na Fakulteti za Authors' biographies elektrotehniko, Univerze v Ljubljani. Njegovo glavno Rudolf Sušnik manages research and innovation- področje dela je načrtovanje, razvoj in upravljanje oriented projects at Internet Institute. He has a wide omrežij ter storitev, testiranje in in verifikacija range of experiences from IT industry, especially in tehnologij 4G/5G, NFV, IPv6, QoS in QoE; PPDR in operations, R&D, and project management. He has NATO podprtih taktičnih komunikacijskih sistemov; been working for network operators and for global preskušanje, merjenje in preverjanje najsodobnejših technology providers. As well, he has research and protokolov in tehnologij. Ima uveljavljene mednarodne teaching experiences from the University of Ljubljana, izkušnje na področju raziskav in razvoja ter where he has gained his Ph.D. degree in industrijskih projektov v različnih sektorjih telecommunications in 2007. (telekomunikacije, logistika, varnost in zaščita) Janez Sterle is a co-founder and CEO of INTERNET vključno s projekti H2020 Evropske komisije na INSTITUTE Ltd. He received his M.Sc. and Ph.D. področju 5G tehnologij 5G-LOGINNOV, Int5Gent, degrees in telecommunications from the University of EVOLVED-5G, 5GASP, 5G-INDUCE, 5G-IANA, Ljubljana, Slovenia. His main area of work concerns MATILDA-5G in 5GINFIRE. Tesno sodeluje z network design, planning, service management, testing industrijskimi akterji, regulatornimi in zakonodajnimi and implementation in production networks for 4G/5G, organi tako na strateški kot tehnični ravni. Ima NFV, IPv6, QoS and QoE, PPDR and NATO enabled industrijske certifikate in različne ameriške patente na tactical communication system; testing, measurement področju mobilnih sistemov. and verification of state-of-the-art protocols and Luka Koršič je soustanovitelj in vodja razvoja v technologies. He has an established track record of podjetju INTERNET INSTITUT d.o.o. Magistriral je s R&D and production-grade projects in področja telekomunikacij na Fakulteti za elektrotehniko, communications, safety and security sectors, including Univerze v Ljubljani. Njegovo glavno področje dela je EC’s H2020 projects 5G-LOGINNOV, Int5Gent, načrtovanje in upravljanje omrežij ter storitev; testiranje EVOLVED-5G, 5GASP, 5G-INDUCE, 5G-IANA, in verifikacija omrežnih tehnologij NFV/SDN, MATILDA-5G and 5GINFIRE on the topic of 5G, and IPv4/IPv6, MPLS, QoS in QoE, brezžičnih in mobilnih cooperates closely with the respective industries, 4G/5G sistemov; načrtovanje in upravljanje VPN practitioners, regulatory and legislative bodies on omrežij in tehnologij. Njegove izkušnje vključujejo delo strategic and technical levels. He holds industrial na oblačnih sistemih na osnovi OpenStack in certification and various US patents in the field of Kubernetes, razvoj in upravljanje “cloud-native” mobile systems. aplikacij, delo na opremi proizvajalcev Cisco, Juniper, 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 137/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 138/541 Luka Korsic is a co-founder and head of Research and Development at Internet Institute. He received his M.Sc. degree in telecommunications from the University of Ljubljana, Slovenia. His main area of work includes network design and planning, service operation and management, testing and implementation of network technologies such as NFV/SDN, IPv4/IPv6, MPLS, QoS and QoE, wireless/mobile 4G/5G systems; VPN planning and management; testing, measurement and verification of network/service protocols and technologies. Throughout his work he has gained a lot of practical experience in the field (cloud-based solutions such as OpenStack and Kubernetes, cloud- native applications development and operations, neworking equipment such as Cisco, Juniper, Extreme, Iskratel etc.) and also worked as a technical lead on many research/commercial projects. His previous projects and experience include development of a service-driven sliced programmable 5G infrastructure for emergency response purposes in MATILDA EU project (2017 – 2019) while he is also actively involved in several EC2020 5G-related ongoing projects, namely 5G-LOGINNOV, Int5Gent, EVOLVED-5G, 5GASP, 5G- INDUCE, 5G-IANA. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 138/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 139/541 宗宨家宷宬宱宪季室宱宧季宲害宷宬宰宬宽宬宱宪季學宊季宩宲宵季宬宱宧宸家宷宵宬室宯季容宨宵宷宬宦室宯家 宕宸宧宲宯宩季宖宸尮宱宬宮孯季宍室宱宨宽季宖宷宨宵宯宨孯季宏宸宮室季宎宲宵尮宬㶞 安宨宥宵宸室宵宼季孵孯季孵孳孵孵 寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱 宄宪宨宱宧室 • Introduction • The need for testing and optimizing 5G networks and services • Methodology and analytics • Tools • Use cases • Conclusions 宓室宪宨季孵季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 139/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 140/541 宄宥宲宸宷 Te T l e T co c gr grade ade sy s s y s t s em e to deliver Au Automat a ion of rem e ote IoT Cloud-based private 4G/5G the next generation of quality measurements for industrial for Industrial and outdoor assurance in mobile and cloud and outdoor environments environments environments • Company facts – Startup established in 2014 – Located in Ljubljana, Slovenia – 100% IPR ownership – First employees Q4 2017 – Trusted R&I partner in EU H2020 • Core Expertise: development, deployment and operation of telco grade Quality Assurance (QA) and Critical Communications Systems (CCS) • Main technologies verticals – QA | Quality assurance of mobile, fixed and cloud systems | www.qmon.eu – CCS | Solutions for 5G/IoT-based critical communications | 5gsafety.net 宓室宪宨季孶 ǀ 寬季孵孳孵孵季完宑宗守宕宑守宗季完宑宖宗完宗官宗守孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱 How we started with 5G | R&I matilda-5g.eu 5g-loginnov.eu 5gasp.eu 5g-induce.eu 5ginfire.eu int5gent.eu evolved-5g.eu 5g-iana.eu 2017 2018 2020 2021 PPDR PPDR PPDR | Ports | Smart Factories | Industry 4.0 | Automotive - 5G qMON – Network Test Automation This projects received funding from the European Union’s Horizon 2020 research and innovation programme grant agreements No. 761898, 732497, 957400, 957403, 101016448, 101016608, 101016941 and 101016427. - Operational Private 5G (SA mode) - Cloud RAN | n78 宓室宪宨季孷 ǀ 寬季孵孳孵孵季完宑宗守宕宑守宗季完宑宖宗完宗官宗守孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 140/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 141/541 Introduction – role of 5G • 5G opportunities – Industry (e.g., Industry 4.0, IoT) • private 5G networks – Consumer market (e.g., mobile gaming, fixed wireless access, new immersive user experience) • 5G technology benefits – eMBB: > 10 Gbps – uRLLC: 99,99 % reliability, below 1 ms latency – mMTC: 1 million (IoT) devices per km2 – MEC: Mobile Edge Computing – NFV: Network Function Virtualization – MANO: Management and Orchestration 宓室宪宨季學季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Introduction – emergence of new services and apps • 5G technology as an enabler • 5G technology as an improvement comparing to other comm. technologies • Some verticals with interest for 5G – Automotive (e.g., connected autonomous mobility and driving) – Public Protection and Disaster Relief (PPDR) – Smart cities – Industrial • improving safety of the personnel involved in industrial processes • improving robots’ effectiveness • optimizing logistics processes and traffic flows • introducing mixed-reality assisted manufacturing, maintenance, etc. 宓室宪宨季孹季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 141/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 142/541 Introduction – testing and optimizing • Challenges testing and optimizing may help solve – 5G applications and services usually require very strict network conditions – The network should be available providing reliable service at any time – Balanced/optimal use of resources • Based on the testing results, further steps are planned – Analyzing test results – Planning network and/or service optimization (re-configuration, topology, architecture, etc.) • SLA (Service Level Agreement) – What it counts from the customer’s point of view 宓室宪宨季孺季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 The need for testing and optimizing networks 1/4 • Testing plays crucial role since the very first stages of network integration – Lab testing – Deployment to the production – Production phase (Day-2 operation) 宓室宪宨季孻季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 142/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 143/541 The need for testing and optimizing networks 2/4 • Proactive testing and monitoring – Running live services (e.g., data download & upload) and observing effects in real time – Addressing relevant KPIs • Proactive testing and monitoring as a first step in providing reliable network – Add testing and monitoring results to enrich data especially in production phase – Building a complete real-time picture of the network conditions – Detecting anomalies (ideally before customers do) • Answers provided by proactive testing/monitoring – What are the performances the device/network is currently able to achieve – What is the effect to other devices in the network and to the network itself 宓室宪宨季孼季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 The need for testing and optimizing networks 3/4 • Addressing complexity of 5G networks – Running tests within the network • Distributed network architecture • Physically distributed network components • Optimizing network – Self-healing – Manual intervention – Optimizing network architecture and topology 宓室宪宨季孴孳季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 143/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 144/541 The need for testing and optimizing networks 4/4 • Some common KPIs for 5G services • Some KPIs for 5G network – Service availability – Service onboarding and deployment – Service reliability time – Bandwidth – Time to scale service/component – End-to-end latency – Reconfiguration time – Response time – Area traffic capacity – Error rate – Connection density – QoS and QoE – Positioning quality (in case 5G is used for localization services) 宓室宪宨季孴孴季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Methodology – key objectives • Get relevant data • Get data from most/all occasions customer can run into – Location – Moving speed • Use of customer-like devices while testing customers point of view • Be efficient • Build a complete picture of the network/service status – Combine data from various sources (tests, monitoring, system data) – Use AI methods where appropriate 宓室宪宨季孴孵季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 144/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 145/541 Methodology – test types • Continuous testing/monitoring – Regularly running tests on pre-defined locations – Testing schedule • On-demand testing – Testing on special purpose, e.g., • Double-checking anomaly detected during the continuous testing – May include testing on unusual locations • Use of special equipment, e.g., drones • Drive tests – Testing on a larger geographical area 宓室宪宨季孴孶季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Methodology – why does it matter? • RTT Example – interval between sent test packets can affect observed RTT 100 ms ICMP ICMP ICMP ICMP ICMP ICMP ICMP ICMP 1000 ms (PING default) ®ININ 5G NR Air Interface Results captured at commercial 5G mobile operator in Slovenia. More than 20K samples were taken in the duration of one month. 宓室宪宨季孴孷 ǀ 寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 145/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 146/541 Analytics – why does it matter? Results presented as Average RTT: 5G is better than 4G. Looks OK! Results presented as Median RTT: 4G is better than 5G? Misconfigured 5G NSA on the eNb/gNb? 宓室宪宨季孴學 ǀ 寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Tools • Several commercial test tools exists on the market today • Key requirements – Distributed architecture (e.g., autonomous agents/probes) – End-to-end test, realistic load generation, zero-loss data – 5G and Cloud architecture (VNF, MANO) – Analytics, reporting and visualization capabilities – Mobile network testing (e.g., RSSI, RSRP, RSRQ, SINR, Carrier Aggregation, Cell ID, etc.) – Network and service testing (e.g., DNS, ping, FTP, web browsing, multicast, Voice, etc.) – Supporting several technologies (e.g., 5G SA/NSA, LTE, HSPA, GPRS, EDGE, FE, GE, 10GE) – Over-the-Air (OTA) updates – Industrial and outdoor environment conditions support (temp. range -40寣C to +60寣C; IP67) 宓室宪宨季孴孹季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 146/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 147/541 Tools – our approach • We have developed our own testing tool – qMON – System based on a modular architecture qMON Drive qMON Manage qMON Mobile Monitor qMON Col ector qMON Cloud IPTV/SLA 宓室宪宨季孴孺季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Tools – qMON • qMON at a glance • Unified mobile, fixed and cloud (FMC) system operations • 5G and Cloud/VNF ready (MANO) • Distributed autonomous agents and system operation with zero data loss • Feature-rich and multi-layer with support of 100+ KPIs • True end-to-end automated measurements and realistic load generation • GIS and operator-based KPI data enrichment • Supported use cases • End-to-end QoS and QoE monitoring of network and services in live environments • Continuous service and SLS/SLA monitoring in real-time • Drive and benchmark testing • Coverage and performance assessment • Live network and service troubleshooting • Network and services trending • Device and system performance predictions under realistic load conditions 宓室宪宨季孴孻季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 147/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 148/541 Use cases – EVOLVED-5G • Industrial-grade 5G connectivity for the Factory of the Future IoT devices – IoT data collection via QoS guaranteed 5G connection 宓室宪宨季孴孼季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Use cases – EVOLVED-5G • The use case scenario – IoT GW installed in the field/factory with non-5G enabled sensors connected to it – IoT GW provides 5G connectivity for data delivery to the database/collector – The requirement is to provide industrial grade 5G connectivity with assured QoS as defined by the SLA • The solution – monitoring capabilities integrated on both sides to regularly run end-to-end tests • IoT GW: agent • Core network: collector, manager, reporter – Analyzing & optimizing • Network slice re-configuration in case of SLA not passing detected 宓室宪宨季孵孳季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 148/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 149/541 Use cases – 5G-INDUCE • 5G Network performance and radio coverage monitoring for Industry 4.0, enhanced by drone 宓室宪宨季孵孴季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Use cases – 5G-INDUCE • Monitoring 5G network performance and radio coverage – Smart-factory plant – Assuring high availability of critical communications needed for the main process to run (e.g., automated fork-lift operations) – Assuring high availability of services needed for the main process to run (e.g., video-based remote-control operation) – Drone assistance to provide height-related performance & coverage data • Supporting automatic optimization of 5G network quality of service (QoS) – Utilizing collected monitoring data • Optimizing 5G network coverage – Obstacles and/or interference sources in industrial environments, – Providing regular and/or on-demand drone-assisted measurements with detailed analytics 宓室宪宨季孵孵季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 149/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 150/541 Use cases – 5G-LOGINNOV • 5G for logistics and security processes in a sea-port – Exploitation of applications and services based on 5G-assured Industry 4.0 scenarios Services Infrastructure and Application Components 5G IoT System AI Analytics IoT Analytics MEC | Edge IaaS Port IaaS Private MANO 5G Core Network (CN) Private CN MNO CN | MEC 5G SA 5G NSA 5G Radio Access Network (RAN) Private RAN MNO RAN 5G NR (SA) 5G LTE/NR (NSA) 宓室宪宨季孵孶季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Use cases – 5G-LOGINNOV • Maintaining 5G network to provide various services and applications – Automation control of the container management (AI analytics) – Remote automation (IoT analytics) – Mission-critical port security services (video surveillance, CCTV applications) 宓室宪宨季孵孷季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 150/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 151/541 Use cases – 5G-LOGINNOV • Providing continuous, on-demand and drive tests for several network and service KPIs – Service onboarding and deployment time, time to scale service/component, reconfiguration time, area traffic capacity, connection density – Service availability, service reliability, bandwidth, end-to-end latency 宓室宪宨季孵學季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 Conclusions • Providing reliable and high-quality communications – Knowing the network/service condition at any time – Maintaining SLA • Predict troubles before customers do • 5G is designed to support industrial and critical services, but this means responsibility as well • Testing – Plays crucial role since the very first stages of network integration until production phase – A first step into providing reliable network and services • Optimizing – Enabling continual improvements of network/service based on test results analysis 宓室宪宨季孵孹季宿季寬季孵孳孵孵季完宱宷宨宵宱宨宷季完宱家宷宬宷宸宷宨孱季宄宯宯季宕宬宪宫宷家季宕宨家宨宵容宨宧孱季 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 151/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 152/541 宗宫宨季宺宲宵宯宧季宲宩季 宗宫宨 宺宲宵宯宧 宲宩 宫宬宪宫季宴宸室宯宬宷宼 宫宬宪宫 宴宸室宯宬宷宼 宦宲宰宰宸宱宬宦室宷宬宲宱家孱季 宦 宺宺宺孱宬宬宱家宷宬宷宸宷宨孱宨宸 宵宸宧宲宯宩孱家宸家宱宬宮它宬宬宱家宷宬宷宸宷宨孱宨宸 寬季孵孳孵孵 完宑宗守宕宑守宗季完宑宖宗完宗官宗守季宏宷宧孱季宄宯宯季宵宬宪宫宷家季宵宨家宨宵容宨宧孱 Co-funded by the European Union under grant agreements No. 101016608 (EVOLVED-5G), 101016941 (5G-INDUCE) and 957400 (5G-LOGINNOV). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 152/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 153/541 Meritev smernosti anten Antenna directivity measurements Matjaž Vidmar Univerza v Ljubljani, Fakulteta za elektrotehniko Katedra za informacijsko komunikacijske tehnologije, Laboratorij za sevanje in optiko matjaz.vidmar@fe.uni-lj.si Povzetek komunikacijske in navigacijske opreme za satelit V prispevku so zajete naslednje teme: sevanje “AMSAT‐Phase‐3D”, ki je bil uspešno izstreljen v novembru 2000. Profesor Vidmar trenutno poučuje usmerjenega izvora, izračun smernosti poljubne dodiplomske in podiplomske predmete s področja antene, meritev rezov smernega diagrama, telekomunikacij na Fakulteti za elektrotehniko. Njegovo smernost iz dveh rezov, eliptična odprtina področje dela je mikrovalovna elektronika, ki obsega (skupina), postopek izračuna skupne smernosti, 33- področja od letalske industrije do optičnih komunikacij. elementna cigara za 2400 MHz, HB9CV za 435 Author's biography MHz, sektorska skupina za 3400 MHz, meritev Matjaž Vidmar received his PhD in 1992 from the sektorske skupine, antena WiFi AliExpress in University of Ljubljana, for developing a single nizkofrekvenčni spekter detektorja. frequency GPS ionospheric correction receiver. Mr. Abstract Vidmar is currently teaching undergraduate and The following topics are covered in the paper: postgraduate courses in Electrical Engineering at the radiation of directional source, calculation of any University of Ljubljana, where he serves as head of the Radiation and Optics Laboratory (LSO) at the antenna directivity, measurement of antenna department for Electrical Engineering (FE). His current radiation pattern, directivity from two planes, research interests include microwave and high speed Elliptical aperture (group), procedure of total electronics ranging from avionics to optical‐fiber directivity calculation, 33-element cigar antenna communications. Under his leadership, the LSO for 2400 MHz, HB9CV antenna for 435 MHz, developed most of the 10Gbps electronics (pulse sector group antenna for 3400 MHz, sector group modulator, clock recovery) used in the Ester (ACTS antenna measurements, WiFi AliExpress antenna 063) project and many 40Gbps circuits used in the and low frequency detector spectrum. ATLAS (IST 10626) project: EAM drivers, transmitter clock distribution, 40Gbps and 80Gbps clock‐recovery circuits and 40Gbps PMD compensation receiver electronics. Mr. Vidmar also developed and built Biografija avtorja satellite hardware flown in space in 1990 on the Matjaž Vidmar je doktoriral leta 1992 z naslovom teme »Metoda korekcije ionosferskih pogreškov pri Microsat mission and in 2000 on the AMSAT‐P3D satelitski navigaciji in prenosu časa«. V ZDA je razvijal satellite.). satelitske oddajnike za organizacijo AMSAT. V sklopu sodelovanja z AMSAT‐om je sodeloval pri razvoju 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 153/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 154/541 !" #$% & " "'# (& "#)&* +"! ",#)&!(" - "$#& (( "# &-& ".# "+* + /+ 0 "1# 23 "4# 53 "6#7+&* + "'%#&"++* "''#&"&" - "'#,,"(&$%%8& "',#896:&$,8& "'$#+ &,$%%8& "'#+ "'.#; <;" =+ "'1#>&? * + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 154/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 155/541 "'# (& $ % $!& " * !' ! !' ( !' $ !) &' # $ !' + !" # # "#)&* +"! 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 155/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 156/541 , " " ", ",#)&!( #)&! " ( - " - - - - ' - ' - - $ %' - ' ' ' ' ! $ !' $ !) ' ' - - &$ !# - ' - ' ' "$#& (( 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 156/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 157/541 ! . ! . $ ! 2 # '# $#!'% $ + . 1 $ . 1 $ . / 0& $!) . / . / ! # $ "# &-& , " 3 , * , * !$ , !$ * !$ ".# "+* + /+ 0 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 157/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 158/541 "1# 23 , ' , , , !$ 3 " , * "4# 53 , ' " 3 !$ , * 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 158/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 159/541 4 * , , , , , * , 4 * , , * , ' !# + , ' $ %' !" !# + "6#7+&* + , , * ' , , , , "'%#&"++* 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 159/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 160/541 ! !# , , "''#&"&" - 0& $%%8& & ( ",,# ' " 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 160/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 161/541 0& &8 , $ & 6:98 ,# "' "'$#+ &,$%%8& 0& 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 161/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 162/541 + 8 # ' " 5 5 + =+ ;" < ; # '. " 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 162/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 163/541 7$ 8 # & $ : 9 $' ' ! $! 1& (% 6 ' "'1#>&? * + 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 163/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 164/541 Pozabljena antena cigara The forgotten cigar antenna Matjaž Vidmar Univerza v Ljubljani, Fakulteta za elektrotehniko Katedra za informacijsko komunikacijske tehnologije, Laboratorij za sevanje in optiko matjaz.vidmar@fe.uni-lj.si Povzetek satelitski navigaciji in prenosu časa«. V ZDA je razvijal V prispevku so zajete naslednje teme: razvoj satelitske oddajnike za organizacijo AMSAT. V sklopu sodelovanja z AMSAT‐om je sodeloval pri razvoju usmerjenih anten, umetni dielektriki, strukture z upočasnjenim valovanjem komunikacijske in navigacijske opreme za satelit , izvorni opis cigare (julij “AMSAT‐Phase‐3D”, ki je bil uspešno izstreljen v 1953), različne izvedbe cigare, Lunohod, James novembru 2000. Profesor Vidmar trenutno poučuje Webb, ruska puška iz Voroneža, antena BDM2 za dodiplomske in podiplomske predmete s področja 2400 MHz, mehanska konstrukcija ruske puške, telekomunikacij na Fakulteti za elektrotehniko. Njegovo izmere in prednosti ruske puške, elektromagnetna področje dela je mikrovalovna elektronika, ki obsega simulacija ruske puške, "vrtna" antenska merilnica, področja od letalske industrije do optičnih komunikacij. 23-elementna cigara za 1300 MHz, 33-elementna Author's biography cigara za 2400 MHz, 58-elementna cigara za 3400 Matjaž Vidmar received his PhD in 1992 from the MHz in vzbujanje ruske puške. University of Ljubljana, for developing a single Abstract frequency GPS ionospheric correction receiver. Mr. Vidmar is currently teaching undergraduate and The following topics are covered in the paper: postgraduate courses in Electrical Engineering at the development of directional antennas, artificial University of Ljubljana, where he serves as head of the dielectrics, slow wave structures, original cigar Radiation and Optics Laboratory (LSO) at the description (July 1953), different versions of department for Electrical Engineering (FE). His current cigars, Moonwalk, James Webb, Russian rifle from research interests include microwave and high speed Voronež, BDM2 antenna for 2400 MHz, electronics ranging from avionics to optical‐fiber mechanical construction of Russian rifles, communications. dimensions and advantages of the Russian rifle, electromagnetic simulation of a Russian rifle, "garden" antenna measurement system, 23-element cigar for 1300 MHz, 33-element cigar for 2400 MHz, 58-element cigar for 3400 MHz, and a Russian rifle antenna excitation. Biografija avtorja Matjaž Vidmar je doktoriral leta 1992 z naslovom teme »Metoda korekcije ionosferskih pogreškov pri 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 164/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 165/541 !"#! !$%& '$( ) $* +$,- (( %$.( ,'/+ $- ( 0$ ) 1$23 4$,5 /$67%&&8 '&$) ,5 ''$. , ,5 '$# ,5 '+$ '%$+'+&&8 '$++%&&8 '0$4+%&&8 '1$ ,5 9999999999999999999999999999999999999999999999999999999999999999999999999999999999 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 165/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 166/541 '440:'44/ 8 )8,,(( ,( ( 8,;,- < = -,>?%&8 '4/&:'/&& @A!B )(5, ) >( ),>C'&&8!;,- D ,- ( '4/%:'4/1 2)E) 6,((( (( '/&&:'/'& B ,,) ((!( '/' 86(,,-( ( '/% E)" F ( G,(( , '/0:'/4 ) * 8H,- (( ( ),-! - ( ) ) '/%0 2) (- F)IG!,(- F -G , '/+ 2E B3,- (( ( )( ( ; KKK ,=MM ) ! - , , - , , '&$) ,5 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 170/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 171/541 . - '+B8 %B8 +%B8 T,5 @( , '&I'&& 4I4 4I'&& (),- (( - 7 ( = /&P%Q 1'P0Q /&P'&Q E( - 'M'&RL '&M4RL '&M4RL F'G (-,( 5 FG M, 5 N( , F+G (-( &S' +&S' S' ( F%G - ( '00R /&R 04R FG,,, , > 'L 'L 'L F0G(, ,( F1G( &6 (- ( '%R 04R %/R ! '&L '&L & F4GP6(- H$* /R &R +1R ,() 7O' . '&L '&L '&L 1%R %&R 4R ,5-= /0, '&L '&L '&L F'G,, , 7 - '% 1 FG,,,(, ::7' F+G, , 7 - % ' F%G,,(, FG,,) # - +& '4 '0 , ''$. , ,5 '$# ,5 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 171/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 172/541 - - > , $ ! ( '+ +&&8 ' + '%$ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 172/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 173/541 &8 %& ++ $ ' %&&8 + 4 '0$ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 173/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 174/541 5 , %B8 +%B88 $ '1 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 174/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 175/541 Starlink - satelitski internet v nizki zemeljski tirnici Starlink - Satellite internet in Low Earth Orbit Boštjan Batagelj Univerza v Ljubljani, Fakulteta za elektrotehniko Katedra za informacijsko komunikacijske tehnologije, Laboratorij za sevanje in optiko bostjan.batagelj@fe.uni-lj.si Povzetek Abstract Cilj vseh komunikacijskih satelitskih povezav In all links involving communications satellites, je, da se za dobrobit človeštva zadovoljijo ogromne the aim is to send the best-quality signal with the komunikacijske potrebe s pošiljanjem signala lowest bandwidth and power using the simplest najboljše kakovosti z najnižjo pasovno širino in and most appropriate hardware. This is for močjo ter z uporabo najpreprostejše in everyone’s benefit, because it is necessary to najprimernejše strojne opreme. Za doseganje teh satisfy enormous demands for all types of ciljev se danes načrtovanje komunikacijskih communications. For the purpose of achieving satelitskih sistemov preusmerja iz geostacionarne these targets, the design of communications- tirnice v nižje zemeljske tirnice, kjer se signal satellite systems is being shifted from the najboljše kakovosti izvede z zmanjševanjem geostationary orbit to lower Earth orbits, where verjetnosti napak in zakasnitev. Pri the bestquality signal is achieved by minimizing konstelacijskem sistemu majhnih satelitov je ob the probability of error and latency. In a small- zasnovi zaželeno, da se zmanjšajo zapletenost in satellite constellation system, the design minimizes stroški implementacije predlaganega sistema, the complexity and the cost of implementing the potrebna prenosna moč, ki se pretvori v razmerje proposed system, reduces the required med signalom in šumom, in uporabljeni frekvenčni transmission power, which translates into signal-spekter. V prestavitvi je ovrednoteno satelitsko to-noise ratio, and narrows the frequency spectrum širokopasovno komunikacijsko omrežje Starlink, being used. The presentation evaluates the ki ga razvija ameriško podjetje SpaceX. Starlink-satellite broadbandcommunications Pregledane in komentirane so glavne tehnične network developed by the American company značilnosti tega zelo posebnega segmenta SpaceX. The main technical characteristics of this širokopasovnih komunikacijskih omrežij, special segment of broadband-communications osnovanih na konstelacijskem omrežju tehnologije networking based on the constellation network of majhnih satelitov. Glavni namen prispevka je jasno small-satellite technology are reviewed and prikazati tehnične lastnosti omrežja Starlink, ki jih commented on. The main purpose of the paper is to podjetje SpaceX običajno ne razkriva podrobno v clearly show the technical characteristics of the javno dostopnih predstavitvah. Starlink network that SpaceX does not disclose in popular-science presentations. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 175/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 176/541 Biografija avtorja Boštjan Batagelj je izredni profesor na Fakulteti za elektrotehniko Univerze v Ljubljani in član mednarodnih združenj IEEE in OSA. Raziskovalno delo opravlja v Laboratoriju za sevanje in optiko na katedri za informacijsko komunikacijske tehnologije, kjer se med drugim ukvarja z fizičnim nivojem optičnih prenosnih in dostopovnih telekomunikacijskim omrežji vključno s konvergenco radijskih sistemov in elementov. Author's biography Bostjan Batagelj is an associate professor at the University of Ljubljana, Faculty of Electrical Engineering and a member of the international organizations IEEE and OSA. As a researcher he works in the Radiation and Optics Laboratory in the Information and Communications Technology Department. His current research interests include work on the physical layer of optical transport and optical access networks, including the convergence with radio systems and components. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 176/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 177/541 25. seminar radijske komunikacije Ljubljana, 3. februar 2022 2 / 26 bostjan.batagelj@fe.uni-lj.si � � � � � � � � � � � � � � � � � 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 177/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 178/541 3 / 26 bostjan.batagelj@fe.uni-lj.si � � 4 / 26 bostjan.batagelj@fe.uni-lj.si � Premer sprejemne antene na � Zemlji 49 m � Telstar ha=5.933 km hp=952 km � � � � vir: http://www.youtube.com/watch?v=uKH-GijnAGk&feature=player_embedded#at=1514 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 178/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 179/541 5 / 26 bostjan.batagelj@fe.uni-lj.si MEO LEO R Z=6378 km GEO nizka zemeljska tirnica (nizkozemeljska tirnica) Low Earth Orbit (LEO) od 100 km do 2.000 km srednja zemeljska tirnica Medium Earth Orbit (MEO) od 2.000 km do 36.000 km geostacionarna tirnica Geostationary Orbit (GEO) 36.000 km (35.786 km) visoka zemeljska tirnica High Earth Orbit (HEO) od 36.000 km navzgor 50.000 km � � � � � 6 / 26 bostjan.batagelj@fe.uni-lj.si � htt h ps://www.globalstar.com � https p ://www.iridium. com co � � vir: “ “ https://ieeexplore.ieee.org/document/682221 � � � https://oneweb.net https://en.wikipedia.org/wiki/OneWeb_satellite_constellation � � https://en.wikipedia.org/wiki/LeoSat � https://www.orbcomm.com/ � � https://www.viasat.com 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 179/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 180/541 7 / 26 bostjan.batagelj@fe.uni-lj.si � (Space Exploration Technologies Corporation) https://www.starlink.com/ � � � 8 / 26 bostjan.batagelj@fe.uni-lj.si � � vir: Starlink Statistics, Jonathan's Space Pages, https://planet4589.org/space/stats/star/starstats.html vir: List of Starlink launches, Wikipedia, https://en.wikipedia.org/wiki/List_of_Starlink_launches 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 180/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 181/541 9 / 26 bostjan.batagelj@fe.uni-lj.si � � � � � 10 / 26 bostjan.batagelj@fe.uni-lj.si � � Starlink Tintin A (rdeča), Starlink Tintin B (modra), španski PAZ satelit (zelena) � � � � � vir: “SpaceX wants to fly some internet satellites closer to Earth to cut down on space trash“, https://www.theverge.com/2018/11/9/18016962/spacex-internet-satellites-space-debris-trash-orbit-closer-earth-distance-atmosphere 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 181/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 182/541 11 / 26 bostjan.batagelj@fe.uni-lj.si � � � https://en.wikipedia.org/wiki/Solar_cycle � � � 14 3 2 P 3,986�10 m /s v a 550 6378 7585 m/s 3 �10 m � � � https://spectrum.ieee.org/tech- talk/aerospace/satellites/the-odds- that-one-of-spacexs-internet- satellites-will-hit-someone � � � � � � y y � � https://spectrum.ieee.org/tech-talk/aerospace/satellites/spacex-claims-to-have-redesigned-its-starlink-satellites-to-eliminate-casualty-risks 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 182/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 183/541 13 / 26 bostjan.batagelj@fe.uni-lj.si https://www.starlink.com/ � � � https://www.delo.si/novice/znanoteh/ starlink-moti-astronome-a-tudi- operaterje/ 14 / 26 bostjan.batagelj@fe.uni-lj.si L 1250 km t 4,17 ms 8 0 c 2�10 m/s n 2 t 8,3 ms https://wondernetwork.com/pings 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 183/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 184/541 14 / 26 bostjan.batagelj@fe.uni-lj.si h 36000 km geostacionarni satelit R 6378 km Z L Rz h 2 2 Rz 6378 km 36000 km2 6378 km2 41895 km h 36000 km t 120 ms 2 t 240 ms zenit 8 zenit c 3�10 m/s 0 L 41895 km t 140 ms 2 t 280 ms horizont 8 c 3�10 m/s horizont 0 16 / 26 bostjan.batagelj@fe.uni-lj.si h 1100 km t 3,7 ms zenit 8 c 3�10 m/s 0 h 1100 km LEO satelit h 550 km h 550 km t 1,8 ms zenit 8 c 3�10 m/s 0 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 184/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 185/541 17 / 26 bostjan.batagelj@fe.uni-lj.si GEO ali MEO GEO ali MEO satelit satelit Zemeljski vod 18 / 26 bostjan.batagelj@fe.uni-lj.si satelit Starlink satelit Starlink satelit satelit Starlink Starlink t 1,8 ms t 1,8 ms zenit zenit LEO sateliti � � 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 185/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 186/541 19 / 26 bostjan.batagelj@fe.uni-lj.si L nL � t AB 0 c 0 c n nL L 2 h t AB 0 c 0 c � L nL L 2 h 2 h t AB 0 c 0 c L( n 1) 2 h 2 h 2�550 km 1100 km L 2200 km ( n 1) (1,5 1) 0,5 � � � https://dl.acm.org/doi/10.1145/3286062.3286075 � 20 / 26 bostjan.batagelj@fe.uni-lj.si � � � a 550 km + 6378 km3 3 T 2S 2S 14 3 2 P 3,986·10 m /s � https://patents.google.com/patent/US9973267B2/en 5.738 s 95,6 min = 1 ura 35,6 min https://www.maxval.com/blog/featured-technologies-starlink-constellation/ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 186/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 187/541 21 / 26 bostjan.batagelj@fe.uni-lj.si � LEO satelit 4π 4π 9 7,6 10 : � srd r=2000 km 9 D 1,6�10 o : A r : 2�10 m2 2 6 9 4 2 �7,6�10 srd 3�10 m S 2 r o=2 cm 2 A 30000 m S 2 r 2 2 197 m S A π r π 0, 01 m2 2 2 3,14 cm π π o o 4π 4π 2 9 D A �3,14 cm 1,6�10 o 2 o λ 1550 nm2 � vir: Carrasco-Casado A., Mata-Calvo R. (2020) Space Optical Links for � Communication Networks. In: Mukherjee B., Tomkos I., Tornatore M., Winzer P., Zhao Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. vir: https://www.dlr.de/kn/en/desktopdefault.aspx/tabid-8112/13915_read-35337 Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_34 vir: https://www.tesat.de/products 22 / 26 bostjan.batagelj@fe.uni-lj.si 14 3 2 P 3,986�10 m /s v a 550 6378 7585 m/s 3 �10 m a 550 km + 6378 m k 3 3 T 2π 2π 1 ura 35,6 min 14 3 2 μ 3,986·10 m /s � � � 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 187/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 188/541 23 / 26 bostjan.batagelj@fe.uni-lj.si Podd=4 W � � � � 24 / 26 bostjan.batagelj@fe.uni-lj.si � � https://patents.google.com/patent/US10770790B1/en https://patents.google.com/patent/US20190253125A1/en 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 188/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 189/541 25 / 26 bostjan.batagelj@fe.uni-lj.si � � https://satellitemap.space 26 / 26 bostjan.batagelj@fe.uni-lj.si � � � � � � � � � 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 189/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 190/541 Komunikacijske tehnologije IoT IoT communication technologies Boštjan Snoj A1 Slovenija bostjan.snoj@a1.si Povzetek strongly depends on the purpose of use and our Za komunikacije med napravami v internetu requirements. We will focus on NB-IoT, LTE-M stvari je na voljo več različnih radijskih tehnologij. and the upcoming NR-RedCap technologies used Vsaka ima lahko svoje prednosti in slabosti. Izbor by mobile operators to provide connectivity. je močno odvisen od namena uporabe in naših Differences between them are crucial to properly zahtev. V ospredje bomo postavili tehnologije NB-place them in different use cases. Major question is IoT, LTE-M in prihajajoči NR-RedCap, ki jih pri also how future proof are existing technologies zagotavljanju povezljivosti uporabljamo mobilni already. What bring new technologies that expand operaterji. Pogledali si bomo tehnološke razlike the usability of IoT world? Radio part of IoT med njimi, kako jih umestiti v različne načine devices is a new area of development for many uporabe in kako primerne za prihodnost so companies. Know-how about hardware design for obstoječe tehnologije in delujoče rešitve, ter katere radio devices is a must in IoT world. How do we so nove tehnologije, ki širijo obzorja povezovanja face that fact? What do back-end systems offer us IoT naprav. Za marsikatero podjetje je radijski del to get new IoT devices up and running as quickly IoT napravic novo področje, ki ga težje as possible? How limited are we with amount of obvladujejo. V ospredje ponovno prihaja znanje o data and what do we need to think about in the načrtovanju in izdelavi strojne opreme (HW), saj process moving to production phase? specifične zahteve uporabe zahtevajo prilagojeno oblikovanje napravic. Kako se spopadamo z njimi? Biografija avtorja Kaj vse nam ponujajo zaledni sistemi, da nove IoT Boštjan Snoj je vodilni ekspert na napravice kar najhitreje lahko spravimo v uporabo? področju interneta stvari v podjetju Kako smo omejeni s podatki in na kaj moramo A1 Slovenija. Od leta 2000 deluje misliti v procesu, ko prehajamo iz koncepta v na področju telekomunikacij. Ima produkcijsko fazo? večletne izkušnje na razvojnem in Abstract integracijskem področju fiksnih in mobilnih komunikacij, vezane na projekte v tujini. Several different radio technologies are Nekaj let bil del razvojne ekipe, ki je razvijala available for communication between devices in telekomunikacijske produkte za Siemens the world of Internet of Things. Each can have its Communications. Kasneje je prešel v sektor za podporo advantages and disadvantages. The choice in integracije telekomunikacijskih rešitev. V zadnjem 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 190/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 191/541 času se ukvarja s tehnologijami IoT na področju mobilnih komunikacij. Author's biography Bostjan Snoj is Lead Internet of Things Expert (IoT). He has been working in telecommunications sphere since 2000. He gained years of experience in telecommunication software development and solution integration for fixed and mobile communications, related to projects abroad. He was part of the development team that developed telecommunications products for Siemens Communications for several years. Later he moved to the solutions support and integration sector. Currently he is working on mobile IoT technology at A1 Slovenia. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 191/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 192/541 IoT Radio Communication Technologies Boštjan Snoj � A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 192/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 193/541 IoT Radio Communication Technologies A1 Digital Stack Software as a Service (SaaS) Device management User device Connectivity Real-time analysis Dashboard Machine Learning Client Enterprise Asset Management IoT Platform System User & customer management 4 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 193/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 194/541 Future is in „RedCap“ 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 194/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 195/541 IoT Radio Communication Technologies Key benefits of NB-IoT and LTE-M Long P g ower – Long Battery Life ZZZ Wide Area – Better coverage Indoor Remote Areas Future Proof – part of 5G 5G HW NB-IoT & LTE-M HW 7 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Basic definitions, what are NB-IoT and LTE-M � Cellular IoT: 2G, 3G, 4G, NB-IoT, LTE-M � NB-IoT and LTE-M are both cellular technologies standardized by 3GPP, � both are developed for Low Power Wide Area Network (LPWAN) type of devices, � usually battery powered (Low Power), � having in mind longer range and deeper in-house penetration (Wide Area), � both are part of 4G technology, � and will continue to be the basic IoT technologies in the 5G (future proof). � From cost perspective: low price because of low module complexity. � Both inherit privacy and security policy to which we are used to from LTE. � Number of IoT devices foreseen tens of billions till 2025 8 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 195/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 196/541 IoT Radio Communication Technologies Basic definitions, what are NB IoT and LTE-M � Both are suitable technologies for M2M solution development, � are designed for low data transfer rates, � used to operate in hard reaching areas / environments, � replacing 2G and 3G technologies. � Both use operator‘s licensed spectrum, � which can guarantee QoS, � 3GPP Release 14 compliant in A1 network (feature reach). Looks like they are mirror image one of the other? Right? � Let‘s find key differences among all common features. 9 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Voice over LTE and SMS NB-IoT LTE-M VoLTE No Yes (Provider specific) SMS Yes Yes Mobility support No Yes Bands B3, B20 B3, B20 In-house penetration Excellent Good � VoLTE If needed it will be available at A1 network. � Mobility: no handover for NB IoT! 10 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 196/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 197/541 IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Transfer Rate and Bandwidth NB-IoT LTE-M Bandwidth 180kHz 1,4MHz Speed DL <100kbps 300kbps Speed UL <100kbps 370kbps � Use Case dependant! Think about how to reduce amount of data to transfer! 11 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Network NB-IoT LTE-M Number of Connections Max every 15min No limit Connection mode Half Duplex Full Duplex Latency 1s – 60s 50-100ms Standard IP protocols No Yes Need for special protocols Yes No need 12 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 197/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 198/541 IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Functions NB-IoT LTE-M Static IP V4 Yes Yes S2S VPN Yes Yes Private Radius Yes Yes IP V6 support Available soon in A1 network Available soon A1 network 13 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Functions NB-IoT LTE-M Remote control Yes/No (UC dep.) Yes Firmware updates No Yes Grow with UCs No Yes � Remote control for some non critical actions available in NB-IoT. � Small speed and protocol specific requests in NB-IoT restrict FW upgrades. � Since no updates available, it is not possible to grow with Use Cases 14 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 198/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 199/541 IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Reference Signals Received Power (RSRP) NB-IoT LTE-M RSRP Excellent Signal Strength >-90 dBm >-85 dBm RSRP Good Signal Strength -90 dBm to -105dBm -86 dBm to -100 dBm RSRP Fair Signal Strength -106 dBm to -116 dBm -101 dBm to -112 dBm RSRP Poor Signal Strength -117 dBm to -121 dBm -113 dBm to -120 dBm RSRP Dead Signal Strength <-122 dBm <-121 dBm 15 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Reference Signal Received Quality (RSRQ) NB-IoT LTE-M RSRQ Excellent Signal Quality >-9 dB >-9 dB RSRQ Good Signal Quality -9 dB to -12 dB -9 dB to -12 dB RSRQ Fair to Poor Signal Quality <-13 dB <-13 dB 16 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 199/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 200/541 IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M � Functions NB-IoT LTE-M First focus - Europe Yes Secondary focus - Europe Yes First focus – North America Yes Secondary focus - North America Yes First focus - Asia Yes Secondary focus - Asia Yes 17 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Key differences between NB-IoT and LTE-M Firmware Grow Indor Remote Voice Battery Mobility Price update with use penetrat. controll available life support case LTE-M ••• ••• •• ••• ••• •• ••• •• NB-IoT • • ••• •• ••• • ••• 18 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 200/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 201/541 IoT Radio Communication Technologies Mobile IoT Deployment Map (source: GSMA, Jan 2022) Source: https://www.gsma.com/iot/deployment-map 19 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Typical mistake when deciding NB-IoT or LTE-M TCP for NB-IoT � Using TCP protocol for NB-IoT technology � NB-IoT in theory supports both TCP and UDP protocols. But this is misleading! � NB-IoT facts: � High Latency � Half Duplex connection � UE attach delays � TCP facts: � sensitive to delays � Sensitive to packet losses during data transmission � Slower than UDP � Solution: � If retransmission of lost packets on transport layer is absolutely necessary, than consider moving to LTE-M. � Use UDP (and resolve the packet loss on application level if needed). � A1 measurement: UDP packet loss <1%, TCP packet loss can become quickly over 90% 20 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 201/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 202/541 IoT Radio Communication Technologies Typical mistake when deciding NB-IoT or LTE-M � Server side on UE over NB-IoT technology � It is not battery friendly solution (draining batteries, no deep sleep possible) � Delays over the network may result in packet loss during high buffer loads in network � Solution: � Move to LTE-M � Redesign the application to have a client on UE side 21 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Typical mistake when deciding NB-IoT or LTE-M � Sending data in short intervals over NB-IoT � NB-IoT facts: � Slow speed � Latency � No retransmission of lost packets is possible on transport level � Data may be generated faster, than we are possible to flush them over NB-IoT � Solution: � Move to LTE-M. � Redesign the application not to be so brutal sending data. 22 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 202/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 203/541 IoT Radio Communication Technologies Good practice � Use appropriate protocols if working on NB-IoT: � CoAP (UDP) � (CoAP)/LWM2M (UDP) � MQTT-SN (designed to use UDP) � Reboot: � There is a lot of Software running inside User Equipment. Therefore there is no guarantee, that code is bug-free. Consider periodical rebooting if there is a large number of IoT devices with no management option. � Fall back: � Detect abnormal SW behaviour and enable fall-back scenario (wake up in minimal maintenance mode) � Antenna design: � Antenna design is underestimated. Antenna with high gain, optimal radiation diagram is half of a success in harsh RF conditions. 23 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Conclusion � LTE-M will emerge faster and faster since it is easier for application development and maintaining, having always the door open for easy new Use Cases introduction. � NB-IoT is here now and that is the fact. Since it was available prior to LTE-M in EU, it has a bit of advantage in terms of commercial progress . NB-IoT will stay mainly for the simple applications on larger scale. For example sensors and meters, where functional requirements are firmly defined at the beginning of the project, and are not subject to change and where deeper in-house penetration and wider range is absolutely necessary. � Think about your Use Case and use appropriate technology. After deploying thousands of IoT devices, there is no way back! Consider even supporting both technologies for the same Use Case. 24 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 203/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 204/541 IoT Radio Communication Technologies NR-RedCap NR-Lite NR-Light NR-RedCap � RedCap = Reduced Capability � It was first included in one of the 3GPP Release 17 Study Item: "Low complexity NR devices" in June 2019. � Data transmission rate at least no slower than the LTE Cat-1 standard 25 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Release 17, new dates Source 3GPP: https://www.3gpp.org/images/articleimages/Releases/graphic_version3_SP-200222.jpg 26 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 204/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 205/541 IoT Radio Communication Technologies Release 17 - Functionalities vir: 3gpp https://www.3gpp.org/images/articleimages/Releases/rel_17_v2.jpg 28 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Spider Diagram RedCap, LTE-M, NB-IoT RedCap LTE-M(eMTC) NB-IoT Latenca 10 8 6 Baterija Zanesljivost 4 2 0 Cena Hitrost Domet 29 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 205/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 206/541 IoT Radio Communication Technologies Spider Diagram RedCap, LTE-M, NB-IoT RedCap LTE-M(eMTC) NB-IoT URLLC eMBB Latenca 10 8 6 Baterija Zanesljivost 4 2 0 Cena Hitrost Domet 30 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies RedCap missing elemnt LPWA IoT Full blown 5G NR � Industrial sensors – need for low latency (5-10ms): pressure sensors, motion sensors, accelerometers, and actuators � Surveillance cameras: smart cities, factories � Wearables: smartwatches, rings, e-health related devices, and medical monitoring devices 31 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 206/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 207/541 IoT Radio Communication Technologies A1 IoT Platform - Cumulocity � Welcome to the stress-free IoT platform! Cumulocity IoT was built from the ground up to be open, rapid to deploy and distributed. You can connect any “thing” and get started in minutes. Simplify with one architecture—from the edge to cloud and on-premises. Monitor and respond to IoT data in real time. No coding needed! 32 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies A1 IoT Platform - Cumulocity 33 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 207/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 208/541 IoT Radio Communication Technologies A1 IoT Platform - Cumulocity � Focus on what matters – platform helps with the rest! Data Normalization Access Rights Alarming Application Products / Machines Device Configuration A1D IoT Platform Security Firmware Updates Rule Engine Sensors … 34 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies A1 IoT Platform - Cumulocity 35 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 208/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 209/541 IoT Radio Communication Technologies A1 IoT Platform - Cumulocity 36 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies A1 Machine Learning Platform 37 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 209/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 210/541 IoT Radio Communication Technologies Comprehensive Machine Learning Platform BigML provides a selection of robustly-engineered Machine Learning algorithms proven to solve real world problems by applying a single, standardized framework across your company. Supervised Learning: classification and regression (trees, ensembles, linear regressions, logistic regressions, deepnets), and time series forecasting. Unsupervised Learning: cluster analysis, anomaly detection, topic modeling, association discovery, and Principal Component Analysis (PCA). 38 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Interpretable & Exportable Models All predictive models on BigML come with an interactive visualization and explainability features that make them interpretable. They can be exported and used to serve local, offline predictions on any edge computing device or be instantaneously deployed as part of distributed, real-time production applications. Interpretable: Visualizations such as Partial Dependence Plots effectively generate and display thousands of model predictions at a glance while Prediction Explanations and Field Importances shed light on factors driving individual predictions. Exportable: BigML models are fully exportable via JSON PML (and PMML) and can be used from all popular programming languages. This means you can seamlessly plug your models into your web, mobile or IoT applications or services such as Google Sheets, Amazon Echo, Zapier, and more. 39 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 210/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 211/541 IoT Radio Communication Technologies Programmable & Repeatable As an "API-first" company, BigML brings every new feature first to the REST API. Bindings & libraries are available for all popular languages, including Python, Node.js, Ruby, Java, Swift, and more. Reproducible: BigML's granular record keeping and transparency are crucial to meet regulatory and audit compliance requirements yet are often completely overlooked in other Machine Learning tools. Traceable: All resources on BigML are immutable and stored with a unique ID and the creation parameters, which enables you to track any Machine Learning workflow at anytime. 40 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Automation Rapidly bring your predictive modeling tasks to production through effective automation. BigML turns the difficult, time-consuming work of hand- tuning models or executing complex workflows into one-click menu options or single API calls. OptiML: Automatic optimization for model selection and parameterization of classification and regression algorithms saves you a lot of time by creating and evaluating hundreds of models to find the best performing ones. WhizzML: A domain-specific language for automating complex workflows, implementing high-level Machine Learning algorithms, and easily sharing them with others. Scriptify: Convert your workflows into reusable scripts in a single click. 41 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 211/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 212/541 IoT Radio Communication Technologies Collaboration Share your Machine Learning resources using granular team and project management capabilities. BigML is a transparent, collaborative platform for all members of your organization, from analysts and developers, to engineers and executives. Organizations: Effectively adopt Machine Learning across your entire corporate structure. With BigML organizations, the Dashboard is a shared workspace where users can access the same projects and resources with specific roles and permissions. Projects: All resources in an organization exist within projects, which can be public or private. Assign user permissions according to the needs of each project, allowing other members to manage, create, or simply view resources. 42 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Flexible Deployments Have tons of data? Need to provide access to everyone in your organization? Don't fret, all your bases are covered on BigML with options for multi- tenant and single-tenant versions on the cloud or on-premises. BigML can be ported to any cloud provider or to a Virtual Private Cloud, with fully- managed and self-managed versions. BigML Lite: Fast track to value for companies ready to implement their first production use cases. BigML Enterprise: Full-scale access for companies ready to adopt Machine Learning across departments. Auto-scalable: All deployment methods utilize BigML’s smart infrastructure that automatically adjusts resources to seamlessly meet computational needs in the most cost effective manner. 43 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 212/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 213/541 IoT Radio Communication Technologies Hardware – Antenna is the most important part 44 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Hardware – Antenna is the most important part 45 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 213/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 214/541 IoT Radio Communication Technologies Hardware – Antenna is the most important part 46 Boštjan Snoj | A1 Slovenia IoT Radio Communication Technologies Hardware – Most Popular Module 47 Boštjan Snoj | A1 Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 214/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 215/541 IoT Radio Communication Technologies IoT Hardware for Devices + Give Away SRK 2022 !! 48 Boštjan Snoj | A1 Slovenia Thank you! POSKENIRAJ KODO IN SI SPRAVI KONTAKT TELEFON Boštjan Snoj Lead Internet of Things Expert (IoT) @ bostjan.snoj@A1.si A1 Slovenija, d. d. Ameriška ulica 4 SI - 1000 Ljubljana 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 215/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 216/541 Primerjava arhitekturnih nivojev 4G/VoLTE in 5G/VoNR Comparison of 4G/VoLTE and 5G/VoNR architectural levels Božo Mišović ZENLAB, d. o. o. bozo.misovic@zenlab.si Povzetek za data prenos - modemi. V času tržne transformacije Pogosto pozabljamo, da je je naš mobilni žepni podjetij je pomagal pri ustanovitvi podjetja Smartcom, računalnik („pametni telefon“), ki ga nosimo kot tehnični direktor in nadaljeval deset let v podjetju naokoli, še vedno v uporabi tudi kot „telefon“, ki je SRC.SI, kot vodja programa za WAN komunikacije. Delo je nadaljeval v podjetju Mobitel (zdaj Telekom namenjen pogovorom. Prvotna brezžična mobilna Slovenije), kjer je opravljal delo tehničnega omrežja so bila dizajnirana za prenos govora, kot strokovnjaka. Od leta 2001 je deloval na uvajanju je bil na primer analogni NMT450 (govor/1Kbps). tehnologij GPRS/UMTS/HSPA/LTE. Od leta 2015 Kasneje so se razvili digitalni javni mobilni deluje kot zunanji svetovalec v podjetjih Projekt IP, sistemi, ki se še danes uporabljajo tudi za kritične EIMV, Stelkom in sedaj Zenlab. aplikacije v realnem času. To so 2G Author's biography (SMS/10Kbps), 3G (Video/64Kbps), 4G (1Gbps), Božo Mišović graduated at the 5G (10Gbps), kmalu pa lahko pričakujemo tudi 6G Faculty of Electrical Engineering, (1Tbps). Zgrajena mobilna omrežja so prilagojena University of Ljubljana in 1977. His ključnim in zanesljivo nadzorovanim, visoko first employment was at Iskra kvalitetnim in robustnim govornim storitvam. Elektrozveze in 1976. He helped to set-up the new data communications Abstract company Smartcom, where he worked as technical We often forget that the mobile computer we director. In 1992, he joined company SRC.SI as WAN carry around in our pockets is still referred to as a support manager where he worked on Novel, Microsoft ‘phone’. Wireless networks were first designed for and Cisco equipment. In 2001 he started to work in voice, and it remains a critical real-time company Mobitel (current Telekom Slovenije) on application today. Building a network that can GPRS/UMTS/HSPA/LTE support. He retired in 2015 adapt is crucial in managing reliable, high-quality and then continued working in companies Projek IP, and robust mobile voice services. EIMV, Stelkom, and Zenlab as external associate for mobile networks. Biografija avtorja Božo Mišović je leta 1977 diplomiral na Fakulteti za elektrotehniko v Ljubljani, smer Telekomunikacije. Prvo delovno razmerje je nastopil v podjetju Iskra Elektrozveze, na področju domače proizvodnje naprav 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 216/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 217/541 Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR Božo Mišović IP Svetovalec za brezžične tehnologije, ZENLAB d.o.o. Marjana Senčar Srdič Vodja tehnologij interneta stvari in inovacij, A1 Slovenija d. d. SRK 2022, Ljubljana n ssio Brezžične govorne tehnologije: al discu terninrfo Draft Mogoče pogosto pozabimo, da je je naš mobilni žepni računalnik („pametni telefon“), ki ga nosimo naokoli, še vedno uporabljan kot „telefon“/pogovorno! Prvotna brezžična mobilna omrežja, so bila dizajnirana za prenos govora, kot je bil analogni NMT450/govor/1Kbps in novo dizajnirani digitalni javni mobilni sistemi, za danes kritične real-time aplikacije; 2G/SMS/10Kbps, 3G/Video/64Kbps, 4G/1Gbps, 5G/10Gbps, 6G/1Tbps,…. Zgrajena mobilna omrežja so prilagojena ključnim in zanesljivo nadzorovanim, visoko kvalitetnim in robustnim govornim servisom! 2 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 217/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 218/541 SRK 2022, Ljubljana n Mobilni telefoni 1G/2G/3G/4G: ssiodiscual terninr fo Draft 3 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio 5G storitve vs 1G/2G/3G/4G: discu al terninr fo Draft 4 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 218/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 219/541 SRK 2022, Ljubljana n 4G/VoLTE & 5G/VoNR: ssio al discu terninrfo Draft $ 4G/VoLTE !!?? 5G/VoNR 5 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio 5G vs 4G Interaktivna komunikacija: al discu terninrfo Draft 6 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 219/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 220/541 SRK 2022, Ljubljana n ssio Zgodovina mobilnih tehnologij discu al terninr fo do 5G: Draft 7 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Pogovorni scenarij 4G in 5G: discu al terninr fo Draft 8 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 220/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 221/541 SRK 2022, Ljubljana n ssio discu Primerjava tehnologij; 1G/2G/3G/4G/5G: al terninr fo Draft 9 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio discu Nadgradnje ; 2G/3G/4G/5G: al terninr fo Draft EVS is the first 3GPP conversational codec offering up to 20 kHz audio bandwidth 10 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 221/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 222/541 SRK 2022, Ljubljana n ssio discu Prehodi v VoNR: al terninr fo Draft 11 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio EVS kodek VoNR Rel15: discu al terninr fo Draft EVS/Enhanced Voice Services 12 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 222/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 223/541 SRK 2022, Ljubljana n ssio (CS)Circuit Switching vs discu al terninr fo (PS) Packet Switching: Draft 13 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio CSFB klici na/iz 4G/LTE v 2G/3G: discu al terninr fo CSFB (Circuit Switch Fallback) is a technology that supports voice Draft and SMS services in 4G networks using the 2G/3G systems. 14 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 223/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 224/541 SRK 2022, Ljubljana n ssio Meritve RTT kasnitev: al discu ternin • ping 8.8.8.8 –t –w 5000 rfo • ping 8.8.8.8 –t –w 5000 –l 1000 Draft 15 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Arhitektura LTE omrežja: al discu terninrfo Draft 5G/AMF 5G/AMF N26 16 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 224/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 225/541 SRK 2022, Ljubljana n ssio 4G/5G/3GPP govorna arhitektura:al discuterninrfo Draft Evolved Packet System (EPS) 5G EN-DC/Evolved-Universal Terrestrial Radio Access-New Radio-Dual Connectivity je predstavljen v 3GPP release 15!!! 17 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Protokolni nivoji 4G in 5G: al discu terninrfo Draft 18 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 225/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 226/541 SRK 2022, Ljubljana n ssio discu VoLTE karakteristike: al terninr fo Draft � VoLTE ima boljši spektralni izkoristek kot GSM in WCDMA � Časovno hitrejšo klicno strukturo vzpostavitve klicev � Optimizirana in zmanjšana poraba baterije � Izogibanje prekinitvam in degradaciji data servisov, kot so zaznavni v Switch Fall Back klicnem načinu � VoLTE omogoča izboljšani QoS, glede na CS tehnologije � Neločljivo povezano HD VoLTE podporo 19 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio discu VoLTE zahteve: al terninr fo Draft � Mobile Network Operator (MNO) VoLTE podpora: � IMS (IP Multimedia Subsystem) � QoS v radijskem in transportnem omrežju � eNB konfiguracija � User Equipment (UE) VoLTE podpora: � UE lahko podpira zmožnost grupnega zaznavanja (Feature Group Indications); RLC UM, TTI snopa, Semi Persistent Sheduling, SRVCC, cDRX � UE ponudniki omogočajo (firmware) VoLTE nadgradnjo za posamezne modele telefonov za določene države � SIM kartice zagotavljajo VoLTE klice: � v odgovornost Operaterjem 20 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 226/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 227/541 SRK 2022, Ljubljana n ssio VoLTE omrežne zahteve: discu al terninr fo Draft � IMS- IP Multimedia Subsystem; center govornega jedrnega omrežja � Pomen entitet: � CSCF – Call Session Control Function, funkcija krmiljenja klicne seje � AS - Aplikacijski strežnik � Med operativne funkcionalnosti: � BGCF - Breakout Gateway Control Function. � MGCF - Media Gateway Control Function � IMS-MGW - IMS Media Gateway Function � SGW - Signalling Gateway Function � Podporne funkcionalnosti: � SEG – Security Gateway � Plačevanje 21 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio discu VoLTE IMS protokoli: al terninr fo Draft � VoLTE uporablja dva standardna protokola; SIP/SDP in RTP: � SIP – Session Initial Protocol, popularen protokol za kreiranje modificiranje in zaključevanje multimedijskih sej, zlasti pri protokolarnem pogovarjanju sej, med dvema uporabnikoma. � SDP – Session Description Protocol, protokolarno pogovarjanje multimedijskih značilnosti, med oddajnikom in sprejemnikom (kode, adrese, porti, formati, zahteve pasovnih širin pri vzpostavitvi sej). � RTP – Real-Time Transport Protocol, , ki poteka preko UDP nosilcev medijskega niza, s statističnem zbiranjem podatkov podanih medijskih povezav, vključno s izgubami paketov, tresenjem, RTT kasnitvami in QoS nadzorom podatkovne govorne povezave 22 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 227/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 228/541 SRK 2022, Ljubljana n ssio VoLTE IMS protokoli/primeri izpisov: discual terninr fo Draft 23 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio CSFB vs VoLTE: discu al terninr fo Draft 24 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 228/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 229/541 SRK 2022, Ljubljana n ssio VoLTE RoHC (Robust Header Compression: discual terninr fo Draft 25 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio VoLTE QoS: discu al terninr fo Draft � Prenos govora je občutljiv na izgubo podatkov (URL), kasnitve in tresenje (jitter). Zmogljivost sistema end-to-end QoS podpore je ključnega pomena za omogočanje kvalitetnega VoLTE prenosa pogovorov, brez čezmerne prekoračene degradacije. � QCI (QoS – Class Identifier) je mehanizem v mobilnem omrežju, ki omogoča ustrezen QoS za specifičen EPS nosilce. Mobilno omrežje zazna QCI za vsak tip EPS nosilca (signalizacija, podatki, volte) da zagotovi ustrezen QoS za vsak servis; ki klasificira različne tipe nosilcev informacij kot različne QoS klase. Vsaka od QoS klas vsebuje GBR (Guaranted Bit Rate), non-GBR (non- Guaranted Bit Rate), prioritete dostave paketov, kasnitve paketov in hitrosti izgub napčnih paketov 26 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 229/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 230/541 SRK 2022, Ljubljana n ssio Arhitektura 5G_GTP: al discu terninrfo Draft 27 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio 5G RAN arhitektura: al discu terninrfo Draft 4G/MME 4G/M MME N26 28 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 230/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 231/541 SRK 2022, Ljubljana n ssio Protokolni sklad 5G_GTP: al discu terninrfo Draft 29 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio 4G/5G/IMS roaming arhitektura: al discuterninrfo Draft 4G_VoLTE 5G_VoNR 30 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 231/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 232/541 SRK 2022, Ljubljana n ssio N26 medspoj => 4G/VoLTE – al discu terninrfo 5G/VoNR „Fallback“ kasnitve: Draft 31 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Pogovorni servisi v 5G arhitekturi: al discuterninrfo Draft 32 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 232/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 233/541 SRK 2022, Ljubljana n ssio 4G_VoLTE/5G_VoNR „fallback“ scenarija; al discu ternin Opcija_1 in Opcija_2: rfo Draft 33 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Protokolni potek med VoNR in VoLTE: al discu terninrfo Draft 5G 4G 34 Slovenija/Božo M ž išovi š ć in Marjana Senčar Srdič/ č Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 233/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 234/541 SRK 2022, Ljubljana n ssio discu EPS 4G/5G „fallback“ govorna procedura: al terninr fo Draft 35 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio 4G_VoLTE/5G_VoNR „fallback“ več opcij: discu al terninr fo Draft 36 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 234/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 235/541 SRK 2022, Ljubljana n ssio 5G/VoNR v 4G/VoLTE in CS: al discu terninrfo Draft 37 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Evolucije govornega prenosnega pasu: al discu terninrfo Draft EVS/ Rel15 38 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 235/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 236/541 SRK 2022, Ljubljana n ssio PCM govorna modulacija: al discu terninrfo Draft Pulse Code Modulation 39 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio G.711 Voice Coder/Decoder: al discu ternin Pulse Code Modulation rfo Draft •Sample •Sample Rat Ra e t : 8 kHz : 8 kHz •Code •Code bits: bits: 8 •Bit •Bit Rat Ra e: 64 te: 64 kbit/ kbit s / G.722.2/AMR G.722.2/AM - R W - B WB 40 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 236/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 237/541 SRK 2022, Ljubljana n ssio GSM Audio kodeki in hitrostni discu al terninr fo razredi: Draft 41 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio VoLTE AMR-WB kodne hitrosti: discu al terninr fo Draft 42 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 237/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 238/541 SRK 2022, Ljubljana n Razpoložljivi audio kodeki in hitrostni razredi: ssio al discu terninrfo Draft V V V oL V TE LTE 4G so najbolj 4G jb lj pogosto uporabljena blj dv d a (2) tipa (2) i govornih ih ko k deko k v; NB-AMR/Narrow Band- Adaptive Multi-Rate in WA-AMR/Wide Band-AMR Enhanced Voice Services (EVS) is a superwideband speech audio coding standard that was developed for VoLTE. It offers up to 20 kHz audio bandwidth 43 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Kodne govorne značilnosti: al discu terninrfo Draft 44 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 238/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 239/541 SRK 2022, Ljubljana n ssio discu Standard VoNR: al terninr fo Draft Voice indication in RRC Video indication in RRC Emergency indication in RRC RTT (Real-time Text) Call Connection Request Connection Request Connection Request Accessibility SPS SSAC Multiple DRBs per PDU Flow based QoS 5QI-1 DRB 5QI-5 DRB VoNR Capability Bit C-DRX IFHO (Inter-Frequency HO) Service-based IFHO PSHO (IRAT HO) RoHC RRC Re-establishment Short RLC SN PDCP SN TTI Bundling (slot aggregation) TDD FDD HO Xn-based HO 3GPP non-3GPP HO 5G E911 Location Limited Service Emergency RRC Always-On PDU 45 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio 5G/HiFi -VoNR: EVS is the first 3GPP conversational codec offering up discu to 20 kHz audio bandwidth al terninr fo Draft Mean opinion score (MOS) 46 Slovenija/Božo Mišović in Marjana Senčar Srdič/ je meritev kvalitete v praksi od (1-5) , običajno Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR se koristi za profiliranje kvalitete audio video vsebin 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 239/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 240/541 SRK 2022, Ljubljana n ssio discu Skupne značilnosti VoLTE in VoNR: al terninr fo Draft � Obe tehnologiji sta zasnovani na IMS profilu in uporabi VoIP � Obe tehnologiji uporabljata enak »frame intensity« � Aktivni zvok se prenaša vsakih 20ms � Pavze na vsakih 160ms (aka »Silent Voice«) � Obe tehnologiji uporabljata skupne dejavnike kvalitete: � Packet loss <1% � Packet delay < 80ms � Frame Error Rate <1% 47 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio Skupne značilnosti VoLTE in VoNR (1): discu al terninr fo � Obe tehnologiji uporabljata RLC Unacknowledged Mode (UM) in RLC Draft segmentation pri kontroli BLER-a � Obe tehnologiji uporabljata Enhanced Voice Services (EVS). Codec sheme so enake. Še bolj natančno, enake codec sheme so na voljo pri VoLTE in VoNR. Glavne razlike: � VoNR ima na voljo »Priority Controlled Scheduling« � Opcijo »Slot Aggregation« 48 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 240/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 241/541 SRK 2022, Ljubljana n ssio discu al Skupne značilnosti VoLTE in VoNR (2): terninr fo Draft � Obe razliki sta zelo pomembni, ker omogočajo nove storitve v zvezi Ultra-Reliable/Low-Latency Communications (URLLC). � Torej, govorimo o zanesljivosti, katero LTE ne omogoča. � Pri codec-u dejnasko ni revolucije. VoLTE (Rel-12) že uporablja EVS. Glavna razlika bo zanesljivost. � Torej, z večjo zanesljivostjo ima več smisla ponujati storitve, ki uporabljajo višjo kvaliteto zvoka. To pa nas pripelje do Stand Alone (SA) 5G zgodbe. � Glavno vprašanje katero bodo postavljali je »Kdaj bo VoNR in kaj so predpogoji za uporabo?« 49 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR SRK 2022, Ljubljana n ssio discu VoNR časovnica glede dejavnikov: al terninr fo Draft � Pripravljenost omrežja: � Predvsem je mišljeno kateri KPI-ji so pomembni in kako jih lahko dosežemo s pogojem, da ostale storitve (predvsem MBB) niso na izgubi � Strategija uvedbe VoNR -> Kje je denar in kdo bo pripravljen spremeniti obnašanje omrežje le zaradi VoNR-a (če že imamo CS in VoLTE)? � Tudi če imamo vse zgoraj navedeno pod kontrolo, kako narediti Roaming (»interworking with other Core Networks«)? Priče smo, da VoLTE, tudi po 10-tih letih še vedno ni dosegel to zrelost. 50 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 241/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 242/541 SRK 2022, Ljubljana n ssio al discu terninr VoNR časovnica glede dejavnikov (2): foDraft � Ne nazadnje, če hočemo uporabljati VoNR state-of-the-art functionalnosti (aka features) tudi te funkcionalnosti morajo delovati brezhibno z ostalimi (aka »feature interworking«). Torej, ekonomija obsega. KPI- Key Performance Indicator; Revenue growth, Revenue per client, Profit margin, Client retention rate, Customer satisfaction https://www.ericsson.com/en/blog/2019/5/evolve-volte-to-enable-real-time-interaction-over-5g-with-ims-data-channel 51 Slovenija/Božo Mišović in Marjana Senčar Srdič/ Arhitekturni nivoji 4G/VoLTE vs 5G/VoNR Najlepša hvala za vaš čas! Thank you! Božo Mišović IP Svetovalec za brezžične tehnologije IP Wireless adviser ZENLAB d.o.o. , Polule 77c, 3000 Celje, Slovenija Email: bozo.misovic@zenlab.si Marjana Senčar Srdič Vodja tehnologij interneta stvari in inovacij Head of IoT Technology and Innovation A1 d.d., Ameriška ulica 4, 1000, Ljubljana Email: Marjana.Sencar.Srdic@a1.si 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 242/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 243/541 Standardizacija na področju tehnologije DECT Standardization in the field of DECT technology Drago Majcen Slovenski inštitut za standardizacijo, TC MOC drago.majcen@gmail.com Povzetek pri opredelitvi profilov, specifičnih za aplikacije in ETSI DECT-2020 je prva necelična tehnologija prihodnji razvoj ter uporabo DECT tehnologije. 5G na svetu, ki je prejela odobritev ITU-R in s tem Osnovni standard DECT tehnologije so pripravili postala zgled za možnost povezljivosti različnih člani Evropskega inštituta za telekomunikacijske tehnologij in omrežij. DECT - Digital Enhanced standarde ETSI. V tehničnem pododboru STC Cordless Telecommunication je tehnologija, ki je RES-03, ETSI Radijska oprema in sistemi 03 nastala kot evropska pobuda, zdaj ponovno hitro evropski proizvajalci telekomunikacijske opreme, osvaja svet telekomunikacij. Prednosti, ki jih sistemski operaterji in regulatorji sodelujejo pri ponuja ta visokokakovostna tehnologija dostopa, opredelitvi in razvoju standardov DECT. Poleg priznava vse več uporabnikov, regulatorjev, ETSI je v proces standardizacije DECT vključenih standardizacijskih organov, operaterjev omrežij in več drugih organov. Komisija Evropske skupnosti proizvajalcev opreme. DECT se je izkazal z zagotavlja znatno podporo z zagotavljanjem večkratno uporabnostjo kot dostop do omrežja v zakonodaje, potrebne za vzpostavitev (v povezavi s stanovanjskih, poslovnih in javnih okoljih, saj kaže CEPT ERC) skupne dodelitve frekvenc in (v enostavno mobilnost, kakovost govora, primerljivo sodelovanju z odborom ACTE) z omogočanjem s klasično žično telefonijo, visoko raven varnosti z vseevropske uskladitve regulativnega okolja za napredno digitalno tehnologijo in šifriranjem, kar izdelke DECT. omogoča visoko gostoto naročnikov, prilagodljivo Abstract dodeljevanje pasovne širine, podporo za več Digital Enhanced Cordless Telecommunication storitev, cenovno konkurenčnost, prilagodljivo (DECT), the technology originated as a European uvajanje in enostavno namestitev. V predstavitvi initiative is now rapidly conquering the bom prikazal začetke razvoja te brezvrvične telecommunications world. The benefits offered by tehnologije in njen nadaljnji razvoj skozi desetletja this high quality access technology are recognised uporabe. by more and more users, regulators, Predstavil bom priprave in realizacijo procesov standardisation bodies, network operators, and standardizacije posameznih faz in generacij equipment manufacturers. DECT has proven DECTa. Na kratko bom razložil standardizacijsko multiple applicability as a network access in delo v ETSI in sodelovanje ostalih mednarodnih residential, business and public environments organizacij( CEPT, ESPA, DECT FORUM, ITU) showing easy mobility, speech quality comparable 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 243/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 244/541 to wireline telephony, a high level of security enabling even more effective application of DECT through advanced digital technology and products which led to the 2nd edition of the base encryption, allowing for high subscriber densities, standard being finalised by the end of 1995. The flexible bandwidth allocation, multiple service DECT common interface standard has a layered support, cost competitiveness, flexible deployment structure and is contained in ETS 300 175, Parts 1 and simple installation. Presentation introduces to 8. It is a comprehensive set of requirements, the DECT standard and explains its main protocols and messages providing implementers operating principles. The standardisation work in with the ability to create network a ccess profiles ETSI on the definition of application specific (protocol subsets) to be able to access virtually any profiles and future evolutions in DECT is shortly type of telecommunications network. To stimulate explained. The members of the European interoperability between DECT equipment from Telecommunications Standards Institute (ETSI) different manufacturers ETSI members started to have developed the DECT standard. In ETSI Sub work on the definition of standard interworking Technical Committee Radio Equipment and profiles by the end of 1993. The Generic Access Systems 03 (STC RES-03), European Profile GAP was the first profile, completed in telecommunications equipment manufacturers, 1994. It contains the protocol subset required for system operators and regulators work together on the basic telephony service in residential cordless the definition and evolution of the DECT telephones, business wireless PABX, and public standards. In addition to ETSI, several other access applications; it provides the basis for all bodies are involved in the DECT standardisation other DECT speecifiments. process. The Commission of the European Community provides considerable support by Biografija avtorja providing the legislation needed to establish (in Drago Majcen je diplomiral na conjunction with CEPT ERC) a common frequency Fakulteti za elektrotehniko Univerze allocation and (in conjunction with the ACTE v Ljubljani. Po končanem študiju se committee) by enabling European wide je zaposlil v podjetju PTT Ljubljana, harmonisation of the regulatory environment for ki je bilo kasneje preoblikovano v DECT products. After the first edition of the DECT Telekom Slovenije (TS). Leta 1977 standard was available in 1992, the DECT ustanovi in postane prvi vodja Centra za gradnjo in standardisation work concentrated on the vzdrževanje magistralnih RR sistemov. Leta 1990 vodi definition of the Generic Access Profile (GAP) and gradnjo in montažo infrastrukture prvega analognega other interworking profiles (DECT/GSM, slovenskega mobilnega omrežja NMT. Leta 1995 prevzame mesto direktorja Sektorja Telekomunikacij v DECT/ISDN, DECT/Radio Local Loop, CTM and upravi Telekoma Slovenije. Leta 2001 je imenovan za several data profiles). This work and additional člana Uprave TS, zadolženega za področje delovanja demands from the DECT market initiated several TK omrežja, omrežnih storitev, področja nabave in extensions and enhancements to the base standard logistike, področja testiranj nove TK opreme in 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 244/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 245/541 delovanja poslovne enote GVO. Opravljal je tudi Sector and later worked in the standardization team and funkcije predsednika nadzornega sveta hčerinskih družb Technology Office of the Technology Sector and the Komcard in Impulz ter bil član nadzornega sveta Radio Networks Research and Development Mobitela. Leta 2002 postane direktor Sektorja za Department. Drago retired in March 1, 2015. He is nadzor, upravljanje in vzdrževanje TK omrežja TS. Leta SIST's long-time associate. As Telekom Slovenije's 2004 se je zaposlil v podjetju Mobitel, kot svetovalec representative, chairs TC RES (Radio Devices and direktorja Tehničnega področja, kasneje pa deluje v Systems in Telecommunications), which in 2006 skupini za standardizacijo in Tehnološki pisarni transformed him into TC MOC, the Technical Področja za tehnologijo ter Službi za razvoj in raziskave Committee for Mobile Communications, and he has Sektorja za radijska omrežja. Upokojen je od leta 2015. been re-elected chairman. Since then he has been re-Kot predstavnik Telekoma Slovenije je od leta 1996 elected president of the TC MOC several times since predsedoval zrcalnemu tehničnemu odboru TC RES then. (Radijske naprave in sistemi v telekomunikacijah). Po preoblikovanju ETSI TC RES v TC DECT in ustanovitvi SIST, pride leta 2006 do preoblikovanja TC RES v TC MOC (Tehnični odbor za področje mobilnih komunikacij). Od takrat je bil večkrat izvoljen za predsednika tega odbora. Author's biography Drago Majcen graduated at Faculty of Electrical Engineering in Ljubljana. After completing his studies, he got a job in PTT, a company that was later transformed into Telekom Slovenije (TS). In 1977 establishes and becomes the first head of the Construction and Maintenance Center trunk RR systems. In 1990 he leads the construction and installation infrastructure of the first analogue Slovenian mobile network NMT. In 1995 he took over the position of Director of the Telecommunications Sector in the Management Board of Telekom Slovenije. In 2001, he was appointed as a member of the TS Management Board in charge of the area of operation of the TC network, network services, procurement and logistics, testing of new TC equipment and operation of the GVO business unit. He also served as Chairman of the Supervisory Board of the subsidiaries Komcard and Impulz and was a member of the Supervisory Board of Mobitel. In 2002, he became Director of the Control, Management and Maintenance Division of the TS TC network. Since June 2004, he has been employed by Mobitel as an Advisor to the Director of the Technical 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 245/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 246/541 Standardizacija na področju DECT tehnologije Drago Majcen, predsednik SIST TC MOC Ljubljana, december 2021 Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 246/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 247/541 Standardizacija na področju DECT tehnologije Vsebina: 9 Uvod, 9 Predhodnice DECT tehnologije (CT0, CT1, CT1+, CT2, CT3,...), 9 Uvod v DECT tehnologijo, 9 CEPT, Evropska konferenca poštnih in telekomunikacijskih uprav, 9 ERC, Evropski odbor za radiokomunikacije, 9 ECC, Odbor za elektronske komunikacije, 9 ERO, Evropski urad za radiokomunikacije, 9 Direktiva 1999/5/ES, 9 Nosilci evropske standardizacije: CEN, CENELEC in ETSI, 9 ETSI, Evropski inštitut za telekomunikacijske standarde, 9 ETSI TC RES, tehnični odbor za radijsko opremo in sisteme, 9 ETSI tehnični pododbor RES 3 Cordless Communications, 9 Kaj je standard? Definicije, 9 Vrste standardov, 9 Harmoniziran standard in njegov pomen, 9 Prva faza standadizacije DECT tehnologije (1989 – 1992), 9 Osnovni DECT standard ETS 300 175 (1-9), 1992, 3 Standardizacija na področju DECT tehnologije 9 Dopolnitev osnovnih DECT standardov ETS do leta 1995, 9 Leta 1995 je pripravljen tudi standard EN 300 444, GAP, generični profil dostopa, 9 Med leti 1995 in 2000 je pripravljeno veliko standardov s poudarkom na podatkovnih storitvah, 9 DECT forum, 9 ETSI TC DECT, 9 Leta 2000 potrjen standard EN 300 649, DECT Packet Radio Service, 9 Leta 2002 potrjen DECT harmoniziran standard za IMT 2000, 9 V obdobju 2007-2014 pripravljena družina standardov NG-DECT, New Generation DECT, 9 V obdobju 2011-2012 je bila ponovno posodobljena družina standardov EN 300 175 (1-8), 9 V obdobju 2013-2015 pripravljen standard DECT Ultra Low Energy, TS 102 93981,2), 9 Direktiva 2014/53/EU, 9 ULE Alliance, 9 Do leta 2019 razvoj standardov DECT Evolution (EN 300 175, 1-8), 9 ITU, ITU-R, SG- študijske skupine, Working Party 5D, 9 ITU IMT- 2020, časovnica, priporočila, procesi standardizacije, 9 Standard DECT 2020-NR in IMT-2020, 9 DECT Forum 2021, 9 Plani za naprej: DECT-5G, New LC3, posodobitev 23 DECT standardov v letu 2022, 9 SIST, 9 TC MOC, 9 Zaključki, 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 247/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 248/541 Standardizacija na področju DECT tehnologije Pojmi, prevodi: Mobile communications: Cordless telecommunications - brezvrvične telekomunikacije, Wireless telecomunications - brezžične telekomunikacije, Satelite telecommunications – satelitske komunikacije, CAS – Cordless Access Services, CTM – Cordless Terminal Mobility, CT – Cordless Telephone, Telecommunications, DECT – Digital European Cordless Telephone, CEPT, November 1987, Digital European Cordless Telecommunications, ETSI, 1988, Digitalne evropske brezvrvične telekomunikacije, DECT – Digital Enhanced Cordless Telecommunications, ITU, 1992, Digitalne izboljšane brezvrvične telekomunikacije, WDCT – Worldwide Digital Cordless Telecommunications, Digitalna svetovna brezvrvična telefonija, WDCT - Worldwide Digital Communications Technology, Standardizacija na področju DECT tehnologije Kdo je izumil telefon? Izumiteljstvo telefona ni povsem jasno. Prve naprave uporabne za prenos signala so bile razvite že leta 1849, vendar je šele 2. junija 1875 Bellu, kot prvemu, uspel prenos glasu. Bell je 14. februarja 1876 vložil (prvi) patent za telefonijo, le dve uri zatem pa še Elisha Gray, ki je tudi deloval na tem področju. Izumiteljstvo telefona ni povsem jasno, bistveno pa so k izumu prispevali Antonio Meucci, Philip Reis in Alexander Graham Bell, slednji je pogosto naveden kot edini izumitelj. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 248/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 249/541 Standardizacija na področju DECT tehnologije Kdo je izumil brezvrvični telefon? Prvi model brezvrvičnega telefona je razvil jazz glasbenik po imenu Teri Pall. Leta 1965 je izumil različico brezvrvičnega telefona z dosegom dveh kilometrov. Deloval je z uporabo nizkih radijskih frekvenc. Žal svojega izuma ni mogel prodati, ker so radijski signali motili letala. Svojo idejo in pravice za brezvrvični telefon je prodal proizvajalcu, ki bi ga lahko spremenil za praktično uporabo. Brezvrvični telefon je nadalje razvil George Sweigert, radijski amater in izumitelj iz Clevelanda v Ohiu. Leta 1966 je pri ameriškem uradu za patente in blagovne znamke predložil patent za brezvrvični telefon (»polni dupleksni brezvrvični komunikacijski aparat«) in prejel patent leta 1969. Nadalje sta ga razvila Douglas G. Talley in L Duane Gregory med zgodnjimi 1970. tako, da je slušalko povezal z bazo in vključeval tone za povezavo in izklop. V osemdesetih letih prejšnjega stoletja so številni proizvajalci elektronskih telefonov začeli prodajati brezvrvični telefon širši javnosti Leta 1965 je bil predstavljen prvi brezvrvični telefon, imenovan Trimline. Zasnovan je bil kot kombiniran telefonski komplet z majhno številčnico. Glavna pomanjkljivost te naprave je bila, da je motila radijske signale bližnjih letal; vendar leta 1968 izboljšani brezvrvični telefoni niso imeli te negativne podrobnosti. Trimline je izum, ki je družbi predstavil koncept telefonske prenosljivosti. Brez tega najverjetneje ne bi bilo mobilnih telefonov. Standardizacija na področju DECT tehnologije Del patentne dokumentacije: Prosilci: SHAFER JOHN H [ZDA] Izumitelji: SWEIGERT GEORGE H [ZDA] 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 249/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 250/541 Standardizacija na področju DECT tehnologije Kdo je izumil mobilne telefone ? Mobilni telefon je leta 1973 izumil Martin Cooper, ki je takrat delal za Motorolo. Njegov prvi dizajn, ki je bil praktičen in je bil resnično "mobilen" (avtotelefoni so bili že izumljeni - vendar jih je bilo mogoče uporabljati samo v avtomobilu). Prvi komercialno dostopni mobilni telefon je bil prodan šele šest let pozneje (leta 1979). Najprej so jih prodali na Japonskem. Mobilni telefoni v Združenih državah niso bili komercialno na voljo do leta 1983. Motorola DynaTAC je bil prvi telefon, ki ga je odobrila FCC (Federal Communications Commission). Standardizacija na področju DECT tehnologije Sovjetski mobilnik iz petdesetih Ruski oziroma sovjetski radijski inženir Leonid Kuprijanovič (1929-1994) je namreč prišel na idejo o napravi, podobni mobilnemu telefonu, že v petdesetih letih 20. stoletja. Leta 1957 je uradno pridobil patent št. 115494 za »Napravo za klic in komutacijo kanalov radiotelefonske zveze«, avtomatski radiotelefon za neposredno klicanje in dvosmerno komunikacijo. Patentna dokumentacija je vključevala tudi temeljne principe mobilne telefonije, kompresijo in dekompresijo signalov in osnovno shemo naprave. Izumitelj je svoj prvi delujoči primerek poimenoval LK-1 (Leonid Kuprijanovič, prvi vzorec) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 250/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 251/541 Standardizacija na področju DECT tehnologije Zgodovina brezvrvične telefonije (cordless telephony): Leto 1980, analogni CT0, 12 do 15 kanalov , približno 30 MHz; pod 40 MHz (odvisno od države), Leto 1983, 1984, analogni CT1, 40 kanalov, 900 MHz ( 914-915 MHz, 959 - 960 MHz), standard potrdi CEPT, Leto 1987, CT1 +, analogni, 80 kanalov, 900 MHz (885-887 / 930 - 932 MHz ), Leto 1989, Digitalni CT2, 40 kanalov 0,1 MHz , ADPCM G.721, 860 MHz , ( 864 - 868 MHz ),leta 1985ga potrdi CEPT, Leto 1991, CT2 / CAI (standard ETSI : ETS 300-131), Leto 1991, CT3, brezvrvična telefonska generacija 3 , razvoj standarda digitalne brezvrvične telefonije CT2. Ta standard je znan tudi kot Ericssonov DCT900, interni švedski standard, Leto 1991, digitalni DECT, 10 kanalov 1,7 MHz , ADPCM G.721, 1,9 GHz , (standard ETSI : ETS 300-175), Leto 1995, V Franciji se še vedno tržijo CT telefoni Bi-Bop ; omrežja Pointel ( France Telecom ) Standardizacija na področju DECT tehnologije CT 0 Cordless Telephone Generation 0 je standard za brezvrvično radiotelefonijo, ki se je uporabljal v Veliki Britaniji , Franciji in Španiji s tehničnimi razlikami, zlasti glede na uporabljene frekvence. Telefoni CT0, ki so bili prvotno predstavljeni v Severni Ameriki in pacifiški regiji , so bili nato postopoma odobreni v Evropi.CT0 brezvrvični 0 generacije, je splošno ime za vse zgodnje analogne sisteme za brezžično oziroma brezvrvično telefonijo. Običajno so ti sistemi delovali v frekvenčnem področju 46–49 MHz za navzgornjo povezavo in na 1,6 MHz za povezavo navzdol. Izdelki so na splošno sledili začasnim in internim standardom in bili v skladu z nacionalnimi zahtevami posameznih držav. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 251/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 252/541 Standardizacija na področju DECT tehnologije CT1 Brezvrvični telefon generacije 1 , je rezultat razvoja standarda brezvrvične telefonije CT0, uporabljal se je v Nemčiji in skandinavskih državah. Ta standard so pripravili v CEPT . CT1 je standard za analogne brezvrvične telefone. Leta 1984 je CEPT sprejel standard CT1 kot prvi evropski standard te vrste in priznalo ga je enajst evropskih držav. CT1 deluje na 914 - 915 MHz (pri prenosu - mobilni na postajo -) in pri 959 - 960 MHz (v sprejemu). Določenih je 40 kanalov, na razdalji 25 kHz. Standardizacija na področju DECT tehnologije CT1+ V Belgiji , Nemčiji, Luksemburgu in Švici je bilo sproščenih 80 drugih frekvenčnih kanalov pri 885 - 887 MHz (prenos) in 930 - 932 MHz (sprejem). To povečanje je označeno z izrazom CT1 +. Operativna licenca za naprave CT1 + je v Nemčiji potekla dne 31. december 2008. Analogne naprave CT1 in CT1+ v Evropi po letu 2000, vse bolj nadomeščajo naprave DECT . 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 252/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 253/541 Standardizacija na področju DECT tehnologije CT2, CT2 Cordless Telephone 2 Brezvrvični telefon 2. generacije, razvoj in nadgradnja iz standarda analogne CT1, v standard brezvrvične digitalne telefonije CT2, ki so ga na evropski ravni kasneje, pripravili v ETSI. CT2 je splošno ime za britanski standard MPT1375, prvi digitalni standard za brezvrvične telefone. Sistem je razvilo nekaj britanskih podjetij, standard je bil veljaven samo v Veliki Britaniji. Kasneje je postal začasen (interim)standard ETSI. Značilnosti: Bazna in mobilna postaja pošiljata signale na isti frekvenci ob različnih časih ( dupleks časovne razdelitve , TDD ) frekvenčno območje 864 - 868 MHz, Trajanje okvirja 2 ms, dve časovni reži, vsaka po 1 ms , na okvir, ADPCM kodiranje , v skladu z G.721 , pri 32 kbit/s, Interna standardizacija leta 1985 v Veliki Britaniji , nato dopolnitev v ETSI in razširitev na številne druge države. CT2 je služil kot osnova za sistem Bi-Bop v Francij Standardizacija na področju DECT tehnologije CT2 je standard brezvrvične digitalne telefonije, ki je bil v zgodnjih devetdesetih letih prejšnjega stoletja (1991 – 1999) uporabljen za zagotavljanje storitev delno mobilnega telefona kratkega dosega v nekaterih evropskih državah. Navajajo ga kot predhodnika uspešnejšega sistema DECT. CT2 je bil omenjen tudi s svojim tržnim imenom Telepoint. CT2 je bil uporabljen v številnih državah, vključno z Veliko Britanijo in Francijo. V Veliki Britaniji je bil sistem Ferranti Zonephone prvo javno omrežje, ki je začelo delovati leta 1989, veliko večje omrežje Rabbit pa je delovalo v obdobju od 1992 do 1993. V Franciji je omrežje Bi-Bop delovalo od 1991 do 1997. Na Nizozemskem je takratni nizozemski PTT od leta 1992 do 1999 razvil omrežje, ki temelji na CT2, imenovano Greenpoint. Prvo leto je uporabljalo ime in maskoto Kermit, vendar so se licenčnine izkazale za pretirano velike in je bila maskota v naslednjih letih opuščena. Storitev se je nadaljevala pod blagovno znamko Greenhopper. V uspešnih letih je bilo več kot 60.000 naročnikov Greenpointa. Na Finskem je bila storitev Pointer na voljo kratek čas v 80. letih prejšnjega stoletja, preden jo je nadomestil nordijski analogni sistem mobilne telefonije (NMT). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 253/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 254/541 Standardizacija na področju DECT tehnologije CT3 Cordless Telephone 3, Brezvrvični telefon CT3 Zgodnji švedski digitalni brezvrvični telefonski sistem, ki temelji na tehnologiji proizvajalca Ericsson. Sistem je bil razvit kot reakcija na razvoj CT2 in podobno kot pri CT2 je bil sprejet kot začasni ETSI standard. DCT 900 Digitalni brezvrvični telefon Zgodnji digitalni brezvrvični telefonski izdelek iz Ericssona, ki je bil kasneje razvit v CT3 in DECT Standardizacija na področju DECT tehnologije Pregled uporabljenih frekvenčnih področij za brezvrvične terminale v različnih državah 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 254/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 255/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije MEDNARODNI STANDARDI IN VLOGA DECT Brezžične telekomunikacije: od 2G do 5G Po deregulaciji telekomunikacij v osemdesetih letih prejšnjega stoletja so bile spremembe pogoste, hitre in globoke. Zgodnji trgi žičnih omrežij z analogni telefoni so hitro prešli na brezvrvične domače telefone, kmalu pa so jim pridružili prvi in dragi analogni avtomobilski telefoni. V devetdesetih letih prejšnjega stoletja smo v Evropi dobili 2. generacijo digitalnih tehnologij: DECT in GSM. Od leta 2000 naprej se zmogljivosti brezvrvičnih, brezžičnih in mobilnih telefonov nenehno izboljšuje, napreduje povezljivost in storitve, ki poganjajo informacijsko dobo 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 255/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 256/541 Standardizacija na področju DECT tehnologije UVOD Digitalne izboljšane brezvrvične telekomunikacije (DECTTM) je standard ETSI za brezvrvične komunikacije kratkega dosega, ki ga je mogoče prilagoditi za številne aplikacije in se lahko uporablja za dodelitev frekvenc, ki so oproščene licenc, po vsem svetu. Akumulirano število proizvedenih DECT naprav dosega več kot milijardo z rastočim razmerjem več kot 100 milijonov naprav na leto. DECT je primeren za glasovno (vključno s PSTN in VoIP telefonijo), podatkovne in mrežne aplikacije z dosegom do 500 metrov. Standardizacija na področju DECT tehnologije DECT prevladuje na brezvrvičnem stanovanjskem trgu in trgu manjših ter srednjih podjetij, ki uporabljajo lastne manjše centale PABX (Private Automatic Branch eXchange). Sposobnost standarda za neprestano dodajanje aplikacij za telefonijo, ga dela konkurenčnega in primerljivega z vsako drugo tehnologijo. Poleg popolnega repertoarja signalizacije in postopkov za scenarije PSTN in ISDN je TC DECT (kot del nove generacije DECT) razvil celoten sklop postopkov signaliziranja za VoIP telefonijo. To omogoča doseganje resnične interoperabilnosti z vidika končnega uporabnika. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 256/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 257/541 Standardizacija na področju DECT tehnologije Dr. Dag Akerberg, Ericsson Radio Systems, Švedska, uradno proglašen kot oče DECT tehnologije Dag Åkerberg je bil in je še vedno pionir in razvijalec brezvrvične in brezžične tehnologije. Ericssonu se je pridružil leta 1971, potem ko je doktoriral na Kraljevem inštitutu za tehnologijo v Stockholmu ter bil do leta 1984 tehnični vodja razvoja sistemov Paging Systems. V osemdesetih letih prejšnjega stoletja so bile njegove glavne dejavnosti študije, specifikacije in mednarodna standardizacija v zvezi z brezvrvičnimi pisarniškimi komunikacijami, zlasti v zvezi z DECT. Med letoma 1989 in 1991 je bil dodeljen ETSI kot del projektne skupine 10, ki podpira specifikacijo sistema za digitalno izboljšano brezvrvično telekomunikacijo (DECT). V devetdesetih letih prejšnjega stoletja je kot odgovor na pobudo PCS v Severni Ameriki pomagal oblikovati standarde PWT, ki temeljijo na DECT, poleg tega pa je kot predsednik ETSI RES 03 še naprej igral pomembno vlogo pri nadaljnjem razvoju standardov DECT Standardizacija na področju DECT tehnologije DECT—Digital Enhanced Communications Technology zagotavlja zbirko tehnologij s številnimi drugimi raznolikimi aplikacijami ter omogoča tradicionalno fiksno PSTN telefonijo kot tudi IP telefonijo. Standard brezžičnega zvoka, ki se uporablja za omogočanje brezvrvičnih domačih telefonov že dve desetletji in pol, je razvil podporo IP klicanja prek DECT CAT-iq, ki podpira interoperabilnost med baznimi postajami IP-DECT, slušalkami, in CPE opremo. S CAT-iq, ponudniki internetnih storitev, ki že dolgo vključujejo mikročipe DECT, z njihovi modemi in prehodi lahko podpirajo večlinijske HD Voice IP klice za fiksno telefonijo. Zgodovinske značilnosti DECTa so jasnost glasu, doseg, nizka zakasnitev, varnost in izjemno zanesljiva kakovost storitve 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 257/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 258/541 Standardizacija na področju DECT tehnologije Faze razvoja DECT tehnologije in njene standardizacije Standardizacija na področju DECT tehnologije Mejniki v procesu standardizacije DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 258/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 259/541 Standardizacija na področju DECT tehnologije CEPT novembra 1987 potrdi novo radijsko tehnologijo, tako imenovani DECT, digitalni evropski brezvrvični telefon; ime je bil predlog italijana Enrica Tosate. Ime je bilo kmalu spremenjeno v Digitalne evropske brezvrvične telekomunikacije, kar odraža širši nabor aplikacij, vključno s podatkovnimi storitvami. Leta 1995 se je zaradi globalne uporabe ime spremenilo iz evropskega v Izboljšane. Tehnologiji DECT mednarodna organizacija ITU priznava , da izpolnjuje zahteve IMT-2000 in jo zato kvalificira kot 3G sistem. V okviru tehnološke skupine IMT-2000 se DECT imenuje IMT-2000 Frekvenčni čas (IMT-FT). Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 259/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 260/541 Standardizacija na področju DECT tehnologije ERC, Evropski odbor za radiokomunikacije ERC, Evropski odbor za radiokomunikacije, je pododbor Konference Européenne des Administration des Postes (CEPT), ki razvija smernice za radijske zadeve. Odbor ERC zagotavlja radijske in radiodifuzijske frekvence za radijske tehnologije in GEO satelitske komunikacije v Evropi. Zadeva enotno uporabo frekvenc in opredelitev omejitev za radijske aplikacije in sevanje motenj. Evropski odbor za radijske komunikacije (ERC), ki ga sestavljajo predstavniki nacionalnih inšpektoratov za radijske komunikacije iz vseh držav članic CEPT, sprejema sklepe o usklajevanju na področju radijskih komunikacij. V ta namen ta odbor zagotavlja široko predhodno posvetovanje s telekomunikacijskih telesi in drugimi dobavitelji storitev, industrije in uporabnikov ter tesno sodelovanje z ETSI, Evropskim inštitutom za telekomunikacijske standarde in Komisijo. Ta sodeluje pri dejavnostih Odbora v svetovalni vlogi. Standardizacija na področju DECT tehnologije ERO, Evropski urad za radio-komunikacije Maja 1991 je zaradi potrebe ERC po stalnih dodatnih kadrih, da pomaga Odboru pri njegovem delu pri določanju in usklajevanju prihodnjih razvojnih dogodkov v zvezi z upravljanjem frekvenc in regulativnimi vprašanji, ustvaril Evropski urad za radiokomunikacije (ERO), ki se nahaja v Københavnu na Danskem. ERO zagotavlja strokovno središče za dolgoročne dejavnosti načrtovanja in poleg tega deluje kot središče posvetovanj v zvezi z upravljanjem spektra in regulativnimi zadevami. ERO je bila ustanovljena na podlagi Memoranduma o soglasju (MO), ki opredeljuje referenčne pogoje ERO, njegovo razmerje z ERC in ureditev financiranja. Leta 1996 je ta MOu nadomestila "Konvencija o ustanovitvi Evropskega urada za radio-komunikacije", ki jo je do danes podpisalo 30 uprav CEPT. ERO je distribucijsko mesto za vso dokumentacijo ECC in ponuja tudi podrobne informacije o delu ECC prek spletnega mesta ERO www.ero.dk. Spletna stran ERO je pomemben element v procesu, kjer se informacije o najnovejših dogodkih v ECC zagotavljajo s poročili o nedavnih sestankih in odobrenimi besedili sklepov, priporočil in poročil ECC. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 260/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 261/541 Standardizacija na področju DECT tehnologije ACTE, Odbor za odobritve terminalske opreme ( Approval Committee for Technical Equipment) je bil ustanovljen z Direktivo 91/263/EGS in je med drugim odgovoren za sprejetje skupnih tehničnih predpisov ( CTR), na katerih temeljijo postopki EU za harmonizirano homologacijo. Direktiva Sveta 91/263/EGS z dne 29. aprila 1991 o približevanju zakonodaje držav članic o telekomunikacijski terminalski opremi, vključno z vzajemnim priznavanjem njihove skladnosti (91/263/EGS) SVET EVROPSKIH SKUPNOSTI, ob upoštevanju Pogodbe o ustanovitvi Evropske gospodarske skupnosti in zlasti člena 100a Pogodbe, ob upoštevanju predloga Komisije, v sodelovanju z Evropskim parlamentom ob upoštevanju mnenja Ekonomske in socialne komiteje, ker je Direktiva 86/361/EGS (4) uvedla začetno fazo vzajemnega priznavanja homologacije za telekomunikacijsko terminalsko opremo, zlasti v členu 9 pa je bila predvidena nadaljnja faza za popolno vzajemno priznavanje homologacije tipa za terminalsko opremo; ker Odločba 87/95/EGS določa ukrepe, ki jih je treba izvajati za spodbujanje standardizacije v Evropi ter priprava in izvajanje standardov na področju informacijske tehnologije in telekomunikacij. CTR, Skupni tehnični predpis. V telekomunikacijah, se CTR nanaša na pravilo, ki ureja povezavo terminalne opreme in omrežja. CTR se sestavijo v skladu z določbami Direktiva EU 98/13 / ES Telekomunikacijski raziskovalni in akcijski center (TRAC) in Evropski inštitut za telekomunikacijske standarde (ETSI) na zahtevo ACTE, ki ji predseduje Evropska komisija. Ta pravila veljajo za vse države članice EU. Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 261/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 262/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije Directive 1999/5/EC of the European Parliament and of the Council Evropska komisija, Generalni direktorat za komuniciranje Direktiva 1999/5/ES Evropskega parlamenta in Sveta z dne 9.3.1999 Direktiva R&TTE, o radijski opremi in telekomunikacijski terminalski opremi ter vzajemnem priznavanju njihove skladnosti Direktiva 1999/5/ES Evropskega parlamenta in Sveta o radijski opremi in telekomunikacijski terminalski opremi ter vzajemno priznavanje njihove skladnosti določa regulativni okvir za dajanje na trg radijske opreme in telekomunikacijske terminalske opreme. Oprema se lahko da v promet in/ali da v uporabo le, če je v skladu z bistvenimi zahtevami te direktive, ki se običajno imenuje direktiva o R&TTE 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 262/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 263/541 Standardizacija na področju DECT tehnologije ECC, Odbor za elektronske komunikacije Evropska konferenca poštnih in telekomunikacijskih uprav (CEPT) ima dva odbora, ki poročata plenarnem zasedanju CEPT. To sta CERP (ki se ukvarjata s poštnimi zadevami) in ECC (Odbor za elektronske komunikacije), odgovorna za elektronske komunikacijske zadeve. ECC je bil ustanovljen septembra 2001 kot posledica združitve med ECTRA (odgovoren za splošne telekomunikacijske zadeve) in ERC (odgovoren za radijske zadeve). ECC je združil regulativne uprave držav članic CEPT. Svetovalci Evropske komisije in Sekretariata Evropskega združenja za prosto trgovino sodelujejo pri dejavnostih ECC in njenih delovnih skupin. Predstavnike ustreznih medvladnih organizacij ter drugih organizacij ali uprav, ki se nanašajo na evropske elektronske komunikacije, lahko predsedniki ECC ali njenih delovnih skupin na ad hoc podlagi povabijo k sodelovanju kot opazovalci na sestankih. Standardizacija na področju DECT tehnologije Evropske organizacije za standardizacijo: CEN - European Committee for Standardization, Evropski komite za standardizacijo (1961) CENELEC – European Committee for Electrotechnical Standardization, Evropske Evropski komite za standardizacijo v elektrotehniki (1973) ETSI – European Telecommunications Standards Institute, Evropski inštitut za telekomunikacijske standarde, (1988) 36 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 263/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 264/541 Standardizacija na področju DECT tehnologije Standardizacijski procesi, ETSI standardi, Standardi DECT so danes sestavljeni iz več kot sto dokumentov pripravljenih v tehničnih odborih Evropskega inštituta za telekomunikacijske standarde, ETSI. Dokumenti so poimenovani Evropski telekomunikacijski standardi, skrajšano ETS. Dokumente ETS dopolnjujejo tehnična poročila ETSI ETR, ki so namenjena podrobnejši razlagi standardov in idej v njih. V nadaljevanju bo podan pregled standardov DECT, v posameznih razvojnih fazah te tehnologije, ki jih je uradno odobril ETSI. Poudarek bom dal na standarde, sprejete leta 1992, ki podajajo temeljno zasnovo sistema. Od takrat naprej se je proces standardizacije seveda še nadaljeval, deloma s pregledom in posodobitvijo prvotnega standarda, deloma pa z uvedbo novih delov sistema, ki so bili identificirani, vendar niso bili obdelani v zgodnjih standardih (npr. podatkovne storitve in več enot za medsebojno delovanje). Standardizacija na področju DECT tehnologije Standardi 2. generacije, 2G – DECT in GSM, sta bila prva standarda, ki jih je ustvaril evropski ETSI Inštitut za telekomunikacijske standarde. Naprave DECT so hitro izpodrinile telefone prve generacije (CTO, CT1, CT2), pa tudi začetne verzije DECT telefonov. Nove generacije so ponujale visoko kakovost, omogočale visoko gostoto, uporabo vedno večjih lokalnih območij, osnovno telefonijo in klicanje v druga omrežja. GSM je ponudil podobne zmogljivosti, namenjene široki uporabi na prostem/ in v vozilih. Osnovni standard DECT, EN 300 175, je bil objavljen leta 1992. Ekonomija obsega v devetdesetih letih prejšnjega stoletja je povzročila znižanje stroškov proizvodnje in s tem cen. Uporaba se je hitro širila, povečuje se obseg in uvaja po vsem svetu. DECT se je razvil iz "Digital European Cordless Telephon, evropski digitalni . brezvrvični telefon, a se kmalu preoblikuje v brezvrvično telefonijo in končno v " Digitalno izboljšane brezvrvične telekomunikacije", kar odraža izboljšave tehnologije in standardov ter globalne trge. Podobno se je GSM iz „Groupe Spéciale Mobile“ razvil v „Globalni sistem za mobilne naprave“. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 264/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 265/541 Standardizacija na področju DECT tehnologije 1987: Generalni direktorji Evropske konference poštnih in telekomunikacijskih uprav (CEPT) načeloma sprejmejo odločitev, da ustanovijo ETSI 1998: januar : Ustanovitev ETSI 1992: ETSI uradno potrjena kot Evropska organizacija za standarde v skladu z Direktivo 83/189/EGS 1997: ETSI začne ustvarjati evropske standarde(ENS), ki bodo zamenjali evropske telekomunikacijske standarde (ETS) 2020, objavljen nov radijski vmesnik DECT-2020 ETSI je DECT standarde razvil v več fazah, od katerih se je prva zgodila med letoma 1988 in 1992, ko je bil objavljen prvi krog standardov. To je bila serija ETS 300-175 v devetih delih, ki opredeljujejo zračni vmesnik in ETS 300-176, ki določajo, kako je treba testirati in odobriti enote. Za razlago standarda je bilo objavljeno tudi tehnično poročilo ETR-178. ETSI je razvila in še nadalje objavlja nove standarde za pokrivanje profilov interoperabilnosti in standardov preskušanja. Standardizacija na področju DECT tehnologije ETSI TC RES, Radio Equipment and Systems, tehnični pododbor RES 3 Tehnični odbor za radijsko opremo in sisteme je bil oblikovan za razvoj standardov za vso radijsko komunikacijsko opremo in sisteme, razen za tiste, ki so posebej dodeljeni drugim tehničnim odborom. TC RES je bil ukinjen 21. 7. 1997. Aktivni delovni elementi so bili razdeljeni na naslednji način: - RES1 (Maritime) na TC ERM - RES2 (Land Mobile Radio) na TC ERM - RES3 (Cordless Communications) ep DECT. - RES4 (Paging Systems) do TC ERM - RES5 (Terrestrial Flight Telecommunications System) do TC ERM - RES 6 (Terrestrial Trunked Radio) do EP TETRA - RES 8 (Naprave kratkega dosega) do TC ERM. - RES 9 (elektromagnetna združljivost) s TC ERM. - POSTAVKE RES 10 (radijska lokalna omrežja), ki se nanašajo na HIPERLAN z EP BRAN; drugi predmeti TC ERM - RES 11 (Radio Site Engineering) V tem obdobju je v Sloveniji deloval tehnični odbor USM TC RES Radijske naprave in sistemi (1995- 2006), najprej v sklopu Urada Republike Slovenije za standardizacijo in meroslovje(1990-2001), ki je bil 16. junija 2006, preobražen v SIST TC MOC, Mobilne komunikacije. To je obdobje ko, tehnični pododbor pripravlja dokumente kot so ETSI ETS, Evropski telekomunikacijski standardi. Dokumente ETS dopolnjujejo tehnična poročila ETSI ETR, ki so namenjena podrobnejši razlagi standardov in idej v njih. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 265/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 266/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije Rezultati dela ETSI tehničnih odborov in delovnih skupin, so tudi naslednji dokumenti: ETSI Guide (EG) – Used for guidance to ETSI in general on the handling of speechnical Committee that drafted it. It is submitted to the whole ETSI membership for approval. ETSI Technical Specification (TS) – Used when the document contains technical requirements and it is important that it is available for use quickly. ETSI Technical Report (TR) – Used when the document contains explanatory material. A TR is approved by the Technical Committee that drafted it. ETSI Special Report (SR) – Used for various purposes, including to make information publicly available for reference. An SR is approved by the Technical Committee which produced it. ETSI Group Specification (GS) – Provides technical requirements or explanatory material or both. Produced and approved within our Industry Specification Groups (ISGs). ETSI Group Report (GR) – An ETSI deliverable, containing only informative elements, approved for publication by an Industry Specification Group 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 266/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 267/541 Standardizacija na področju DECT tehnologije DECT – Svetovna tehnologija za glasovne in podatkovne aplikacije Od svoje ustanovitve leta 1992 tehnologija DECT (Digital Enhanced Cordless Telecommunications) podpira tako glasovne kot podatkovne storitve na katerem koli spektru, dodeljenem DECT, in so opisane v specifikacijah radijskega vmesnika. Ključni parametri, ki določajo uporabo DECT, so del standarda ETSI Base EN 300 175, DECT, DECT 6.0 (DECT v NA/LATAM) in njihov naslednik CAT-iq sta sprejeta v več kot 100 državah po vsem svetu. Standardizacija na področju DECT tehnologije Osnovni standardi DECT tehnologije Osnovni standard DECT družine ETS EN 300 175-1 do 9: Izdal ga je ETSI (European Telecommunications Standards Institute). Tehnični pododbor STC RES –03 standardizira zračni vmesnik za govorni in podatkovni promet DECT. Standard DECT je bil po vsem svetu zelo razširjen v radijskem spektru, ki je blizu tistemu, ki je dodeljen v evropski regiji, v skladu z zahtevami CEPT. DECT zagotavlja osebne telekomunikacijske storitve v stanovanjskih in poslovnih okoljih. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 267/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 268/541 Standardizacija na področju DECT tehnologije Prva, osnovna faza standardizacije DECT tehnologije (1989 - 1992) Standardizacija na področju DECT tehnologije Leta 1992 objavljeni ETS Evropski telekomunikacijski DECT standardi 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 268/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 269/541 Standardizacija na področju DECT tehnologije Družina ETSI standardov ETS 300 175, 1 do 9 delov, dokumentov ETSI ETS 300 175-1, 1992, Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 1: Pregled Standardizacija na področju DECT tehnologije ETS 300 175-2, 1992, Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 2: Fizična plast (PHL) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 269/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 270/541 Standardizacija na področju DECT tehnologije ETS 300 175-3, leta 1992, napovedan dokument Radijska oprema in sistemi (RES). Evropske digitalne brezvrvične telekomunikacije (DECT). Skupni vmesnik. Del 3: Plast za nadzor dostopa do prenosnih medijev ETS 300 175-3, ed.1: 2006, dosegljiv dokument, našel dokument ETS 300 175-3, ed.2, september 1996, Dokument ETS nadgrajen v standard EN leta 2008 Standardizacija na področju DECT tehnologije Evropske digitalne brezvrvične telekomunikacije (DECT). Skupni vmesnik. Del 3: Plast za nadzor dostopa do prenosnih medijev 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 270/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 271/541 Standardizacija na področju DECT tehnologije ETS 300 175-4, 1992, Radijska oprema in radijski sistemi (RES). Digitalne evropske brezvrvične telekomunikacije (DECT). Skupni vmesnik. Del 4: Plast za nadzor podatkovnih povezav Standardizacija na področju DECT tehnologije ETS 300 175-5, 1992, Radijska oprema in sistemi (RES). Digitalne evropske brezvrvične telekomunikacije (DECT). Skupni vmesnik, Del 5: Omrežna plast 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 271/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 272/541 Standardizacija na področju DECT tehnologije ETS 300 175-6 ed.1:1992 Digitalne izboljšane brezvrvične telekomunikacije (DECT) -- Skupni vmesnik(CI) -- 6. del: Identitete in naslavljanje Standardizacija na področju DECT tehnologije ETSI ETS 300 175-7 . ed. 1 (oktober 1992), ed.3 (1997-09) - Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 7: Varnostne funkcije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 272/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 273/541 Standardizacija na področju DECT tehnologije ETS 300 175-8, oktober 1992, Radijska oprema in sistemi (RES). Digitalne evropske brezvrvične telekomunikacije(DECT), Skupni vmesnik. Del 8: Kodiranje govora in prenos govora Standardizacija na področju DECT tehnologije I-ETS 300 176, 1992, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Specifikacija homologacijskega preskusa; 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 273/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 274/541 Standardizacija na področju DECT tehnologije . Radijska oprema in sistemi (RES) - Specifikacija skupnega radijskega vmesnika, ki se uporablja za medsebojno delovanje brezvrvičnih telefonskih aparatov v frekvenčnem pasu od 864,1 MHz do 868,1 MHz vključno s storitvami javnega dostopa Standardizacija na področju DECT tehnologije . ETSI ETR 056 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Dokument z opisom sistema 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 274/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 275/541 Standardizacija na področju DECT tehnologije . Radijska oprema in sistemi (RES) – prva edicija dokumenta objavljena v decembru 1993, Digitalne izboljšane brezvrvične telekomunikacije (DECT) - Splošne zahteve za priključevanje terminalov Standardizacija na področju DECT tehnologije . TBR 010 E1, prva edicija objavljena 18. decembra 1993 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Splošne zahteve za vključitev terminala: Aplikacije za telefonijo 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 275/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 276/541 Standardizacija na področju DECT tehnologije . Radijska oprema in sistemi (RES) -- Tehnične značilnosti, preskusni pogoji in merilne metode za radijske vidike brezvrvičnih telefonov CT1 Standardizacija na področju DECT tehnologije PSIST ETR 159:1998 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Globalni sistem za mobilne komunikacije (GSM); Široka mobilnost območja z uporabo GSM 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 276/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 277/541 Standardizacija na področju DECT tehnologije . Radijska oprema in sistemi (RES); digitalne evropske brezvrvične telekomunikacije (DECT); Vodnik na visoki ravni za standardizacijo DECT Standardizacija na področju DECT tehnologije . PSIST ETR 246:1998 - Digitalne izboljšane brezvrvične telekomunikacije (DECT); Uporaba DECT brezvrvičnih relejnih postaj (WRS) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 277/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 278/541 Standardizacija na področju DECT tehnologije . ETSI - ETR 308 Radijska oprema in sistemi (RES); Digitalne izboljšane brezvrvične telekomunikacije (DECT); Storitve, zmogljivosti in konfiguracije za DECT v lokalni zanki Standardizacija na področju DECT tehnologije . Radijska oprema in sistemi (RES); Digitalne izboljšane brezvrvične telekomunikacije (DECT); Zahteve glede prometne zmogljivosti in spektra za več sistemov in več storitvene DECT aplikacije, ki soobstajajo v skupnem frekvenčnem pasu 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 278/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 279/541 Standardizacija na področju DECT tehnologije . Standardizacija na področju DECT tehnologije . ETSI - ETS 300 446 Radijska oprema in sistemi (RES); Elektro-magnetna združljivost (EMC) standard za drugo generacijo brezvrvičnega telefona (CT2), aparati, ki delujejo v frekvenčnem pasu 864,1 MHz do 868,1 MHz, vključno s storitvami javnega dostopa 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 279/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 280/541 Standardizacija na področju DECT tehnologije Po prvi izdaji DECT standarda leta 1992 je bilo delo DECT standardizacije osredotočeno na opredelitev profila splošnega dostopa (GAP) in drugih medsodelovalnih profilov (DECT/GSM, DECT/ISDN, DECT/Radio Local Loop, CTM in več profilov podatkov). To delo in dodatne zahteve trga DECT so sprožile več razširitev in izboljšav osnovnega standarda, kar je omogočilo še učinkovitejšo uporabo izdelkov DECT, zaradi česar se je do konca leta 1995 dokončno končala 2. izdaja osnovnega standarda. Nekateri primeri tega so: - vključitev postopkov klica v sili za sprejem DECT za vloge za javni dostop, - opredelitev brezžične relejne postaje (WRS) kot nove komponente sistema, ki omogoča stroškovno učinkovitejšo infrastrukturo in - opis izbirne neposredne prenosne do prenosne komunikacijske funkcije za DECT. Za spodbujanje interoperabilnosti med DECT opremo različnih proizvajalcev so člani ETSI TC začeli delati na opredelitvi standardnih meddelujočih profilov do konca leta 1993. Generični dostop Pro-file GAP je bil prvi profil, dokončan leta 1994. Vsebuje podskupino protokola, ki je potrebna za osnovno telefonsko storitev v stanovanjskih brezvrvičnih telefonih, poslovnem brezžičnem PABX in aplikacijah za javni dostop; je podlaga za vse druge govorne profile DECT. Testiranje interoperabilnosti za GAP je uspešno končano. Standardizacija na področju DECT tehnologije Dopolnitev standardov ETSI tehnologije v letu 1995 Generični profil dostopa (GAP) je osnovni signalni protokol za brezvrvično telefonijo z uporabo digitalnih izboljšanih brezvrvičnih telekomunikacij (DECT). V specifikaciji Evropskega inštituta za telekomunikacijske standarde (ETSI) so opisane metode za interoperabilnost naprav različnih proizvajalcev. Malo je obveznih v SKP. Običajna predstavitev identifikacije klicne vrstice (CLIP) na primer ostaja neobvezna. [1] Obstajajo še nekateri drugi profili za DECT, pripravljeni v ETSI. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 280/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 281/541 Standardizacija na področju DECT tehnologije Standard EN 300 444, planiran v letu 1995, na razpolago osnutek v 1998 in dokončan dokument v maja 1999, Digitalne izboljšane brezvrvične telekomunikacije (DECT). Profil splošnega dostopa (GAP) Standardizacija na področju DECT tehnologije ETSI ETS 300 444, V.1 1995 Digital Enhanced Cordless Telecommunications (DECT); Profil splošnega dostopa (GAP) standard Evropskega inštituta za telekomunikacijske standarde, 12/01/1995 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 281/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 282/541 Standardizacija na področju DECT tehnologije Standardizacijski dokumenti iz obdobja 1995 do leta 2000 ETSI TR 102 185: Digital Enhanced Cordless Telecommunications (DECT), Data Services Profile (DSP); Profile overview, ( v arhivu nisem našel dokumenta !) ETSI EN 301 240: Digital Enhanced Cordless Telecommunications (DECT); Data Services Profile (DSP); Point-to- Point Protocol (PPP) interworking for internet access and general multi-protokol datagram transport; ETSI EN 301 239: Digital Enhanced Cordless Telekommunications (DECT); Data Services Profile (DSP); Isochronous data bearer services with roaming mobility (service type D, mobility class 2; ETSI EN 301 238: Digital Enhanced Cordless Telekommunications (DECT); Data Services Profile (DSP), Isochronous data bearer service with roaming mobility (service type D, mobility class 2; Standardizacija na področju DECT tehnologije ETSI TR 102 185 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Pregled profila 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 282/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 283/541 Standardizacija na področju DECT tehnologije SIST EN 301 238:2001 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Storitve nosilca izohronih podatkov z mobilnostjo gostovanja (tip storitve D, razred mobilnosti 2) Standardizacija na področju DECT tehnologije ETSI EN 301 239, Digitalne izboljšane brezvrvične telekomunikacije (DECT). Profil podatkovnih storitev (DSP). Storitve nosilca izohronih podatkov za skupine zaprtih uporabnikov (tip storitve D, razred mobilnosti 1) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 283/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 284/541 Standardizacija na področju DECT tehnologije EN 301 240, Digitalne brezvrvične telekomunikacije (DECT) - Profil podatkovnih storitev (DSP) Protokol za sodelovanje med točkami in točkami (PPP) za internetni dostop in splošni multi protokol datagramski prenos Standardizacija na področju DECT tehnologije ETS 300 494-3 Radijska oprema in sistemi (RES). Digitalne telekomunikacije (DECT). Profil glavnega dostopa (GAP). Specifikacija preskusa profila (PTS). Del 3: Specifikacija preskusa posebnega profila(PSTS) - fiksni radijski konec (FT) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 284/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 285/541 Standardizacija na področju DECT tehnologije SIST TBR 022, 2000 Radijska oprema in sistemi (RES); Zahteve za odobritev terminalske opreme za aplikacije za digitalne izboljšane brezvrvične telekomunikacije (DECT), (GAP) profil Generičnega dostopa, Standardizacija na področju DECT tehnologije Standarda iz leta 1995, nisem našel, to je kasnejša posodobljena verzija iz leta 2008. Na SIST našel, dokument s slovenskim naslovom. Leta 1995 smo imeli ETS, leta 2008 pa že EN standard!! 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 285/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 286/541 Standardizacija na področju DECT tehnologije Profili aplikacij DECT, DECT Applications Profiles, Profili aplikacij vsebujejo dodatne specifikacije, ki določajo, kako naj se zračni vmesnik DECT uporablja v posebnih aplikacijah. Standardna sporočila in pod nabori protokolov so izpeljani iz osnovnega standarda, prilagojeni za posebne aplikacije z namenom doseči največjo interoperabilnost med opremo DECT različnih proizvajalcev. Profil splošnega dostopa GAP - Generic Access Profiles, Generični dostopni profil (GAP) je osnovni profil DECT in velja za vse DECT prenosne in fiksne dele, ki podpirajo 3.1 kHz telefonske storitve ne glede v katero vrsto omrežja dostopate. Opredeljuje minimalni obvezni niz tehničnih zahtev za zagotovitev interoperabilnosti med katerim koli DECT GAP fiksnim delom in prenosnim delom. . Standardizacija na področju DECT tehnologije DECT/GSM profil za medsebojno delovanje (GIP), Interworking Profile DECT je tehnologija dostopa in omogoča mobilnost po celotnem omrežju zunaj obsega. Standard DECT GIP je zmogljiv dodatek, ki zagotavlja mobilnost v DECT v strukturah, razporejenih na več mestih prek funkcij GSM mobilnosti. Profil za medsebojno delovanje DECT/GSM za osnovno govorno storitev 3,1 kHz je obravnavan v evropskem telekomunikacijskem standardu ETS 300 370. Skupaj z ETS 300 499 in ETS 300 703 opredeljuje zahteve protokola za medsebojno delovanje obeh tehnologij. Profili za medsebojno delovanje ISDN (IAP in IIP), ISDN interworking Profiles(IAP and IIP) Za medsebojno delo med omrežjem ISDN in sistemom DECT sta bila definirana dva profila Profil DECT/ISDN za konec sistemske konfiguracije je opredeljen v ETS 300 434 (IAP) Profil DECT/ISDN za vmesne sistemske konfiguracije pa v DE/RES 03039 (IIP). IAP se uporablja, ko . DECT FP in PP skupaj tvorita terminal ISDN (ISDN storitve in dopolnilne storitve opravlja DECT PP). IIP se uporablja, kadar DECT FP in DECT PP skupaj tvorita pregleden prehod med omrežjem ISDN in enim ali več terminalov ISDN, povezanih na S0-vmesnik na DECT Intermediate Portable Sistem (DIPS). IIP podpira ISDN basic dostop in vse omrežno določene storitve, tj. 3,1 kHz govor, 64 kbit/s neomejen prenos ISDN paketnih podatkov in dopolnilnih storitev. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 286/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 287/541 Standardizacija na področju DECT tehnologije Profil dostopa do radijske lokalne zanke (RAP), Radio local loop Access Profile Radijska lokalna zanka DECT zagotavlja stroškovno učinkovit način za vzpostavitev javnega telekomunikacijskega omrežja, ki je zaščiteno pred izpadi prometa. S tehnologijo DECT RLL lahko telekomunikacijski operaterji koristno zaščitijo promet svojih strank z relativno nizkimi naložbami v primerjavi s tehnologijami žične krajevne zanke. Na razvitih trgih in lokacijah, kjer ni ekonomično ali praktično namestiti žično javno telefonijo, tehnologija RLL lahko zagotovi stroškovno učinkovito rešitev in omogoča konkurenco novim operaterjem. Profil dostopa do lokalne zanke je opredeljen v dokumentu ETS 300 765. RAP definira DECT podnabor protokolov, ki je potreben za zagotavljanje javnih omrežnih storitev končnim uporabnikom. CTM dostopni profil (CAP), CTM Access Profile( CAP), Mobilnost brezžičnega terminala (CTM) omogoča storitve uporabnikom brezvrvičnih terminalov, da . gostujejo znotraj in med omrežji. Kjer je zagotovljena radijska pokritost in ima brezvrvični terminal ustrezne pravice dostopa, uporabnik lahko kliče in sprejema klice kadar koli ne glede na lokacijo znotraj fiksnega javnega in/ali zasebnega omrežja in se lahko premika brez prekinitve potekajočega klica. CAP je podoben profil kot DECT-GSM. Razlika v tem, da CAP ni omejen na funkcije mobilnosti obstoječega GSM omrežja lahko pa medsebojno delujejo – na standardiziran način, s katerim koli omrežjem, ki zagotavlja funkcije mobilnosti. Standardizacija na področju DECT tehnologije Data Service Profiles, profili podatkovnih storitev - (A, B, C, D, E, F, internetno medsebojno delovanje) ETSI je razvil družino profilov za prenos podatkov, da bi zagotovil interoperabilnost za opremo za podatkovno komunikacijo, ki je povezana prek zračnega vmesnika DECT. Vsak član družine profilov je optimiziran za določeno storitev. Spodnja tabela prikazuje seznam podatkovnih profilov, kot je trenutno načrtovano. . 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 287/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 288/541 Standardizacija na področju DECT tehnologije DECT podatkovni profili (1997) Standardizacija na področju DECT tehnologije SIST ETS 300 435 :1999 Oznaka standarda: SIST ETS 300 435:1999 Naslov (angleški):Digital Enhanced Cordless Telecommunications (DECT); Data Services Profile (DSP); Base standard including interworking to connectionless networks (service types A and B, class 1) Naslov (slovenski): Digitalne izboljšane brezvrvične telekomunikacije (DECT) - Profil podatkovnih storitev (DSP) - Temeljni standard, ki vsebuje vzajemno delovanje do nepovezavnih omrežij (storitve tipov A in B, razred 1) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 288/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 289/541 Standardizacija na področju DECT tehnologije ETSI ETS 300 701 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Generična relejna storitev okvirja z mobilnostjo (vrste storitev A in B, razred 2) Standardizacija na področju DECT tehnologije SIST ETS 300 699: 1998 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Storitev generične podatkovne povezave za zaprte skupine uporabnikov (vrsta storitve C, mobilnost razred 1), 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 289/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 290/541 Standardizacija na področju DECT tehnologije ETSI - ETS 300 651 Radijska oprema in sistemi (RES); Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Storitev generičnih podatkovnih povezav; Vrsta storitve C, razred 2 Standardizacija na področju DECT tehnologije ETSI - ETS 300 757 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Storitev za nizko stopnjo sporočanja; (Vrsta storitve E, razred 2) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 290/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 291/541 Standardizacija na področju DECT tehnologije ETSI - ETS 300 755 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil podatkovnih storitev (DSP); Multimedijska storitev sporočanja (MMS) s posebnimi storitvami za storitve facsimile; (Vrsta storitve F, razred 2) Standardizacija na področju DECT tehnologije Radijska oprema in sistemi (RES); Koordinacijska skupina za radijsko lokalno zanko (RLL); Pregled dejavnosti ETSI in priporočila za delovni program ETSI 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 291/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 292/541 Standardizacija na področju DECT tehnologije Tehnično poročilo ETSI ETR 178 je pripravil tehnični odbor RES( radijska oprema in sistemi). ETR so informativni dokumenti, ki izhajajo iz študij ETSI, ter niso primerni za objavo kot evropski standard za telekomunikacije (ETS) ali začasni (Interim) evropski telekomunikacijski standard (I-ETS). ETR se lahko uporablja za objavo gradiva, ki je bodisi informativne narave ter se nanaša na uporabo ETS ali I-ETS, ali, ki še ni primerno za uradno sprejetje kot ETS. ETSI ETR 178-ed.1, 1995, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Vodnik na visoki ravni za standardizacijo DECT Standardizacija na področju DECT tehnologije ETSI - ETS 300 370, 1995, TC radijska oprema in sistemi (RES); Digitalni evropski brezvrvični telekomunikacijski/ globalni sistem za mobilne komunikacije (DECT/GSM) medobvezni dostop in preslikava profilov (Protokol/ Opis postopka za govorno storitev 3,1 kHz), 1. januar 1995. Dokument je bil posodobljen še v letih 1996, 1997, 1998 in 2001. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 292/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 293/541 Standardizacija na področju DECT tehnologije . EN 300 175-1 Digitalne izboljšane brezvrvični telekomunikacije (DECT) -- Skupni vmesnik (CI) -- 1. del: Pregled Standardizacija na področju DECT tehnologije EN 300 175-1 Digitalne izboljšane brezvrvični telekomunikacije (DECT) -- Skupni vmesnik (CI) -- 1. del: Pregled 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 293/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 294/541 Standardizacija na področju DECT tehnologije SIST ETS 300 175-2:1999 - Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 2: Fizična plast (PHL) Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 294/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 295/541 Standardizacija na področju DECT tehnologije ETSI EN 300 175-3 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 3: sloj srednje dostopne kontrole (MAC) Standardizacija na področju DECT tehnologije ETSI ETS 300 175-4 V1.4.2 (1999-09) ETSI ETS 300 175-4, Digitalne brezvrvične telekomunikacije (DECT), Skupni vmesnik (CI), Del 4: Plast za nadzor podatkovnih povezav (DLC) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 295/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 296/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 296/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 297/541 Standardizacija na področju DECT tehnologije ETSI – ETS 300 175-9, januar 1992, v SIST leta 1996, Radijska oprema in sistemi (RES); Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 9: Profil javnega dostopa (PAP) Standardizacija na področju DECT tehnologije ETSI - ETS 300 175-9, september 1996 Radijska oprema in sistemi (RES); Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 9: Profil javnega dostopa (PAP) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 297/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 298/541 Standardizacija na področju DECT tehnologije ETSI ETR 043 ED.1 (1992–1997) Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Specifikacija zahtev za storitve in objekte ETSI ETR 043-ed.1 Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Services and facilities requirements specification Standardizacija na področju DECT tehnologije . ETSI ETS 300 765-1, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Radio v profilu dostopa lokalne zanke (RLL) (RAP); Del 1: Storitve osnovne telefonije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 298/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 299/541 Standardizacija na področju DECT tehnologije ETS 300 765-2, 1998, Digitalne brezvrvične telekomunikacije (DECT) - Profil dostopa lokalnega radijskega vezja (RLL) 2. del: Izboljšane storitve telefonije Standardizacija na področju DECT tehnologije EN 301 242 1998 Digitalne izboljšane brezvrvične telekomunikacije (DECT) Globalni sistem za mobilne komunikacije (GSM) Integracija DECT/GSM na podlagi terminalov z dvojnim načinom delovanja 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 299/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 300/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije 3G in 4G Leta 1992 je Mednarodna telekomunikacijska zveza ITU dodelila spekter za naslednjo generacijo brezžičnih telekomunikacij 3G in iskala globalno uskladitev njenega Radio Interface Technologies (RIT) pod imenom IMT-2000, International Telecommunications-2000; to je vključevalo tudi široko paleto večpredstavnosti in aplikacije, storitve ter terminale. ETSI je izboljšal standard DECT z visoko stopnjo modulacijskih načinov in višjih hitrostih prenosa podatkov in s tem izpolnil zahteve IMT-2000. ITU oceni izboljšani standard DECT in ga vključili v nabor radijskih vmesnikov Radio Interface Technologies, SRIT, za IMT-2000. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 300/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 301/541 Standardizacija na področju DECT tehnologije SIST ETS 300 370:1999 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Globalni sistem za mobilne komunikacije (GSM); DECT/GSM profil dela (IWP); Dostop in preslikava (opis protokola/postopka za govorno storitev 3,1 kHz) Standardizacija na področju DECT tehnologije Tehnologija 3G je bila rezultat raziskovalnega in razvojnega dela Mednarodne telekomunikacijske unije (ITU) v začetku 80. let. Specifikacije in standardi 3G so bili razviti v petnajstih letih. Tehnične specifikacije so bile na voljo javnosti pod imenom IMT-2000. Komunikacijski spekter med 400 MHz in 3 GHz je bil dodeljen za 3G. Tako vlada kot komunikacijska podjetja so potrdili standard 3G. Prvo predkomercialno 3G omrežje je začel NTT DoCoMo na Japonskem leta 1998 z blagovno znamko FOMA. Prvič je bila na voljo maja 2001 kot pred-izdaja (test) W-CDMA tehnologije. Prvo komercialno uvedbo 3G je 1. širša razpoložljivost sistema je bila odložena zaradi očitnih pomislekov glede njegove zanesljivosti. Prvo evropsko predkomercialno omrežje je bilo omrežje UMTS na otoku Man by Manx Telecom, operater, ki je bil nato v lasti British Telecoma, in prvo komercialno omrežje (tudi W-CDMA, UMTS) v Evropi je norveški telekom Telenor decembra 2001 odprl za podjetja brez komercialnih telefonov in s tem brez strank, ki bi plačale storitve. Raziskovalni in razvojni projekti 3G (UMTS in CDMA2000) so se začeli leta 1992. Leta 1999 je ITU odobril pet radijskih vmesnikov za IMT-2000 kot del priporočila ITU-R M.1457; WiMAX je bil dodan leta 2007. Obstajajo evolucionarni standardi (EDGE in CDMA), ki so za nazaj združljivi z že obstoječimi 2G omrežji, pa tudi revolucionarni standardi, ki zahtevajo vse nove omrežne strojne in frekvenčne dodelitve. Mobilni telefoni uporabljajo UMTS v kombinaciji s 2G GSM standardi in pasovno širino, vendar ne podpirajo EDGE. Ta skupina je družina UMTS, ki je sestavljena iz standardov, razvitih za IMT-2000, pa tudi neodvisno razvitih standardov DECT in WiMAX, ki sta bila vključena, ker ustrezata opredelitvi IMT-2000. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 301/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 302/541 Standardizacija na področju DECT tehnologije DECT frekvenčni pas je del spektra IMT-2000, ITU je junija 1999 potrdila, da DECT izpolnjuje zahteve IMT-2000, ITU je sprejel DECT (imenovan IMT-FT v IMT-2000) kot člana družine IMT-200, Soobstoj z drugimi zajamčenih načini radijskega prenosa IMT-2000, Edina tehnologija IMT-2000 s komercialno razpoložljivimi operativnimi izdelki zdaj! Standardizacija na področju DECT tehnologije ITU-R M.1457, 1. januar 1999 Podrobne specifikacije prizemnih radijskih vmesnikov Mednarodne mobilne telekomunikacije-2000 (IMT-2000) Priporočilo določa specifikacije prizemnega radijskega vmesnika IMT-2000 na podlagi proizvodnje dejavnosti zunaj ITU. Ti radijski vmesniki podpirajo funkcije in parametre oblikovanja IMT-2000, vključno z zmožnostjo zagotavljanja združljivosti po vsem svetu, mednarodnega gostovanja in dostopa do hitrih podatkovnih storitev. To priporočilo dopolnjujejo druga priporočila ITU-R in poročila o IMT-2000, ki vsebujejo dodatne podrobnosti o številnih vidikih, vključno s frekvenčnimi ureditvami in neželenimi lastnostmi emisij. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 302/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 303/541 Standardizacija na področju DECT tehnologije EN 300 176-1, 2000, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Specifikacija preskusa; 1. del: Radio Standardizacija na področju DECT tehnologije ETSI TC DECT, Tehnični odbor Digitalne izboljšane brezvrvične telekomunikacije (DECT™) Ustanovljen na sestanku TC RES, maja 2005 [ETSI/B52(05)16]. Tehnični odbor je v okviru ETSI odgovoren za razvoj in vzdrževanje standardov za digitalne izboljšane brezvrvične telekomunikacije (DECT TM) in nadaljnji razvoj DECT™. Cilj: Razviti, podpreti in vzdrževati standarde za DECT TM, ki uporabljajo celoten potencial DECT TM kot tehnologije za dostop do omrežja in ki razširijo njegove aplikacije in njeno medsebojno delovanje z drugimi sistemi/omrežji. Zagotovitev skladnosti in skladnosti družine standardov DECTTM ter visoke kakovosti. 14. junija 2006 je bil ustanovljen USM( Urad Republike Slovenije za standardizacijo in meroslovje (1990-2001)) tehnični odbor TC RES, Radijske naprave in sistemi, po 10 letih delovanja, preoblikovan v SIST TC MOC, Mobilne komunikacije, ki tudi že deluje 15 let. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 303/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 304/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije DECT Forum je neprofitna panožna organizacija, ustanovljena leta 1997 in ima sedež v Bernu v Švici. Misija foruma DECT je podpreti sodelovalno okolje industrije DECT in spodbujati programe za razvoj in izboljšanje brezvrvične tehnologije DECT, da bi prehiteli brezžična komunikacijska pričakovanja in izpolnili potrebe sveta, ki spreminja tehnologijo. Da bi to dosegli, bo DECT forum: skrbel za DECT tehnologijo na najboljši možni način s sredstvi, ki so na voljo, zaščitil in razširil dodelitev FREKVENC DECT po vsem svetu, spodbujal svoje člane, da sodelujejo pri izboljšanju standardov in aplikacij DECT z aktivnim sodelovanjem v organih za standardizacijo ter programih interoperabilnosti in certificiranja spodbujal in navdihoval DECT industrijo, da uporabi celoten frekvenčni spekter z aplikacijami in izdelki, v podporo DECT poslovanja in prihodkov članov foruma DECT 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 304/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 305/541 Standardizacija na področju DECT tehnologije DECT standardizacijski dokumenti (ETS, ETR) izdani do februarja 1997 Standardizacija na področju DECT tehnologije Predlog osnovnega standarda, december 1999 in dopolnjena verzija iz decembra 2004 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 305/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 306/541 Standardizacija na področju DECT tehnologije Leto 2002: ETSI EN 301 908-10:2016 IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 10: Base Stations (BS), Repeaters and User Equipment (UE) for IMT-2000 Third-Generation cellular networks Elektromagnetna združljivost in radiofrekvenčni spekter (ERM), IMT – 2000 bazne postaje (BS) celičnih omrežij, repetitorji in uporabniška oprema (UE) za mobilna omrežja tretje generacije, 10 del: Usklajeni standard za IMT-2000, FDMA/TDMA (DECT), ki zajema bistvene zahteve iz člena 3.2 Direktive 2014/53/EU o IMT-2000. Dokument dopolnjen leta 2016 in 2021. Standardizacija na področju DECT tehnologije Leto 2005 Digitalne izboljšane brezvrvične telekomunikacije (DECT); DECT v frekvenčnem pasu 1 920 MHz do 1 930 MHz. Nelicenčne storitve osebnih komunikacijskih storitev (UPCS); Posebne zahteve 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 306/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 307/541 Standardizacija na področju DECT tehnologije ETSI TR 101 178 2005 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Vodnik na visoki ravni za standardizacijo DECT Standardizacija na področju DECT tehnologije ETS 300 370 ed.2, 2006 Digital Enhanced Cordless Telecommunications (DECT); System for Mobile communications (GSM); DECT/GSM Interworking Profile (IWP); Access and mapping (protocol/procedure description for 3,1 kHz speech service) SIST ETS 300 370, 2006 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Globalni sistem za mobilne komunikacije (GSM); DECT/GSM profil dela (IWP); Dostop in preslikava (opis protokola/postopka za govorno storitev 3,1 kHz) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 307/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 308/541 Standardizacija na področju DECT tehnologije Procesi standardizacije v obdobju od leta 2007 do 2014 Standardizacija na področju DECT tehnologije Nova generacija DECT Nova generacija DECT (NG-DECT) je ime, ki je dano razvoju DECT standarda s primarnim ciljem na VoIP aplikacijah. NG-DECT se izvaja z dodajanjem novih funkcij osnovnemu standardu DECT (ohraniti skladnost nazaj z vsemi prejšnjimi razvoji) in oblikovanjem namenskega sklopa profilov aplikacij, ki opredeljujejo nove vrste izdelkov. Specifikacije nove generacije DECT se osredotočajo na : - širokopasovni govor (TS 102 527-1), - podatke IP paketa (TS 102 527-2), - razširjene širokopasovne govorne storitve (TS 102 527-3), - Light Data Services (TS 102 527-4) in dodatni set funkcij - za razširjeni široko pasovni govor (TS 102 527-5). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 308/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 309/541 Standardizacija na področju DECT tehnologije DECT nove generacije vključuje naslednje funkcije: Vrhunska kakovost glasu je boljša od vseh obstoječih tehnologij. Širokopasovni in super širokopasovni govor. Celoten sklop signaliziranja in postopkov za scenarije VoIP (SIP in H.323) in mešanih (baznih postaj z dvojno povezljivostjo PSTN in VoIP). Nove naprave za slušalke DECT ( dect radio i/f). Podpora širokopasovnih podatkov in pretakanje zvoka. Zmogljivost video telefonije. Home Monitoring, Vrata & telefon, Baby monitor, Nabiralnik. Plug & Play funkcionalnost vseh komponent Samodejno zaznavanje in konfiguracija naprave (enostavno združevanje). Posodobitev programske opreme (SUOTA) in druge brezžične naprave. Standardizacija na področju DECT tehnologije Profil Specifikacija preskusa za prostovoljno testiranje terminalov, ki so skladni z DE/RES-03039 (DECT/ISDN ISC). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 309/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 310/541 Standardizacija na področju DECT tehnologije Tudi to serijo oziroma družino evropskih standardov ( ETSI EN 300 176) je izdelal ETSI tehnični odbor TC DECT- Digital Enhanced Cordless Telecommunications in je zdaj predložen v postopek odobritve kot ETSI EN standard. Prvi dokument vsebuje besedilo, ki se nanaša na homologacijsko testiranje skupnega vmesnika izboljšane brezvrvične naprave DECT. Takšno besedilo je treba obravnavati kot napotke organom za odobritev ali licenciranje DECT opreme. ETSI EN 300 176-1, (2009), Digital Enhanced Cordless Telecommunications, Test specifications, Part 1: Radio, ETSI EN 300 176-2, (2009), DECT, Test specificatios, Part 2: Audio and Speech, Standardizacija na področju DECT tehnologije ETSI EN 300 176-1, 2009, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Specifikacija preskusa; 1. del: Radio 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 310/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 311/541 Standardizacija na področju DECT tehnologije EN 300 176-2 V2.1.1:2009 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Specifikacija preskusa; Del 2: Zvok in govor Standardizacija na področju DECT tehnologije 132 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 311/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 312/541 Standardizacija na področju DECT tehnologije DECT Nove generacije, DECT New Generation Osnovna tehnična specifikacija se imenuje TS 102 527 in je standardizirala integracijo DECT v širokopasovni domači prehod(Broadband Home Gateway). Ta tehnološki korak se imenuje CAT-iq (brezvrvična napredna tehnologija: internet in kakovost). Ta nadgradnja osnovnega standarda je omogočila številne nove dodatne funkcije SIP in HD Voice, ki so združljiva z zvokom ( HD Voice) v mobilnih omrežjih. Člani foruma DECT lahko svoje izdelke certificirajo v certifikacijskem programu CAT-iq. Standard nove generacije DECT(NG-DECT) je bil prvič objavljen leta 2007; razvili so jih v ETSI, v skladu s smernicami in pobudo Home Gateway, ki so jo pripravili v DECT Forumu za podporo ip-DECT funkcijam v domači opremi gateway/IP-PBX. Serija standadov ETSI TS 102 527 obsega pet delov in zajema širokopasovne audio in obvezne funkcije interoperabilnosti med terminalno opremo in osnovnimi postajami. S tehničnim obrazložitvenim poročilom ETSI TR 102 570 DECT Forum vzdržuje cat-iq blagovno znamko in certifikacijski program; CAT-iq širokopasovni glasovni profil 1.0 in profili interoperabilnosti 2.0/2.1 temeljijo na ustreznih delih ETSI TS 102 527. Standardizacija na področju DECT tehnologije DECT Forum je naročil ETSI tehničnemu odboru TC DECT, da razvije specifikacije za izdelke "nove generacije DECT", ki bodo temeljili na zahtevah tržišča. DECT Forum zahteva, da se v celoti opredelijo in implementirajo novi standardi, v katerih bo obvezna interoperabilnost med baznimi postajami, prehodi in ter terminalno opremo različnih proizvajalcev. Za zagotovitev interoperabilnosti namerava DECT Forum vzpostaviti certifikacijski program. Zato DECT Forum zahteva od ETSI, da poleg sistemskih specifikacij razvije tudi testne specifikacije. Digitalne izboljšane brezvrvične telekomunikacije (DECT); Nova generacija DECT; Pregled in zahteve 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 312/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 313/541 Standardizacija na področju DECT tehnologije ETSI TS 102 527-1 V1.1.1, 2007-04-03, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Nova generacija DECT; 1. del: Širokopasovni govor Standardizacija na področju DECT tehnologije ETSI TS 102 527-3 V1.1.1, 19.6. 2008 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Nova generacija DECT; Del 3: Razširjene širokopasovne govorne storitve 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 313/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 314/541 Standardizacija na področju DECT tehnologije ETSI - TS 102 527-4 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Nova generacija DECT; Del 4: Lahke podatkovne storitve; Posodobitev programske opreme nad zrakom (SUOTA), prenos vsebine in aplikacije, ki temeljijo na HTTP Standardizacija na področju DECT tehnologije Tri verzije dokumenta TS 102 527 -5: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 314/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 315/541 Standardizacija na področju DECT tehnologije TS 102 527-5, V1.3.1:2015 brezvrvične razširjene digitalne telekomunikacije (DECT); Nova generacija DECT; Del 5: Skupina dodatnih funkcij Št. 1 za razširjene široko pasovne govorne storitve Standardizacija na področju DECT tehnologije 140 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 315/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 316/541 Standardizacija na področju DECT tehnologije Rezultat teh zahtev in nadgradnja predhodnih ETSI DECT tehničnih specifikacij in poročil so naslednji evropski standardi: [1] ETSI EN 300 175-1: Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 1: Overview [2] ETSI EN 300 175-2: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface(CI), Part 2: Physical Layer (PHL)" [3] ETSI EN 300 175-3: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 3: Medium Access Control (MAC) layer". [4] ETSI EN 300 175-4: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 4: Data Link Control (DLC) layer". [5] ETSI EN 300 175-5: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 5: Network (NWK) layer". [6] ETSI EN 300 175-6: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 6: Identities and addressing". [7] ETSI EN 300 175-7: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 7: Security features". [8] ETSI EN 300 175-8: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 8: Speech and audio coding and transmission". Standardizacija na področju DECT tehnologije EN 300 175-1 Digital Enhanced Cordless Telecommunications (DECT) - Skupni vmesnik (CI), 1. del: Pregled 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 316/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 317/541 Standardizacija na področju DECT tehnologije EN 300 175-2 Digitalne izboljšane brezvrvične telekomunikacije (DECT) – Skupni vmesnik (CI) – 2. del: Fizična plast (PHL) Standardizacija na področju DECT tehnologije EN 300 175-3 Digitalne izboljšane brezvrvične telekomunikacije (DECT). skupni vmesnik (CI). Del 3: sloj srednje dostopne kontrole (MAC) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 317/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 318/541 Standardizacija na področju DECT tehnologije EN 300 175-4 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 4: Plast za nadzor podatkovnih povezav (DLC) Standardizacija na področju DECT tehnologije EN 300 175-5 Digitalne izboljšane brezvrvične telekomunikacije (DECT) – Skupni vmesnik (CI) – 5. del: Omrežna plast (NWK) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 318/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 319/541 Standardizacija na področju DECT tehnologije EN 300 175-6 Digitalne izboljšane brezvrvične telekomunikacije (DECT). Skupni vmesnik (CI). Del 6: Identitete in obravnavanje (označevanje) Standardizacija na področju DECT tehnologije EN 300 175-7, 2012, Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 7: Varnostne funkcije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 319/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 320/541 Standardizacija na področju DECT tehnologije EN 300 175-8 Digitalne izboljšane brezvrvične telekomunikacije DECT; skupni vmesnik (CI); Del 8: Kodiranje in prenos govora in zvoka Standardizacija na področju DECT tehnologije Digitalne izboljšane brezvrvične telekomunikacije (DECT); Specifikacija preskusa; Del 2: Zvok in govor 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 320/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 321/541 Standardizacija na področju DECT tehnologije In posodobitev v naslednjem letu: Standardizacija na področju DECT tehnologije EN 300 444 V2.4.1:2013 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Profil splošnega dostopa (GAP) Splošne informacije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 321/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 322/541 Standardizacija na področju DECT tehnologije In posodobitev v naslednjem letu: Standardizacija na področju DECT tehnologije Nova direktiva o radijski opremi 2014/53/ES, Direktiva 1999/5/ES razveljavljena Za razliko od prejšnje direktive se direktiva o radijski opremi ne uporablja več za telekomunikacijsko terminalsko opremo (TTE). TTE bo od zdaj regulirana z Direktivo 2008/63/ES "o konkurenci na trgih telekomunikacijske terminalske opreme". 154 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 322/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 323/541 Standardizacija na področju DECT tehnologije Iz arhiva tehničnega odbora ETSI TC DECT: DECT NewGen 463 Specifikacija preskusa Light Data Services ZAPRTO DECT NewGen 432 Standardi za testiranje skladnosti DECT 2011 ZAPRTO DECT NewGen 418 V DECT stds 2011 prostovoljno ZAPRTO DECT NewGen 418 Vzdrževanje DECT in razvoj NG-DECT 2011 ZAPRTO DECT NewGen 389 DECT-nova generacija izdaja 2010 ZAPRTO DECT NewGen 339 Posodobitev testnih standardov za novo generacijo DECT,ZAPRTO DECT NewGen 338 Posodobitev osnovnih standardov za novo generacijo DECT,ZAPRTO Standardizacija na področju DECT tehnologije Standardizacija v obdobju med 2013 in 2015 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 323/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 324/541 Standardizacija na področju DECT tehnologije Directive 2014/53/EU of the European Parliament and of the Council of 16. april 2014 Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1995/5/EC. The Radio Equipment Directive (RED, EU directive 2014/53/EU) established a regulatory framework for placing radio equipment on the market in the EU. All radio equipment within the scope of this directive that are placed on the EU market must have been compliant with the directive from 13 June 2017. Direktiva 2014/53/EU Evropskega parlamenta in Sveta z dne 16. aprila 2014 o uskladitvi zakonodaje držav članic v zvezi z dajanjem na trg radijske opreme in razveljavitvijo Direktive 1999/5/ES. Standardizacija na področju DECT tehnologije ULE obravnava zahteve za aplikacijo Ultra-Low Energy z uvedbo optimiziranih komunikacijskih metod. Z zelo majhno porabo energije, majhno latenco, dolgim dometom, zmerno hitrostjo podatkov in komplementarnimi glasovnimi zmogljivostmi z dodano vrednostjo, je ULE najboljša tehnologija razreda, ki predstavlja naslednjo evolucijo v domačem omrežju. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 324/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 325/541 Standardizacija na področju DECT tehnologije ULE Alliance je neprofitna organizacija s sedežem v Švici. Združenje ULE je leta 2012 formiral forum DECT, da bi se osredotočili na različne tržne segmente in tehnološke izboljšave za ULE. ULE obravnava zahteve za aplikacijo Ultra-Low Energy z uvedbo optimiziranih komunikacijskih metod. Z majhno porabo energije, majhno latenco, dolgim dometom, zmerno hitrostjo podatkov in komplementarnimi glasovnimi zmogljivostmi z dodano vrednostjo, je ULE najboljša tehnologija razreda, ki predstavlja naslednjo evolucijo v domači mreži. ULE temelji na DECT (Digital Enhanced Cordless Telecommunications), ki je de-facto standard za stanovanjske in poslovne brezvrvične telefonske komunikacije po vsem svetu. Standard in certificiranje Specifikacija ULE je bila ustvarjena kot začetno sodelovanje med forumom DECT in ETSI. Fizična plast ULE uporablja obstoječo specifikacijo ETSI DECT. Tehnične specifikacije za zgornji del transportne plasti ULE so bile izvedene v ETSI TC DECT, pri tem pa so bile posodobljene naslednje lastnosti: Nadzor podatkovne povezave, Omrežna plast, Meddelavna enota, protokol aplikacijskih plasti Protokol aplikacijske plasti HAN FUN (Home Area Network FUNctional protocol) je izdala zveza ULE novembra 2013 in zajema naslednje funkcije: Opredelitev protokola, definicija naprave, upravljanje naprav, itd,... 159 Standardizacija na področju DECT tehnologije Standard DECT Ultra Low Energy (DECT ULE) je bil objavljen januarja 2011, prve komercialne izdelke pa je kasneje tega leta lansiral Dialog Semiconductor . Standard je bil ustvarjen tako, da omogoča avtomatizacijo doma, programe varnosti, zdravja in nadzora na baterijski pogon. Tako kot DECT, DECT ULE standard uporablja obseg 1,9 GHz in je manj občutljiv na motnje kot Zigbee, Bluetooth ali Wi-Fi, ki vsi delujejo v nelicenciranem 2,4 GHz ISM območju. DECT ULE uporablja preprosto zvezdno topologijo omrežja, zato je lahko več naprav v hiši priključenih na eno samo kontrolno enoto. Kot možnost za revizijo DECT standarda v 2019 je bil dodan nov zvočni kodek majhne zahtevnosti, LC3plus. Ta kodek je namenjen visokokakovostnim glasovnim in glasbenim aplikacijam ter podpira razširljive ozkopasovne, širokopasovne, super širokopasovne aplikacije in polno kodiranje s hitrostjo vzorčenja 8, 16, 24, 32 in 48 kHz ter pasovno širino zvoka do 20 kHz. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 325/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 326/541 Standardizacija na področju DECT tehnologije ETSI - TS 102 939-1 V1.3.1 -Digitalne izboljšane brezvrvične telekomunikacije (DECT); Ultra nizka energija (ULE); M2M komunikacije; 1. del: Omrežje avtomatizacije doma (1. faza) Standardizacija na področju DECT tehnologije ETSI TS 102 939-2 V1.1.1 (2015-03) Digitalne izboljšane brezvrvične komunikacije (DECT); Ultra nizka energija (ULE); M2M komunikacije; Del 2: Omrežje avtomatizacije doma (faza 2) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 326/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 327/541 Standardizacija na področju DECT tehnologije ETSI TS 102 939-2 V1.3.1 (2019-01) Digitalne izboljšane brezvrvične telekomunikacije (DECT); Ultra nizka energija (ULE); M2M komunikacije; Del 2: Omrežje avtomatizacije doma (faza 2) Standardizacija na področju DECT tehnologije ETSI TR 103 422 Digital Enhanced Cordless Telecommunications (DECT); Tehnična študija razvoja DECT; Zahteve in tehnična analiza za nadaljnji razvoj DECT in DECT ULE 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 327/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 328/541 Standardizacija na področju DECT tehnologije Iz arhiva tehničnega odbora ETSI TC DECT Zaključeno delo na naslednjih dokumentih: DECT ULE 506 DECT ULE repetitorji ZAPRTO DECT ULE 465 Ultra Low Energy (ULE) Tehnična specifikacija za fazo 2 (domača in industrijska avtomatizacija) ZAPRTO DECT ULE 464 Specifikacija testa ULE ZAPRTO DECT ULE 444 DECT baza za razvoj ULE in DECT-NG 2012 ZAPRTO DECT ULE 444V DECT ULE 2012 prostovoljno ZAPRTO DECT ULE 441 Tehnična študija z ultra nizko porabo energije (ULE). ZAPRTO DECT ULE 419 V DECT ULE 2011 prostovoljno ZAPRTO DECT ULE 419 Tehnična študija z ultra nizko porabo energije (ULE). ZAPRTO Standardizacija na področju DECT tehnologije Procesi standardizacije v obdobju 2016 do 2018 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 328/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 329/541 Standardizacija na področju DECT tehnologije ETSI EN 300 444 V2.2.1, Digitalne brezvrvične telekomunikacije (DECT) - Generični profil dostopa (GAP) Standardizacija na področju DECT tehnologije Ta dokument določa nabor tehničnih zahtev za fiksni del (FP) in prenosni del DECT (PP) za digitalne izboljšane brezvrvične telekomunikacije (DECT), ki so potrebni za podporo generičnega profila dostopa (GAP). GAP se uporablja za vse prenosne radijske terminalne enote DECT (PT) in fiksne radijske postaje (FT), ki so podrobneje obdelani v standardu ETSI EN 300 176-2 (tj. 3,1 kHz telefonska telekomunikacijska storitev) in določa minimalno funkcionalnost, ki jo podpirajo vsi drugi glasovni profili 3,1 kHz 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 329/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 330/541 Standardizacija na področju DECT tehnologije 169 Standardizacija na področju DECT tehnologije 170 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 330/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 331/541 Standardizacija na področju DECT tehnologije Standardizacijski procesi med 2018 in 2019 Standardizacija na področju DECT tehnologije Evropa (ETSI) – Novi standardi, 19. marec 2020 ETSI je v obdobju od 25. novembra do 25. decembra 2019 objavil naslednje nove standarde: ETSI EN 300 176-2 V2.3.1 (2019-2012) za digitalne izboljšane brezžične telekomunikacije (DECT); Specifikacija preskusa; Del 2: Zvok in govor, ETSI EN 300 175-8 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 8: Kodiranje in prenos govora in zvoka, ETSI EN 300 175-7 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 7: Varnostne funkcije, ETSI EN 300 175-6 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 6: Identitete in obravnavanje, ETSI EN 300 175-5 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 5: Omrežna (NWK) plast, ETSI EN 300 175-4 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 4: Plast za nadzor podatkovnih povezav (DLC), ETSI EN 300 175-3 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 3: sloj srednje dostopne kontrole (MAC), ETSI EN 300 175-2 V2.8.1 (2019–2012) za digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 2: Fizična plast (PHL), ETSI EN 300 175-1 V2.8.1 (2019–2012) Digitalne izboljšane brezžične telekomunikacije (DECT); skupni vmesnik (CI); Del 1: Pregled 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 331/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 332/541 Standardizacija na področju DECT tehnologije ETSI EN 300 175-1 V2.8.1 (2019-12) Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 1: Pregled Standardizacija na področju DECT tehnologije ETSI ETS 300 175-2 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 2: Fizična plast (PHL) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 332/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 333/541 Standardizacija na področju DECT tehnologije ETSI EN 300 175-3, 2019 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 3: sloj srednje dostopne kontrole (MAC) Standardizacija na področju DECT tehnologije EN 300 175-4, Digital Enhanced Cordless Telecommunications (DECT) -- Skupni vmesnik (CI) -- 4. del: Plast za upravljanje podatkovnih povezav (DLC) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 333/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 334/541 Standardizacija na področju DECT tehnologije ETSI SL 300 175-5 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 5: Omrežna (NWK) plast Standardizacija na področju DECT tehnologije ETSI - EN 300 175-6 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 6: Identitete in obravnavanje 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 334/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 335/541 Standardizacija na področju DECT tehnologije ETSI SL 300 175-7 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 7: Varnostne funkcije Standardizacija na področju DECT tehnologije ETSI EN 300-175-8 Digitalne izboljšane brezvrvične telekomunikacije (DECT); skupni vmesnik (CI); Del 8: Kodiranje in prenos govora in zvoka 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 335/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 336/541 Standardizacija na področju DECT tehnologije ETSI EN 300 176-1, januar 2018, Digitalne izboljšane brezvrvične telekomunikacije (DECT); Specifikacija preskusa; 1. del: Radio, Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 336/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 337/541 Standardizacija na področju DECT tehnologije TS 102 527-1, V1.5.1: 2019 DECT brezvrvične razširjene digitalne telekomunikacije; Nova generacija DECT; 1. del: široko pasovni govor Standardizacija na področju DECT tehnologije ETSI TR 103 513 V1.1.1, (2019–2011), Digitalne izboljšane brezvrvične telekomunikacije (DECT); Načrt tehnologije DECT, 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 337/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 338/541 Standardizacija na področju DECT tehnologije Dogajanje na področju standardizacije po letu 2019 Standardizacija na področju DECT tehnologije DECT Evolution, DECT Evolucija DECT Evolution je srednjeročni program evolucije, namenjen izboljšavi DECT z izvajanjem številnih tehničnih izboljšav, medtem ko še vedno uporablja DECT "klasični" radijski vmesnik: Zvočne izboljšave (novi kodeki, npr. LC3plus) Zvok z nizko latenco (< 10 ms) Izboljšana podpora naprednim funkcijam čipov, kot so višje stopnje modulacije in kodiranje kanalov. Eno od glavnih aplikacijskih področij so visoki in profesionalni avdio sistemi, kot so tisti, ki jih uporablja industrija PMSE, kjer je bistven pretok zvoka z višjimi stopnjami podatkov in zelo nizko zamudo. 186 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 338/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 339/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 339/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 340/541 Standardizacija na področju DECT tehnologije Priporočilo ITU-R M.1457-12, (02/2015) Podrobne specifikacije prizemnih radijskih vmesnikov mednarodnega programa MobilneTelekomunikacije-2000 (IMT-2000) Serija Mobilni, Radiodetermination, Amaterskih in povezanih satelitskih storitev 189 Standardizacija na področju DECT tehnologije ITU-R M.1457-12 , verzija1* RECOMMENDATION ITU-R M.1457-12 Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-2000 (IMT-2000) * dokument dopolnjen v letih: (2000-2001-2004-2005-2006-2007-2009-2010-2011-2013-2015) 190 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 340/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 341/541 Standardizacija na področju DECT tehnologije Družina priporočil M.2012: Podrobne specifikacije prizemnih radijskih vmesnikov mednarodne mobilne telekomunikacije Advanced (IMT-Advanced) 191 Standardizacija na področju DECT tehnologije 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 341/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 342/541 Standardizacija na področju DECT tehnologije Tehnični odbor SIST TC MOC, 16. februarja 2020, potrdi slovenski naslov, originalnega ETSI standarda, sprejetega 16. decembra 2019: SIST EN 300 175-1 V2.8.1:2020 Digital Enhanced Cordless Telecommunications (DECT) - Common Interface (CI) - Part 1: Overview Digitalne izboljšane brezvrvične telekomunikacije (DECT) - Skupni vmesnik (CI) - 1. del: Pregled V tem dokumentu sta predstavitev in pregled celotnega skupnega vmesnika (CI) za digitalne izboljšane brezvrvične telekomunikacije (DECT). V tem dokumentu je povzetek drugih delov standarda za DECT in splošen opis: • ciljev tega dokumenta, • skupnega vmesnika za digitalne izboljšane brezvrvične telekomunikacije, • arhitekture protokola digitalnih izboljšanih brezvrvičnih telekomunikacij. V tem dokumentu je tudi obsežen slovar, ki vključuje zlasti skupne definicije vseh tehničnih izrazov, uporabljenih v različnih delih tega dokumenta. Ta dokument vključuje novo generacijo digitalnih izboljšanih brezvrvičnih telekomunikacij, nadaljnji razvoj standarda za digitalne izboljšane brezvrvične telekomunikacije, ki uvaja širokopasovni govor, izpopolnjene podatkovne storitve, nove tipe rež in druge tehnične izpopolnitve. Dokument vključuje razvoj digitalne izboljšane brezvrvične telekomunikacije. 193 Standardizacija na področju DECT tehnologije 194 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 342/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 343/541 Standardizacija na področju DECT tehnologije ETSI TR 103 513, 11. 1. 2019 Digitalne izboljšane brezvrvične telekomunikacije (DECT); Načrt tehnologije DECT standarda evropskega inštituta za telekomunikacijske standarde, 195 Standardizacija na področju DECT tehnologije 196 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 343/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 344/541 Standardizacija na področju DECT tehnologije ETSI LAUNCHES DECT-2020 NEW RADIO INTERFACE FOR IOT New standard addresses ultra-reliable, low-latency and massive machine-type communication use Sophia Antipolis, 20 October 2020 ETSI DECT-2020 NR kot tehnološka fundacija je usmerjena v lokalne brevrvične aplikacije, ki se jih lahko vsak v trenutku razporedi kjerkoli. Tehnologija omogoča avtonomno in avtomatsko delovanje z minimalnim naporom vzdrževanja. DECT-2020 NR podpira komunikacijo z omrežjem z nizko zakasnitvijo komunikacijskih povezav, kar omogoča masivne komunikacije strojnega tipa (mMTC) za avtomatizacijo industrije brez potrebe po infrastrukturnih naložbah. Podpira tudi ultra-zanesljive komunikacije z nizko latenco (URLLC) za profesionalne brezvrvične zvočne aplikacije s točkami na točko ali multicast komunikacije. Zaradi svoje dinamične funkcije izbire kanalov, DECT-2020 NR ne zahteva načrtovanja frekvenc in kompleksnost te tehnologije je razmeroma nizka. Standard je predviden za naprave, ki delujejo v globalnem frekvenčnem pasu okoli 1900 MHz. Standard NR DECT-2020 zagotavlja visoko prilagodljivost uporabe: Izjemno zanesljive brezvrvične povezave od točke do točke in od točke do več točk, Lokalna brezvrvična dostopna omrežja, Samoorganiziranje lokalnega omrežja za brezvrvični dostop po topologiji omrežja mreže, 197 Standardizacija na področju DECT tehnologije Novi radijski protokol DECT-2020, je bil objavljen julija 2020; določa nov fizični vmesnik, ki temelji na ciklični predponi Orthogonal Frequency-Splitting Multiplexing (CP-OFDM), ki omogoča hitrosti prenosa do 1,2 Gbit/s z [QAM]] - 1024 modulacijo. Posodobljeni standard podpira multi-antic MIMO in oblikovanje snopov , FEC kodiranje kanalov in hibridno samodejno ponavljanje zahteve . Določa 17 frekvenc radijskih kanalov, ki segajo od 450 MHz do 5 875 MHz in pasovne širine kanalov 1728, 3456 ali 6912 kHz. Neposredna komunikacija med končnimi napravami je možna s topologijo omrežja . ETSI je predlagal posodobljen PROTOKOL DECT kot kandidata za prihajajoče standarde IMT-2020 za industrijo avtomatizacije množičnih komunikacijskih vrst (MMTC), presek izjemno zanesljivih profesionalnih brezžičnih avdio aplikacij z nizko latenco (URLLC) s točkami na točko ali multicast komunikacijo. Odbor ESTI DECT je prav tako preučil uporabo modulacije OFDMA in SC-FDMA. OpenD je odprtokodni okvir, ki je zasnovan tako, da zagotavlja celovito izvajanje protokolov DECT ULE o referenčni strojni opremi iz Dialog Semiconductor in DSP Group. 1 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 344/541 9 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 345/541 Standardizacija na področju DECT tehnologije IMT-2020 (5G) Leta 2015 je ITU-R objavil ocene prometa IMT za leta 2020–2030 in IMT Vision za leto 2020 in naprej. Primerjava tehničnih zahtev za 5G z IMT-Advanced, pokaže v mnogih primerih povečavo za 10x ali več. Predhodniki 5. Generacije: 1G/analogni, 2G/digitalni, 3G/IMT-2000, 4G/IMT-Advanced, 5G cilji: pomemben razvoj osnovne tehnologije, omrežne infrastrukture, uporabe spektra in porabe energije, učinkovitosti, vendar scenariji njegove uporabe presegajo 2G-4G. Oba 3GPP in ETSI TC DECT sta objavila načrte za ponudbo konkurenčnih RIT za IMT-2020. 199 Standardizacija na področju DECT tehnologije Mednarodne organizacije za standardizacijo: ISO - International Organization for Standardization (Mednarodna organizacija za standardizacijo), 1947 IEC - International Electrotechnical Commission (Mednarodna elektrotehniška komisija),1906 ITU - International Telecommunication Union (Mednarodna zveza za telekomunikacije),1865 ITU – R Sektor za standardizacijo telekomunikacij, 200 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 345/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 346/541 Standardizacija na področju DECT tehnologije ITU, Mednarodna telekomunikacijska unija, je specializirana agencija Združenih narodov za informacijske in komunikacijske tehnologije – IKT. Ustanovljena leta 1865 za lažjo mednarodno povezljivost v komunikacijskih omrežjih, dodeljujejo globalni radijski spekter in satelitske tirnice, razvijajo tehnične standarde, ki zagotavljajo brezhibno medsebojno povezovanje omrežij in tehnologij ter si prizadevajo izboljšati dostop do IKT za skupnosti po vsem svetu. 201 Standardizacija na področju DECT tehnologije ITU-R, sektor za radiokomunikacije Strateški cilji sektorja za radiokomunikacije ITU (ITU-R) so: zagotoviti delovanje radijskih sistemov brez vmešavanja z izvajanjem radijskih predpisov in regionalnih sporazumov ter učinkovito in pravočasno posodabljanje teh instrumentov s postopki svetovnih in regionalnih konferenc o radiokomunikacijah; določitev priporočil, namenjenih zagotavljanju potrebne učinkovitosti in kakovosti v operacijskih sistemih radiokomunikacij; poiskati načine in sredstva za zagotovitev racionalne, pravične, učinkovite in gospodarne uporabe radiofrekvenčnega spektra in virov satelitske orbite ter spodbujati prožnost za prihodnje širjenje in nova tehnološka gibanja. 202 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 346/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 347/541 Standardizacija na področju DECT tehnologije Delovna skupina ITU-R 5D (WP 5D) - IMT Sistemi WP 5D je odgovoren za splošne vidike radijskih sistemov Mednarodne mobilne telekomunikacije (IMT), ki jih sestavljajo: IMT-2000, IMT-Advanced, IMT-2020 in IMT za leto 2030 in naprej . 203 Standardizacija na področju DECT tehnologije 204 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 347/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 348/541 Standardizacija na področju DECT tehnologije 205 Standardizacija na področju DECT tehnologije 206 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 348/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 349/541 Standardizacija na področju DECT tehnologije 207 Standardizacija na področju DECT tehnologije IMT for 2020 and Beyond Časovnica standardizacijskih postopkov pri IMT- 2020 208 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 349/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 350/541 Standardizacija na področju DECT tehnologije 209 Standardizacija na področju DECT tehnologije ITU-R M.2410-0, Minimalne zahteve v zvezi s tehnično učinkovitostjo radijskih vmesnikov IMT-2020 To poročilo vsebuje smernice za postopek, metodologijo in merila (tehnična, spekter in storitev) za uporabo pri ocenjevanju konkurenčnih tehnologij radijskih vmesnikov IMT-2020 (RIT) ali nabor RIT (SRIT) za številna testna okolja. Ta testna okolja so izbrana za natančno simulacijo strožjih radijskih operacijskih okolij. Postopek ocenjevanja je oblikovana tako, da je lahko celotna uspešnost konkurenčnih RIT/SRIT poštena in enakovredno ocenjena na tehnični podlagi. Zagotavlja, da so izpolnjeni splošni cilji IMT-2020. To poročilo za predlagatelje zagotavlja razvijanje konkurenčnih RIT/SRIT in neodvisne ocenjevalne skupine, skupno metodologijo vrednotenja in konfiguracije ocenjevanja za ocenjevanje različnih RIT/SRIT in sistemskih vidikov, ki vplivajo na delovanje radia. To poročilo omogoča določeno stopnjo svobode pri vključevanju novih tehnologij. Dejanski izbor RIT/SRIT za IMT-2020 je zunaj področja uporabe tega poročila RIT - Radio Interface Technology. SRIT - Set of Radio Interface Technologies. 210 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 350/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 351/541 Standardizacija na področju DECT tehnologije ETSI DECT-2020, odobren s strani ITU-R WP5D za naslednjo revizijo ITU-R M.2150 (IMT 2020), 19. oktober, 2021, ETSI DECT-2020 NR, je prvi svetovni necelularni tehnološki standard 5G, ki bo vključen v naslednjo revizijo ITU-R M.2150, alias IMT-2020 tehnološkega priporočila, na podlagi zaključka 39. virtualnega srečanja ITU-R WP 5D , ki je bilo dne 15. oktobra 2021. 211 Standardizacija na področju DECT tehnologije Priporočilo ITU-R ITU-R M.2150: Podrobne specifikacije radijskih vmesnikov IMT-2020, 2. februar, 2021 ITU sektor za radiokomunikacije (ITU-R) je nedavno objavil priporočilo ITU-R M.2150 z naslovom "Podrobne specifikacije radijskih vmesnikov IMT-2020 ." Novo objavljeno priporočilo, ki se je prej imenovalo"IMT-2020.specs," predstavlja sklop treh specifikacij zemeljskega radijskega vmesnika, ki so bile združene v en sam dokument. Trenutna različica tega priporočila o specifikacijah IMT-2020 (Priporočilo ITU-R M.2150) vsebuje 3 tehnologije radijskega vmesnika: "3GPP 5G-SRIT"; "3GPP 5G-RIT" in "5Gi" (Indija/TSDSI). Te tehnologije so osnova za izvajanje 5G radijskih dostopnih omrežij (RAN) po vsem svetu. Po obdobju 7-8 let trdega dela v industriji je ocena teh 3 tehnologij IMT-2020 vrhunec odobrila 193 držav članic ITU. Še dva predloga radijskega vmesnika, ki sta jih predložila ETSI/DECT Forum in Nufront, sta bila v okviru razširitve procesa IMT-2020 odobrena izjemna revizija. Na podlagi preučitve dodatnega gradiva bodo, če bodo uspešno zaključili postopek ocenjevanja, vključeni v priporočilo ITU-R M.2150, ki bo v skladu s priporočilom ITU-R M.2150. 212 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 351/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 352/541 Standardizacija na področju DECT tehnologije 213 Standardizacija na področju DECT tehnologije ETSI tehnični odbor TC DECT(digitalne izboljšane brezvrvične telekomunikacije) je odgovoren za razvoj in vzdrževanje DECTtm standardov. DECT standardi se stalno posodabljajo, s tem se upošteva razvoj tehnologije, vključno z DECTTM New Generation, DECTTM Ultra Low Energy (ULE), DECT Evolution, DECT-2020 NR in regionalnimi različicami. DECT je ETSI-ev standard za radijske komunikacije kratkega dosega, ki ga je mogoče prilagoditi za številne aplikacije in se lahko uporablja za dodelitev frekvenc brez licenc po vsem svetu. DECT-2020 je najnovejša različica razvoja, ki zagotavlja zelo zanesljiv radijski prenos, ki podpira napredno kodiranje kanalov in Hybrid ARQ s postopnim presežkom, kar omogoča hiter re-prenos. Fizična plast podpira hitro prilagajanje, prenašanje in sprejem raznolikosti, kot tudi MIMO operacije do 8 tokov. DECT-2020 zajema topologijo zvezdnega omrežja, 214 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 352/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 353/541 Standardizacija na področju DECT tehnologije Standardizacija na področju DECT tehnologije 3GPP Standardi za 5G Nov radio, 5G NR: iz izdaje (Release 15) in naprej, 23. november 2021, Dogodek za uvedbo postopka standardizacije 3GPP in razpravo o obstoječih in prihodnjih specifikacijah za 5G New Radio. Peta in zadnja generacija mobilnih komunikacijskih protokolov (5G) naj bi obravnavala primere uporabe veliko po naslednjem desetletju. Prvi sklop tehničnih specifikacij za 5G, imenovan tudi "Novi radio" ali NR v 3GPP, je bil dokončan v okviru izdaje 3GPP Release15. Delo standardizacije za 5G NR se nadaljuje in nove funkcije se nenehno dodajajo, da bi obravnavali naprednejše primere uporabe in vertikale. Ta predstavitev bo zagotovila pregled postopka standardizacije v programu 3GPP in pregled tehničnih značilnosti za izdajo Release16 in izdajo Release17 specifikacij. 216 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 353/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 354/541 Standardizacija na področju DECT tehnologije 217 Standardizacija na področju DECT tehnologije 3GPP je finaliziral Release 16 za 5G NR Nove radijske tehnologije Partnerski projekt 3. generacije (3GPP) je globalni organ za brezžične standarde, ki usklajuje razvoj standardov za mobilne telekomunikacijske tehnologije, vključno z dostopom do radia, jedrnim omrežjem in zmogljivostmi storitev. Organizacija združuje sedem drugih razvojnih organizacij in članom zagotavlja stabilno okolje za izdelavo poročil in specifikacij, ki opredeljujejo tehnologije 3GPP. Njegov najvidnejši trenutni projekt je razvoj univerzalnih standardov za tehnologijo pete generacije (5G) za celična omrežja. 3GPP Rel-16 se osredotoča na ključne tehnologije, ki bodo industrijskim podjetjem pomagale pri njihovi digitalni preobrazbi in pobudah Industrije 4.0 ali Industrijskem internetu stvari (IoT). Ta izdaja bo razširila 5G iz mobilnega širokopasovnega omrežja na nova področja komunikacijskih storitev, ki v preteklosti niso bila v celoti obravnavana. Rel-16 ima nabor specifikacij za primere uporabe, ki vključujejo mobilno vozilo za vse (C-V2X), Industrijski IoT, URLLC, NR- dostop do nelicenciranega spektra (NR-U), integriran dostop in backhaul (IAB) 218 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 354/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 355/541 Standardizacija na področju DECT tehnologije 219 Standardizacija na področju DECT tehnologije 220 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 355/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 356/541 Standardizacija na področju DECT tehnologije Standard ETSI DECT-2020 NR, je sestavljen iz štirih delov, tehničnih specifikacij, objavljenih aprila 2021: MAC: ETSI TS 103 636-4 V1.2.1 (2021-2004), PHY: ETSI TS 103 636-3 V1.2.1 (2021-2004), Zahteve za radijski sprejem in prenos: ETSI TS 103 636-2 V1.2.1 (2021-04), Pregled: ETSI TS 103 636-1 V1.2.1 (2021-2004), Opomba: Pripravljajo se posodobitve! 221 Standardizacija na področju DECT tehnologije ETSI TS 103 636-1 V1.1.1 (2020-07) - DECT-2020 Nov radio (NR); Del 1: Pregled 222 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 356/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 357/541 Standardizacija na področju DECT tehnologije ETSI TS 103 636-2 V1.1.1 (2020-07), DECT-2020 Nov radio (NR); Del 2: zahteve za radijski sprejem in prenos; 1. verzija dokumenta, 223 Standardizacija na področju DECT tehnologije ETSI TS 103 636-3, DECT-2020 Novi radio (NR) Del 3: Fizična plast; 1. verzija 224 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 357/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 358/541 Standardizacija na področju DECT tehnologije 225 Standardizacija na področju DECT tehnologije 226 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 358/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 359/541 Standardizacija na področju DECT tehnologije 227 Standardizacija na področju DECT tehnologije ETSI TS 103 636-4 V1.1.1 (2020-07) DECT-2020 Novi radio (NR); Del 4: MAC plast; 1. verzija 228 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 359/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 360/541 Standardizacija na področju DECT tehnologije 229 Standardizacija na področju DECT tehnologije V letu 2021 (oktober 2021) zadnji objavljen DECT dokument Digitalne izboljšane brezvrvične telekomunikacije (DECT); Kodek za komunikacijo z nizko kompleksnostjo plus (LC3plus) 230 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 360/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 361/541 Standardizacija na področju DECT tehnologije Iz arhiva tehničnega odbora ETSI TC DECT: DECT 564 DECT 2020 nov radijski vmesnik - stopnja 2 ZAPRTO DECT 552 Izboljšave in razvoj DECT ZAPRTO DECT 528 Posodobitev standardov DECT Radio Test ZAPRTO DECT 508 Posodobitev harmoniziranih standardov DECT, ki zajemajo bistvene zahteve člena 3.2 in člena 3.3(g) nove direktive RED ZAPRTO DECT 388 DECT varnost in vzdrževanje osnovnih standardov ZAPRTO DECT 385 Specifikacija testa protokola DECT-NG Del 3 (izboljšane širokopasovne govorne storitve) za certificiranje ZAPRTO DECT 382 DECT-Advanced Report & NG-DECT Update ZAPRTO Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 361/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 362/541 Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 362/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 363/541 Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 363/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 364/541 Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 364/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 365/541 Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 365/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 366/541 Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 366/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 367/541 Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: Standardizacija na področju DECT tehnologije V decembru 2021 je tehnični odbor TC DECT pripravil še naslednje dokumente: 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 367/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 368/541 Standardizacija na področju DECT tehnologije 23 standardov DECT tehnologije, ki bodo v letu 2022 posodobljeni: ETSI EN 300 175-2 V2.8.4 Digital Enhanced Cordless Telecommunications (DECT); Common DECT 6- Final draft for approval Interface (CI); Part 2: Physical Layer (PHL) ETSI EN 300 175-7 V2.8.2 Digital Enhanced Cordless Telecommunications (DECT); DECT 6- Final draft for approval Common Interface (CI); Part 7: Security features ETSI EN 300 175-3 V2.8.2 Digital Enhanced Cordless Telecommunications (DECT); DECT 6- Final draft for approval Common Interface (CI); Part 3: Medium Access Control (MAC) layer ETSI EN 300 175-4 V2.8.2 Digital Enhanced Cordless Telecommunications (DECT); DECT 6- Final draft for approval Common Interface (CI); Part 4: Data Link Control (DLC) layer ETSI TS 103 636-4 V1.2.4 DECT-2020 New Radio (NR); Part 4: MAC layer; Release 1 DECT 4- Stable draft ETSI EN 301 406-2 V0.0.7 Digital Enhanced Cordless Telecommunications (DECT); DECT 2- Harmonised Standard for access to radio spectrum Part 2: Early DECT-2020 NR draft 245 Standardizacija na področju DECT tehnologije ETSI TS 103 636-1 V1.2.2 DECT-2020 New Radio (NR); Part 1: Overview; Release 1 DECT 2- Early draft ETSI TR 103 884 V DECT; DECT-2020: guide for implementers DECT 1- Start of work ETSI TS 102 843 V Digital Enhanced Cordless Telecommunications (DECT); New Generation DECT 1- Start of work DECT; Additional feature set nr.1 for extended wideband speech services; Profile Test Specification (PTS) and Test Case Library (TCL) ETSI EN 300 175-5 V2.8.3 Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); DECT 4- Stable draft Part 5: Network (NWK) layer ETSI TS 103 706 V0.0.7 Digital Enhanced Cordless Telecommunications (DECT) Advanced Audio Profile DECT 4- Stable draft ETSI EN 300 175-8 V2.8.3 Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); DECT 4- Stable draft Part 8: Speech and audio coding and transmission ETSI EN 301 908-10 V4.3.0 IMT cel ular networks; Harmonised Standard for access to radio DECT 9- Start of OAP spectrum; Part 10: Base Stations (BS), Repeaters and User Equipment (UE) for IMT-2000 Third-Generation cellular networks ETSI EN 300 176-2 V2.3.2 Digital Enhanced Cordless Telecommunications (DECT); Test DECT 2- Early draft specification; Part 2: Audio and speech ETSI TS 103 636-2 V DECT-2020 New Radio (NR); Part 2: Radio reception and transmission DECT 1- Start of work requirements; Release 1 ETSI TS 103 776 V DECT DECT-2020 New Radio (NR) Test specification: radio DECT 1- Start of work 246 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 368/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 369/541 Standardizacija na področju DECT tehnologije ETSI TS 103 776 V DECT DECT-2020 New Radio (NR) Test specification: radio DECT 1- Start of work ETSI TR 103 777 V Digital Enhanced Cordless Telecommunications (DECT); DECT-2020 New DECT 1- Start of work Radio (NR) interface; Study of additional functionality for the support of new applications in further releases. ETSI EN 301 406-1 V Digital Enhanced Cordless Telecommunications (DECT); Harmonised Standard DECT 1- Start of work for access to radio spectrum Part 1: DECT, DECT-evolution and DECT-ULE ETSI TR 103 513 V Digital Enhanced Cordless Telecommunications (DECT); DECT Technology DECT 1- Start of work Roadmap ETSI EN 300 176-1 V Digital Enhanced Cordless Telecommunications (DECT); Test specification; DECT 1- Start of work Part 1: Radio ETSI TR 103 089 Digital Enhanced Cordless Telecommunications (DECT); DECT properties and DECT 4- Stable draft V1.1.2 radio parameters relevant for studies on compatibility with cellular technologies operating on frequency blocks adjacent to the DECT frequency band ETSI TR 103 822 V DECT DECT-2020 New Radio interface: MAC layer architecture DECT 1- Start of work 247 Standardizacija na področju DECT tehnologije Primer delovnega gradiva za pripravo novega dokumenta Tehničnih specifikacij TS 103 636-5, 3. december 2021 248 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 369/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 370/541 Standardizacija na področju DECT tehnologije 249 Standardizacija na področju DECT tehnologije Prihodnji obeti: Je DECT še vedno pomemben? Ima obetavno prihodnost? Ta tehnologija je stara že več kot 25 let in je precejšnja značilnost vsakega sodobnega gospodinjstva. Vendar pa je prihodnost DECT pogosto pod vprašajem. Seveda razvoj nikoli ne miruje in tudi evolucija DECT standarda ne. Nedavno je Zvezna agencija za omrežja razširila splošno dodelitev frekvenc DECT za naslednje obdobje. To pomeni, da se naprave DECT trenutne generacije lahko uporabljajo do konca leta 2025 in zelo je mogoče, da ta razširitev ne bo zadnja. 250 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 370/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 371/541 Standardizacija na področju DECT tehnologije 251 Standardizacija na področju Wi-Fi tehnologije ITU definicija 5G storitev 252 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 371/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 372/541 Standardizacija na področju DECT tehnologije 253 Standardizacija na področju DECT tehnologije 254 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 372/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 373/541 Standardizacija na področju DECT tehnologije Pet najpomembnejših področij delovanja DECT tehnologije v prihodnje 255 Standardizacija na področju DECT tehnologije 256 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 373/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 374/541 Standardizacija na področju DECT tehnologije 257 Standardizacija na področju DECT tehnologije 258 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 374/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 375/541 Standardizacija na področju DECT tehnologije 259 Standardizacija na področju DECT tehnologije Hvala za vašo pozornost! 260 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 375/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 376/541 Time-Critical Communications for 5G Csaba Novak Ericsson csaba.novak@ericsson.com By following these steps, it is possible for Abstract Communication Service Providers (CSPs) to A high degree of reliability and consistent low address new revenue streams. This allows to move latency is the biggest differentiator for 5G from from eMBB subscriptions as the unique revenue other wireless technologies. Time-Critical stream (based on Data volume and Best effort Communication supports a wide range of latency latency subscriptions) and start addressing eMBB and reliability – from 50 ms - 1ms latency with with TCC subscriptions (based on Creating real- 99.9 - 99.999% reliability, enabling a variety of time experiences and Guaranteed latency). latency-sensitivity use cases in real-time media, In collaboration with leading CSPs, industry and remote control, industrial control, and mobility ecosystem partners such as BT, DT, Telia, ABB, automation categories across industries. Audi, Boliden, since 2017, Ericsson has been Time-Critical Communication (TCC) can be piloting various time-critical use cases categorized deployed as a software upgrade to existing 5G in four major areas: Industrial control, Mobility network infrastructure, on all available frequency automation, Remote Control and Real-Time media. bands. The recommended steps that could be considered to start using the TCC in Public Networks: Author's biography - Rollout 5G with 5G Core. Consider 5G in multi- Csaba Novák is the lead 5G expert layers/bands in areas where capacity is needed. for Ericsson’s Central-European - Good mid band coverage in wide areas is a good customer unit. Acquired his MSc in electrical engineering at the baseline for the introduction of new use cases. This Budapest University of Technology, will allow that more dedicated cells/bands could and pursued PhD studies at the be defined for specific use cases. This is what we Department of Broadband Communication Systems – call as ‘5G Territories’. researching broadband spread spectrum radio - Add TCC to 5G Territories. By enabling TCC on technologies, CDMA coding systems and interference those areas, it allows that time critical use cases mitigation receivers, having numerous publications in could be enabled which could bring better end user the topic. He received his MSc in economic sciences at experience with consistent low latency and better Corvinus University, studying the transformation of reliability. value chains into value creating networks in mobile - Activate new experiences: Gaming hotspots, communications B2B market. He joined Ericsson Hungary in 2006, today he is supporting 5G network stadiums, amusement parks, experience centres. evolution and sales in the region. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 376/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 377/541 Time-Critical Communication for 5G Seminar on Radio Communications SRK 2022 Csaba Novák Ericsson Network Products 2022-01-17 | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 1 of 20 Agenda Time Critical Communications Use Cases and Requirements definition Solution Toolbox E2E Deployment Scenarios 5G NR / URLLC Examples, References Holistic view | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 2 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 377/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 378/541 The three cornerstones of wireless communication according to ITU Enhanced Mobile Broadband = eMBB eMBB/Broaband IoT Critical IoT including • Extreme data rates Time-Critical Communication • Large data volumes • Best effort latency • Consistent latency (low to ultra-low) • High reliability Massive IoT • High availability • Low cost devices • Extreme coverage • Long device battery life Based on: ITU’s vision for IMT 2020 & beyond | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 3 of 20 Definition of Time-Critical Communication eMBB Time-Critical Communication/URLLC % of packets % of packets Y% reliability (likelihood) (1-Y)% late or lost packets From best effort to Data delivery bounded latency Y ranges from 99% within a specific to 99,999% reliability time window X ranges from tens of Latency Latency ms to 1ms latency with a required X ms guaranteed level* Fundamental trade-offs between latency Latency aspect prioritized over and other KPIs such as throughput, throughput → a fundamental * Example: Data delivered within 30ms coverage, and energy efficiency difference vs eMBB with 99.9% reliability * Example: Data delivered within 30ms with a 99.9% reliability | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 4 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 378/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 379/541 Time-critical use case categories Coverage needs of verticals Industrial control Control to control Machine vision Local area in production line for robotics Closed-loop Open or closed-loop Confined wide area process control control of industrial General wide area PLC to robot controller automation systems Process Motion control monitoring Industry verticals Smart grid control Automation Entertainment Mobility automation Automotive Automated container Cooperative Cloud motion Transportation transport in port maneuvering of vehicles control of AGVs Automated control Cooperative AGVs Healthcare loops for mobile in a production line Automated train Machine vision for Collaborative Education vehicles and robots control intersection safety mobile robots Media production Forestry Remote control Public safety Remote control Remote control Remote control with Utilities Human control of with video/audio with AR overlay haptic feedback Offshore remote devices Railways Human Agriculture Real-time media in the loop Premium experience Cloud-rendered Manufacturing cloud-assisted AR AR Real, virtual and Cloud-assisted Interactive VR Warehousing combined environments basic AR cloud gaming Mining Cloud gaming Adv. media production Ports Construction 10s of ms latency Time-criticality 1ms latency 99% reliability 99.999% reliability | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 5 of 20 Toolbox for Time-Critical Communication Causes of latency Congestion Radio Standards Power Network Capacity Mobility environment /protocols saving topology growth Rate adaptation Scheduling Multi-TRP* UL Configured DRX Edge computing QoS Adaptiveness Slicing* Link Adaptation grant* optimizations Conditional Optimized RAN TDD pattern Admission Control Robust Signaling* Handover* Pre-scheduling* Differentiated deployment Massive MIMO gNB energy Scheduling Multi-TRP* DAPS* DL SPS* Transport efficiency ML for Traffic dimensioning Rate adaptation L3 Handover L2 Pre-emption* management Traffic prediction improvements Repetitions* Redundancy* Scheduling Duplication* Short TTI* Note: * 3GPP Standardized features | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 6 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 379/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 380/541 Ericsson’s holistic approach for realizing TCC UE RAN Transport 5GC App • Service separation Service-optimized QoS flow(s) Edge server • Addressing causes of Generic latency-optimized QoS flow latency Default QoS flow for MBB • Maximum performance RAN specific tools for TCC E2E tools for TCC Scheduling Link Adaptation L2 Pre-emption QoS framework Rate adaptation Carrier aggregation Robust signal formats DAPS Seamless mobility Slicing Edge computing Massive MIMO Multi-TRP & CoMP Multiplexing Admission control Real-time Ethernet Short TTI Configured UL grants / DL SPS Redundancy/Duplication | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 7 of 20 Critical IoT = URLLC and additional functionalities to enable Time-Critical Communication use cases Critical IoT content ●Ultra Reliable Low-Latency communications is the core functionality in Critical IoT URLLC ●URLLC is enabling time critical communications, which will help operators unlock innovative services across end use cases ●In addition to URLLC, Critical IoT brings other new functionalities, in order to create the prerequisites for enabling critical IoT use cases, e.g. ●Precise indoor positioning Other functionalities ●New TDD patterns ●High availability | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 8 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 380/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 381/541 NR Numerology ● flexible numerology: = 15 2 kHz , where n={-2, -1, 0, 1, 2, 4, 5} Lower-frequency/wide-area Low-to mid-frequency deployments less time dispersion ● Phase noise → min. subcarrier spacing ● Time dispersions → required cyclic prefix → max. subcarrier spacing CP Time Frequency Larger CP –larger time cell size cell Shorter symbol time & CP – cell size cell dispersions in wide areas Potential for even lower latency Sub-carrier 15 kHz spacing 15 kHz 30 kHz 60 kHz normal CP/ECP 120 kHz large large Cyclic prefix 4.7 μs (6.6%) 2.4 μs (6.6%) 1.2 μs/4.7 μs 0.59 μs (6.6%) 15 kHz 30 kHz Slot duration 1 ms 500 μs 250 μs 125 μs 30 kHz medium medium latency 15 kHz decreases Symbols per slot 14 14 14/12 14 30 kHz all 30 kHz 60 kHz sm Max channel BW 50 MHz 100 MHz 200 MHz 400 MHz 60 kHz 60 kHz kHz small fr fr | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 9 of 20 low medium high low medium high Numerology effect on radio interface delay SCS Carrier #RBs in 50MHz μ Slot duration μ=2 [kHz] Frequency BW 0 15 1 ms ≤ 6 GHz 270 1 30 0.5 ms ≤ 6 GHz 133 2 60 0.25 ms All* 66 *60 kHz SCS is optional ≤ 6 GHz μ=1 3 120 0.125 ms >6 GHz 32 **240 kHz is for SS/PBCH block 4 240 0.0625 ms >6 GHz Not for data** only NR slot Freq. μ=0 Time Assumptions: • Slot allocation (14 os) • 1 PDCCH per slot • Processing capability 1 | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 10 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 381/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 382/541 Deployment considerations Coverage needs of verticals ~1ms Dedicated infrastructures (local area) Local area Confined wide area Key verticals: Manufacturing, Process industries, General wide area Warehousing, Mining, Ports, Airports, Energy Utilities, Offshore, Entertainment, Very high Industry verticals Education, Healthcare, Peacekeeping ~10ms Entertainment URLLC Automotive Dedicated infrastructures(wide area) Transportation performance Healthcare (e2e bounded Key verticals: Railways, Public Safety, Utilities, Education latency) Peacekeeping Media production ~20ms Forestry General public infrastructures Public safety Moderate Utilities Any vertical Offshore Railways Agriculture Manufacturing ~50ms Warehousing Mining Ports Moderate Service availability Very high Construction | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 11 of 20 5G NR enables Time-Critical Communication in any 5G band Local coverage Wide area coverage (urban/rural) 5G NR for Time-Critical Communication 4G LTE • Extremely high capacity High bands • Limited coverage (24GHz– 40GHz) • Relatively relaxed TDD co-existence requirements • Good coverage & high capacity Mid bands • Stringent TDD co-existence (1GHz-6GHz) requirements Low bands • Wide coverage (sub-1GHz) • Limited capacity Standalone 5G Standalone 5G Non-standalone 5G (Option 2) (Option 2) (Option 3) CSPs can take full advantage of their flexible 5G spectrum assets and existing footprint | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 12 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 382/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 383/541 Reducing transport latency with edge computing On-premises Edge sites Regional DC National DC ~0-1ms RTT ~1-5ms RTT ~5-20ms RTT ~10-40ms RTT General wide-area Confined wide-area Local area Core user plane Subscription data management Core control plane Application server Alternative options National data center Network exposure Redundant connection (optional) Edge data center Aggressive time-critical requirements enabled by core network distribution and edge computing | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 13 of 20 Cellular IoT segments for Smart manufacturing Inventory management Tracking & Logistics Audio/Video Com, AR/VR) Industrial Automation IoT Critical IoT Broadband IoT Automated Guided Vehicles (AGVs) Collaborative robotics Massive IoT | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 14 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 383/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 384/541 Case Studies for TCC deployment scenarios Ref: Critical IoT for time-critical communications - Ericsson | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 15 of 20 Example: L4S-enabled Time-Critical Communication for cloud gaming L4S feature for fast rate adaptation can significantly improve the performance of time-critical, high-rate applications on 5G networks L4S: Low-Latency, Low-Loss, Scalable Throughput news article; white paper | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 16 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 384/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 385/541 Driving the ecosystem forward - Piloting time-critical use cases with industry partners since 2017 Industrial control Mobility automation Remote control Real-time media Manufacturing jet engines Automated electric buses Remote driving Cloud gaming (MTU Aero – Fraunhofer – Ericsson) (Keolis – Telia – Ericsson) (Einride-Telia-Ericsson) (DT – Ericsson) Manufacturing of vehicles Intersection safety Remote control of mining equipment Virtual reality (Audi –MediaTek- Ericsson) (Ericsson – AstaZero - Chalmers) (Boliden – Ericsson) (Hyperbat – BT – Ericsson) | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 17 of 20 Early steps to bring Time-Critical Communication (TCC) to life Introduce 5G Add Time-Critical with 5G Core Communication 5G use places with TCC 5G multi-layer network with eMBB From eMBB subscriptions... ..to eMBB + TCC subscriptions Enhanced Mobile Broadband Time-Critical Communication Good midband coverage in 5G Use Places – gaming centers, gaming • Data volume-based subscriptions • Creating real-time experiences hot spots, amusement parks, stadiums, experience centers • Best effort latency • Guaranteed latency | Ericsson | PA1 | 2022-01-17 | Time-Critical Communication for 5G | Open | Page 18 of 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 385/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 386/541 O-RAN: Open path as baseline for future networks Ivan Lesić NOKIA ivan.lesic@nokia.com Abstract At a time when connectivity enables all parts of Author's biography society and the economy to benefit from digital Ivan Lesić went through different services it is vital to have powerful and secure roles in the last 15 years (R&D, networks. The European Commission sets goals to engineering, architectural and develop an open and secure 5G ecosystem and to sales). He was supporting smooth promote European digital autonomy and evolution of access networks in technological sovereignty by supporting close collaboration with many mobile operators all around the world. Currently he is collaboration between new and traditional vendors head of technical solutions in Nokia, responsible for and a strong approach towards open specifications business in Central Europe region. His professional in the 5G ecosystem. Open RAN creates focus is 5G, RAN & EDGE cloud, network intelligence opportunities for new and traditional providers to and automatization of network functions. support these goals by helping to foster innovation across industries. This increases the potential to innovate and meet the demands for a fast-growing variety of different use cases and applications. Network operators will need to deploy flexible networks with advanced features and services more quickly, more widely and more cost- efficiently, which is crucial to maintain EU competitiveness and technology leadership. This can only be achieved with interoperable, modular and open network architectures that allow competition and innovation. Open RAN significantly accelerates this development and provides the basis for establishing a dynamic and vibrant ecosystem of European players that can deliver innovative and tailored solutions that are secure, resilient and environmentally sustainable. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 386/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 387/541 O-RAN Ivan Lesić, Solution lead, Nokia Mobile Networks February 2022 1 © 2021 Nokia Nokia internal use Nokia internal use Agenda • Introduction • O-RAN: Open Fronthaul • O-RAN: RIC and network intelligence 2 © 2020 Nokia Confidential Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 387/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 388/541 Key trends in the telco industry RAN Cloudification Applications and Services @ Edge Network Slicing Zero footprint site concept Low latency application Shared baseband Robotics: processing Compute power Treating critical latency & Diverse and extreme Dedicated Slices at the edge bandwidth content locally use case requirements Decomposed RAN Architecture Intelligence with RIC-MEC Management & Automation Zero touch and Open API and AI/ML for self-optimizing SW flexibility for RAN programmability at network through fast Innovation the edge Open API into leveraging open Open FH interface Analytics environment Intelligent, Flexible Autom Auto ated operations m Open de-composed modular architecture Resource optimization and cloud and clo agility 3 © 2021 Nokia Nokia internal use Key areas of O-RAN 3 main pillars build on technical specification work O-RAN Alliance O-RAN Objective Interoperability HW/SW Programmability Key enablers (Multi Vendor) separation Intelligence Open interfaces HW agnostic SW Near Realtime Solution Open Fronthaul functionalities RIC Global adoption of O-RAN technical specification with no market fragmentation Objective Avoid overlap with 3GPP and ONAP 4 © 2021 Nokia Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 388/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 389/541 O-RAN was formed by operators to lower TCO Nokia is the only major radio vendor attending the O-RAN Alliance 240+ contributors ORAN is disaggregating BTS with open interfaces and adds a new function (RIC) 31 operators Founders ONAP/MANO • Launched June 2018 by A1 merging xRAN Forum with C-RAN Alliance RAN Intelligent Controller (RIC) • Founded by major CSPs E2 • Some traditional RAN X2 CU-CP (E1) CU-UP vendors are not members F1 (”mid-haul”) • Many small HW and SW Distributed Unit (DU) companies with limited eCPRI7-2 (“front-haul”) portfolio Radio Unit (RU) 5 © 2021 Nokia © 2021 Nokia internal use O-RAN architecture Functions and interfaces can be selected/deployed independently Service Management and Interface Status in O-RAN alliance • RAN Intelligent Controller (RIC) is a Orchestration (SMO) new virtualized function which adds A1 RAN programmability to existing or new F1 Spec not completed yet O1 RAN networks i.e. SON type functions, RAN Intelligent Controller (RIC) but in near real-time. The RIC is W1 Spec not completed yet optional. E2 E1 Spec not completed yet • O-RAN fronthaul facilitates different gNB CU-CP (E1) CU-UP X2/Xn suppliers for the RU and DU, while X2 Spec (partially) available F1 F1 optimizing both the cost of fronthaul and RF performance. Distributed Xn Spec not completed yet unit (DU) • O-RAN defines profiles for 3GPP X2/Xn interface to allow for dual- FH eCPRI 7-2x spec available eCPRI7- connectivity (LTE-NR or NR-NR) 2x (“front-haul”) between different RAN vendors. Radio unit E2 Spec available (RU) DU+RU • O-RAN also defines profiles for the F1 A1 Spec available between CU and DU, and E1 between F1 applicable in Cloud • vRAN 1.0: vCU + (DU + RU) CU-CP and CU-UP. However, multi- O1 Spec available • vRAN 2.0: vCU + vDU + RU vendor can be complex due to the F1 not applicable in Classic tight coupling of these functions in • AirScale BBU: CU+DU O2 Spec not completed yet 3GPP. 6 © 2020 Nokia Confidential Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 389/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 390/541 What is the difference btw Cloud RAN and O-RAN? O-RAN and Cloud RAN are often inter-related but different Vertical disaggregation Orchestration Cloud RAN HW and SW separation Any vendor An option to realize baseband Applications network element(s) with independent Cloud RAN APIs / Abstraction Layers / (NaaS) HW/SW solutions Platform (PaaS/CaaS) Infrastructure (IaaS) Horizontal disaggregation O-RAN O-RAN an option to interconnect RAN network element(s) from different Radio Unit eCPRI Distributed F1 Centralized suppliers (RU) Open Fronthaul Unit (DU) (CU – DU split is not mandatory!) Open Midhaul Unit (CU) Backhaul 7 © 2021 Nokia Nokia internal use O-RAN “compliancy” (Open FH) Several steps towards O-RAN multi vendor interworking Fronthaul O-RU 5G O-DU 5G eCPRI 7-2x Architectural alignment Defines the split of RU – DU functional split O-RAN M-Plane compatibility C/U/S + M-plane Protocol for M-Plane based on Netconf/YANG IOT profile IOT profile compatibility Alignment needed (RU – BBU vendor) Nokia Recommended profile Basic interworking parameters commonly agreed on E2E feature i/w Feature compatibility Check the E2E features Testing & Verification needed O-RAN specs don’t cover these steps! E2E feature performance Performance Verification KPI in lab / field 8 © 2021 Nokia Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 390/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 391/541 TCO promise of O-RAN Hype or real? – Few points to be considered E2E / Single Vendor Multi Vendor RU RU OPEX / IMPEX: Vendor A SW • Integration of multiple vendors TCO = • IOT TCO = CAPEX (vendor eq.) HW HW • Performance Test CAPEX (Vendor A) +OPEX (Operator) • Recurring SW integration + CAPEX (Vendor B) SW • Alignment of Feature set + IMPEX (Integrator) CAPEX: Integrated and tested E2E + OPEX (operational) System incl. HW and SW BBU BBU CAPEX: CAPEX: SW separated per vendor, • Feature Content does not consider E2E HW HW Vendor B System Integration Points to be considered: O-RAN Objective • What is included in TCO considerations? Integration, E2E TCO, …? TCO reduction • Does it contain integration cost, multiple vendor management etc.? • Is the Feature set comparable? 9 © 2021 Nokia Nokia internal use Agenda • Introduction • O-RAN: Open Fronthaul • O-RAN: RIC and network intelligence 10 © 2020 Nokia Confidential Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 391/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 392/541 Near real-time RAN Intelligent Controller (RIC) O-RAN component for RAN Programmability 11 © 2021 Nokia Nokia internal use Service Enablement Platform (SEP) ETSI MEC and O-RAN RIC Service Enablement ETSI MEC: integration of Platform ORAN RIC: integration of user-plane applications to control-plane application to the RAN and MEC APIs (SEP) the RAN for dynamically optimization ETSI MEC and O-RAN RIC two complementary standards 12 © 2021 Nokia Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 392/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 393/541 Nokia Service Enablement Platform Enables user-plane and control-plane application at the edge Applications at the Platform for AI/ML use- Operator specific Service QoE edge cases RAN programmability optimization differentiation Service Enablement Platform: Single Edge Platform for: RIC RIC RIC MEC MEC MEC • Infrastructure independent, • MEC platform services based xApps xApps xApps Apps Apps Apps containerized platform on ETSI MEC standard RIC API MEC API services rm • RIC services based on O-RAN • Standard APIs for applications Platfo Common Platform (PaaS) standardized RAN Intelligence to interact with the RAN Controller SEP Container Infrastructure • Open platform for 3rd party Apps / xApps Application awareness of MEC combined with RAN awareness of the RIC 13 © Nokia 2021 Confidential Nokia internal use Nokia internal use 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 393/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 394/541 5GtoB Private Network Solution Tamas Boday Huawei tamas.boday@huawei.com Abstract Business innovation with 5G private networking technologies - 5G not only brings better customer experience for public consumer networks, but it’s revised network architecture enables creation of various private networking scenarios. Unlike legacy radiocommunication systems 5G is capable of accomodating flexible Private networking solutions from VPN, through resource allocation to entirely private networking solutions. In this presentation Huawei is explaining it’s technical solutions critical implementation issues and learnings from a few real life commercial projects. Author's biography Tamas Boday is Director of Integrated Solutions at Huawei. After educating in Electrical Engineering (Telecommunications major), he’s got a BA in Management in Finance (Corporate strategy), and an MBA (Technology management and Innovation). He believes that bridging the gap between technology and business is a key success factor for all industry players. He specializes in IoT and Industry digitalization, and he is a guest lecturer at University of Obuda and Central European University on the above topics. His interests are ranging from application of Machine learning through Ethics of Big Data to mentoring technology startups. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 394/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 395/541 5GtoB Private Network Solution )UTZKTZY • /TJ[YZX_:XKTJY • 9UR[ZOUTYGTJ)GYKY 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 395/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 396/541 5GtoB Is the Best Option for Industry Digitalization Countries Focus on Digitalization National Strategies Industry Vision and Challenges 80 • Cost reduction: difficult deployment and high Digital Economy and Society Index (DESI) Germany cost of the 2 million fiber nodes of China United States 70 Industry 4.0 to maintain a leading EU's top 4 Southern Power Grid countries manufacturing industry Australia • Efficiency improvement: manual operations 60 China still required for some processes; demands Japan United States for flexible production and wireless 50 EU's 27 countries Industrial Internet to boost industries equipment • Digitalization: siloed system and ineffective 40 EU's bottom 4 use of data China countries 30 Made in China 2025 to upgrade the • EHS: needs for improved working 2015 2016 2017 2018 manufacturing industry environment and reduced labor strength Source: DESI 2020 5G Offers the Optimal Performance and Cost for toB Industry Private Networks Stable and Low High UL Indoor Mobility E2E Reliability Security Cost Latency Bandwidth Positioning Fiber Good Wi-Fi Medium 3G/4G public network Poor Conventional LTE private network 5G Market Space for Operators in 2025 Easy Difficult Massive connectivity and Digital platform enabler Digital service creator infrastructure service provider 33% 55% 12% USD198 billion USD330 billion USD72 billion USD600 billion Healthcare, manufacturing, energy, automobile, media, and security Top 3 markets: Northeast Asia (China, Japan, and South industries account for over 80% of the total market space. Korea), West Europe, and North America Retail Agriculture 5GtoB market space distribution in 2025 (USD billion) Public 153 157 138 transportation Healthcare Financial services USD600 Public security billion Industrial 28 29 35 35 manufacturing Media and 10 15 entertainment East Middle Latin Southeast West Northeast North Automobile Energy facilities Africa India Europe East America Asia Europe Asia America Source͹ ADL 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 396/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 397/541 Operators' Strengths and Inherent Advantages in Expanding toB Market 5G vs. Wi-Fi: 1.7X Spectrum and 1.2X Spectral Efficiency toB Market Expansion Capability Matrix China Mobile ͵ 440 MHz Wi-Fi͵256 MHz Operators' advantages: Operators Nationwide network and service capabilities, planning, construction, maintenance, and Local Services and Customer Relations at City and County Levels cloud services OTT 2B Network spectrum Group 5 4 Province Province Province 1 2 31 3 Local customer 100 Cloud service 2 Planning, manager people construction, and capability 1 maintenance Abundant Sites and Equipment Rooms in China 0 Operator X: 2.1+ million Campus Local core equipment room 600+ Campus: Self-owned equipment Industry Important aggregation equipment room 6000+ room knowledge and Low costs Small and medium- solutions Common aggregation equipment room > 40,000 sized enterprise (SME): Insufficient capabilities Access equipment room 100,000 Operators' disadvantages: Difficulties in providing resources, in providing low costs and the lack of Site equipment room 2 million relying on cooperation industry customization capabilities Challenges Persist Despite a Large 5GtoB Market Space Strategy/ Network planning/ Customer Procurement Network construction Network O&M Service planning Budget generation process Feasibility Bidding Supply Project Billing and Network Maintenance Marketing Bidding format Contract study/High-level design document fulfillment delivery collection optimization service Budget Solution Bidding/Contract Marketing Contract fulfillment guidance guidance generation Marketing planning Business Bidding document Contract Network Network Solution guidance Project delivery Billing and execution consulting preparation generation maintenance optimization Business Product and Operation Market insights Network design Sales contract Survey and design Service adjustment toB consulting technical support monitoring sales Market Service SLA Installation and Spare parts Wireless network process 1 Network consulting 2 Service SLA design 3 4 5 management guidance commissioning management optimization Marketing planning Maintenance Budget generation Business model Integration test and execution service Acceptance Managed services Organizat Government and enterprise department Network construction department O&M department ion • Digital transformation • Standardized • Service modeling • Integration verification • SLA visualization and consulting products/offerings • Planning and design • Integrated delivery fault demarcation Key • Industry solutions • Tri-party business model services • Subscription and activation • Self-service • Industry ecosystem • Configuration and • Charging quotation Pre-sales (marketing) In-sales (delivery) Post-sales (operation) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 397/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 398/541 Quickly Match Industry Requirements in Any Scenario Mine Port Iron and steel Electric power Public security Transportation 3C manufacturing Industry ʒʕʖʗʙ ʒʕʖʗʘ ʒʓʕʖʗ ʒʓʗʘʙ ʒʕʗʘ ʓʖʗʘ ʒʓʖʗʙ … B E K L M J B D H J K L M B D J K L M B D K L M J B D K L M J B D K L M J B C D E K L M … Scenario ʏ Personnel/Device ʐ Data ʑ Device and vehicle ʒ AR/VR ʓ Device control ʔ HD video ʕ Mobile inspection ʖ C2C control -specific inspection gathering/loading dispatching Remote maintenance, Remote control of Video surveillance, Robot or UAV Collaboration between solution Surface inspection, Data Campus, warehousing, training, and gaming devices in dangerous video conference, and inspection multiple devices positioning, col ection/Software workshop logistics, train and harsh live broadcast identification, and loading control and dispatching environments measurement A B C D E F G H I J K L M Core Large Massive Ultra-high UL Positioning High-precision 5G LAN capability Low latency Lower latency Ultra-low latency High UL bandwidth connections connections Edge computing High reliability bandwidth Meter/submeter positioning L2/L3 Slice 30–50 ms 10–30 ms < 10 ms 20–150 Mbps Hundreds per Thousands per LBO/MEC Backup routes > 150 Mbps level Centimeter level communications cell cell Private 5G base station Network Cloud core PCMO Operation network Building 5G private networks to meet differentiated requirements of various industries China's Three Major Operators Launch 5GtoB Products and Offerings Overview of Private Network Products and Offerings B1: Public network B2: Public network for private use B3: Private network for private use Industry traffic card Resource reservation in LAN scenarios Private LAN scenarios July 22 Release and A1 to A7: Network features A8 to A11: Specialized services Promotion Service acceleration | Service isolation | Local service Network design | Network optimization | Network O&M | Key assurance | Data protection and more service assurance and more F: Premium F: Dedicated F: Exclusive 5G hybrid private network 5G independent private network August 18 5G VPN 5G private networks with some exclusive E2E construction of a private network Release and pilot Public network + slicing resources, locally deploying MEC on completely isolated from the public ot o campuses network Scenario customization Standard customization Service customization Use the 5G public network and LAN Customize E2E resources for the entire Use the 5G public network to provide November 7 customization (slicing and data processing 5G network based on customer service preferential resources and differentiated within the campus) to preferentially meet the E-Surfing Expo requirements, perform construction and service experience for customized service requirements of customized network o O&M based on deterministic SLA network customers through virtual customers, dynamically share the remaining indicators, and support edge-cloud sharing. resources with 5G public network users, and support edge-cloud synergy. synergy. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 398/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 399/541 ࣹڢ • /TJ[YZX_:XKTJY • 9UR[ZOUTYGTJ)GYKY • -6XO\GZK2'49UR[ZOUT • -6XO\GZK='49UR[ZOUT • )USSUT)GVGHOROZOKY Two Private Networks and Six Core Capabilities Accelerate 5G for Enabling Various Industries Various Industries Port Manufacturing Energy y and Public security Healthcare Transportation Mine electric power Two private Private LAN Private WAN networks Simplified network High bandwidth Precise Reliable Efficient network Six core Stable low latency architecture 150 Mbps Æ 300 positioning availability O&M capabilities 50 ms Æ 20 ms Æ 10 ms Mbps Æ 1 Gbps Public/private network, slicing, 3 m Æ 1 m Æ X cm Network availability PCMO and MEC PCMO 5GC Device- pipe-chip Enterprise 5G private Transport network network 5G device RAN UPF/MEC Enterprise self-service Public cloud 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 399/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 400/541 ࣹڢ • /TJ[YZX_:XKTJY • 9UR[ZOUTYGTJ)GYKY • -6XO\GZK2'49UR[ZOUT • -6XO\GZK='49UR[ZOUT • )USSUT)GVGHOROZOKY High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Three Deployment Modes for Private LAN Based on Different RANs Public network for public use Public network for private use Private network for private use Public network WAN Public network WAN Public network WAN 5GC 5GC 5GC Public network UPF UPF UPF (shared) (shared or exclusive) (shared or exclusive) Private network UPF (exclusive) Enterprise Enterprise Enterprise application Public network application Public network application base station base station Public network Private network base station base station RAN RAN RAN Low-priority High-priority RB reservation 5QI 5QI 5QI /Carrier isolation Consumer Enterprise Consumer Enterprise Consumer Enterprise customer LAN customer LAN customer LAN • RAN: shared base stations with 5QI-based service priorities • RAN: shared base stations with dedicated RBs/carriers for hard • RAN: dedicated base stations for hard isolation of devices • Core network: shared 5GC, shared or exclusive UPF isolation of resources • Core network: shared 5GC and dedicated UPF • Transport network: shared • Core network: shared 5GC, shared or exclusive UPF • Transport network: shared, with FlexE isolation • Typical industries: education, healthcare, and government • Transport network: shared, with FlexE isolation • Typical industries: steel, coal mine, and 3C manufacturing • Typical industries: electric power (substation), steel, coal mine, and 3C manufacturing 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 400/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 401/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model UL Capacity Solution for All Scenarios • 3GIXUYOZKJKTYOLOIGZOUT '';Y • 4KZ]UXQOTM SGIXU'';OTHGIQZU HGIQSUJK S]OZN>IGVGIOZ_ • 6URKYOZKJKVRU_SKTZ VURKYOZKYGJJKJ JJKJ J • '';JKTYOZ_ '';YQS 1X 7X ]OZN>IGVGIOZ_ • )GVGHOROZ_ 3HVYS Outdoor Ultra- • )GVGHOROZ_ >IGVGIOZ_ Large Base large capacity capacity • 4KZ]UXQOTM 88;GTJS[RZOVRKIGYIGJKJ *'9 • )U\KXGMKGXKG S • 88;IKRRYVROZZOTM IKRRÆ IKRRY • 3GIXU88;JKTYOZ_ 88;LUXZULRUUXY XY 1X 2X • )GVGHOROZ_ >IGVGIOZ_ • )GVGHOROZ_ 3HVYS • .KGJKTJJKTYOZ_ SNKGJKTJYVGIOTM> • 3UJKR V88; ^S= • ;RZXGJKTYKNKGJKTJ SNKGJKTJYVGIOTM> Indoor IGVGIOZ_ IGVGIOZ_ • NKGJKTJYVGIOTM SV88; YVGIOTM • 'TZOOTZKXLKXKTIKLKGZ[XK >IGVGIOZ_ 1X • *OYZXOH[ZKJ3/35 >IGVGIOZ_ 9X • .KGJKTJJKTYOZ_ V88;YS • +TMOTKKXOTMYUR[ZOUT K^ZKXTGRJOXKIZOUTGRGTZKTTG TG TTG 22X • )KRRYVROZZOTM >IGVGIOZ_ GTJNUUJ>IGVGIOZ_ • )GVGHOROZ_ 3HVYS • )GVGHOROZ_ >IGVGIOZ_ • )GVGHOROZ_ >IGVGIOZ_ Basic capacity: < 0.4 Gbps/10,000 m2 Large capacity: < 10X Ultra-large capacity: 10–30X :NOYGTGR_YOY[YKYZNKK^GSVRKUL[VROTQIGVGHOROZ_HGYKJUT3.`GTJ ;2*2Y[HLXGSK IUTLOM[XGZOUT/LZNKXKGXK GJJOZOUTGRR_G\GORGHRKYVKIZX[SYYVKIZX[SU\KXRGVVOTMIGVGIOZ_S[RZOVROIGZOUTOYVXKLKXXKJ High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Basic Capacity for Indoor Open Spaces Solution 1: Sharing Public-Network RRUs + DAS Solution 2: Sharing Public Indoor Networks Solution 3: Private Indoor Networks pRRU Built-in omnidirectional al pRRU RU antenna Ex E ternal x omnidirecti om onal antenna an POI 5G RRU RHUB RHUB pRRU5936 250 mW x 4 pRRU5936 250 mW x 4 Scenario 1: Apartment, Office, and Scenario 2: Areas with Both Private and Scenario 3: Factories, Manufacturing, Residential Buildings Public Networks (Hospitals/Schools) and Logistics Campuses • Macro RRU: 1 RRU for 3 to 4 floors and cascaded • Ceiling height: around 3–5 m (typical: 3 m) • Ceiling height: around 8–15 m (typical: 12 m) DAS • pRRU density: 30–50 m pRRU spacing (typical: 40 m) • pRRU density: 50–80 m pRRU spacing (typical: 60 m) • RRU deployment: 3 m height and 30–40 m headend • Built-in omnidirectional antenna: 3–5 dBi antenna • External directional antenna: 10 dBi gain, 65q spacing gain (typical: 3 dBi) beamwidth • Coverage: 1000+ m2 for each floor, a total of around • Public network for public use: 20–50% of network • Exclusive private networks: 90%+ of network resources 4000 m2 resources for toB, and the rest for toC for toB • Public network for public use: 20–50% of network • Experience: 10+ Mbps UL edge service rate for toB • Experience assurance: 20+ Mbps UL edge service rate resources for toB, and the rest for toC for toB • Experience assurance: 5+ Mbps UL edge service rate for toB Overall capacity density < 0.4 Gbps/10,000 m2 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 401/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 402/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Large Capacity for Indoor Areas with High Capacity Density China Region Regions outside China (spectrum prioritized) (features prioritized) • Capacity density: < 10X basic capacity density Scenario • Recommendation: standard workshops/production lines • Three tier-1 operators in China region: Scenario Example around 300 MHz* Spectrum • Regions outside China: around 100 MHz 18*18m Concrete 18*18m pRRU column Large Capacity nte • Machine vision: 2–4K for quality inspection • Machine vision: 2–4K quality inspection • China region: spectrum overlay ice m • Speed: 20–30 Mbps • Speed: 20–30 Mbps • Regions outside China: subframe • Interference control: 12 pRRUs in one cell • Interference control: 8 pRRUs in one cell Feature configuration**, distributed MIMO, and Serv • Solution: anti-interference and UL • Cell capacity: subframe configuration, anti-interference Deploy multipath enhancement distributed MIMO, and densification • Scenario: standard workshops/production • Scenario: standard workshops/production lines lines • Indoor coverage: high density, with the • Indoor coverage: high density, with the • Interference optimization: CoMP and SFR priority to eliminate strong interference priority to eliminate strong interference Engineering • Features: IRC and link direction Scenario daptation • pRRU density: 20–30 m headend spacing • pRRU density: 20–30 m headend spacing A • Capacity density: < 10X capacity • Capacity density: < 10X capacity * Note: around 300 MHz for China Mobile (2.6/4.9/2.3 GHz) and around 300 MHz for China Unicom (3.4–3.7 GHz) ** Note: The 1:3 subframe configuration can be considered for pRRUs in 2.6/4.9/3.5 GHz. High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Ultra-Large Capacity for Narrow Indoor Spaces with Ultra-Large Capacity Density High-precision inspection workshops/production lines • Capacity density: 10–30X basic Scenario • Recommendation: high-precision inspection workshops/production lines Scenario Example • Three tier-1 operators in China region: around 300 MHz* 12 x 12 m Concrete pRRU Spectrum column • Regions outside China: Sub-3 GHz and C-band • Machine vision: 8K quality inspection/3D VR ent • Experience demand: 40+ Mbps (100+ Mbps for some services) Ultra-large ice m • Interference control: 4–6 pRRUs in a cell (headend densification for • Horizontal: headend densification/cell evolution) Capacity splitting • Densification/cell splitting (horizontal) + spectrum overlay/feature Serv combination (vertical) Feature • Vertical: spectrum overlay/feature Deploy combination • Scenario: narrow and enclosed indoor areas, such as high-precision inspection workshops and production lines • Indoor coverage: high density, with the priority to eliminate strong • Software: 2:3 subframe interference and ensure edge experience configuration and distributed MIMO • pRRU density: 12–15 m headend spacing (6–10 m spacing for evolution) Engineering Scenario daptation • Capacity density: 10–30X basic capacity density (over 30X in some • Engineering: IRC and link direction A scenarios) * Note: around 300 MHz for China Mobile (2.6/4.9/2.3 GHz) and around 300 MHz for China Unicom (3.4–3.7 GHz) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 402/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 403/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Multi-Fold Capacity Increase with Innovative Solutions Super Uplink: 270 Mbps* Increase Multi-pRRUs for Distributed MIMO: 3–4X 2:3 Special Subframe Configuration: 2–3X Better Increase Sub-3 GHz enables uplink data transmission in all Multiple pRRUs in one cell simulate distributed MIMO 2:3 subframe configuration for enclosed scenarios with timeslots controllable configuration inconsistency BBU BBU BBU Downlink: 2.6 GHz 3.5 GHz (China Unicom) + 4.9 GHz (China Mobile) 7:3 D D D S U D D S U U RHUB RHUB RHUB Uplink: 2.6 GHz and 1.8/2.3 GHz NR 2.6 GHz (China Mobile) 4T4R … 4T4R 4T4R … 4T4R 4T4R … 4T4R 8:2 D D D D D D D S U U 2.6G D D D D D D D S U U pRRU1 pRRUx pRRU1 pRRUx pRRU1 pRRUx Regions outside China 1.8G U U U U /2.3G 4:1 D D D S U D D D S U Cell Cell Cell … … Increased uplink capacity 1 X N • 2.6 GHz + 1.8 GHz (25 MHz): 90 Mbps uplink increase • 2.6 GHz + 2.3 GHz (50 MHz): 180 Mbps uplink increase Independent Independent Independent scheduling scheduling scheduling Multi-user pairing: SDMA pairing -> 2:3 D S U U U D S U U U * Taking China Mobile as the example. small-scale pairing High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Private Network Capacity Closely Related to Planning, Design, and Engineering Deployment Port Port Steel Stteel Coal Co oal mining mining n Open pit Waterway Experience Ex erience assurance assuranc for for more m 5GtoB ore 5Gto private B LANs and WANs Product Network Software Engineering Selection Planning Features Deployment • RAN link directional coverage • Spectrum range • Staggering frequency/Inter-frequency • HCell feature/Soft • External antenna for UE air • Carrier aggregation • Multi-band aggregation/Capacity handover redundancy interface • Special subframe • Adaptive power/downtilt • Service frequency division/Slice • Precise coverage of module configuration • Public/private network camping covers • Massive • Multi-module cell adaptation • Obstacle/Working surface MIMO/Distributed MIMO • Water surface model • Frequency/Cel lock interference reduction • Power range calibration/Interference reduction • IRC/MRC • Overshoot coverage control 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 403/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 404/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Devices, Base Stations, Transport Network, and Core Network All Support On-Demand Improvement to Network Availability High Network Availability Requires Cooperation Among Devices, Base Stations, Transport Network, and Core Network 5G device 5G base station 5G transport network 5G core network + Dual links Redundancy backup Ring networking Kite solution and load sharing Device Redundancy Backup Base Station Redundancy Backup Core Network Redundancy Backup Dual fed and selective receiving: 0 ms Centralized Two working 5GC Operator switching and zero packet loss ʒ A/B network BBU-1 BBU-2 O&M system (public network) modes 1+1 backup: link switchover within 100 ms inter-frequency active-active PCF UDM (micro/macro) Radio Radio Radio Radio AMF SMF AR 5G RU ʒ Kite Intra-frequency Control-plane public 5G RU ʓ Intra-frequency ʔ solution Enterprise network and local active/standby (macro) active-active (micro) disaster recovery 5G CPE Main control Main control Main control Main control Lite Lite Local board board Power supply AR board board Power supply UEG+ AMF SMF UDM UPF Fan ʓ Fan Emergency module Three BBP BBP Power supply BBP BBP Power supply UE 5G CPE connection modes 5G card RHUB RHUB' AR MEC1 ʔ Radio Radio MEC 5G card Load BBU All three connection modes offer the same level of Version 22A/B plans to support solution 2 (RF backup) and sharing MEC2 reliability, and can be flexibly selected based on availability. solution 3 (baseband backup). High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Build Standard Availability Solutions for Private LAN Based on NE Redundancy Rate Basic Availability High Availability Ultra-High Availability > 99.9% > 99.99% Approx. 99.998% • Public network control • Public network control plane • Public network plane pooling pooling + Kite solution 5GC control plane pooling UPF + Lite AMF • MEC load sharing • MEC load sharing • MEC load sharing MEC /SMF/UDM Transport • Ring networking • Ring networking • Ring networking network • Intra-frequency • A/B network inter-frequency active- active/standby (macro) or Base active (macro/micro) or intra-frequency • Single-mode base station station intra-frequency active-active active/standby (macro) or intra- (macro or micro) (micro) frequency active-active (micro) CPE • No redundancy for devices • Dual fed and selective • Dual fed and selective receiving or 1+1 backup receiving or 1+1 backup AR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 404/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 405/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Stable Low Latency Solution: Local UPF, Pre-scheduling Air Interface Optimization, and Dual Fed and Selective Receiving Solution: Dual fed and selective [Optimal latency algorithm] Smoothing burst latency jitter of two links receiving, improving latency 3 Dual fed Selective reliability by 1–2 "nines" 1 1 receiving E2E 1. Average latency: 13 ms 1 2. Latency reliability: 20 AR AR RTT ms@99.99% 1. 5QI pre-scheduling reduces average latency by around 10 ms Solution 2. Low IBLER improves latency reliability 2 1. Average latency: 13 ms E2E RTT 2. Latency reliability: 20 ms@99.9% Normal uplink transmission Pre-scheduling Local UPF at campuses reduces UE gNB Solution SR latency by 2–15 ms UE gNB DCI 1. Average latency: 23 ms BSR DCI 1 E2E RTT DCI 2. Latency y reliability: 30 ms@99.9% Data Data AR UE Base TN (LAN) UPF TN (WAN) UPF AR station I/O Up to 1 ms 2–15 ms Up to 21 ms (depending on the UPF position) PLC controller Air interface Transport network Up to 1 ms Requirements for E2E RTT of low-latency services at or near the cell center: RSRP > –85 dBm, SINR > 10 dB, and the number of low-latency UEs ≤ 5 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Ring Networking and Hot Standby Support Different Sizes of Campuses, Facilitating the High Availability of Transport Networks Public mobile Public 5GC network Key points for transpor p t netw n neeetw tw etw neeet ne n w tw et eet net ne ork ork rk rk r ork or o transport networking Outside the campus Inside the campus Cell site gateway (CSG) carries MEC1 1 Enterprise base stations Aggregation ring Connects to 5G base stations, with (100GE㸧 Intranet (Enterprise 3 on-demand FlexE hard slicing DC-GW DC) 2 Aggregation site gateway (ASG) to interconnects public networks ASG interconnects CSG and public MEC2 2 5GC networks 1 DC-GW DC-GW interconnects enterprise ASG ASG 3 intranet Carries MEC server networking and Access Acces ring 1 Access ring 2 (50GE㸧 streamlines enterprise intranet (50GE㸧 (Note: The CSG and ASG can be CSG CSG integrated based on the campus size.) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 405/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 406/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Typical Networking Scenarios of Core Networks, Meeting Various Enterprise Requirements Logical Isolation of Enterprise Private Core Enterprise Edge MEC Public Networks Network Applicable Data processing within public networks, low User-plane resource isolation, flexible local traffic Service processing within premises, high Scenario SLA requirements, and fast service distribution, and guaranteed SLA networking availability, and strict SLA provisioning requirements 5GC mgmt. plane 5GC mgmt. plane Operator 5GC control plane 5GC Shared by Shared by 5GC control plane mgmt. plane multiple tenants multiple tenants central equipment 5GC user plane (enterprises) (enterprises) room Shared by multiple tenants (enterprises) Operator MEC local traffic MEC local traffic edge equipment distribution distribution room Exclusively Exclusively used by used by enterprise enterprise Enterprise MEC local traffic distribution SA UEN SA UEN equipment room Exclusively used by enterprise Enterprise 1 Enterprise 2 Enterprise 3 Enterprise 4 Enterprise 1 Enterprise 2 Enterprise 1 Enterprise 2 • Shared control plane and exclusive user plane • Resources are isolated from the public network. • Shared control and user planes • MEC deployed at operator network edge Disconnecting the public network does not affect • DNN/slice-based differentiated (cities/counties) or enterprise equipment rooms local services. management depending on the requirements High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Turnkey Integrated Solution Makes the Delivery of Private Networks More Efficient Scenario Integrated toB Solution Customer Benefits Industry Knowledge In-depth understanding of Service Business demand Industry profiling Service modeling Network modeling industry network demands, modeling surveys helping enterprises digitalize production Planning Comprehensive Planning Multi-service high- Multi-service private Planning and Enterprise service CPE and industrial device Network-wide planning and reliability planning and network coverage and design integration planning networking design design, supporting 5G design capacity planning vertical industries to achieve high network availability Network and Campus Campus device Multi-service high- Fast Delivery service Multi-service 5G integrated/scenario- Campus enterprise Construction deployment and reliability private network slice Integrated surveying, integration specific surveys and service integration commissioning network integration integration construction, deployment, design deployment and commissioning Optimized Services Engineering Basic network performance Optimization Service simulation test Service SLA optimization Service performance optimization optimization optimization, allowing customers to reach brand and business leadership Turnkey: One solution, survey, design, installation, and optimization, making delivery more efficient 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 406/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 407/541 High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model All-in-One PCMO Tool Platform Enables Operators to Build SLA Batch Delivery Capabilities Planning Construction Maintenance Optimization Device-Network Proactive Intelligent and Accurate Planning Integrated Construction E2E SLA Visualization Maintenance and Optimization Precise connection-level planning (SLA Test tool building based on integrated E2E multi-dimensional SLA visualization E2E network performance optimization: breakdown and planning, cross-domain surveying and design, enabling pre- Fault locating and demarcation in minutes solutions for latency, rate, and connection- coordinated planning and simulation) integrated fast delivery level signaling • Service- and connection-oriented cross- • Smart Industry Link streamlined surveying, • Service-/slice-/network-level E2E SLA • Visualized solution for the optimization of domain multi-RAT comprehensive planning construction, integration, deployment, and visualization and management connection-level rate and latency • Multi-scenario complex environment planning commissioning • Real-time performance alarm reporting for • Lightweight network scrambling tool and E2E and network simulation • High reliability, pre-integration, fast delivery, fault locating and demarcation in minutes network availability test; and AI-based and visible and manageable progress proactive fault prevention The combination of six key technologies Multi-dimensional SLA visualization supports ultra-large capacity in complex Integrated surveying, design, and management AI-based proactive prediction and wireless environments simulation, and verification prevention of abnormal KPIs toB service test tools: simulation tools (simulated PLC and • 2.6/4.9 GHz networking (interference reduction) video services) and single- and multi-connection service test NOE/MAE • Back-on-back AAUs (coverage control) solutions for connection-level indicators • Directional ant./Ant. radome of CPEs (coverage control) Suggestions on Expert Integrated planning and construction delivery: one team to Hardware fault • 8-layer uplink of UEs (capacity increase) complete site surveying for multiple products at a time; multi- hardware fault experience + • Pendulum design of CPEs (coverage control and RCA domain coordination for site solutions design and testing rectification ML/AI interference reduction) • CPE access to locked cells (deterministic capacity) High Reliability Campus Networking Regional ʖ MEC pool networking Network Suggestions on Air interface Big data parameter quality RCA analytics ʕ SPN high availability networking modification Real-time Private line Private line dotting report ʔ 5G base AR hot standby station hot ʒ AR (1+1) hot standby standby Configuration Industry application ʓ CPE load sharing Restoration CHRͫLWM2M Backup links (microwave, Wi-Fi, and more) Enterprise DC for enterprises during transition to 5G networks command Smart Industry Link: toB Campus Network Integrated Operation Tool Enables Operators, SIs, and O&M Service Partners to Implement Fast Network Construction and Efficient O&M High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Campus Self-Management Platform Enables Visualized, Manageable, and Controllable Service SLA Customer Benefits One-Stop Self-Service Self-Service and Self-O&M Management: self-service Enterprise Personnel Portal Operator Onsite Personnel Portal requirements of enterprise users, such as self-operation, self- maintenance, and device management Self-Service Service Management Reports Premium Services Order fulfillment status query Monthly running report Interconnection with Visualization: monitoring of 4+ Operator change operator's fault reporting types of service SLAs (video notification and approval New subscription system backhaul/PLC remote SIM card management Service report (slice/private line/SIM card) control/prediction and prevention/AI quality inspection) Campus Network Topology SLA Monitoring Management Troubleshooting Intelligence and Automation Control: service fault detection in Campus E2E topology visualization Visualized SLA monitoring view Interruption minutes Poor QoE due to rate Fault detection: < 1 min Service Operator Campus Campus 5G Service SLA Device Fault demarcation: < 30 mins resources Service Network network independently device (slice/private experience Poor QoE due to latency (slice/private owned SLA KPI line) resources resources network resources line) monitoring Closed-loop assurance Security Compliance Security: local tool deployment and SIM card Resource Performance Alarm and event APP LCM IaaS provisioning AAA configuration security isolation to meet management API API data API reporting API API management API management API enterprise requirements on information security (data BOSS/PCF/UDM Management plane (MAE-CN) MEAO 5G LAN AAA processing within premises) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 407/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 408/541 Industry Slicing MEC 5G LAN Positioning Security Device Automated and Intelligent O&M Services to Achieve Service SLA Targets (Management Service Scenarios Outside China) ISOAP-based O&M Value Stream to Guarantee E2E SLA of 5GtoB Private Networks Customer Benefits Basic Network O&M Onsite Infrastructure Onsite Infrastructure Offerings Various O&M Scenarios Applications Video Device • Campus private networks, toB PLC control SME private line Machine vision … surveillance positioning private lines, and more • Video surveillance, PLC control, and more Orchestration Availability Presentation Design Preventive Fault Performance Maintenance reporting O&M Value Stream maintenance management mgmt. Implementation Management O&M quality Network Slice template design • Advanced ISOAP value stream Predictive Performance reports quality reports Alarm monitoring • Efficient O&M helps operators gain maintenance monitoring benefits for industry customers Provisioning Preventive Performance Troubleshooting Operation reporting Mgmt. maintenance exception handling services Slicing Slicing Centralized O&M Tenant usage Slicing quality instance service reports reports Platform provisioning provisioning Issue management • Mature centralized delivery platform • Automatic and intelligent tool Safety & Security BCM Network security O&M security platform Scenario-specific toB Infrastructure Resources Assets Capacity expansion/upgrades Digital Maintenance • Unattended warehouse, spare parts e-site Platform Centralized delivery platform Automatic and intelligent tool platform • Remote expert support for toB capabilities GNOC/RNOC/LNOC SOC/AUTIN/NSMF+ (N+) /CME (M+) maintenance and proactive services High High Stable Transport Network Cloud Core Business Architecture *PCMO Bandwidth Availability Latency Deployment Deployment Model Five Products and Four Business Models of Private LAN Planning Basic network O&M Value-added services SIM card Item Dimension Item Dimension Item Dimension Item Dimension Item Dimension Service modeling Service Equipment NE Fault recovery 8/4/2H NE Self-service License Card fee Card Planning & design km2 UL capabilities Mbps Routine inspection NE Positioning Connection eSIM fee eSIM Optimization Connection DL capabilities Mbps SLA assurance Connection Security Service Other Other Other Other Five products and four business models Resource buy-out (resale) ICT integrated lease Graded network services Revenue sharing Project-specific flexible quotation New dimensions embedded for graded Network transferred to customers: no network services to ensure growth potential Huge initial investment, very volatile opportunity for potential revenues 5G A A A A A A A B A B A B A B A B A B Edge computing revenue A A A A A A B A B A B A B A B A B A Dimen Quotation Item Dimen sion Quotation Item A A A A A A A B A B A B A B A B A B sion Independent private networks for Main wireless A A A A A A B A B A B A B A B A B A Revenue sharing units NE MEC NE equipment A A A A A A A B A B A B A B A B A B mining enterprises (e.g., Shanxi Example: Share 35% of revenues Main transport A A A A A A B A B A B A B A B A B A NE Coking Coal Group) Network design NE equipment A A A A A A A B A B A B A B A B A B from self-driving tickets in the Fiber (base A A A A A A B A B A B A B A B A B A m System integration NE Yanoda Tourism Zona project. station) 90/180/360 1080 Mbps/purchased Miscellaneous Length Network O&M NE Mbps/purchased area area Not recommended Now Future Exploring Network capabilities, value-added features and functions, and graded network services for continuous revenue growth 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 408/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 409/541 Huawei Campus T: Project Overview and Core Requirements MES+ ʏ Indoor positioning 5G ʖ Multi-network convergence 5G 5G ʑ AI-based edge quality detection ʒ 5G-based test automation Product CAM ʐ Wired-to-wireless upgrade data Service ticket Smart scheduling ʔ PLC connections iAGV Material Supplier feeding AS/ RS Pull delivery ʕ AR/VR applications ʓ AGV dispatching Wired-to-wireless Multi-network AI-based edge quality Indoor positioning Test automation PLC connections AR/VR applications Smart logistics upgrade convergence inspection • Asset auditing • Flexible manufacturing • Automated aging • PLC control • Wired • Remote guidance • Print defect • AGV dispatching • Resource scheduling • 5G LAN • Automated OS loading • PLC collaboration • Wi-Fi • Online repair • Material defect • Logistics dispatching • Visualized material • Commonality, • Automated loading test • PLC on cloud • UWB • Factory visit & • Assembly defect • 5G-based autonomous plicationp management automation, wireless • Others acceptance • Package defect driving A scenarios • Staff heat map connections High High Positioning Security Self-service bandwidth availability Isolation Core UL: 13 Gbps Local portal Sub-meter level 99.99% 99.99% Secondary DL: 3.5 Gbps Card issuing requirements authentication Huawei Campus T: E2E Private Networks for Manufacturing Visualized monitoring for Service self-provisioning Service ticket dispatching E2E high availability networking 5G networks Device registration and secondary • Above RHUB: active/standby and pooling for Enterprise authentication NE links Capacity Automated dispatching redundancy (HIS) IoT center AAA server Fault & • Below RHUB: fewer pRRUs configured for an RHUB, Security …… alarm discrete cross-connection for pRRUs • Air interface: 2.6 GHz + 4.9 GHz AB dual-net design 3 Standard 3: self-operated interfaces • 24/7 monitoring Reliability • 90-min recovery requirements API • Emergency response High-density high uplink to enhance capacity 5GtoB O&M platform Multi-tenant O&M platform • High density (12 m/pRRU, distributed MIMO, oriented to enterprise interfaces directional antennas) Operational tool O&M tool • Different subframe configurations: 2:8 (2.6 GHz, 160 MHz) + 3:1 (4.9 GHz, 100 MHz), cell splitting (2 to 24), frequency-staggered networking Operator Triple-domain network management system RAN Transport network Cloud core 5GC Edge (kite-flying mode) RAN Transport network Core network • Service continuity upon mobile network signaling interruption, and on-premises data processing 1 Redundancy networking 2 Capacity enhancement 3 Kite-flying mode 110+ 220+ 60+ 420+ 30+ 2,000+ 14+ label 14+ reflow 140+ location 28+ pressure 420+ 140+ temperature robots cameras AGVs scanners scales industrial computers printers furnaces sensors sensors laser sensors sensors Secondary authentication for 5G devices • Secure access to ensure trustworthiness Production line x … 4 Secure access of 5G devices Security Plans for 2021: testing 2:3 uplink-downlink subframe configuration on Production line 1 the 4.9 GHz band, 5G LAN, 5G indoor high-precision positioning, and more 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 409/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 410/541 Midea: Project Overview and Core Requirements Microwave oven production procedures from cavity input to finished product warehousing 5G AI: bottom screw check 5G AI: label check 5G AI: paper box qual q ity check Cavity input Aging Collection Structure check 1 Leakage check 2 Load check 3 Noise check 4 Stacker Key part binding Packaging Product wa w rehousing Injection workshop: C1 warehouse: 5G MES dashboard 5G AR remote assistance 5G AGV dispatching 5G pallet truck dispatching 11 Application Scenarios Core Requirements 1. AI quality check of key parts (high uplink 6. 5G MES dashboard (wireless) bandwidth) 7. 5G scanners (wireless) Low latency 2. 5G on-cloud PLC (stable low latency) 8. 5G smart security High uplink Positioning 3. 5G AGV (5G replaces Wi-Fi) 9. 5G smart inspection 10 ms 640 Mbps 0.5 – 1 m 4. 5G pallet truck dispatching + positioning 10. 5G robots (99.99%) (positioning) 11. 5G AR remote assistance 5. 5G production data collection (massive PLC on cloud AI quality check of Pallet truck and connectivity) 10 ms (99.99%) key parts 640 Mbps personnel positioning Midea: 5G E2E Private Network Solution for Smart Manufacturing Infrastructure: evolving from Operator's 5GtoC to 5GtoB private networks core network Core network • Phase 1: single-point UPF + basic Midea UPF (active) coverage • Phase 2: active/standby UPF + in- depth coverage Equipment room 3 Equipment room 2 Device D Device D Midea UPF (active) High-availability design Transport network • E2E active/standby redundancy for transport networks Equipment room 1 Equipment room 1 Midea data Equipment room 2 • Active/standby redundancy for UPFs Device B Device B Device B center Equipment room 2 • AR dual feeding and selective Device B receiving to reduce jitter Midea UPF (standby) Device A Device A Device A Midea UPF (standby) Coverage optimization in special scenarios Edge computing • Coverage enhancement for AI RAN quality check, 5G positioning, and s op p p p p p p o o o o o o et other special scenarios with high sh sh sh sh sh sh n ffice rksh rk rk rk rk rk rk o or B2 ra Base station 1 Base station 2 Base station 3 O W Wo Wo Wo oFl Wo Wo Wo Ext network requirements Plans for 2021: testing network slicing, 5G LAN, 5G indoor positioning, stable low latency, enterprise self-service platforms, and more 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 410/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 411/541 XISC: Project Overview and Core Requirements Project Overview Core Requirements and Challenges Hunan Valin Xiangtan Iron and Steel (XISC): China's No. 7 and Hunan's No.1 steel High requirements of network SLA (UL bandwidth, latency, and &reliability) enterprise, with an annual output of 10 million tons and annual revenue exceeding CNY60 billion, started building its 5G Smart Factory in August 2019. • One 4K 360q camera: 8 Mbps/channel; five 4MP cameras: 4 Mbps/channel Remote • PLC latency of 50 ms; 99.99% reliability; single-crane UL bandwidth of 120 bridge crane Mbps • One 4K 360q camera: 8 Mbps/channel; five 4MP cameras: 4 Mbps/channel Unmanned • Ranging & scanning: 10 Mbps; PLC latency 20 ms; 99.99% reliability bridge crane Four Goals & Typical Scenarios • Single-crane UL bandwidth of 130 Mbps ʒ"Speaking" devices ʓAutonomous devices Network Planning and Product Selection: Complex Scenarios and Interference • Sensor data transmission and inspection • Unmanned bridge crane • Remote device monitoring • Automated steel spinning • Predictive maintenance • 5G AGV Metallic structure: signal blockage, High site density, difficult to control Low UL capacity due to strong inter- ʔ strong attenuation interference CPE interference Better working conditions ʕHigher efficiency Difficult to Troubleshoot Faults E2E (CPE Included) Self-Service O&M Required • UHD factory monitoring • AR remote assistance • Remote bridge crane • AI surface quality check • Remote robotic arms • Scrapped steel rating XISC: E2E Network Solution Workshop A Workshop A Remote bridge crane 5GC control room PLC PLC Microwave backup link NVR 360q camera Local AR 5G CPE AAU pRRU 5G CPE AR LSW switch … IPC camera HD displays SPN Workshop B Unmanned bridge crane Workshop B control room PLC PLC 360q camera 5G CPE Factory library NVR Laser ranger AR Local switch 3D scanner Local AR AAU … switch MEC HD displays IPC camera • Base station selection: Macro AAUs to reduce power (interference and High-reliability (99.999%) AR replaces low-reliability (99.9%) AR radiation control); 64T64R to ensure large capacity (meeting high uplink ty • BBU cold backup, high-reliability SPN rings, MEC pooling bandwidth requirements) ili terface • Inter-frequency networking: 2.6 GHz + 4.9 GHz, dual 2.6 GHz frequencies, • One cel connected to two CPEs, with dual 5G links for load sharing in AAU back-to-back deployment • Existing microwave links for active/standby redundancy for 5G links • Device configuration: 5G CPE (ins2.0) directional antenna, CPE cover, probe-eliab ir Solutions based frequency locking, SPID-based carrier camping (dual 2.6 GHz R Solutions A • Private network base station exclusive to toC services, slicing isolation for frequencies) services of different SLAs 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 411/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 412/541 XISC: O&M Solution ++YROIOTMSGTGMKSKTZVRGZLUXS CSMF+ Resource management system Service ticket EOMS (dispatching) NSMF+ OSS Operator-network resource, performance, alarms Alarm, performance, slice management Campus A One-stop lightweight campus Campus self-management self-management platform MAE-M CME+ NCE-IP MAE-CN ʒ )KTZXGRÒKJIGSV[Y Campus resource, ZUVURUM_\OYOHOROZ_ performance, alarms ʓ )GSV[YTKZ]UXQGTJ eSight LTM JK\OIKSUTOZUXOTM ʔ 'OXOTZKXLGIKGTGR_YOYGTJ YOS[RGZKJZKYZY MEC 5GC ʕ )GSV[YYKX\OIK92' CPE SUTOZUXOTM ʖ ++TKZ]UXQLG[RZ CSG ASG AR ZXU[HRKYNUUZOTM CPE ࣹڢ • /TJ[YZX_:XKTJY • 9UR[ZOUTYGTJ)GYKY • -6XO\GZK2'49UR[ZOUT • -6XO\GZK='49UR[ZOUT • )USSUT)GVGHOROZOKY 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 412/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 413/541 High Stable Business Architecture DGPA* Availability Latency Mode Two Construction Modes for Private WAN Public networks for public use Public networks for private use Enterprise applications Public network 5GC Enterprise p appl pp ications Public network 5GC UPF (shared or exclusive) UPF (shared or exclusive) Individual Industry Individual Industry Public network Public network base station base station Low priority High priority 5QI RB reservation 5QI Customer user 5QI Enterprise user Customer user Enterprise user z RAN: base station sharing, 5QIs used to differentiate service priorities z RAN: base station sharing, dedicated RBs for hard resource isolation z Core network: 5GC sharing, UPF for sharing or exclusive use z Core network: 5GC sharing, UPF for sharing or exclusive use z Transport network: sharing z Transport network: sharing z Typical industries: policing, transportation, and waterway z Typical industry: electric power High Stable Business Architecture DGPA* Availability Latency Mode Public Networks Partially Enhance Availability of Private WAN Enterprise device Wireless device RAN Mobile backhaul IP backbone network Core network Cloud services Partial MEC enhancement (2) Enterprise app 5G camera UPF UDM CPE PCF PC AMF Enterprise ATN/PTN IP/MPLS data centers AGV Robot Sensor CSG RSG BR CR 5GC Dongle Partial enhancement (1) Operator industry cloud Remote controlled Gateway cranes AR CPE Device Redundancy Backup (Enhancement 1) User-Plane Load Sharing (Enhancement 2) Private WAN Availability Dual fed and selective receiving: 0 ms switching and 0 Two working packet loss modes 1. The private WAN base station, mobile 1+1 backup: link switchover within 100 ms MEC1 backhaul, and core network reuse the infrastructure of public networks. Three AR 5G RU BBU 2. In scenarios with high SLA requirements, connection ʒ partial enhancement is achieved through modes 5G RU MEC2 dual links on the device access side. 5G CPE AR 5G board 3. For some MECs that are deployed to the • MEC load sharing provides up to 60 ms ʓ AR ʔ edge, partial enhancement is achieved by 5G CPE service switchover 5G board deploying MEC load sharing. • WAN provides better equipment room The three connection modes have the same reliability and can be location and conditions, and does not use flexibly selected based on availability. the kite solution. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 413/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 414/541 High Stable Business Architecture DGPA* Availability Latency Mode Stable and Low-Latency Private WAN — Air Interfaces and Transport Networks Require Hard Slicing, Causing High Costs E2E RTT latency reliability: 22 ms@99.99% (Low-latency UEs: ≤ 5, located at or near the cell center) Dual fed and selective receiving: 4 latency reliability improved by 1 to 2 nines Average E2E RTT latency: ~15 ms FlexE slicing: Slicing (pre-scheduling + low IBLER): UPF deployed in cities: Average latency on transport 3 Average air-interface latency: 11 ms Average latency: 1 ms 2 1 networks: 3 ms ~11 ms ~3 ms ~1 ms Air interface Transport network (device hops ≤ 10, total length Core network of optical fibers ≤ 160 km) 5GC AR Slices for areas I & II Power grid DTU Power grid CPE 20 km 40 km 80 km Customer user slice Customer user Access ring Aggregation ring Core ring Customer user Dedicated UPF deployed in cities AR Power grid DTU Power grid CPE *Generally, WANs do not have high requirements on latency. This slide uses the power grid differential protection as an example. High Stable Business Architecture DGPA* Availability Latency Mode Agile Rollout of Industry Applications and SLA Assurance Smart policing Yangtze waterway Telemedicine toB private line Applications Unmanned law enforcement SME private UAV Command ship Ambulance Remote B-scan Large EPL vehicle ship line Consulting & Generation & Service Planning & design Service assurance evaluation provisioning operations Service model analysis Business evaluation CPE site selection Topology visualization Five phases Opportunity insight Capacity planning & ROI analysis Coverage planning Private line self-provisioning SLA monitoring Service self-provisioning eleven Interference suppression Business mode SLA testing Health assessment steps Rate simulation Network evaluation Service monitoring Optimization & acceptance SLA demarcation and locating Slice planning & design Tool CWR (SaaS) platform Lightweight Discovery Lightweight SOC Design: WAN service modeling, accurate capacity calculation, LOD3 map forming, upstream rate simulation, and E2E latency reliability Customer Generation: connection level, analog industry protocols, and SLA Tester/UAV test solutions for industry applications benefits Provisioning: SaaS cloud services, map forming, simulation, test tools, and provisioning reports Assurance: connection-level SLA (measurable), visible SLA status in real time, and automatic fault demarcation based on the rule library and fault tree 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 414/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 415/541 High Stable Business Architecture DGPA* Availability Latency Mode Business Model of Private WANs: Combined Sales for Three Products, Features, and Resources , ell ell 5G Network UAV Library of Xiamen Public 5G Video Collection of Guangzhou Tianhe Guangzhou Power Supply Bureau of China Security Bureau Public Security Bureau Southern Power Grid — Negotiation Draft Who Who Provisioning fee Function fee 5% RB 5G network connection services: CNY2,180 5G vehicle-mounted video CNY12,000/5 to s to s CNY3,000/ID CNY1,000/ID/month CNY1,700/site/month 5 TB traffic + IaaS /year collection, 1080p (10 Mbps) years DNN Computing CNY1,000/function power Traffic Bandwidth Annual resource service fee Slice 5QI Acceleration fee: CNY15/month Tariff (CNY/Month) Included Traffic General Sponsored Single- Service 5QI .U]ZUYKRR .U]ZUYKRR Traffic Traffic site UL Resource bandwidth preferential Provisioning monthly reuse Function Wireless RB X Xresource X X 30 GB 120 70 service coefficient scheduling fee/slice + ratio fee/slice/ + UPF usage usage + coefficient fee/month Cell uplink fee X 3 month fee/site/month 100 GB 200 120 bandwidth 200 GB 380 230 1 TB 1,700 1,000 Sponsored Quarterly/Annual Wireless Mgmt. scope- Traffic pool Multiplexing Priority traffic UL ratio: tariff plan resources based slice + function fee/card coefficient: > coefficient: 4+ UPF 40% cheaper than 20%-30% number (such as 6 1.1–1.5 (including site levels general traffic transmission) city) Telemetry, remote communication, and remote UAV transmission line inspection Differential protection and network load interaction control of DA Law enforcement (law enforcement recorder) Video surveillance Major event security 1080p-10 Mbps CNY490/month vs. CNY2,900/month (3 TB) China Southern Power Grid: Project Background and Key Requirements Background and Progress of 5G Smart Grid Project 5G Smart Grid Solution • Power supply scope: Guangdong, Introduction to China Southern Power Grid • Blind adjustment of power distribution • Difficult power transmission • Unbalanced power supply and inspection Guangxi, Yunnan, Guizhou, and Challenges Three demands • E2E security challenges Hainan, connecting power grids in Gorges • Heavy operation load in substations Southeast Asia Key Solutions • Power supply area: 1+ million km2 supplying 254 million people Myanmar Myanmar • Five service processes: power High Low Hong generation, transmission, Slicing Timing Security bandwidth latency Laos Kong transformation, distribution, and Vietnam Macao consumption, including 50+ sub- service scenarios. First commercial use in Guangzhou and Shenzhen Private WAN PMU service Differential E2E security One substation: E2E network timing precision: service latency: secondary 0.7–1 Gbps slicing 1 us 15 ms authentication Major 5G services Benefits Power Inspection, status Differential monitoring, and generation Power protection, three protection remote control distribution functions, and Power UAV inspection and transmission line status PMU transmission monitoring Power UAV inspection and Power Power consumption data intelligent substation consumption transformation collection Transmission: 80X efficiency Transformation: 2.7X efficiency Distribution: impact-free power inspection recovery Progress: By the end of 2020, Guangzhou had launched and verified 24 5G smart Plan: In 2021, 10,000+ and 4000+ service sites are being planned in Guangzhou electric power services, and Shenzhen had commercialized 101 private WAN and Shenzhen, respectively. service sites. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 415/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 416/541 China Southern Power Grid: Private Networking and Slicing Planning Electric Power Electric Power Service RAN Transport Network 5G Core Network System Differential protection for power WAN distribution Precision control Secure production S-NSSAI 1 Network load interaction system VLAN 1 master/slave station areas I and II Production DA FlexE1 FlexE1 RB reservation + 5QI priority-based UPF DA master/slave station S-NSSAI 2 VLAN 2 Metering automation scheduling Smart substation User data collection master/slave station Smart power distribution room Management information areas III VLAN 3 Transmission line status Video surveillance cloud A U P S and IV FlexE2 FlexE2 S-NSSAI 3 monitoring platform Smart charging pile 5QI priority-based scheduling VLAN 4 M D C M Management Power distribution room Smart construction site monitoring system F M F F UPF Emergency communications Quality control S-NSSAI 4 Smart quality control Public network service Public network service management system LAN Secure production Power/Voltage quality VLAN 1 Substation monitoring S-NSSAI 1 monitoring areas I and II system FlexE1 FlexE1 Local UPF RB reservation + 5QI priority-based Substation VLAN 2 Local service scheduling Robot inspection system inspection/operation robot Provincial central Municipal Substation equipment room equipment room Public network service Electric Power Service Typical Service Slicing planning solution: Area Production control (differentiated distribution network protection, PMU, • Four slices correspond to the secure production areas I and II and management information areas III Secure production area I automation, and three remote control functions) and IV, respectively. Secure production area I Production non-control (metering automation, etc.) • A DNN is allocated to each service among the four slices. Slices and UPFs are selected based on the S-NSSAI and DNN. Management information area Construction sites, surveillance, robots, UAVs, and smart power III distribution rooms • Generally, there are two UPFs dedicated for a power grid in a city: production UPF for slicing services Management information area in areas I and II and management UPF for slicing services in areas III and IV. Smart quality control IV • In substations, the UPF is deployed closer to users and data is transmitted within the campus. Private LAN Substations, power plants, and campuses Shenzhen Policing: Project Background and Scenario Requirements Project Background Private WAN Scenarios and Requirements Four 5G Policing Scenarios Routine patrol On-site law Incident reception Major security Happy enforcement and handling protection and Key area Person and vehicle Unmanned • Unmanned: alleviating Valley assurance verification vehicle patrol police shortage issue emergency response • Personnel query • Quick response: onsite Window of • Intelligent: facial and investigation and • Wireless network quality • Audio and video the World behavior recognition evidence collection with assurance (smooth and recording for tracing UAVs preferential access) Splendid • Search for key personnel China • Real-time on-site audio and with facial recognition video upload, ensuring UAV patrol Robot patrol Personnel search through AR glasses Shenzhenwan Super management and control Headquarters for the command center Happy Coast Binhai Boulevard Mobile Law Temporary Precise Police car Unmanned Robot UAV AR glasses Mobile Law Temporary Tracking and Key person enforcement positioning Rescue policing surveillance vehicle policing enforcement surveillance management recorder camera (police arrest device device recorder distribution) camera and control 5G Network Requirements Introduction to Shahe Policing Area: Challenges: Uplink high bandwidth (100 Mbps • Area: 27.5 km2; total population: 230,000+ • Insufficient law Low latency (10 ms) to 1 Gbps) enforcement resources Policing UAVs and remote control of • Heavy customer flow: annual population of 22+ million; Broadband-based mobile policing and HD unmanned vehicles video surveillance maximum daily population of 250,000 • Slow law enforcement dispatching speed • Complex scenarios: tourist attractions, park malls, star Security (data, user, and • Video upload freezing Positioning precision (3D, meter- hotels, coastlines, urban villages, and high-end architecture) level) communities • Inaccurate Trustworthiness mechanism for policing Precise incident handling identification requirements 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 416/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 417/541 Shenzhen Policing: Private Policing Network Architecture and Slicing Solution Public network toC service 5GC control plane (AMF/SMF) 5QI=9 DNN = cmnet Command and Comprehensive Comprehensive Facial analysis Air dispatching video application Air Policing toB service VPN video platform platform platform leased line gap gap Comprehensive policing application EOR Mobile audio 2/3-type video and video platform 5QI=4 platform Resident library DNN = CMIOT5GSZJINGWU.GD Public security Policing UPF Public security video private network information network (user plane dedicated) Policing toB service Public security internal network RAN Transport network Core network 5QI=7 5QI FlexE channel Dedicated UPF + DNN = CMIOT5GSZJINGWU.GD 5QI GBR • 5G slicing: Wireless 5QI + Transport FlexE channel + Dedicated UPF/GBR Service DNN 5QI FlexE Channel Assurance Mode Remarks Public services cmnet 9 (default) / /Non-guaranteed, public user by default Policing (law enforcement recorders and Bandwidth: 1 Gbps mobile policing devices) CMIOT5GSZJINGWU.GD Dedicated bearer 5QI = 4 (GBR) (shared) 5QI = 4, GBR = 10 Mbps (uplink)/20 Mbps (downlink) Dedicated for policing Policing services (unmanned vehicles Bandwidth: 1 Gbps and 5G cameras) CMIOT5GSZJINGWU.GD Dedicated bearer 5QI = 7 (GBR) (shared) 5QI = 7, GBR = 20 Mbps (uplink)/10 Mbps (downlink) Dedicated for policing • In the initial phase, the QoS + GBR slice mode is used to ensure the priority and bandwidth quality of policing services. In the future, the static/dynamic RB reservation solution will be used to further improve policing service assurance. ࣹڢ • /TJ[YZX_:XKTJY • 9UR[ZOUTYGTJ)GYKY • -6XO\GZK2'49UR[ZOUT • -6XO\GZK='49UR[ZOUT • )USSUT)GVGHOROZOKY 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 417/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 418/541 Industry Slicing MEC 5G LAN Positioning Security Device System Architecture of the E2E Slicing Solution Operator Network Device CSMF+ (communication service management) ʒ Network slicing Module Slice policy Product management operation Order management Member management Service monitoring Billing system capability CPE NOE (NSMF) Mobile phone Slice template Slice template Slice resource Slice E2E slice E2E slice O&M Slice use management design management orchestration monitoring App ʑ Network slicing NSSMF (sub-domain network slice management) O&M capability MAE-M NCE-IP MAE-CN NSSMF (AN) NSSMF (TN) NSSMF (CN) ʏ Device slicing capability AN TN SMF PCF UDM CN eMBB slice Spectrum sharing and priority-based scheduling Channel isolation Flexible slicing and sharing granularity ʐ Basic network at different levels URLLC slice RB reservation and based on NFs/microservices slicing capability with FlexE independent spectrum mMTC slice Edge UPF Benefits: The basic network provides on-demand logical slices for differentiated scheduling, while the O&M system enables quick provisioning of logical networks and slice services. Industry Slicing MEC 5G LAN Positioning Security Device RAN: Three Solutions for Flexible Resource Scheduling QoS Scheduling RB Reservation Carrier Isolation Co-carrier Co-carrier Non-co-carrier Private network user Public network user Private network user Public network user Private network user Public network user Private Private Private network user network user network user Public Public Public network user network user network user • Spectrum: sharing of the public network carrier spectrum • Spectrum: sharing of the public network carrier spectrum • Spectrum: independent carrier spectrum for private networks • RB: configurable exclusive RBs for private networks • RB: sharing, higher-priority QoS for private network users • RB: independent carriers for private networks • Advantages: resource assurance with RBs exclusive to private • Advantages: high spectrum efficiency that meets the SLA network users; RB-level physical isolation between public and • Advantages: restricted access for public network users to requirements of most private networks private network users private networks; high security with complete physical isolation 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 418/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 419/541 Industry Slicing MEC 5G LAN Positioning Security Device TN: Channel Isolation at Different Levels FlexE: timeslot-level physical isolation FlexE encapsulation MAC A FlexE QoS/HQoS: intra-queue scheduling without isolation Standard ETH MAC MAC FlexE PHY Flex B Shim MAC Shim Timeslot-based scheduling, exclusive bandwidth occupation PHY PHY MAC C FlexE A (30 Gbps) FlexE A 30 Gbps: FlexE sub-interfaces for priority-based scheduling Service 1 of multiple services FlexE A Service 2 Service 3 FlexE B FlexE B (15 Gbps) FlexE B 15 Gbps: video sharing, with a multiplexing ratio of 1:2 FlexE C Flex C (5 Gbps) FlexE C 5 Gbps: shared live streaming by TV stations, with a multiplexing ratio of 1:1 1. Resource allocation and isolation by bandwidth and latency with FlexE hard pipes based on timeslot scheduling; 2. Priority-based scheduling of different users or services in a single FlexE hard pipe with FlexE sub-interfaces Industry Slicing MEC 5G LAN Positioning Security Device CN: Flexible Isolation Based on Service Requirements Shared in both control and Shared in the control plane and Isolated in both control and user planes isolated in the user plane user planes Control User Data Control User Data Control User Data plane plane plane plane plane plane plane plane plane Slice 1 Slice 1 Slice 1 A S UPF M M UPF A S P U A S P U F F P U Slice 2 Slice 2 M M UPF C D Slice 2 M M C D C D F F F M F F F M F M A S Slice 3 Slice 3 Slice 3 UPF M M UPF F F Resources designated by hosts Resource sharing by hosts AMF SMF UPF… AMF SMF UPF… AMF SMF UPF… AMF SMF UPF… Host group Host group 1 Host group 2 Host groups isolated from each other Shared host groups with high resource utilization 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 419/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 420/541 Industry Slicing MEC 5G LAN Positioning Security Device On-Demand Resource Isolation with Slices: 5 Typical Combinations for Differentiated Industry Requirements RAN TN CN Scenario 1 Slice 1 QoS priority toC public network UPF AMF SMF Full sharing transmission: QoS/HQoS Slice 2 Scenario 2 Common slice1 / RB@20M Scenario 3 toB shared slice: FlexE + UPF RB reservation channelized sub- AMF SMF Partial isolation slice2 / RB@80M interface/HQoS UPF Common toB exclusive slice: FlexE UPF AMF SMF Scenario 4 slice1 / cell 1@20M Exclusive Carrier isolation Complete isolation Scenario 5 slice2 / cell 2@80M toB exclusive slice: FlexE UPF AMF SMF Exclusive Typical scenarios: • Scenario 1: toC public network slice, focusing on network resource sharing and QoS priority-based scheduling (enterprise broadband, mobile rescue, and mobile surveillance) • Scenario 2/3: toB shared slices, enabling on-demand resource reservation (such as RBs reserved by cell) within the sharing range (power grid inspection and media live broadcast) • Scenario 4: toB exclusive slice, requiring high level of service isolation (power distribution automation) • Scenario 5: toB private network slice, with independent carriers (cells) or base stations (production services in mining areas or factories and departments with high security requirements) Industry Slicing MEC 5G LAN Positioning Security Device Operation Enabling Platform: Open, Cross-Domain, and One-Stop toB Solution Enabling Open, Agile, Differentiated, and SLA-guaranteed Network Operation Service operation platform CSMF+ (C+) • Multi-dimension charging: by traffic, rate, Capability access layer Enterprise self-service portal Service handling portal billing factors (1000+)... ce ation • Capability openness: built-in integration framework and open APIs Servi oper Product mgmt. Order mgmt. Customer mgmt. Resource mgmt. Charging mgmt. • Multi-channel portal: self-service for enterprises and integrators 5GtoB private line 5GtoB campus 5G smart port 5G smart grid operation …… Network operation platform operation enablement operation enablement operation enablement enablement NOE (N+) • Multi-scenario assets: private lines, private networks, and campuses NOE design One-stop agile service SLA monitoring and Network capability • Cloud + Network + X: cross-domain 5G + state cloud provisioning quality assurance openness enablement cloud + edge orchestration and provisioning service ork • Service-level SLA: visualization and assurance for enterprises Netw operation • One-stop provisioning: full-process provisioning of ARs and CPEs for enterprises Enterprise self-service Visualized network Campus self- Device mgmt. Service emulation test card issuing topology service management Campus self-management Autonomous slice Emergent fault report system Module mgmt. SLA simulation test system NOE-C adjustment handling • Self-service and self-O&M: premium services • Data processing within the campus: local pus ork Device RAN TN MEC CN Cloud deployment to meet enterprise requirements on information security Cam netw 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 420/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 421/541 Industry Slicing MEC 5G LAN Positioning Security Device MEC Hardware Offerings and Enhanced Connection Capabilities Various MEC Cabinets and Offerings for Different Key Capability Key Feature Typical Scenario Scenarios Campus access Flexible service • Location-, subscriber-, and service- Campus video 5GC splitting based traffic splitting surveillance Wide area • Traffic splitting capability openness 5GC Stadium live broadcast toB Layer 2 • 5G LAN Layer 2 communication Industrial control networking • Wide 5G LAN Layer 2 communication Industrial vision Province/City/District MEC Full-height cabinet (220 cm) • Stable forwarding latency of 1.5 ms Power differential Low latency (99.99%) protection assurance • Stable forwarding latency of 1 ms MEC (99.999%) to be implemented Industrial control Campus Half-height Tenant • E2E slice-based network isolation SME access in the cabinet (120 cm) isolation • Controllable and guaranteed bandwidth campus for different enterprises Currently recommended Front view Rear view One-stop • Integrated DNS Edge deployment hardware: E9000H-4U integration • Integrated NAT Enterprise one-stop • Integrated IPsec integration services New hardware in Campus access 2021: E9000H-2U (Planning) Security • Enterprise access via secondary High-level protection assurance authentication requirements Industry Slicing MEC 5G LAN Positioning Security Device MEC Enhancement in Industrial Vision and Video Surveillance Lossless Uplink Bandwidth Intelligent Detection of Uplink Compression in Industrial Vision Congestion in Video Streams MES+ Device-edge synergy, Congestion scheduling Manufacturing cloud Possible congestion in multi- 2 Congestion scheduling 2 exchanging computing coordination (internal protocol) collaboration (API or SDK) channel video concurrency power for bandwidth before optimization Image after Congestion eliminated insp MEP A insp decompression p Logo pearance after optimization 1 Uplink congestion SDK Compression app NWDAF Agent (MEES, e app monitoring service algorithm ction ection Industrial UPF decompressi Video management camera on service) MEC platform Compression 5G chipset module Macro base Visualized real-time NFVI/FS station + DIS 3 DIS traffic API Compression box Video streams optimization and scheduling command sending 2 (ONVIF/GB28182/SDK) z Pain points: High requirements on uplink bandwidth (70–600 Mbps) and z Pain points: congestion on the air interface caused by multi-channel limited devices that can access a single cell video I-frame collision, increasing uplink bandwidth and latency and deteriorating user experience z Solution capabilities: lossless compression algorithm used in the compression box on the device side and decompression on the edge z Solution capabilities: Real-time congestion monitoring and video center side to reduce requirements on wireless uplink bandwidth; 3X to 6X scheduling optimization for higher bandwidth utilization, lower lossless compression; compression duration < 100 ms latency, and less frame freezing or artifacts 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 421/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 422/541 Industry Slicing MEC 5G LAN Positioning Security Device MEC Builds an Open Edge Ecosystem Through Self-Construction and Aggregation Self-developed ecosystem Aggregated ecosystem Application: Provides one-stop services for app development and Development APP APP rollout ecosystem em official al officia website ebsite Telecom • Tool chain Jointly- Intelligent Edge Fabric • Development center cloud operated cloud (IEF) framework • Authentication center 5GC MAE control Enterprise IEF -CN portal Power line plane Industrial vision inspection Open source: Incubates the MEP open-source project Vehicle Cloud gaming recognition • Edge Gallery open-source project UPF MEP K8S • Independent community operation APP APP Applications with the public IEF agent cloud IEF framework can be OpenStack seamlessly migrated to MEC Industry: Works with vertical industries and the • Unified operation and industry chain Software platform at the computing node layer maintenance • Founding unit of the 5GDN industry VM Container • Unified container image alliance • 100+ alliance members working with • Unified container communication Centralized hardware resource pool GSMA/3GPP, etc. • Unified service access Campus surveillance Industrial vision Industrial control Live streaming Huawei Machine Vision * Note: The list is subject to update. Some undisclosed partners are not displayed. Industry Slicing MEC 5G LAN Positioning Security Device Public Network for Private Use — Ubiquitous 5G LAN Traditional Enterprise Local Network Typical Scenarios for Industrial/Campus L2 Networking z A LAN is the basic networking unit of a local host or device. Scenario 1: broadcast messages Scenario 2: Ethernet-based z Devices in the factory support only Layer 2 networking and communication communicate with each other through broadcasts. z Video surveillance IP camera (IPC) networking z PLC industrial Ethernet notification/discovery communication z Industrial vision camera z Multicast GOOSE power Trunking VLAN 2 & VLAN 3 networking notification/discovery communication VLAN 4 Receiver 1 Ethernet protocols Send a Ethernet Ethernet Receiver 2 broadcast driver driver Actual data flow between the customer and server … … … Receiver 3 Ethernet VLAN 2 (10.10.20.0/24) VLAN 3 (10.10.30.0/24) VLAN 4 (10.10.40.0/24) Scenario 3: Inter-domain/branch Scenario 4: LAN management in Pain Points of Traditional RANs communication an enterprise z Only Layer 3 interworking is supported. The Layer 2 protocol z Cross-campus/branch communication z Fixed IP address stack is not supported. z Access anytime, anywhere z VLAN division and z Complex deployment of access routers (ARs) is needed to management convert Layer 3 to Layer 2. Physical channel Public network Trunking (Internet) VLAN 2 & VLAN 3 Local Local VLAN 4 network network Virtual, private, & secure channel … … … Client VLAN 2 (10.10.20.0/24) VLAN 3 (10.10.30.0/24) VLAN 4 (10.10.40.0/24) Server 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 422/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 423/541 Industry Slicing MEC 5G LAN Positioning Security Device Ethernet Networking, LAN Management, and WAN Interconnection Private Network Management: Cross-Domain Connection: LAN L2 Networking: L3 → L2/L3 Wired → Wireless → WAN MEC 5G LAN group GSMF Ethernet 5G5TF management 5GC 5G LAN transport SMF network User UE Switch Group MEC MEC MEC UE 1 UG 1 5G LAN N19 F 5G LAN 5G5TF 5G LAN UE 2 UG 1 √ X Cross-domain connections 5G devices support the Industrial Industrial Industrial UE 3 UG 2 UE 1 UE 2 UE 3 UE 1 UE 2 UE 2 L2 protocol stack. Ethernet 1 Ethernet 2 Ethernet 3 Enable 5G networks to self-manage as wired Enterprise mobile private networks for Add an Ethernet layer to enable 5G in the private networks cross-region roaming and access anytime, OT/industrial vertical domains z 5G LAN group subscription/management anywhere z L2 broadcast/unicast and applications and multi-VLAN management z 3GPP Release 16: N19 interface between A- z Compatible with L2 industrial Ethernet and z DNN-based isolation and 5G LAN UPFs applications group/VLAN isolation z Campus interconnection in a region with z Local switching and dynamic z Fixed IP addresses allocated by single SMF generation/update of the route table collaborative enterprises' DHCP z UEs access the enterprise network without z Simplified networking, deployment- and z Enterprise portal for self-management dial-up anytime, anywhere. management-free AR enterprise routers z Flexible provisioning, configuration, and O&M management tools Industry Slicing MEC 5G LAN Positioning Security Device Three Positioning Algorithms to Continuously Improve Precision and Stability U-TDOA-based Positioning Field Strength Triangulation-based Positioning Fingerprint Positioning • Different pRRUs • The field strength pRRU1 measure the latency of pRRU2 signal of the UE is Sounding Reference obtained by multiple Signals (SRSs) sent r2 pRRUs. from the same UE. r1 • SRS Latency 4 pRRU3 r3 Latency 3 Latency 2 Latency 1 1 2 engthstr h 3 h 4 ength ield str F strengt strengt ield F eld eld Fi Fi • Calculates the distance between UEs and pRRUs • Calculates the distance between UEs and pRRUs • Matches the collected SRS signals of mobile phones based on the latency based on the path loss formula in the fingerprint library to obtain locations • Main method for highly precise cellular positioning • Assisted method for higher stability • Assisted method for higher stability 21A 21B 22AB Positioning Basic positioning capability High precision and stability Optimized linear scenario planning 90% of LOS scenarios: 2–3 m 90% of LOS scenarios: 1 m 90% of dual base stations: 1 m Positioning UTDOA UTDOA Dual base station positioning algorithm Field strength triangulation-based fingerprint 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 423/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 424/541 Industry Slicing MEC 5G LAN Positioning Security Device Device-Network-Edge-Cloud Synergy for E2E 5GtoB Security Security management and Security operation Operator DC 5GC/NMS/SOC service cloud z Open 5G security capability SOC/SECaaS/Reauthe z Unified MEC security O&M ntication z toB service security awareness z Security as a Service RAN TN UE CN-UP (SECaaS) Legacy camera MEC Slice 1 5G CPE UPF MEP VM 11 VM 1n VM 21 VM 2 n 5G camera Service Service Enterprise system 1 system 2 intranet/ Slice 2 Remote control Enterprise Hardware + FS private cloud 5G VR/MR Enterprise intranet Device security Network security MEC security border/private cloud security z z Network access control Slice isolation z Platform security z Border firewall/IPsec gateway z (identity, location, and slicing) Encrypted transmission z Border protection z MSCG border gateway control z z Enterprise secondary Anti-DDoS attacks z Security service z AAA server authentication Industry Slicing MEC 5G LAN Positioning Security Device 5 Control Points for Refined Device Access Authentication and Management 5G UE USIM 1 Enterprises' 5G + Operators' campus networks 2 4 Secondary AAA Service area 1 authentication 5G networks Service area 2 5 MSCG Service area 3 3 Super SIM SIM card USB key card 5 Control Points Refined Device Authentication, Management, and Control 1 Primary certification of 5G networks 5GC: Only devices that pass primary authentication can access the operator's 5G network. 5GC: Devices or apps' access to the enterprise slice is dependent on the mapping between IMSIs, app IDs, and slice IDs. 2 Slice access 5GC/base station: Which base stations are suitable for devices to access the 5G campus private network/slice for toB/toC 3 Location isolation? AAA server: Whether devices can access the enterprise intranet through the 5G network, including device-card binding and 4 Campus (secondary authentication) high-security SIM cards? 5 Accessible resource MSCG: Which service areas can be accessed by devices (role-based access control, RBAC)? 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 424/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 425/541 Industry Slicing MEC 5G LAN Positioning Security Device MEC Security Solution for On-Demand Security Capabilities SECaaS SECaaS for customized security requirements of MEC apps • Edge cloud security capabilities: provide various security Vulnerability Bastion Log audit capabilities for toB customers in SECaaS mode to flexibly and 5GC scanning host efficiently meet the security requirements of different services • Edge-cloud collaborated security services: build more security service capabilities through the center cloud, such as SECaaS platform platform vulnerability scanning, O&M audit, and intelligent Security service area security incident analysis and management On-demand MEC platform security selection and protection • Trusted computing: build a trusted chain of infrastructure based on TPM chipsets and remote attestation for integrity Router protection in dynamic startup and running states • Attack defense: deploy firewalls at the border, especially between MEC platforms and external apps, for intrusion MEC1 MECn detection and app-level resource and network isolation U M U M P E P E VM1 VM1 VM V 3 M VM4 VM5 VM6 • Intrusion detection: built-in threat awareness, intrusion F P F P VPC1 VPC1 VPC3 VPC4 detection, and anti-escape capabilities for Hypervisors, VMs, Hardware+FS Hardware+FS 5G RAN and containers Industry Slicing MEC 5G LAN Positioning Security Device Industrial Device Development Media Smart grid Smart mining Smart manufacturing Smart security Smart port Smart education ice dev Excavator Smart healthcare Smart steel 5G live broadcast Timing CPE Shearer Industry camera Body worn camera Customized backpack Huawei/CSG Tianma, Chuangli, Deviser/Cogent 2020 Q3 Huayue, etc. Microview Image TD Tech/Pe 2020 Q1 2021 Q3 2020 Q3 2021 Q2 Basic connection + Universal device Vehicle- Over 20 CPE, Camera AGV mounted UAV router, gateway, ersal ices device Basic and Dongle models Huawei/Hikvision/ Huaheng Kedacom Harwar/Tianyujingwei launched in 2020 dev Dahua 2020 Q4 2020 Q4 2020 Q4 connection Univ 2020 Q3 leu • 70+ 5G modules (GSA, 2020–11) d • Prices of entry-level modules reduced to Mo less than USD100 by 2021 • Four platforms, multiple high-end/mid-range setp 5G chipsets launched in 2020, laying the HiSilicon Balong 5000 Qualcomm X55 X60 Unisoc IVY510 MTK T750 Chi 2019 Q2 2019 Q4 2020Q1 2019 Q4 2020 Q3 foundation for the device ecosystem. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 425/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 426/541 Nesamostojno omrežje 5G Non-standalone 5G network Marko Grebenc1, Boštjan Batagelj2 1Huawei, 2Univerza v Ljubljani, Fakulteta za elektrotehniko marko.grebenc@huawei.com Povzetek existing 4G network. In the fifth generation of Mobilno brezžično omrežje pete generacije je, public mobile networks, organization 3GPP has za razliko od prejšnjih generacij, možno uvesti v exceptionally standardized non-standalone mode samostojnem ali nesamostojnem načinu. through simultaneous dual connectivity to LTE and Nesamostojni način omogoča zgolj enega (eMBB) NR. Several different architectural options are od treh osnovnih primerov uporabe definiranih v available for deployment, which can be configured zahtevah IMT-2020. Ob začetni uvedbi 5G se via different types of data radio bearers. The večina operaterjev odloča za nesamostojni 5G v article also presents the practical aspects of the dvojni povezljivosti z obstoječim omrežjem 4G. deployment of a non-standalone mode, the results Organizacija 3GPP je pri peti generaciji javnih of testing various bearers and the possibilites of mobilnih omrežij izjemoma standardizirala displaying the 5G icon in a non-standalone mode. nesamostojno delovanje preko sočasne dvojne Biografija avtorja povezljivosti LTE in NR. Za uvedbo je na voljo Marko Grebenc je prve izkušnje s več različnih arhitekturnih izbir, ki jih je možno področja mobilnih komunikacij nastavljati preko različnih vrst podatkovnih nekaj let pridobival v oddelku radijskih nosilnikov. V prispevku so predstavljeni radijskega planiranja, optimizacije tudi praktični vidiki uvedbe nesamostojnega in upravljanja omrežja pri načina, rezultati testiranj različnih nosilnikov ter mobilnem operaterju, kjer se je možnosti prikazovanja ikone 5G v nesamostojnem ukvarjal predvsem z optimizacijo načinu. radijskega omrežja. Poklicno pot je leta 2015 nadaljeval kot Inženir za brezžična omrežja v podjetju Huawei, Abstract kjer je skrbel za tehnično vpeljavo produktov in storitev Unlike previous generations, the fifth na področju mobilnih omrežij. Trenutno je v podjetju generation mobile wireless network can be Huawei zaposlen kot Regionalni vodja operative in deployed in standalone or non-standalone mode. vzdrževanja, kjer skrbi za vzdrževanje. Poleg tega, na The non-standalone mode allows only one (eMBB) področju radijskih dostopovnih omrežij, pripravlja of the three basic use cases defined in the IMT- izvedbene rešitve in vodi tehnično izvedbo tako pilotnih 2020 requirements. With the initial deployment of kot tržnih projektov, v zadnjem času predvsem s 5G, most operators are opting for a non- področja 5G. standalone 5G in dual connectivity with the 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 426/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 427/541 Author's biography Marko Grebenc has been gaining his first experience in the field of mobile communications for several years in the department of radio planning, optimization and network management at the mobile operator, where he dealt mostly with radio network optimization. He continued his career in 2015 as a Wireless Engineer at Huawei, where he took care of the technical implementation of products and services in the field of mobile networks. He is currently employed by Huawei as Regional Operations and Maintenance Manager, where he is in charge of maintenance. Besides that he is also preparing implementation solutions in the field of radio access networks and leads the technical implementation of both pilot and commercial projects, recently these are mostly from 5G field. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 427/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 428/541 Nesamostojno omrežje 5G Marko Grebenc marko.grebenc@huawei.com izr. prof. dr. Boštjan Batagelj bostjan.batagelj@fe.uni-lj.si Kaj je 5G? • Termin “generacija” ali oznaka “G” ni standardizirana je pa splošno uveljavljena. • Zahteve za vsako od t.i. generacij določajo mednarodni standardi IMT, ki jih izdaja ITU-R. Generacija Standard IMT Organizacija Tehnologija radijskega vmesnika CDMA Direct Spread 3GPP CDMA TDD 3GPP2 CDMA Multi-Carrier 3G IMT-2000 ATIS/TIA TDMA Single-Carrier ETSI FDMA/TDMA IEEE OFDMA TDD WMAN 3GPP LTE-Advanced 4G IMT-Advanced IEEE WirelessMAN-Advanced NR (novi radio) 5G IMT-2020 3GPP NR+LTE 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 428/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 429/541 Standard IMT-2020 (5G) • 2012 – Program IMT za 2020 in naprej • 2013 – Časovnica proti IMT-2020 • 2015 – Vzpostavljena ciljna skupina za IMT-2020 in izdana vizija IMT-2020 • 2016 – Objava devetih osnutkov priporočil in tehničnih poročil za IMT-2020 • 2017 – Zahteve, evalvacijski kriteriji in oddajne predloge za razvoj IMT-2020 • 2020 – Zaključek evalvacije in potrditev IMT-2020 tehnologij • 2021 – Podrobne specifikacije radijskih vmesnikov IMT-2020 (3GPP 5G-SRIT, 3GPP 5G-RIT, 5Gi) Zahteve radijskega vmesnika v IMT-2020 (5G) Trije glavni primeri uporabe: • izboljšan mobilni širokopasovni dostop (eMBB) – nesamostojni ali samostojni način 5G • izjemno zanesljive komunikacije z nizko zakasnitvijo (URLLC) – samostojni način 5G • množična komunikacija naprav (mMTC) – samostojni način 5G Vir: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 429/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 430/541 Časovnica razvoja omrežja 5G: mejniki najpomembnejših akterjev Vir: http://www.imt2020.org.cn/en/documents/download/22 Način uvedbe 5G v javnih mobilnih omrežjih: Samostojni (Standalone – SA), Nesamostojni (Non-standalone – NSA) • Okoli 20 operaterjev v 16 državah je že uvedlo 5G SA (januar 2022). • Okoli 30 operaterjev testira, uvaja ali pa je že uvedlo SA, vendar še ne ponujajo tržnih storitev. • Še vedno prevladujejo investicije in uvedbe v NSA načinu. Le 20% investicij je trenutno v način SA. Vir: https://gsacom.com/paper/5g-standalone-january-2022- member-report-with-annex/ 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 430/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 431/541 Organizacija 3GPP in razvoj standarda 5G NR: Zgodnja (NSA), osrednja (SA) in pozna (LTE na 5GC) objava izdaje 15 • Pri 5G je izjemoma omogočen nesamostojni način delovanja omrežja, izjemoma tudi 3 objave (drop) iste 3GPP izdaje (Release 15). Vir: https://www.3gpp.org/ftp/Information/presentations/presentations_2019/2019_05_Wireless-Russia-Sasha-Sirotkin.pdf Zakaj nesamostojni 5G? • Pritisk ekosistema 5G po čimprejšnji uvedbi omrežja 5G v praksi, vsaj na radijskem delu. • Preprečitev razdrobljenosti standardov 5G. • Kompleksno virtualizirano jedro 5GC. • Uporaba obstoječega jedra EPC omogoča hitrejšo uvedbo in manjše začetne stroške za operaterje. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 431/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 432/541 Primerjava med 4G in 5G parametri Parameter 4G Long Term Evolution 5G New Radio Full Name Long Term Evolution New Radio 3GPP Release Release 8 – Release 14 (LTE, LTE-A, LTE-Pro) Release 15 onward Frequency Range < 6 GHz Upto 52.6 GHz Voice, eMBB, Low Latency Application, Services Voice, MBB, IoT Massive IoT DL: CP -OFDM DL: CP-OFDM; Waveform UL: DFT -S-OFDM UL: CP-OFDM, DFT-S-OFDM FR1 Below 6 GHz: 100 MHz Max Carrier Bandwidth 20 MHz FR2 Above 6 GHz: 400 MHz Subcarrier Spacing (SCS) 15 kHz 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz Vir: https://www.techplayon.com/5g-and-4g-comparison/ Možnosti uvedbe 5G: Osnovne arhitekturne izbire (options) Vir: https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/Road-to-5G-Introduction-and-Migration_FINAL.pdf 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 432/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 433/541 Arhitektura omrežja 4G Nesamostojna arhitektura omrežja 5G v dvojni povezljivosti s 4G 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 433/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 434/541 Nosilniki v mobilnih omrežjih: Arhitekturne izbire 5G NSA odvisne od nastavitve podatkovnega radijskega nosilnika DRB Vir: http://140.117.164.12/data/ITRI_OAI/01_ITRI% 20LTE%20RRC%20software%20introduction_20 160415.ppt Dvojna povezljivost (Dual connectivity – DC) • Organizacija 3GPP je za nesamostojni način delovanja omrežja definirala t. i. večradijsko dvojno povezljivost (multi-radio dual connectivity – MR-DC). • Arhitektura MR-DC definira v radijskem delu omrežja dva logična radijska dostopovna elementa (bazni postaji). Prek glavnega elementa (master node – MN) vedno poteka izmenjava podatkov nadzorne ravnine z jedrnem omrežjem, odvisno od nastavitev pa lahko tudi izmenjava podatkov uporabniške ravnine. Prek sekundarnega elementa (secondary node – SN) pa se z jedrnem omrežjem izmenjujejo zgolj podatki uporabniške ravnine. • Arhitekturo MR-DC je možno uporabiti tako v kombinaciji z EPC kot tudi s 5GC. Arhitektura MR-DC v kombinaciji z EPC, je definirana kot EN-DC (Nesamostojni 5G). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 434/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 435/541 Nosilniki v E-UTRAN – NR dvojni povezljivosti (EN-DC) •Glavni element (master node - MN) •Sekundarni element (secondary node - SN) •Skupina glavnih celic (master cell group - MCG) •Skupina sekundarnih celic (secondary cell group - SCG) •Podatkovne radijske nosilnike razvrščamo glede na to ali se proti jedru zaključujejo preko MN ali SN elementa in glede na to ali so uporabljeni radijski viri MCG, SCG ali deljeni. Vir: https://www.wiley.com/en- us/5G+Radio+Access+Network+Architecture:+The+Dark+ Side+of+5G-p-9781119550884 Protokolni sklad EN-DC • 3KJHG`TUVUYZGPU2:+K4(OT48 M4( SUXGHOZO \`VUYZG\RPKTRUMOÎTO \SKYTOQ>VXKQUQGZKXKMGHG`TOVUYZGPO ÒSKTP[PKZGQXSORTKOT[VUXGHTOĆQK VUJGZQKQOPONUJ\OYTUUJÒHXGTKMG TUYORTOQGKTGUJHG`TONVUYZGP`JX[ģKTK ÒSKTP[PK`PKJXUS +6) • 6UJGZQKVUYRGTKYUÎGYTUVXKQU2:+OT48 TO\UPG82)\KJTÙJX[ģ[PKOTYKMSKTZOXG VXUZUQUR `RO\GTPGVGQKZTONVUJGZQU\6*)6 48 Vir: https://www.sharetechnote.com/html/ 5G/5G_LTE_Interworking.html 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 435/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 436/541 Arhitekturne podizbire 3 (option 3) v dvojni povezljivosti: EN-DC UE je sočasno povezan z LTE in NR Vir: https://www.3gpp.org/ftp/Information/prese ntations/presentations_2018/2018_10_17_to kyo/presentations/2018_1017_3GPP%20Sum mit_03_TSG-RAN_Bertenyi_Nagata.pdf Arhitektura strojne opreme večnačinovne testne bazne postaje LTE in NR 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 436/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 437/541 Praktični vidiki uvedbe nesamostojnega omrežja 5G Prikazovanje statusne ikone 5G v načinu NSA • Ob prehodu aktivne povezave v mirovanje (varčevanje z viri) se ikona iz 5G spremeni v 4G • Percepcija uporabnika je lahko, da omrežje 5G izginja • 3GPP je v sodelovanju z GSMA definirala bit »upperLayerIndication«, katerega definicija je: UE je vstopil v področje, ki omogoča zmožnost 5G. Bit se lahko vklopi na katerikoli LTE celici. •V tabeli je priporočilo za prikazovanje ikone uporabniških naprav na odprtem tržišču (open market devices – OMD), kadar je bit vklopljen. Problem samo enega definiranega bita je, da med stanji 2, 3 in 4 ni mogoče razlikovati. Če je bit vklopljen, to pomeni, da je za stanja 2, 3 in 4 prikazana ikona 5G, če je bit izklopljen pa ikona 4G. State UE Indicator 1 (IDLE under or Connected to LTE cell not supporting NSA) 4G 2 (IDLE under or Connected to LTE cell supporting NSA and no detection of NR coverage) 5G 3 (Connected to LTE only under LTE cell supporting NSA and detection of NR coverage) 5G 4 (IDLE under LTE cell supporting NSA and detection of NR coverage) 5G 5 (Connected to LTE + NR under LTE cell supporting NSA) 5G Vir: https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_81/Docs/SP-180866.zip 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 437/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 438/541 Prikazovanje statusne ikone 5G z »upperLayerIndication« bitom na LTE celici »upperLayerIndication« izklopljen: »upperLayerIndication« vklopljen: Povezava vzpostavljena Mirovanje povezave Rezultati testiranj nosilnikov: SN zaključen nosilnik MCG • Prenos podatkov poteka zgolj preko radijskega vmesnika LTE (4G). 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 438/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 439/541 Rezultati testiranj nosilnikov: SN zaključen nosilnik SCG • Prenos podatkov poteka zgolj preko radijskega vmesnika NR (5G). Rezultati testiranj nosilnikov: SN zaključen deljeni nosilnik SCG • Prenos podatkov poteka preko radijskih vmesnikov NR (5G) in LTE (4G) sočasno. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 439/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 440/541 Sklep • Nesamostojni način 5G je pohitril uvedbo na radijskem delu in preprečil razdrobljenost radijskih tehnologij 5G, vendar omogoča zgolj primer uporabe eMBB. V samostojnem načinu sta omogočena še mMTC in URLLC. • Najvišje hitrosti v praksi nudita arhitekturni izbiri 3 in 3x, saj bazna postaja 4G in 5G izmenjujeta uporabniške podatke preko obeh radijskih vmesnikov sočasno (LTE + NR). V praksi se bolje izkaže izbira 3x zaradi podatkovnih hitrosti omrežnih vmesnikov. • Vklop bita za prikaz ikone 5G na celici LTE je smiseln, vendar le na celicah LTE višjih frekvenčnih območjih in le na sektorjih kjer se oddaja tudi NR. S tem se zagotovi, da je prikazovanje bolj omejeno na območje, kjer naprave dejansko vzpostavijo povezavo 5G. • Dvojna povezljivost je energetsko bolj potratna. Dodajanje NR v povezavo je smiselno zgolj pri večji količini podatkov v čakalni vrsti za prenos proti uporabniški napravi, kar je možno nastaviti na bazni postaji. ܋ރ؁Ѝउ٫ҵ࠿Зы澝࠿З؟ڈ澝 Thank you. ࠿ЗুৃͫߣڏЅ࣒л৻ङ޴ਈЍउ澞 Bring digital to every person, home, and organization for a fully connected, intelligent world. Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved. The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 440/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 441/541 Sistemi za avtomatsko detekcijo radijskega signala Automatic radio signal detection systems Mirko Ivačič Think RF mirko@amiteh.com Povzetek coverage, spectrum sharing, and technology ThinkRF Spectrum eXperience Management changes over time. (SXM) uporablja omrežje zmogljivih RF- Biografija avtorja senzorjev, povezanih v oblak, za karakterizacijo, Mirko Ivančič je diplomiral leta optimizacijo in zaščito RF spektra, kot je npr. 1978 na ljubljanski Fakulteti za spekter omrežja 5G. SXM združuje ThinkRF elektrotehniko, smer telekomuni- tehnologijo analize RF spektra z napredno kacije in se zaposlil v podjetju Iskra analitiko v nastavljivi naročniški storitvi v oblaku. Elektrozveze, kjer je vodil oddelek SXM neprekinjeno in avtonomno pregleduje vsa merilne tehnologije. Leta 1984 se je omrežja 4G in 5G v regiji in operaterjem kot inženir za podporo tehničnih računalnikov zaposlil v zagotavlja dragocene vpoglede v konkurenco. Hermesu, v sektorju zastopstva za Hewlett-Packard. Od Posledično lahko operaterji spremljajo 1986 do 1992 je bil odgovoren za prodajo testno-konkurenčno zasedenost, pokritost, souporabo merilne opreme za področje Hrvaške, nato je postal vodja servisa in leta 1993 član uprave Hermes Plus, d. spektra in spremembe tehnologije skozi čas. d. in direktor podpore za vse HP-jeve izdelke za Abstract področje Slovenije, Hrvaške, Makedonije in delno The ThinkRF Spectrum eXperience Slovaške. Leta 1996 je postal direktor merilne skupine Management (SXM) solution uses a network of za prodajo in podporo elektronske, medicinske in powerful, cloud-connected RF sensors to kemijsko-analitske merilne opreme. Leta 1997 je characterize, optimize, and protect RF spectrum zapustil Hermes in po letu dni dela v podjetju Spes postal direktor Venture, podjetja za razvoj, proizvodnjo assets such as 5G networks. SXM combines in trženje plovil. Leta 2002 se je pridružil Avektisu, thinkRF’s RF spectrum-analysis technology with takratnemu slovenskemu zastopniku podjetja Agilent advanced analytics in a configurable cloud-based Technologies (bivši HP), kot vodja prodaje elektronske subscription service. SXM continuously and merilne opreme. Od leta 2010, ko je Agilentov partner autonomously characterizes all 4G and 5G za Slovenijo postal Amiteh d.o.o., pa dela pod okriljem network deployments in a region and provides tega podjetja, specializiranega za trženje operators with valuable competitive insights. As a visokokakovostne merilne opreme priznanih result, operators can track competitive occupancy, proizvajalcev Keysight Technologies, Rigol, Itech in ostalih. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 441/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 442/541 Author's biography Mirko Ivančič graduated in 1978 from the Faculty of Electrical Engineering in Ljubljana, majoring in telecommunications. After graduation he joined the company Iskra Elektrozveze, where he headed the department of measuring technology. In 1984, he took a job as a technical computer support engineer at Hermes, the Hewlett-Packard agency. From 1986 to 1992 he was responsible for the sale of test and measuring equipment for Croatia, then he became the head of the service and in 1993 a member of the Management Board of Hermes Plus, d. d. and director of support for all HP products in Slovenia, Croatia, Macedonia, and parts of Slovakia. In 1996, he became the director of the measuring group for the sale and support of electronic, medical and chemical-analytical measuring equipment. He left Hermes in 1997 and after a year at Spes company became director of Venture, a vessel development, manufacturing and marketing company. In 2002, he joined Avektis, the then Slovenian representative of Agilent Technologies (formerly HP), as head of electronic measuring equipment sales. Since 2010, when Agilent's partner for Slovenia became Amiteh d.o.o., he has been working for this company, which specializes in marketing high-quality measuring equipment from renowned manufacturers Keysight Technologies, Rigol, Itech and others. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 442/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 443/541 SRK 2022 Mirko Ivančič Automatic radio signal detection systems (YROXWLRQ RI:LUHOHVV7HFKQRORJ\ 5G 1G 2G 3G 4G AMPS GSM W-CDMA LTE 5G NR 30 kHz 200 kHz 5 MHz 20 MHz 400 - 2000 MHz 800 MHz 800 - 1900 MHz 800 - 2100 MHz 800 - 2100 MHz 500 MHz - 40 GHz 1987 2020+ 2019+ © thinkRF, 2020 © ThinkRF, 2022 Confidential 2 2 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 443/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 444/541 Growth of Wireless Technology © thinkRF, 2020 © ThinkRF, 2022 Confidential 3 3 Illegal use cases are growing rapidly © thinkRF, 2020 © ThinkRF, 2022 Confidential 4 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 444/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 445/541 New Ways to Inadvertently Disrupt Communications © thinkRF, 2020 © ThinkRF, 2022 Confidential 5 5 15-Watt FM transmitter © thinkRF, 2020 © ThinkRF, 2022 Confidential 6 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 445/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 446/541 The Wireless Environment Is Very Complex © thinkRF, 2020 © ThinkRF, 2022 Confidential 7 7 Prevent illegal use Why Monitor Spectrum? Optimize performance Protect critical infrastructure © thinkRF, 2020 © ThinkRF, 2022 © thinkRF, 2021 Confidential 8 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 446/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 447/541 Spectrum Monitoring Today © thinkRF, 2020 © thinkRF, 2021 © ThinkRF, 2022 Confidential 9 9 A truck full of monitoring equipment © thinkRF, 2020 © ThinkRF, 2022 Confidential 10 10 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 447/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 448/541 The Future of Spectrum Monitoring © thinkRF, 2020 © ThinkRF, 2022 Confidential 11 11 New use cases © thinkRF, 2020 © ThinkRF, 2022 Confidential 12 12 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 448/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 449/541 Spectrum monitoring in the not-too-distant future is distributed & persistent © thinkRF, 2020 © ThinkRF, 2022 Confidential 13 13 What are the key requirements? • Signal measurement • Signal analysis • Real-world operation • Transmitter Location • Distributed • Size, Weight, Power • Cost © thinkRF, 2020 © ThinkRF, 2022 Confidential 14 14 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 449/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 450/541 Bench-Top Spectrum Analyzers • Signal measurement • Real-world operation • Wideband Signal • Transmitter Location analysis • Distributed • Size, Weight, Power • Cos t © thinkRF, 2020 © ThinkRF, 2022 Confidential 15 15 Low Cost Software-Defined Radios • Size, Weight, Power • Signal measurement • Cost • Wideband Signal analysis • Real-world operation • Transmitter Location • Dis tributed © thinkRF, 2020 © ThinkRF, 2022 Confidential 16 16 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 450/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 451/541 thinkRF R5xxx Real-Time Spectrum Analyzer • Signal measurement • Signal analysis • Real-world operation • Transmitter Location • Distributed • Size, Weight, Power • Cost © thinkRF, 2020 © ThinkRF, 2022 Confidential 17 17 Persistent RF Monitoring Distributed, Networked Architecture for 24x7 Real-time RF monitoring Applications: • Interference Detection & Location • Performance Monitoring • Competitive Analysis • License Enforcement © thinkRF, 2020 © thinkRF, 2020 © thinkRF, 2021 Confidential 18 1818 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 451/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 452/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 452/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 453/541 Introducing Spectrum eXperience Management SXM Release 1 Real Time Wireless Infrastructure Intelligence 9 Real time notification of infrastructure changes New/changed/illicit cells & stations 9 Cell site characterization 9 Ubiquitous regional & national coverage 9 No capital investment or site maintenance 9 Subscribe only to desired datasets and regions © thinkRF, 2020 © ThinkRF, 2022 Confidential 22 22 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 453/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 454/541 Your Network SXM IOT Node Sophisticated fault tolerant Analytics RTSA with powerful signal We are proud to support this processing & networking Storage API features exciting technology to drive “ Node Mgmt insights-driven spectrum 600MHz Æ 8GHz management LTE cloud connection ” Dr. Ibrahim Gedeon CTO, TELUS Data Collection Network National network of >2000 SXM nodes © thinkRF, 2020 © ThinkRF, 2022 Confidential 23 23 SXM Monitoring Node Hi fidelity RTSA 600 to 8GHz Thermal management 100MHz bandwidth -40 to +50 C IP67 rated Integrated signal analysis Wall & pole mount options Edge processing IOT connectivity LTE IOT & GPS antenna Rx Antenna Optional external Rx Antenna © thinkRF, 2020 © ThinkRF, 2022 Confidential 24 24 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 454/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 455/541 SXM Network Deployment Options SXM node Company 1 SXM SXM Cloud node Private Private (logical partitioning) Company y SXM SXM Cloud node (physical partitioning) Private Company n SXM node Private SXM node Company x Shared Nodes Private Node(s) Private Network © thinkRF, 2020 © ThinkRF, 2022 Confidential 25 25 Dashboard – Typical Data from Node Device Id Capture Timestamp RAT EARFCN Fc PCI BW MCC MNC NB ID Cell ID Antenna RSSI(dBm) RSRQ(dB) 210414-002 2021-11-25 21:14:31 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -10.9 -15.8 210414-003 2021-11-25 21:14:21 eLTE 2,585 887.5M 454 5 302 220 219037 33 2x2 -32.8 -29.3 210414-003 2021-11-25 21:13:26 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -30.5 -14.4 210414-002 2021-11-25 21:12:30 eLTE 5,255 753.5M 63 5 302 220 219037 21 2x2 -17.6 -23.4 210414-002 2021-11-25 21:12:19 eLTE 5,060 734.0M 133 10 302 720 36123 9 2x2 8.0 -28.5 210414-003 2021-11-25 21:11:37 eLTE 5,255 753.5M 454 5 302 220 219037 21 2x2 -26.1 -33.6 210414-003 2021-11-25 21:11:25 eLTE 5,060 734.0M 133 10 302 720 36123 9 2x2 -13.2 -28.0 210414-002 2021-11-25 21:11:17 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -11.1 -15.2 210414-003 2021-11-25 21:10:21 eLTE 375 2,147.5M 325 5 302 490 112674 64 4x2 -50.4 -16.9 210414-003 2021-11-25 21:10:01 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -31.3 -15.1 210414-002 2021-11-25 21:09:34 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -10.9 -14.2 210414-003 2021-11-25 21:09:32 eLTE 9,720 723.0M 454 10 302 220 219037 11 2x2 -40.4 -16.0 210414-003 2021-11-25 21:07:08 eLTE 5,060 734.0M 133 10 302 720 36123 9 2x2 -15.8 -34.6 210414-002 2021-11-25 21:06:52 eLTE 5,060 734.0M 133 10 302 720 36123 9 2x2 4.4 -33.0 210414-003 2021-11-25 21:05:41 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -30.4 -17.2 210414-002 2021-11-25 21:05:11 eLTE 5,060 734.0M 133 10 302 720 36123 9 2x2 7.0 -31.8 210414-003 2021-11-25 21:04:00 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -30.3 -15.7 210414-003 2021-11-25 21:03:22 eLTE 9,720 723.0M 454 10 302 220 219037 11 2x2 -40.7 -17.8 210414-002 2021-11-25 21:02:49 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -11.5 -17.1 210414-003 2021-11-25 21:01:38 eLTE 5,060 734.0M 133 10 302 720 36123 9 2x2 -35.1 -30.4 210414-002 2021-11-25 21:01:30 eLTE 2,435 872.5M 485 5 302 720 36123 52 2x2 -11.3 -50.9 210414-002 2021-11-25 21:01:17 eLTE 375 2,147.5M 116 5 302 490 112674 64 4x2 -20.8 -32.9 210414-002 2021-11-25 21:00:56 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -11.6 -14.6 210414-003 2021-11-25 21:00:20 eLTE 225 2,132.5M 73 5 302 490 112674 21 4x2 -30.8 -15.2 210414-003 2021-11-25 20:59:44 eLTE 2,585 887.5M 454 5 302 220 219037 33 2x2 -39.4 -16.6 © thinkRF, 2020 © ThinkRF, 2022 Confidential 26 26 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 455/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 456/541 Spectrum Monitoring Simplified Spectrum e pectrum e eXperience Xperienc e e Management ( na an gement SXM (SX ) XM M Reduce Subscriber Churn Eliminate RF Drive Tests Identify transient interference. Attain / maintain performance leadership by dynamically adjusting 24/7 regional coverage provides the data you used to deployment in lockstep with competitors. get from RF drive tests, plus much more. Critical Competitive Insights Protect Critical Infrastructure Real-time insights about competitive network Identify and mitigate interference that can degrade or deployments and configurations. bring down your network. Improve Spectrum Efficiency No CapEx Continuously characterize opportunities in shared and Subscription based services. No maintenance. unlicensed spectrum bands. Just pure data as you need it. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 456/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 457/541 Uporaba mobilnega telefona za oceno odtisa radijskega okolja Use of a mobile phone for radio environment fingerprint assessment Aleš Švigelj, Tomaž Javornik Institut Jožef Stefan ales.svigalj@ijs.si, tomaz.javornik@ijs.si Povzetek direktno ne izda lokacije uporabnika ampak oceni Brezžične naprave, kot so mobilni telefoni, koliko je uporabnik oddaljen od sosednjih brezžične zapestnice ali pametne ure danes sprejemnikov. V okviru raziskav smo razvili praviloma uporablja ena sama oseba, zato jih lahko mobilno aplikacijo za spremljanje radijskega uporabimo za modeliranje človeških stikov, okolja in pripadajoče zaledne storitve. medsebojne bližine in mreženja. Sodobne Abstract komunikacijske sisteme sestavlja vrsta različnih Wireless devices such as mobile phones, brezžičnih tehnologij in omrežij, ki jih lahko wireless bracelets or smartwatches are now zaznajo uporabniki. Skupna značilnost večine commonly used by a single person. Thus, they can brezžičnih dostopovnih točk je, da jih brezžične be used to model human contact, proximity to each naprave zaznajo brez kakršnega koli posega v other or social networking. Modern samo telekomunikacijsko infrastrukturo. Tako communication systems consist of a number of uporabnik radijsko okolje spremlja s svojo napravo different communication technologies that can be pri čemer izkorišča ocenjene parametre radijskega detect by users. A common feature of most wireless kanala, da ustvari odtis radijskega okolja. base stations/access points is that they can be Uporabniki/radijske naprave, ki se nahajajo blizu detected by wireless devices without the need for drug drugi, zaznajo podoben prstni odtis radijskega any intervention from the infrastructure. Thus, the okolja. V raziskavi se ukvarjamo z opredelitvijo users monitor the radio environment with their "intenzivnosti stika" med osebami/napravami in device, using the estimated parameters of the radio raziskujemo inovativne metode za oceno channel to create a fingerprint of the radio "intenzivnosti stika" na podlagi odtisa radijskega environment. Users/ radio devices located close to okolja, ki jo je posnela uporabnikova naprava. each other perceive a similar fingerprint of the Osredotočamo se na tehnologije, ki jih je možno radio environment. In this research, we address spremljati z mobilnim telefonom, predvsem WiFi the "contact intensity" between people/devices and in BLE. Novost in prednost predlaganega investigate innovative methods for estimating the uporabniško usmerjenega pristopa je, da je "contact intensity" based on the footprint of the uporabnik tisti, ki spremlja »radijsko okolje« in ne, radio environment recorded by the user device. We da uporabniku »sledi« infrastruktura (npr. omrežni focus on technology that can be monitored with operater, ponudnik interneta, Google, ...). Metoda mobile phone, especially WiFi and BLE. The 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 457/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 458/541 novelty of our approach is that it is the user who is telecommunications elements, systems, and services. His monitoring the "radio environment" and it is not current work focuses on the advanced networking the infrastructure "tracing" the user (e.g. telcos, technologies for wireless systems and smart grids. He has participated in several national and international internet service providers, Google, ...). The method projects including COST projects. Recently, he was a does not directly output the user's location, but technical/scientific coordinator of the FP7 SUNSEED estimates how far the user is from neighboring project. He co-authored several books/book chapters receivers. As part of our research, we have and more than 80 peer-reviewed journal and conference developed a mobile application to monitor the papers. He is member of IEEE. radio environment and related backend services. Biografija avtorja prof. dr. Aleš Švigelj je doktoriral leta 2003 na Fakulteti za elektrotehniko Univerze v Ljubljani. Je višji znanstveni sodelavec na Odseku za komunikacijske sisteme na Institutu Jožef Stefan in redni profesor na Mednarodni podiplomski šoli Jožefa Stefana. Njegovo raziskovalno področje obsega modeliranja, simulacije in načrtovanje naprednih telekomunikacijskih elementov, sistemov in storitev. Njegovo trenutno delo pa se osredinja na napredne omrežne tehnologije za brezžične sisteme in pametna omrežja. Sodeloval je pri več domačih in mednarodnih projektih, vključno s projekti COST. Bil je tehnični/znanstveni koordinator projekta SUNSEED FP7. Je soavtor več knjig ter poglavij knjig, soavtor enega ameriškega patenta in več kot 80 recenziranih člankov in konferenčnih prispevkov. Je član IEEE. Author's biography Prof. dr. Aleš Švigelj was awarded his Ph.D. from the Faculty of Electrical Engineering, University of Ljubljana, in 2003. He is a research fellow in the Department of Communication Systems at the Jozef Stefan Institute and full professor at the Jožef Stefan Postgraduate School. He has extensive research in modelling, simulation, and design of advanced 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 458/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 459/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 459/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 460/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 460/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 461/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 461/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 462/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 462/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 463/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 463/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 464/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 464/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 465/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 465/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 466/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 466/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 467/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 467/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 468/541 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 468/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 469/541 Development of 24 GHz SAR platform for autonomous object detection Filip Turčinović, Marko Bosiljevac University of Zagreb, Faculty of Electrical Engineeering and Computing, Croatia filip.turcinovic@fer.hr, marko.bosiljevac@fer.hr Abstract Remote sensing today plays an important role Authors' biograpies in ensuring sustainability and protection of natural Filip Turčinović was born in resources, in saving time and energy in industry Rijeka in 1994. He received B.Sc. in 2016, and M.Eng. degree in and agriculture, and in many other applications. 2018 in computer engineering from These applications were previously reserved for the University of Zagreb, Faculty of large industries, however, with recent Electrical Engineering and developments in electromagnetic millimeter-wave Computing (FER), Zagreb, Croatia. From 2018 he (mm-wave) technology it is possible to build multi- works at the Department of Communication and Space spectral and radar sensors with reasonable Technologies at FER as research assistant. He resources. Our aim is to develop and demonstrate participated in the organization of several international a Synthetic Aperture Radar (SAR) platform based conferences.journal and conference papers. He is on 24 GHz FMCW (Frequency Modulated member of IEEE. Continuous Wave) radar module. For SAR Marko Bosiljevac was born in Zagreb in 1980. He received B.Sc., processing we will use a modified Range and Ph.D. degrees in electrical Migration algorithm implemented on an embedded engineering from the University of computer platform along with all the control Zagreb, Faculty of Electrical signalling and processing. Processed SAR images Engineering and Computing (FER), will be passed through a developed object Zagreb, Croatia, in 2005 and 2012, respectively. From detection algorithm which will allow the system to March 2006 he was working at the Department of work as a standalone platform for autonomous Wireless Communications at FER. He was a visiting detection of various objects or intrusions. The researcher at the University of Siena, Italy in 2010 and paper will present the details of the development 2011. As of March 2016 he is Assistant Professor at the process and the developed algorithms along with Department of Wireless Communications at FER. He published more than 50 papers in journals and the obtained results. conference proceedings in the area of analytical and numerical modelling and development of various electromagnetic and optical structures and systems. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 469/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 470/541 SRK K 2022 25TH SEMINAR R ON N RADIO O COMMUNICATIONS Developmentt off 244 GHzz SAR R platform m forr autonomouss objectt detection Filipp Turčinović,, Markoo Bosiljevac University of Zagreb, Croatia Radar • Radio Detection and Ranging • Transmits and receives signal Door (motion sensor) Police (radar speed gun) Medicine (MRI imaging) SRK 2022 - 25th Seminar on Radio-communications 2 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 470/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 471/541 Radar • Sentinel-1 SAR • Synthetic Aperture Radar • Radar is moving in orbit to synthesize a virtual 10 km long antenna from the physical 10 m antenna Source:ESA SRK 2022 - 25th Seminar on Radio-communications 3 Radar • Sentinel-1 SAR • Synthetic Aperture Radar • Radar is moving in orbit to synthesize a virtual 10 km long antenna from the physical 10 m antenna • GB-SAR • Radar moves along a rail track to synthesize a virtual 2 m long antenna from the physical 2 cm antenna Wang, Z.; Li, Z.; Liu, Y.; Peng, J.; Long, S.; Mills, J. A New Processing Chain for Real-Time Ground-Based SAR (RT-GBSAR) Deformation Monitoring. Remote Sens. 2019, 11, 2437. https://doi.org/10.3390/rs11202437 SRK 2022 - 25th Seminar on Radio-communications 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 471/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 472/541 Goal • Development of GB-SAR • Object recognition on SAR images Camera photo SAR image SRK 2022 - 25th Seminar on Radio-communications 5 FMCW radar • Frequency Modulated Continuous Wave (FMCW) radar • Transmits the frequency modulated signal and captures the signal reflection from the objects • Frequency is changed according to sawtooth law • Delayed reflected signal and VCO signal are mixed in the receiver SRK 2022 - 25th Seminar on Radio-communications 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 472/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 473/541 FMCW radar • Time delay in nanoseconds • Frequency obtained after mixing is proportional to the time delay ɒܤ ο݂ ൌ ܶ௦ • The distance to the target : ܿܶ ܴ ൌ ௦ο݂ ʹܤ SRK 2022 - 25th Seminar on Radio-communications 7 FMCW radar development 2,4 GHz 24 GHz SRK 2022 - 25th Seminar on Radio-communications 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 473/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 474/541 FMCW radar [2,4 GHz] SRK 2022 - 25th Seminar on Radio-communications 9 FMCW radar [24 GHz] • Raspberry Pi (RPi) • Controls VCO and records mixed signal • ADC/DAC • Innosent IVS-362 FMCW module • Integrated VCO, antennas and mixer SRK 2022 - 25th Seminar on Radio-communications 10 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 474/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 475/541 SAR (Synthetic-aperture radar) • FMCW -> 1D (distance) • SAR -> 2D (distance, shape and position) • Uses the motion of the FMCW over a target to synthesize virtually longer antenna Image resolution • Number of steps • step length, aperture length • FMCW radar properties • Frequency, bandwidth • Environment • Interference, distance to the observed object Rail track SRK 2022 - 25th Seminar on Radio-communications 11 24 GHz SAR radar development RPi generates sawtooth signal DA converter FMCW module • Mix transmitted and received signal AD converter RPi stores the signal Move the platform for one step SRK 2022 - 25th Seminar on Radio-communications 12 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 475/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 476/541 24 GHz SAR radar development RPi generates sawtooth signal DA converter FMCW module • Mix transmitted and received signal AD converter RPi stores the signal Image reconstruction SRK 2022 - 25th Seminar on Radio-communications 13 Image reconstruction Omega-k algorithm • Hilbert transform • Removing Residual Video Phase (RVP) • Azimuth Fourier transform • Matched filtering • Stolt interpolation • 2D Inverse Fourier transform 45 steps 1024 samples per chirp SRK 2022 - 25th Seminar on Radio-communications 14 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 476/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 477/541 Image reconstruction Omega-k algorithm • Hilbert transform • Removing Residual Video Phase (RVP) • Azimuth Fourier transform • Matched filtering • Stolt interpolation • 2D Inverse Fourier transform SRK 2022 - 25th Seminar on Radio-communications 15 Object recognition • Requests • Big dataset • High resolution • FMCW radar frequency • Number of steps • Aperture length • Labeled images SRK 2022 - 25th Seminar on Radio-communications 16 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 477/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 478/541 Object recognition • Requests • Big dataset • High resolution • FMCW radar frequency • Number of steps • Aperture length • Labeled images • Object recognition on SAR images vertical horizontal • Polarization diversity can be utilized SRK 2022 - 25th Seminar on Radio-communications 17 Automatic labeling Image processing and labeling SRK 2022 - 25th Seminar on Radio-communications 18 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 478/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 479/541 Conclusion • GB-SAR images provide new perspective • Various applications • Optimize object recognition • Adjusting SAR radar properties • Polarization diversity SRK 2022 - 25th Seminar on Radio-communications 19 Acknowledgment This work was supported in part by Croatian Science Foundation (HRZZ) under the project number IP-2019-04-1064. SRK 2022 - 25th Seminar on Radio-communications 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 479/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 480/541 EMF exposure and synchronization challenges in 5G Sanja Marković, Darko Lekić IBIS Instruments sanja.markovic@ibis-instruments.com, darko.lekic@ibis-instruments.com and processes. Keeping in touch with newest and most Abstract advanced telecommunication technologies and Planned use of millimeter waves by future equipment. Mr. Lekić has strong experience in wireless telecommunications, particularly the 5th synchronization of telecommunication networks with generation (5G) of mobile networks, has given rise more than 15 implemented systems in Balkans region. to public concern about any possible adverse effects to human health. Given limited reach, 5G will require cell antennas every 100 to 200 meters, exposing many people to millimeter wave radiation. 5G also employs new technologies which pose unique challenges for measuring exposures. New generation of radio networks in 5G produce new demands for quality of synchronization. High throughput and low latency are hard to achieve without well synchronized mobile devices and radio heads. That is why we need to set up proper synchronization network architecture and tune all network locations to fulfill high requirements and deliver high quality services to end customers. Authors' biograpies Sanja Marković is a Master of Science in Electrical Engineering and since 2016 is a member of IBIS Instruments’ Test and Measurement Division. During this time, she has been working closely with Regulatory Agencies, Science and Defence sector offering together with the experienced technical team high local support for market-proven solutions in RF domain. Darko Lekić is engineer with more than 18 years of experience. He is experienced in sales, technical support and management of technical resources, people 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 480/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 481/541 EMF exposure and synchronization challenges in 5G About Us Montenegro Macedonia Albania Since its founding in 1996, Ibis Instruments has grown to be one of the Markets largest test and measurement equipment providers in the SEE. Bosnia & Kosovo Slovenia Serbia Herzegovina Ibis Instruments is a partner for cutting edge technology companies. founded HQ presence 1996 Belgrade SEE 100+ Employees 30+ national CSPs and 300+ customers in over 10 countries Key facts • Market proven solutions • Skilled team • Financial stability • ITIL certified • ISO 9001 & 27000 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 481/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 482/541 5G NR – Health concerns With the 5G deployment plans, numerous concerns have arisen regarding RF safety. Main reasons are: - Higher frequency bands usage - Higher number of antennas - higher maximum power Source: www.emfexplained.info EMF interaction with the human body Energy (Joules, J) Power = = W Unit time ( ) Radiofrequency EMFs transfer power from its source Incident Some of the power is reflected and some is absorbed. Absorbed Reflected Eind The main component of the RF EMF that affects the body is the induced electric field inside the body, Eind (V/m) Biological body 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 482/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 483/541 EMF Relevant biological Interaction mechanisms Interaction mechanism 1: Nerve stimulation and dielectric breakdown If the Eind is below about 10 MHz and strong enough, it can exert electrical forces that are sufficient to stimulate nerves, and If the Eind is strong and brief enough (pulsed low frequency EMFs), it can cause dielectric breakdown of biological membranes. H2O is a polar molecule Interaction mechanism 2: Heat Eind exerts a force on both polar molecules (mainly water molecules) and free moving charged particles such as electrons and ions, forcing them to move, and converting the energy to heat. Source: Riccardo Rovinetti (creative commons) 5G Frequency ranges Frequency Range 1 (FR1) (Sub 6 GHz) - From 410 MHz to 7 125 MHz. - Maximum bandwidth: 100 MHz. Frequency Range 2 (FR2) (mmWave) - From 24 GHz to 52.6 GHz. - Maximum bandwidth: 400 MHz. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 483/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 484/541 EMF penetration depth Frequency range FR1 EMF energy skin penetration is same as currently used frequencies FR2 EMF energy is deposited mainly in superficial tissues At 6 GHz, most of the absorbed power is within the cutaneous Incident EMF 10 g SAR tissue, so within the upper half of a 10-g SAR cubic volume. 21.5 mm cubic volume surface For example, 86% of the power: 0.2 mm 21.5 mm • at 300 GHz is absorbed within 0.2 mm 8 mm • at 6 GHz is absorbed within 8 mm 21.5 mm 21.5 mm Source: ICNIRP 2020 EMF penetration depth As EMF frequency increases, exposure of the body and the resultant heating becomes more superficial, and above about 6 GHz this heating occurs predominantly within the skin. However, research has shown that high EMF frequencies cause heating within the dermis, and the vascular network can transport this heat deep within the body, which can increase body core temperature beyond the 1°C. So, it is ICNIRP’s opinion that it is still appropriate to also protect against body core temperature rise above 6 GHz. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 484/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 485/541 5G EMF Assessment EMF exposure challenges: 9 Beam Forming 9 Beam steering - To force 5G beams 9 Coexisting Technologies: - To assess the total exposure 3G, 4G, FM, TV, etc. - Exposure vs Traffic Source: www.emfexplained.info Methods for EMF Measurements in 5G NR Bands International EMF organizations are currently writing the standards for EMF measurement procedures in 5G applications. There are three main methods, which all have their various advantages and disadvantages. ̶ Broadband Measurement: Fast, not expensive, no advanced technical knowledge needed. No complete extrapolation possible (was already true in 4G) ̶ Frequency-selective Measurement: Detailed frequency information and extrapolation possible (not perfect and not easy due to beam forming) Not fast, expensive and advanced technical knowledge needed. No isotropic solution for FR2. ̶ Code-selective Measurement: Detailed information and extrapolation possible Not fast, expensive and advanced technical knowledge needed. No isotropic solution for FR2. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 485/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 486/541 EMF total exposure assessment To consider all EMF environment, including Broadband field probe. FM, TV, 3G, 4G and 5G’s FR1 and FR2. Example: Wavecontrol WPF60 (1 MHz – 60 GHz) To consider all EMF environment, including Broadband field probe. FM, TV, 3G, 4G and 5G’s FR1. Example: Wavecontrol WPF8 (100 kHz – 8 GHz) You may want to consider all present cellular energy, forcing a 5G connection. Traffic beam forced towards a Wavecontrol SMP2 field meter by means of the user equipment (U.E.). EMF total exposure assessment 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 486/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 487/541 Conclusion ― Using broadband solution, you can also assess maximum exposure by forcing traffic. ― Wavecontrol probes are 5G ready, with the aid of WPF40 and WPF60 (allowing up to 40 and 60 GHz), the new bands in FR2 can be covered. ― Area monitors are excellent solutions for continuous assessment of RF exposure, including the 5G NR bands. RF Assessment Solutions for 5G and previous gen.: Telecoms Group 1 (410 MHz – 7 GHz): 2G, 3G, LTE, 5G FR1 band (WPF probes) frequency ranges Group 2 (24.25 – 52.6 GHz): 5G FR2 band (WPF40 and WPF60 probes) 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 487/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 488/541 Modern network synchronization Every Major Market We Address Is Developing New Services These Services Need More Precise Timing In More Places Power Utilities Financial Services Data/C Dalotu ad Ser Ce vi nctes er / Cloud Services Communications Transportation Smart Cities Position Navigation & Time Services Connected Vehicles Drones etc 5G promises Ubiquitous High Speed Real Time Low Latency connectivityfor Humans & Machines Precise Time services are increasinglyrequired by Communications, Power Control Systems, Financial Services, Vehicles, & Smart City / IoT applications. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 488/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 489/541 Evolution of Power, Cable, Data Centers, & Telecom Networks From a Sync and Timing Perspective Evolution of Power Network Requirements & Transport Drives Changes In Synchronization In The Power Industry +/-1us 1970 1980 2000 2010 2020 2025 1PPS IRIG-B GPS All switches in the PTP sub-station LAN require Transparent Sub-station and Clock (TC) function synchro-phaser to enable 1us services require timing performance & rely on precise timing. IRIG-B with GPS ETHERNET today moving to Transport TDM OTN PTP as Ethernet replaces SDH & SSU GM IRIG RF / TDM Sync Cs GPS 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 489/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 490/541 Evolution of Cable Network Requirements & Transport Drives Changes In Synchronization In Next Gen Cable Networks 1980 1990 2000 2010 2020 2025 Cable requires +/-1ms CMTS to RPD precise timing DOCSIS 1.0 between the DOCSIS 2.0 Cable Head End and the Cable Cable networks DOCSIS 3.0 Modem are moving from DTI to PTP as DOCSIS 3.1 Ethernet replaces RF over TDMA in These the Core requirements drive the cable ETHERNET network sync Transport engineering. RF/ TDMA / TDM OTN Time PTP Sync Creator GM PDH SSU Evolution of Service Requirements (Financial Services, Search Response Times, SDN/NFV…) is Driving Changes In Synchronization In Data Centers Data Centers are 1980 1990 2000 2010 2020 2025 rapidly evolving to require more NTP v3 1sec precise timing. NTP v4 100ms-4ms 1usec PTP Today NTP with 4ms to 100’s ms of accuracy Fast ETH, Transport Financial trading 1GE, Fiber Channel accuracy target <100 usec (wrt 10G, 25G 40G UTC) 100GE 400GE S/w NTP SyncServers GM Sync GPS Cs 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 490/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 491/541 Evolution of Mobile Services & Network Transport Drives Changes In Telecom Synchronization Requirements & Architectures Air I/F 1985 1990 2000 2010 2020 2025 1G 2G GSM FDD: +/-50ppb 3G WCDMA EDGE 4G LTE FDD +/-2.5us 2G CDMA 3G EVDO TDD: 4G LTE-TDD / LTE-A Faster Wireless Depends +/-1.5us connections on Air I/F 5G Basic Service require & rely on spec changes in network 5G Advanced transport and in synchronization ETHERNET architectures in the Transport Core and at the TDM OTN Mobile Edge SSU GM PRTC PRTCB Sync Cs GPS GNSS ePRTC Forums, Standards, & Requirements Focusing on Telecom Architectures & System Sales 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 491/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 492/541 First: The 5G Initiatives: A Huge Global Effort by Mobile Operators, RAN OEM, Component Suppliers, etc Organization Members Main Focus ORAN Alliance AT&T, China Mobile, DT, NTT, Orange, Airtel, China eCPRI fronthaul, Open interfaces, Telecom, KT, Sprint, Singtel, SK Telecom, Telefonica, White Box & Fronthaul (openRAN + XRAN) Telstra, Nokia, Fujitsu, Cisco, BDCM, Intel, Google, specifications. Network Mavenir, Why Alt is ios t ta h r, isParal im el, p S o ol r id t , a e ntc t … ? Virtualization (SDN/NFV) Time Sensitive Nokia, Samsung, Huawei, Cisco, ZTE, China “Engineering Time initiative Network: TSN Mobile, Softbank, Rakuten, Singtel, SKT, Telefonica, Protocols into Ethernet Transport“ (IEEE 802.1C St M) andards Drive Sync Architectures and Specifications Telstra, Broadcom, Intel, Mavenir…. TelecomInfra 5G B ForT, uCsqua ms re r d, el D yT, E o tis n alat, K 3G PN, M PP/ TN, 5G Orange PP f , oTrIM, Sy“C n reat c in R ga new equir appr emoach ent to s Project: TIP Telefonica, Telenor, Telia, Turkcel , Vodacom, building and deploying telecom at the Base station and ITU-T to State the Transport Vodafone, Zain, etc… network infrastructure” Small Cell Forum Requi rAT&T em ,Alt enios t t s ar,Parallel, Huawei, Nokia,QLCM, “Driving network densification We b u iC l o dmms cl cope, S ocks prtint o, Tel mefoni eetca,T orelstra,Fujitsu, exceed th worl osedwide” fre specief, iTelus cat, i ons Belgacom, Softbank.…. Microchip participates in all of the above 3GPP: Performance of the Radio Air Interface ▪ The 3GPP specifies maximum Frequency or Time Error between the Radio Antenna and the Mobile device ▪ This is Radio Application Specific • i.e. GSM, CDMA, LTE-FDD, LTE-TDD, LTE-A, 5GNR, etc) Radio Head to User Entity coordination Radio to Radio UE coordination eNB 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 492/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 493/541 Mobile Network Frequency/Phase Specifications are Based on Specific Radio Service Inter Cell / UE Alignment Requirements (3GPP) UE SyncE was designed for this +/-50 FDD: frequency alignment application (replicating E1/T1). ppb 2G:GSM, 3G:WCDMA, (syncE may not be stable 4G:LTE enough for 5G NR Frequency +/-50 ppb recovery) TDD: Absolute phase alignment UE 4G: LTE-TDD, 4.5G LTE-A +/-1.5 usec Requires Distributed PRTC 5G NR Basic Service : based Timing Architectures +/-1.5usec Time Error from UTC +/-1.5usec 5G NR UE Relative phase alignment Advanced 5G services at the +/-130 +/-130 nsec between eNB network edge wil be mostly ns connected to the same DU PTP based, especially for (Radio Aggregation device) small 5G Radio Units +/-130ns Time Error Limits for LTE & 5G Services: LTE-TDD / LTE-A & Basic 5G Services 5G Advanced Services Absolute TE Limits Intra-site & Relative Limits Applicati eNB Problems if Non on Phase Compliant LTE (TDD) ±1.5us Spectrum inefficiency, Packet collision LTE-A function eICIC Interference and crosstalk ±1.5us CoMP ±1.5us Poor signal quality MBSFN ±1.5us Broadcast degradation 3GPP TS 36.101/104 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 493/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 494/541 ITU Specifies All Network Attributes from GNSS to Radio Head ▪ Functions, Protocols, Clock Types, Distribution Methods, Timing Architectures, Timing Performance for every element in the Network UTC GNSS input to Air Interface Radi Rad o i Head Source Mobile Back Haul Fronthaul Clock Network Transport BBU to RU BBU G.8262 / G.8265.1 / G.8275.2 Timing Protocols NOTE THE LTE FRONTHAUL TIME ERROR - +/-400ns PRTC Transport PDV & Asymmetry ±400nsec ±100 ns ± 1000 nsec @ the eNB 4G: Focused on Mobile Backhaul 5GNR: Focuses on Mobile Fronthaul From Frequency to Phase based Radio Services 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 494/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 495/541 4G Terminology:Backhaul, CPRI, BBU, RU Base Radio Clock Band Unit Unit Ethernet BackHaul CPRI FrontHaul SyncE & PTP for sync CPRI carries sync (proprietary) The BBU terminates the Radio I/Q and sends user data to the network The BBU also terminates the CPRI physical interface (dedicated fiber) 4G Time Error: Mobile Backhaul/Local Fronthaul SyncE & PTP for timing on the Mobile Backhaul BBU to RU Timing is CPRI over Fiber @ the Tower RU Primary CPRI Reference “Local” Time Clock FrontHaul syncE or PTP Timing Flow BBU to RU BBU Mobile Backhaul Network Timing over Ethernet between PRTC & BBU Bac Ba k c ha kh ul aul Tr T a r T n a s n por po t r : t r PD P V D & Asymme Asy m mmetr t y r ± 10 1 00 00 ns n ec PRTC +/-100ns Transport +/-1us BBU to RU ±400ns End to End Time Error Budget = +/- 1.5usec 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 495/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 496/541 4G cRAN:CPRI over Fiber Fronthaul/ BBU Aggregation Radio Primary +/- 1.5usec Head Issues with CPRI Reference Time Clock Power hungry Proprietary Expensive Requires many BBU BBU pool Fronthaul TE budget syncE or PTP Timing still +/-400 nsec CPRI carries Timing RAN CPRI cannot deliver 5G bandwidth to the UE Ethernet Mobile Backhaul CPRI over Fiber Fronthaul PRTC +/-100ns Transport +/-1us CPRI Fronthaul to RU ±400ns End to End Time Error Budget = +/- 1.5usec 5G Terminology:Backhaul, Fronthaul over Ethernet, CU, DU, RU The “CPRI” BBU is split into 2 functions Centralized Distribution Unit Unit Radio Unit Ethernet Ethernet BackHaul FrontHaul Clock SyncE / PTP carries sync PTP carries sync • The DU terminates the Physical Radio I/Q and sends user data to the CU in the network. • The DU to RU is Ethernet. CPRI only carries user data to the RU • PTP is used for sync, with GNSS possible 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 496/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 497/541 5G Advanced Services: PTP Replaces CPRI for Timing Centralized Unit (CU) and Distributed Unit (DU) Fronthaul TE Budget reduced from +/-400 to +/- 130 nsec to enable Advanced Services RU R Core PTRC Edge Clock eCPRI / PTP for Timing Ethernet from DU to RU Virtualized Central Unit syncE or PTP PTP DU Mobile Backhaul Mobile Fronthaul PRTC +/-100ns Backhaul Transport +/-1.27us 5G Fronthaul +/- 130nsec End to End Time Error Budget +/-1.5usec 5GNR Generic Network Architecture TimePictra Everywhere RU PTP Ethernet Backhaul G.8275.1 / G.8275.2 MPLS Core BC PRTC DU RU 260ns G.8275.2 + APTS BC ePRC DU PTP Fronthaul +/-1.5us RU vCU ePRTC PRTC RU BlueSky DU G.8275.1 over Ethernet or DWDM PTP HPBC HPBC HPBC BC 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 497/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 498/541 GPS Threat Protection and Security GNSS has become the “utility of utilities” Data/Cloud Services 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 498/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 499/541 GNSS is a single point of failure for Critical Infrastructure Data/Cloud Services Growing concern of GNSS Vulnerability impact on timing WSTS GNSSSegment Environmental Errors Causesof GNSS Timing Signal Adjacent-Band Degradation Jamming Transmitters RARE Spoofing This, as well as solutions for mitigating these vulnerabilities, is discussed in the ATIS technical report on GPS vulnerability ATIS-0900005, which can be downloaded here: http://www.atis.org/01_resources/whitepapers.asp 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 499/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 500/541 BlueSky GNSS Firewall Firewall concept Physical Firewall at Electrical Substation Unprotected PNT from the Sky Secure PNT for Critical Infrastructure Network Firewall © 2018 Microsemi 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 500/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 501/541 Validated GPS Output ▪ Validated GPS output provides a copy of the actual GPS signal being analyzed ▪ When anomalous conditions are detected, firewall turns Validated output off ▪ Validated output includes L1, L2, and L5 signals, Galileo and GLONASS ▪ Enables downstream system that use multiple frequencies (such as SAASM or M-code) to use Blue Sky GPS Firewall to provide additional layer of protection Monitoring and management of sync network Monitor sync signals to understand and act proactive 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 501/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 502/541 End to End Portfolio TimePictra End to End Synchronization Network Management 5071A Remote PHY 5071A Tim Ti e m S e our S ce ce SSU 2000 e E PR nhaTC nced PRTC eNodeBs TimeProvider® 4100 TimeProvider® 5000 1588/SyncE DPLL IGM 11 1 00 00 TimeProvider® 4100 Core Clocks Gateway and Edge Clocks Indoor /Outdoor mini-GM Embedded Clocks • PRTC + GM + APTS Clocks • ePRTC, PRTC, and • Up to 790 clients • 4-32 Clients • PTP Slave Clocks redundant GM • PTP, Sync-E, T1/E1 • Integrated Antenna • PTP Boundary Clocks • 100s to 1000s of clients • Advanced fan out • PTP, Sync-E • Sync-E • PTP, Sync-E, DTI, T1/E1 CORE AGGREGATION ACCESS TimePictra unifies “Frequency and Phase Platforms” TimePictra Management & Monitoring TimePictra unifies management & visibility for complete portfolioof Microsemiproducts 5071A 5071A Smart antenna TimeSource Enhanced PRTC SSU-2000 TimeProvider® Family IGM 1100 Family 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 502/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 503/541 Dynamic maps of PTP Clients TimePictra – Realtime network indication • Shows you the Asymmetry, in real time • Shows you the Backup Path Go / No-Go • Keeps the History for up to a year 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 503/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 504/541 Thank you 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 504/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 505/541 Gbit radios for the mobile anyhaul Attila Hilt NOKIA & Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics attila.hilt@nokia.com support high link throughputs, higher and higher Abstract carrier frequencies are introduced. State-of-theart Traditionally, the microwave and millimeter- wave (μ/mmW) links have been limited by thermal radios offer excellent possibilities in the millimetric (E, V and W) bands. In the paper the noise. Long microwave hops had to connect distant long road to nowadays Gigabit radios is presented. sites of several kilometers. The antennas were Starting from the very early microwave mounted on high altitude towers. Unwanted experiments, the evolution of mobile networks and interference was eliminated with proper link anyhaul is shown. Finally, some design examples design and frequency re-use plans. The link design are presented for the recent use of the E-band. focused on Free Space Loss, rain and atmospheric attenuation. Fading events (e.g., attenuation due to rain or multipath) can significantly reduce the Author's biography received signal level and degrade the link Attila Hilt graduated in Electrical performance. In worst case, the microwave Engineering from the Technical connection is cut resulting in outage. In the last University of Budapest (BME) in two decades we observed a rapid breakthrough in 1990. In 1989 he joined the direct fiber-optical access. The very long Research Institute for Telecommu- microwave backbone links have been nications (TKI), Budapest, Hungary. Until 1999, he led the Telecommunication Test systematically replaced by fiber-optics wherever it Laboratory of TKI. In 1999, he received the doctorate was possible by terrain conditions. Consequently, degree in Optics, Optoelectronics and Microwaves from the majority of μ/mmW links became shorter and INPG, the ‘Institute National Polytechnique de shorter. In urban environments, the wireless hops Grenoble’, in France. In 2000, he received the PhD are typically shorter than five-six kilometers. On degree at the Budapest University of Technology and the other hand, there is a huge demand for a Economics. Attila Hilt joined Nokia in 2000, where he is flexible LTE, 5G and 6G front- and backhaul currently working as a lead architect. He has been (commonly called anyhaul). In mobile systems the involved in the dimensioning and planning of several μ/mmW anyhaul became extremely dense. 5G and mobile and cloud networks. He participated in the 6G mandate challenging user bit rate and latency testing, piloting, deployment and optimization of mobile and backhaul networks, including nationwide requirements. To avoid radio interference and 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 505/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 506/541 modernization projects in Europe. He worked for two years in Slovenia too, for the mobile network roll-out and modernization of two Slovenian Operators. His research interests include: measurement techniques, fixed, mobile, wireless, cloud-based networks, and microwave, millimeter-wave, photonic systems. He is an author and co-author of over 80 scientific papers and 120 research, project and test reports, including guidelines and specifications in the field of telecommunications. He is a member of the Scientific Association of Infocommunications (HTE) and the Hungarian Chamber of Engineers (MMK). Since 2016, he is a member of the Telecommunications Public Body of the Hungarian Academy of Sciences (MTA). Since 2018, Attila Hilt is a member of the Telecommunications Scientific Committee (TTB). He is one of the editors of HTE’s Infocommunications Journal. Attila Hilt is associated professor at the Faculty of Electrical Engineering and Informatics of Budapest University of Technology and Economics (BME-VIK) since 2019. He gives lectures on optical telecommunications and lightwave system applications. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 506/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 507/541 Gbit Radios for the Mobile Anyhaul (invited paper) Attila Hilt*# *Nokia Cloud and Network Services, H-1083 Budapest, Bókay János utca 36-42, Hungary #BME-VIK, Budapest University of Technology and Economics, Faculty of Electronic Engineering and Informatics, HVT, Department of Broadband Infocommunications and Electromagnetic Theory, Hungary e-mail: attila.hilt@nokia.com Abstract – Traditionally, the microwave and millimeter-wave (μ/mmW) links have been limited by thermal noise. Long microwave hops had to connect distant sites of several kilometers. The antennas were mounted on high altitude towers. Unwanted interference was eliminated with proper link design and frequency re-use plans. The link design focused on Free Space Loss, rain and atmospheric attenuation. Fading events (e.g., attenuation due to rain or multi- path) can significantly reduce the received signal level and degrade the link performance. In worst case, the microwave connection is cut resulting in outage. In the last two decades we observed a rapid Fig. 1. 1931: the first successful μW link between Calais and Dover [1] breakthrough in direct fiber-optical access. The very long microwave However, there were a few experiments focusing peaceful backbone links have been systematically replaced by fiber-optics applications too. One of the most interesting experiments was wherever it was possible by terrain conditions. Consequently, the the Moon-RADAR [2][3]. The original idea was to use the majority of μ/mmW links became shorter and shorter. In urban environments, the wireless hops are typically shorter than five-six Moon as a passive repeater for microwave communications. In kilometers. On the other hand, there is a huge demand for a flexible 1945-47 a team of Hungarian researchers –led by professor LTE, 5G and 6G front- and backhaul (commonly called anyhaul). In Zoltán Bay– measured the Moon-Earth distance using an array mobile systems the μ/mmW anyhaul became extremely dense. 5G of microwave dipole antennas (Fig.2). and 6G mandate challenging user bit rate and latency requirements. To avoid radio interference and support high link throughputs, higher and higher carrier frequencies are introduced. State-of-the- art radios offer excellent possibilities in the millimetric (E, V and W) bands. In the paper the long road to nowadays Gigabit radios is presented. Starting from the very early microwave experiments, the evolution of mobile networks and anyhaul is shown. Finally, some design examples are presented for the recent use of the E-band. Keywords – 5G, 4G, mobile anyhaul, digital radio, PDH, SDH, GbE, System Gain, hop-length, optimization, rainfall, availability. I. A BRIEF HISTORY OF MICROWAVE RADIOS FROM FIRST EXPERIMENTS TO MOBILE ANYHAUL Fig. 2. 1945-47: The antenna of the Moon-radar experiment [2] A. Pioneer Works at Microwave Frequencies The history of microwave (μW) and millimeter wave B. Analog and Digital Radio-Relay Links (mmW) radios is older than 90 years. One of the very first The breakthrough for commercial telecommunication transmission experiments was successfully performed between application of microwave technology has been started by AT&T Dover, England and Calais, France over the English Channel in with the famous ‘Long-Lines’ [4][5]. The first microwave radio- 1931 [1] Fig.1 shows the three meters diameter antenna of the relay chain called ‘Long-Lines’ was built between New York link. The duplex μW link transmitted voice, telegraph and and Boston. As seen in Fig.3, eight links formed together a facsimile images at 1.7 GHz frequency. The transmit (Tx) and 354 km (220 miles) long chain. Officially AT&T started its receive (Rx) directions used separate antennas. The receiving operation in 1947 [6]. The multi-channel systems operated in the antenna is seen behind the transmitting antenna in the right side. 4 GHz band and transmitted both telephony and analog During World War II the application of microwave television (TV) signals. Soon the first ‘Long-Lines’ were frequencies focused on military applications, namely the followed with the 5000 km long New York - San Francisco development of RADAR (Radio Detection and Ranging). chain having 107 relay stations, in 1951. In several countries, SRK’2022 1 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 507/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 508/541 such analog microwave radio-relay links operated for decades as To determine the occupied power bandwidth (OPBW), we trunk lines for traditional PSTN (Public Switched Telephone need to measure the spectrum of the transmitted signal. The goal Networks) and analog TV signals. is to maximize the transmission capacity inside the radio’s own channel, meanwhile unwanted emissions to any neighboring altitude of relay station above the sea level [m] channels must be reduced to the minimum. In the early years of digital radio-relay links, the spectral efficiency was weak. distance between Spectral efficiency is calculated as the bit rate R transmitted over relay stations the occupied RF bandwidth B [13]: [ / ] = [ ] As seen in the 2-FSK example of Fig.5, for the transmission of the 2 Mbps digital bit rate, a 7 MHz radio frequency (RF) North channel was occupied. Due to the increasing number of microwave links, more efficient modulation modes, such as QAM (Quadrature Amplitude Modulation) are required [13]- [15]. The technology of μ/mmW semiconductors and integrated Fig. 3. 1947: The first μW radio relay chain: the AT&T ‘Long Lines’ [4] circuits evolved rapidly together with the adaptation of digital During the 80’s the old analog radio links were step-by-step signal processing and coding techniques [14]-[20]. The tele-replaced by digital, mainly PDH (Plesiochronous Digital communications industry has been prepared to deliver reliable Hierarchy) links in most of the countries [7]-[13]. The PDH electronics for the next step: the huge demand for digital radios radio links were soon followed by SDH Microwave Digital to build mobile networks. Radios (MDR) to serve as high-capacity backbone (BB) II. M connections [14]. As an example, Fig.4 shows ‘Radio Bridge’, ICROWAVE RADIO LINKS IN MOBILE NETWORKS an early developed 26 GHz radio-relay utilizing 2-FSK (two-The real ‘big boom’ for μW and mmW digital radio links state Frequency Shift Keying) modulation [12]. The 2 Mbit/s started in the 90’s. In July 1991, the Finnish prime minister (2 Mbps) digital radio was designed and built in Hungary in Harri Holkeri made the first GSM (Global System for Mobile 1989. In fact, ‘Radio Bridge’ was the first 26 GHz digital Communications) call using the 900 MHz network of the microwave radio link installed in Hungary. Finnish operator ‘Radiolinja’, built by Nokia and Siemens. In 1992 the first commercial GSM mobile phone, the Nokia 1011 became available. In most of the countries, earlier analog mobile networks have been completely replaced by GSM networks very quickly. During a couple of years, hundreds and thousands of GSM base stations (BTS) were built serving the quickly growing second generation (2G) mobile systems. As seen in Fig.6, in the access transmission part, the majority of these base stations were connected to the Base Station Controllers (BSCs) by digital μW and mmW radios or by Leased Lines (LL). PSTN HLR GMSC MSC MSC SGSN GGSN TCSM TCSM Fig. 4. 1989: The first 26 GHz radio link in Hungary [12][13]. When a μW or mmW signal is digitally modulated, its power transport is spread over the bandwidth of the radio channel (Fig 5.). BSC BSC BSC transmission BTS BTS BTS UE UE UE Fig. 6. 2G mobile network with μ/mmW transmission and transport. In these years (1991-2001), fiber-optical techniques were 99 % used mainly in the transport and core parts of the early GSM OPBW networks. Direct fiber-access or satellite BTS connection was relatively rare in in European GSM systems. As a result, very soon μ/mmW access links have been deployed with such a great Fig. 5. Spectrum plot the 2-FSK modulated 26.080 GHz radio signal. density, that was unexpected in the earlier years (Fig.7). SRK’2022 2 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 508/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 509/541 The need for mobile broadband is not stopped in 2021. Besides the capacity demand for the legacy Radio Access Technologies the new 5G and future coming 6G technologies also require wider and wider bandwidths and increased capacities. As shown in Fig.10, 5G offers a variety of possible new services using a combination of existing and evolving systems. Existing systems like LTE-Advanced and WiFi is coupled with new 5G access technologies designed to meet actual requirements, such as reliability and low latency. As shown in Fig.10, there are three main requirement scopes for 5G systems: x throughput, x number of devices, cost, power, and x latency and reliability. Fig. 7. A transmission node with extra amount of MDR units. A. Evolution of Mobile Networks Starting with the big ‘GSM boom’, in roughly every 10 years a new Radio Access Technology (RAT) is launched. The simple 2G landscape got more and more complicated. The meshed 3G/2G network (years 2001-20…) is shown in Fig.8. HLR MSS MSS core SGSN GGSN MGW MGW TC TC transport RNC RNC RNC Fig. 10. 5G as an enabler for diverse use cases and services [21]. BSC BSC BSC transmission B. Continuous Modernization and Optimization With the new 5G Radio Access Points (RAPs) the density of micro cell sites is further increasing, including sites having different NodeBs BTSs co-located sites macro pico combinations of 2G base stations (BTS), 3G Node-Bs, LTE eNode-Bs or 5G RAPs. The RATs, or simply the ‘generations’ UE UE UE are often co-located to save earlier site investments and to benefit the capacity of the existing anyhaul. Earlier RATs are Fig. 8. Mesh of a 3G/2G mobile network. continuously modernized and ‘re-farmed’ towards 4G and 5G. Since 2010, with the introduction and increasing coverage of In several countries, there are already ongoing discussions about fourth generation (4G) mobile systems the mobile landscape is the complete 2G or 3G ‘switch-off’. Considering the facts changing extremely quickly [21]-[32]. The front- and backhaul mentioned above with the rapid ‘Fiber-to-the-Site’ deployments network (NW), commonly called ‘anyhaul’ must provide (Fig.11), a continuous expansion and evergreen optimization of sufficient transmission capacity for the new 4G and existing the mobile anyhaul have become a daily job for network 3G/2G cell sites (Fig.9). In the past years, the fifth generation operators and design engineers [30]-[34]. (5G) network deployment started, making the mobile landscape of Fig.9 even more complex. air interface Subscribers Cell sites Radio Control Core nodes IP peer Domain 4. Common for all domains networks fixed OSS radio cell PSTN 3. Common for Packet Domain and Services site Domain HLR / HSS ... MAP 2G MAPS/S S6a FTTS Abis D h MSS TAS mobile MGW BTS BSC A S6d VoLTEAS Gb Mc Mr’ 3G Iu-CS SGSN MRF UE optical-fiber Iub Iu-PS Gs 2. Services ISC NB RNC MME Domain S3 Sv / SGs IMS PCRF Cx core and radio cloud S P/I/S-CSCF 4 roaming/ handover Rx /ATCF/A/I-BCF Iq E S11 1.Packet Gx Fig. 11. ‘Fiber-to-the-Site’ deployment scenario [34]. S1-MM Core LTE S5/ External S1-U SGi S8 Network BGW In the near future, more and more cell-site locations will UE eNB S-GW P-GW SAE-GW receive direct fiber-optical access. Since the introduction of mobile broadband data, there is an accelerated research of Fig. 9. Multi-RAT 4G/3G/2G mobile network [31]. combined fiber-wireless networks. On one hand, fiber-optical SRK’2022 3 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 509/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 510/541 techniques can deliver high speed Gbps baseband digital data or Due to the high additional loss of atmospheric attenuation, Gbit Ethernet (GbE). On the other hand, even mmW carriers can the interference becomes negligible in practice. In 2001, the first be transmitted or generated optically [13][33][35]-[38]. Even 58 GHz radio links were built in Hungary by Nokia (Fig.14). Bit though direct fiber-optical access to each radio cell site would Error Rate (BER) measured locally on the site showed that be beneficial, due to technical difficulties and business reasons BER=10-11 is achievable even in these very high frequency it is not yet possible. For a longer period, the mobile anyhaul bands, supposed proper mmW link design. BER was measured will contain both fiber-optical and μ/mmW wireless links with a hand-held BER tester closed inside the BTS cabinet (Fig.12). When a cell site or transmission node receives fiber- (Fig.14) and BER was also monitored in the statistics of the access, there is a good possibility to optimize the neighboring Nokia 58 GHz ‘MetroHopper’ radio [42][44]. network. Depending on the topology, the existing μ/mmW links “turn” towards aggregation points having fiber-access, as shown in Fig.12. Such way, the heavily overloaded transmission nodes (e.g., the one sown in Fig.7), that suffer from capacity and possible interference problems can be optimized [25][27]. FWA Fig. 14. 2001: The first 58 GHz digital radio link in Hungary and its field testing with hand-held BER tester [42][44]. data center As visible in Fig.15, there is a very wide ‘communication SM optical-fiber FTTS window’ between the high attenuation peaks of 60 and 120 GHz Fig. 12. Optical-fiber access supporting a transmission node [34]. [45]. In this window, the atmospheric attenuation falls below 1 dB/km, so it is an ideal frequency range for either mobile or Fixed Wireless Access (FWA) links. III. EXPLORING NEW FREQUENCY BANDS The early microwave links and long-haul BB connections were mainly output power and thermal noise limited. Quality of the MDR link was mainly determined by the achievable Signal to Noise Ratio (SNR). However, due to the very dense mobile access networks a new scenario started. Nowadays the hop-length of wireless links becomes shorter and shorter, but due to the high number of other links in the neighborhood, it is very difficult to find available interference-free radio channels [29] [39][40]. A continuous need raised for new and interference-free frequency bands with allocation plans having wider radio channels to support higher and higher transmission capacities. A good example was the introduction of 58 GHz band for mobile Fig. 15. Rain and atmospheric attenuation in dB/km vs. frequency [45]. access links. As seen in Fig.13, the atmospheric attenuation is very high at 58 GHz, exceeding 10 dB/km [41]. Therefore, only As seen in Table 1, besides the traditional fixed-access very short links can be built in this band [42]-[44]. communication frequency bands of 4, 6, 7, 13, 15, 18, 23, 26 and 38 GHz, the main standardization bodies, i.e., ITU, CEPT and ETSI allocated new frequency bands for fixed wireless links [46]-[48]. It is important to emphasize, that in the 71-86 GHz band (simply called 80 GHz or E-band) even 2 GHz wide RF channels are available. As seen in Table 1, radios of equipment class ‘6L’ can communicate with bit rates reaching 10 Gbps. frequency [GHz] Fig. 13. Specific attenuation due to oxygen (blue line), water vapor (orange line), and total attenuation (red line) according to [41]. Table 1. New frequency bands at 50, 52, 55 and 71-86 GHz [46]. SRK’2022 4 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 510/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 511/541 IV. LINK BUDGET CALCULATION FOR ADAPTIVE RADIOS In Eq.7 mod- n refers to the possible modulation modes. State-of-the-art digital radios can change the modulation mode The Received Signal Level (RSL) is calculated as: adaptively. At different modulation modes the SG values are [dBm] = [ ] + [ ] + [ ] − [ ] different. A lower symbol rate has smaller throughput, but accordingly, a higher system gain. Depending on the weather where PL is the Propagation Loss. With outdoor units (ODU) conditions, the radio link automatically changes its modulation integrated directly to the antenna (Fig.16), there are no mode. As seen in Fig.17, during intensive rainfalls, the additional waveguide, feeder or branching losses in Eq.2 [7] communication over a well-designed link is not broken, [19][21]. According to Fig.16, P TX is the output power at the however the throughput is reduced [21][50]-[52]. transmitting antenna connection point. P RXth is the receiver threshold, the input power at the receiving antenna connection point, that is required for demodulation. The receiver sensitivity threshold of digital links is defined for a given Bit Error Rate (BER). Usually, threshold values of s] BER=10-6 are used. G TXa and G RXa are the transmitter and receiver antenna gains [Mbp (compared to the isotropic antenna). For simplicity, a single ity 512- 512- 256- 256- polarized link is discussed, so there is no additional loss of QAM 128- 128- QAM apac QAM 64- 64- QAM polarization combiner between the ODU and the antenna. QAM QAM QAM 32- QAM link c QAM outdoor unit outdoor unit d [km] sunny scenario guaranteed bit-rate time and antenna and antenna Fig. 17. Digital radio link employing adaptive modulation and indoor indoor providing guaranteed bit rate during intensive rainfall. unit or unit or GbE router GTXa GbE router Combining equations 3-7, a fade margin set can be P TX calculated for the possible modulation modes what the digital FSL P RXu radio can adaptively use in its selected channel bandwidth: G RXa [ ] = [ ] + [ ] + [ ] − [ ] . FM P RXf As seen, the higher the system gain is, the better the fade margin P of the link for given d hop-length and antenna diameters. The RXth radio equipment type is usually specified in mobile anyhaul Fig. 16. Link budget of μ/mmW digital connections. projects, so SG, P TX, P RXth are given. Only a few parameters The propagation loss PL is calculated as: remain free when designing new links. Therefore, during the planning phase frequency band and antenna diameters shall be [dB] = [ ] + [ ] + + [ ] + [ ] + [ ] selected carefully for a given hop-length. Lower frequency In clean Line-of-Sight (LoS) condition the obstacle loss bands are more ‘valuable’ and shall be reserved for the longer A obst is zero. At very high frequencies, the effect of multipath fading links [25][27]. For reducing radio-interference [29][39][40] and A mp is not relevant due to the short hops and blocking of any potential increasing the FM, preferably bigger dish diameters and secondary path by buildings in the urban environment. automatic transmit power control are recommended. At a given A rain and modulation mode mod- n, the link is operating, as long as the A atm are the terms of rain and atmospheric attenuation. The unfaded received signal level fade margin FM is greater than the attenuation caused by rain P RXu is determined by the Free Space Loss (FSL and atmospheric attenuation: , shown as sunny day in Fig.16), the output power and the antenna gains: [ ] > [ ] + [ ] . [dBm] = [ ] + [ ] + [ ] − [ ] When the attenuation approaches the fade margin due to The Free Space Loss is calculated as [7][21][23]: actual path conditions (rainfall, fog, snow, atmospheric attenuation and link clearance problem, e.g., unexpected object ( , )[ ] = 92.44 + 20log [ ] + 20log d[ ] like a crane), the link switches to a lower modulation mode where (Fig.17). In sunny scenario, the link can switch back to higher f is the link frequency, and d is the hop-length. The Fading Margin (FM) is the difference of the unfaded received signal modulation mode to carry more data again. If the link is already level and the receiver sensitivity threshold: in its lowest possible modulation mode, e.g., BPSK ¼ (Binary Phase Shift Keying over quarter bandwidth) and the [ ] = [ ] − ( )[ ] corresponding fading margin is exceeded, then the link has outage. Proper radio link design must ensure a FM that is The System Gain (SG) suitably characterizes the transceivers of sufficient to compensate rain and atmospheric attenuation for the digital μ/mmW radio links: desired link throughput [23][34] in 99.99-99.995% of the time. [dB] = [ ] − [ ] V. CALCULATION EXAMPLES FOR The International Telecommunication Union (ITU) defines the E-BAND LINKS system gain as given in Eq.7 [49]. Please note, that an alternative In the calculations we used typical E-band radio and definition also exists for SG, including the transmit and receive commercial antenna parameters. In the examples the Nokia antenna gains [17]. This alternative SG definition is useful when ‘Wavence’ radio values are shown, with standard output power the transceiver is physically integrated with an in-built antenna. option and 2 GHz RF bandwidth [51][52]. Naturally, the SRK’2022 5 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 511/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 512/541 presented calculation method is general, and applicable for other Please note, that R 0.01% > 100 mm/h rain is not relevant in Central E-band radios too. As seen in Table 2, ‘optical-fiber like’ and Eastern Europe. wireless throughputs are achievable up to multi Gbps bit rates. The solution of Eq.9-11 can be obtained numerically for the maximum hop-length for a given frequency band, polarization mod. PTX PRXth SG [dB] Throughput mode [dBm] [dBm] and link availability against rainfall. Calculation results are BER=10-6 [Gbps] plotted for the link availabilities against BPSK 1/4 13 -73 86 0.35 R 0.01% = 42 mm/h rain- BPSK 1/2 13 -70 83 0.7 fall and atmospheric attenuation as a function of hop length d of BPSK 13 -67.0 80 1.4 the E-band mmW link. Fig.19 shows the case of 38 cm single QPSK 13 -64.0 77 2.8 polarization slip-mounted antennas at both ends of the link. 16-QAM 10.5 -57.4 67.9 5.6 32-QAM 10.5 -54.2 64.7 7 Availability vs. hop length ( f=80 GHz, BW=2GHz, R=42 mm/h, with atm. atten.) 64-QAM 6.5 -51.5 58 8.4 2 GHz, BPSK 1/4 99.995 128-QAM 6.5 -47.8 54.3 9.3 2 GHz, BPSK 1/2 99.990 2 GHz, BPSK Table 2. System Gain and radio throughput values for the modulation 2 GHz, QPSK modes in the 2 GHz channel bandwidth [52]. e) 99.985 2 GHz, 16-QAM n -zo 2GHz, 32-QAM 99.980 , K 2 GHz, 64-QAM First, radio link throughput curves are calculated for a d = 1 2 GHz, 128-QAM rain 99.975 km long link. In Fig.18, step curves are plotted with the time axis e tou 99.970 marked as % of the year. Steps of the curves show when fade (d ility margin of a modulation mode becomes smaller than propagation 99.965 losses. The parameter of the curves is the size of the antenna vailabA 99.960 pair. Three different antennas have been investigated. The 99.955 smallest in-built antenna diameter is only 12 cm [52]. The slip-99.950 mount antennas are 38 cm or 65 cm diameter big [53][54]. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 distance in km Fig. 19. Link availability as a function of hop-length and modulation, calculated with 38 cm antennas [53] on both ends of the hop. Link throughput estimation ( d=1 km, ITU-T 530-11 Ap/A0.01 for K-zone, R0.01%=42 mm/h, BW=2GHz) 10 9 128-QAM Fig.20 shows availability calculations having 65 cm single 8 64-QAM polarization slip-mounted parabolic dishes at both ends of the 7 32-QAM wireless link. As seen in Fig.20, d = 1.5 km long links can s] 6 operate with 128-QAM / 9.3 Gbps in 99.99% of the time. In the [Gbp 5 16-QAM calculations R 0.01 = 42 mm/h rain intensity is considered in 4 p=0.01% of the time according to ITU recommendations and ø 65-65 cm Throughput 3 ø 38-65 cm local weather condition statistics [55]-[61]. ø 38-38 cm QPSK 2 ø 12-38 cm BPSK Availability vs. hop length ( f=80 GHz, BW=2GHz, R=42 mm/h, with atm. atten.) 1 ø 12-12 cm BPSK 1/2 2 GHz, BPSK 1/4 BPSK 1/4 99.995 0 2 GHz, BPSK 1/2 99.965 99.970 99.975 99.980 99.985 99.990 99.995 100.000 2 GHz, BPSK % of the year 99.990 2 GHz, QPSK Fig. 18. Link throughput as a function of link availability due to rain e) 99.985 2 GHz, 16-QAM n 2 GHz, 32-QAM , K-zo 99.980 2 GHz, 64-QAM 2 GHz, 128-QAM In the calculations, a rainfall intensity of R rain 0.01% = 42 mm/h or 99.975 stronger is considered in e to p=0.01% of the time. According to u 99.970 (d ITU-R Rec. P.837, it is a reasonable approach for Central ility Europe, e.g., in Hungary and Slovenia [55]. The ITU-R 99.965 vailab assumption of A R 99.960 0.01%=42 mm/h is confirmed by long term local meteorological data collection in Hungary [56]-[59]. When the 99.955 fade margin of the link is not sufficient for the actual rain 99.950 intensity, the radio changes its modulation mode and the link 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 distance in km throughput is reduced. In Fig.18, the unavailability of 0.01% Fig. 20. Link availability as a function of hop-length and modulation, corresponds to a time of cc. 52 minutes per year. calculated with 65 cm antennas [54] on both ends of the hop. The rain attenuation model and its calculation steps are discussed in [23][34] following ITU-R P.530 [60]. The path attenuation exceeded in 0.01% of the time is given as: VI. CONCLUSIONS , (10.) . %[dB] = = / / In the paper, several decades of fixed radio link research and development have been briefly overviewed. The history of where k and α are constants depending on the frequency and microwave communications starting with the first transmission polarization of the link, according to ITU-R P.838 [61]. When experiments and commercial applications of early analog radio- the rain intensity is smaller than 100 mm/h, then: relays to digital PDH and SDH links have been discussed. The first 26 and 58 GHz digital PDH radio links deployed in = 35 . . % Hungary were shown too. SRK’2022 6 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 512/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 513/541 It was pointed out that in several countries, the ‘big boom’ CEPT European Conference of Postal and Telecommunications of μ/mmW links started with the rapid deployment of GSM Administrations systems. The links of recent μ/mmW anyhaul networks d distance, hop-length significantly differ from the links of legacy terrestrial backbone. dB decibel The dense anyhaul is rather interference than noise limited. It dBi antenna gain in dB compared to the isotropic antenna can be explained with the densification of the radio network, dBm decibel, using milliWatt as the reference where the individual hops are getting shorter. To deliver the ETSI European Telecommunications Standards Institute required throughputs in multi-RAT mobile networks, and to reduce the possible interference in the crowded legacy F frequency FM Fading Margin communication bands, new frequency bands have been opened. FSK Frequency Shift Keying As shown, GHz wide RF channels are allocated in the E- band, where state-of-the-art mmW radios can provide ‘fiber-FSL Free Space Loss like’ throughputs in the Gbps range. Even though nowadays FWA Fixed Wireless Access direct optical-fiber access delivers enormous bandwidth to FTTS fiber to the site several cell sites, it was shown that fixed μ/mmW digital radios G Gain are still required in mobile networks. Finally, a calculation G RXa antenna gain of the receiver method was given, and examples were shown for 80 GHz links. G TXa antenna gain of the transmitter In the calculation examples, ITU recommendations and local GbE Gigabit Ethernet rainfall statistics of Central Europe (e.g., Hungary and Slovenia) Gbps Gbit/s have been considered. In the calculation examples, for simplicity GSM Global System for Mobile Communications, only single polarized and single frequency band links have been (in French ‘Groupe Spécial Mobile’) discussed. But the presented calculation method can be extended ITU International Telecommunication Union to the analysis of dual frequency band links using dual-band LL Leased Line antennas (e.g., combined 23 GHz and 80 GHz link) or for dual- LoS Line-of-Sight polarized links (vertical and horizontal polarization on same LTE Long Term Evolution (4G) dual-polar antenna). MDR Microwave Digital Radio The 90 years history and the still ongoing very intensive Mbps Mbit/s research of μ/mmW radios as well as recent business forecasts clearly show that μ/mmW technology will remain widely used mmW millimeter-wave in mobile anyhaul networks in the coming years [45][51][62]. NW network ODU outdoor unit OPBW occupied power bandwidth A PDH Plesiochronous Digital Hierarchy CKNOWLEDGEMENTS PL Propagation Loss The author thanks the fruitful discussions and the numerous PSTN Public Switched Telephone Network radio tests and measurements that have been performed together P RXth RX threshold, measured at the receiver input with Dr.Julianna Györösi and Dr.László Forgó in various radio P RXu unfaded received signal, measured at the receiver input communication laboratories including TKI, the former Research P TX TX power measured at the transmitter output Institute for Telecommunications, Hungary, the Communication QAM Quadrature Amplitude Modulation Authority of Hungary, Nokia Hungary, Siemens-Italtel and n-QAM n-ary QAM ( n=16, 32, 64, 128, 256, etc.) SIAE in Italy, former Alcatel-Lucent in France and Spain QPSK Quadrature Phase Shift Keying (often called 4-QAM) (presently Nokia), Ericsson in Sweden and MNI, Microwave Networks Inc. in USA. The meteorological data has been R bitrate collected by OMSZ, the Hungarian Meteorological Service. The R 0.01% rainfall intensity that is exceeded in 0.01% of time author acknowledges the help of Dr. Mónika Lakatos. Special RADAR Radio Detection and Ranging RAP Radio Access Point thanks to Dr. Gábor Járó for his continuous support at Nokia RAT Radio Access Technology over the past years, to Prof. Bostjan Batagelj at University of RF Radio Frequency Ljubljana and Prof. Tibor Berceli at former TKI and at Budapest RSL Received Signal Level University of Technology and Economics. RX receive or receiver SDH Synchronous Digital Hierarchy SG System Gain LIST OF ABBREVIATIONS SNR Signal to Noise Ratio A attenuation TX transmit or transmitter A atm atmospheric attenuation TV television A rain rain attenuation WiFi Wireless Fidelity AT&T American Telephone and Telegraph Company μW microwave B bandwidth 2G 2nd generation mobile system (GSM) BB backbone 3G 3rd generation mobile system (UTRAN) BER Bit Error Rate 4G 4th generation mobile system (LTE and LTE-A) BPSK Binary Phase Shift Keying 5G 5th generation mobile system (‘New Radio’) BTS Base Transceiver Station, base station 6G 6th generation mobile system – research topic SRK’2022 7 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 513/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 514/541 LIST OF REFERENCES [21] A.Hilt: “Availability and Fade Margin Calculations for 5G Microwave and Millimeter-Wave Anyhaul Links”, MDPI [1] Wikipedia: “Microwave transmission”, [online, accessed: 15 Jan. Applied Sciences, Vol.9, No.23, p.5240, Dec. 2019. 2022] https://en.wikipedia.org/wiki/Microwave_transmission DOI:10.3390/app9235240. [2] Z.Bay: “Reflection of Microwaves from the Moon”, Hungarica [22] GSMA, “Road to 5G introduction and migration”, April 2018. Acta Physica, 1, pp.1-22, 1947. [online, accessed: 15 Jan. 2022] [23] A.Hilt: “Microwave Hop-Length and Availability Targets for the https://link.springer.com/content/pdf/10.1007/BF03161123.pdf 5G Mobile Backhaul”, IEEE 42nd Telecommunications and [3] K.Simonyi: “Kulturgeschichte der Physik”, Akadémiai Kiadó, (in Signal Processing Conference, Budapest, Hungary, July 2019. German), Budapest, Hungary, 1990. DOI:10.1109/TSP.2019. 8768870. [4] I.Bozsóki, É.Gödör, B.Farkas: “Rádiórendszerek II, Hírközlő [24] J.Varga, et al.: “Reducing operational costs of ultra-reliable low rendszerek, rádiólokátorok”, Lecture notes, Technical University latency services in 5G”, Infocommunications Journal, Vol.X, of Budapest, Tankönyvkiadó, (in Hungarian), Budapest, Hungary, No.4, pp.37-45, Budapest, Hungary, Dec. 2018. 1984. DOI:10.36244/ICJ.2018.4.6. [5] Wikipedia: “AT&T Communications Inc.”, [online, accessed: 15 [25] A.Hilt, et al.: “Microwave transmission node optimization for Jan. 2022] access capacity increase in mobile networks”, Proc. of the https://en.wikipedia.org/wiki/AT%26T_Communications_Inc. Microwave Optical Week, pp. 109-112, Budapest, Hungary, May 2007. [6] AT&T: “The Latest Word in Communications “Microwave” New York – Boston System”, Long Lines Department Plant Division [26] J.Varga, et al.: “Providing Ultra-Reliable Low Latency Services for 5G with Unattended Datacenters”, One, 100 William St., New York, USA. 11th IEEE/IET Inter- national Symposium on Communication Systems, Networks & [7] T.Manning: “Microwave Radio Transmission Design Guide”, Digital Signal Processing, pp.1-5, Budapest, Hungary, July 2018. Artech House, 2nd edition, 2009. DOI:10.1109/CSNDSP.2018.8471756. [8] A.Hilt, et al.: “Microwave Digital Radio Measurements in the Frequency Bands of 23 and 26 GHz”, [27] A.Hilt, et al.: “Access Transmission Network Upgrade in a Journal on Nationwide Mobile Network Modernization Project for EDGE Communications, Vol. XLIV, pp.37-39, (in Hungarian), Budapest, Hungary, Aug. 1993. Deployment”, 13th International Telecommunications Network Strategy and Planning Symposium, Budapest, Hungary, Oct. [9] A.Benedek, et al.: “Mikrohullámú berendezés-fejlesztés a Total - 2008. DOI:10.1109/NETWKS.2008. 6231308. tel Kft-ben”, Journal of Communications, in Hungarian, [28] A.Hilt, et al.: “Analysis of Access Transmission Network Vol.LXII, No.2, pp.35-42, Budapest, Hungary, 2007. Upgrade in a Nationwide Mobile Network Modernization Project [10] A.Hilt, et al.: “Spectral stability of radio transmitters in point-to-for EDGE Deployment”, multipoint access systems”, Proc. of the Microwave Optical Week, Proc. of the 10th Microwave Colloquium, MICROCOLL’1999, pp.231-234, Budapest, pp.237-240, Budapest, Hungary, May 2007. Hungary, March 1999. [29] A.Hilt, T.Pap: “Fixed MW Access Network Design Using [11] Agilent Technologies, Inc.: “Digital Radio Theory and Measure-Interference Matrices”, Proc. of the 11th Microwave Colloquium, ments”, Hewlett-Packard Application Note 355A, USA, Oct. MICROCOLL’2003, pp.169-172, Budapest, Hungary, Sept. 1992, 2005. 2003. [12] A.Hilt, J.Györösi, J.Farkasvölgyi: “RB 26/2S Product Descrip- [30] A.Hilt, et al.: “Harmonic components and dispersion of mobile tion of the Radio Bridge 26 GHz 2 Mbps simplex microwave network signals due to fiber-optical transmission”, IEEE Conf. on digital radio”, (in Hungarian), Optical Network Design and Modelling, ONDM’2017, Budapest, TKI, the Research Institute for Hungary, May 2017. Telecommunications, Budapest, Hungary, Nov. 1992. [13] A. Hilt: “Transmission et traitement optiques des signaux dans les [31] G.Járó et al.: “Evolution towards Telco-Cloud: Reflections on systèmes de télécommunications hertziens,” doctoral Dimensioning, Availability and Operability”, IEEE 42nd Tele-dissertation, INPG, Institut National Polytechnique de Grenoble, communications and Signal Processing Conference, Budapest, Grenoble, France, May 1999. Hungary, July 2019. DOI:10.1109/TSP. 2019.8768807. [14] Hewlett-Packard: “Vector Modulation Measurements”, Applica- [32] A.Hilt, L.Pozsonyi, “Application of Fiber-Optical Techniques in tion Note 343-1, USA, November 1986. the Access Transmission and Backbone Transport of Mobile [15] L.Hanzó, W.Webb, T.Keller: “Single- and Multi-carrier Quadra-Networks”, Fiber and Integrated Optics, Vol.31, No.5, pp.277-ture Amplitude Modulation: Principles and Applications for 298, Oct. 2012. DOI: 10.1080/01468030.2012.723797. Personal Communications, WLANs and Broadcasting”, 2nd ed., [33] B.Batagelj, et al.: “Convergence of Fixed and Mobile Networks Wiley, 2004. by Radio over Fibre Technology”, Informacije MIDEM, Vol.41, [16] Tony J.Rouphael: “RF and digital signal processing for software-No.2, pp.144-149, Ljubljana, Slovenia, 2011. [online, accessed: 5 defined radio, A multi-standard multi-mode approach”, Elsevier, Sept. 2020] http://www.midem-drustvo.si/Journal%20papers/ 2009. MIDEM_41(2011)2p144. pdf. [17] J.Hansryd, J.Edstam, “Microwave capacity evolution”, Ericsson [34] A.Hilt: “Throughput Estimation of K-zone Gbps Radio Link revie w, 1/2011. Operating in the E-band”, accepted for publication in Journal Informacije MIDEM, Ljubljana, Slovenia, 2022. [18] J.Ladvánszky: “Detection of 2x2 MIMO signals”, Infocommunications Journal, Vol.12, No.3, pp.24-30, Budapest, [35] I.Frigyes, et al.: “Investigations in Microwave Optical Links - Hungary, Sept. 2020. DOI:10.36244/ICJ.2020.3.4. Accent on QAM”, Technical Digest of the IEEE International Topical Meeting on Microwave Photonics, MWP’2000, pp.156- [19] T.Manning, “Microwave Radio Handy Reference Guide”, TMC 159, Oxford, UK, Sept. 2000. DOI:10.1109/MWP.2000.889811. Global, Brisbane, Australia, 2019. ISBN 978-0-6481915-3-7. [36] A.Hilt, et al.: “Radio-Node Upconversion in Millimeter-Wave [20] J.Ladvánszky: “Noise reduction for digital communications - A Fiber-Radio Distribution Systems”, Proc. of the International modified Costas loop”, Infocommunications Journal, Vol.12, Conference on Microwaves and Radar, MIKON’98, Vol.1, No.4, pp.2-5, Budapest, Hungary, Dec. 2020. pp.176-180, Kraków, Poland, May 1998. DOI:10.36244/ICJ.2020.4.1. DOI:10.1109/MIKON.1998.737942 SRK’2022 8 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 514/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 515/541 [37] A.Hilt, et al.: “New Carrier Generation Approach for Fiber-Radio [51] Nokia: “The evolution of microwave transport - enabling 5G and Systems to Overcome Chromatic Dispersion Problems”, Proc. of beyond”, Nokia White Paper, Espoo, Finland, 2019. the IEEE MTT Symposium, pp.1525-1528, Baltimore, USA, June [52] Nokia: “Nokia Wavence Ultra-Broadband Transceiver Milli-1998. DOI:10.1109/MWSYM.1998.700665. meter-wave 80” Nokia data sheet, 2021. [online, accessed: 21 [38] L.Giorgi, et al.: “Subcarrier multiplexing RF plans for analog Dec. 2021] radio over fiber in heterogeneous networks”, Journal of Light-https://www.com/networks/products/e-band-portfolio/. wave Technology, Vol.34, No.16, pp.3859–3866, Aug. 2016. [53] RFS: “Compact Line Antenna, Ultra High Performance, Single DOI:10.1109/JLT.2016.2581883. Polarized, 1 ft”, Radio Frequency Systems, Product Datasheet, [39] A.Hilt, et al.: “Radio-Frequency Interference in Digital Rev.C, SB1-W800CUBT, 2017. [online, accessed: 5 Jan. 2022]. Communication Links”, Journal on C5: Communications, https://www.rfsworld.com/userfiles/promoted_product/2014/e- Computers, Convergence, Contents, Companies, Vol.L, pp.36-43, band_microwave_antennas/ E-Band_Leaflet_7059_revA.pdf. Budapest, Hungary, Nov. 1999. [54] RFS: “Compact Line Easy Antenna, Ultra High Performance, [40] A.Hilt, et al.: “QAM Radio Reception in Presence of Interference Single Polarized, 2 ft”, Radio Frequency Systems, Product and Noise”, Proc. of the 10th Conference on Microwave Datasheet, SC2-W800BUBT, Rev.B, 2018. [online, accessed: 5 Techniques, COMITE’99, pp.109-110, Pardubice, Czech Jan. 2022] Republic, Oct. 1999. https://www.rfsworld.com/userfiles/promoted_product/2014/e- [41] Rec. ITU-R P.676-3/12: “Attenuation by atmospheric gases and band_microwave_antennas/ E-Band_Leaflet_7059_revA.pdf. related effects”, P Series, Radiowave Propagation; International [55] ITU-R Rec. P.837-1/7, “Characteristics of precipitation for Telecommunication Union, Geneva, Switzerland, 1990/2019. propagation modelling”, P Series, Radiowave propagation, [42] A.Hilt, T.Pap: “Application of 58 GHz Band for GSM Access International Telecommunication Union, Geneva, Switzerland, Networks in Hungary”, Proc. of the 11th Microwave Colloquium, 1994/2017. MICROCOLL’2003, pp.81-84, Budapest, Hungary, Sept. 2003. [56] M.Lakatos, L.Hoffmann, “Rendkívüli csapadékhullás Budapest [43] V.Kvičera and M.Grabner, “Rain Attenuation at 58 GHz: belvárosában (in Hungarian) / Extraordinary Rainfall in Down-Prediction versus Long-Term Trial Results”, Hindawi Publishing town Budapest”, Hungarian Meteorological Service, 2017. Corp., EURASIP Journal on Wireless Communications and [online, accessed: 15-Dec-2021] https://www.met.hu/ismeret-tar/ Networking, Vol. 2007. erdekessegek_tanulmanyok/index.php?id=1885. [44] A.Hilt, et al.: “Application of the 58 GHz Frequency Band in [57] L.Csurgai-Horváth, “Digital modelling of fade and interfade GSM Access Networks”, IQ-Link User Conference, Budapest, duration on high frequency radio links and its application in time Hungary, Oct. 2002. series synthesis”, (in Hungarian), PhD dissertation, BME, Budapest University of Technology and Economics, Budapest, [45] M.Coldrey: “Maturity and field proven experience of millimetre Hungary, 2010. wave transmission”, ETSI white paper, Sophia Antipolis, France, 2015. [58] M.Lakatos, L.Hoffmann: “Increasing trend in short term precipitation and higher return levels due to climate change”, (in [46] Draft ETSI EN 302 217-1: “Fixed Radio Systems; Characteristics Hungarian), Országos Települési Csapadékvíz-gazdálkodási and requirements for point-to-point equipment and antennas; Part Konferencia, Cum Scientia pro Aquis Hungariae, pp. 8-16, 2017. 1: Overview, common characteristics and requirements not ISBN:978-615-5845-21-5. related to access to radio spectrum”, ver. 3.3.0, June 2021. [59] B.Adjei-Frimpong, L.Csurgai-Horváth, “Using Radio Wave [47] CEPT ECC Rec. (05)07: “Radio Frequency Channel Satellite Propagation Measurements for Rain Intensity Arrangements for Fixed Service Systems Operating in the Bands Estimation”, Infocommunications Journal, Vol.10, No.3, pp. 2-8, 71-76 GHz and 81-86 GHz”, CEPT, 2009, 2013. [online, 2018. DOI:10.36244/ICJ.2018.3.1. accessed: 14 Jan. 2022] https://www.ecodocdb.dk/download/9c4f8690-d0e1/ [60] ITU-R Rec. P.530-13/18: “Propagation data and prediction REC0507.PDF. methods required for the design of terrestrial line-of-sight systems”, P Series, Radiowave propagation, International Tele- [48] CEPT ECC Rec. 18(01): “Radio Frequency Channel/Block communication Union, Geneva, Switzerland, 2009/2021. Arrangements for Fixed Service Systems Operating in the Bands 130-134 GHz, 141-148.5 GHz, 151.5-164 GHz and 167-174.8 [61] ITU-R Rec. P.838-3: “Specific attenuation model for rain for use GHz”, CEPT, April 2018. [online, accessed: 14 Jan. 2022] in prediction methods ”, P Series, Radiowave Propagation, Inter- https://www.ecodocdb.dk/download/a5533f97-5a92/ national Telecommunication Union, Geneva, Switzerland, 2005. Rec1801.pdf. [62] Dell’Oro Group: “Microwave transmission and mobile backhaul [49] ITU: “Digital Radio-Relay Systems Handbook”, International five-year forecast report 2019-2023” and “Update to the Telecommunication Union, Radiocommunication Bureau, Microwave Transmission & Mobile Backhaul Market 5-Year Geneva, Switzerland, 1996. Forecast Report” [online, accessed: 10-Jan-2022] https://www.delloro.com/5-year-forecast-microwave- [50] H.Li, J.Zhang, Q.Hong, et al.: “Exploiting adaptive modulation in transmission-mobile-backhaul-growth-ahead/ E-band software-defined backhaul network”, Proceedings of the IEEE 8th Annual Computing and Communication Workshop and Conference, pp.1009–1013, Las Vegas, CA, USA, Jan. 2018. DOI:10.1109/CCWC.2018.8301768 SRK’2022 9 2-4 Feb. 2022, Ljubljana, Slovenia 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 515/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 516/541 From metamaterials to smart materials - overview of meta-concepts in microwave applications Marko Bosiljevac University of Zagreb, Faculty of Electrical Engineeering and Computing, Croatia marko.bosiljevac@fer.hr symmetry metamaterials and many other concepts. Abstract This overview will summarize the most important Speculations about materials that could have results achieved in the past, present applications negative electromagnetic parameters and strange and on-going projects and highlight future properties started in 1940s and 1960s, but it wasn’t until year 2000 that these ideas truly came research activities leading to a concept popularly known as “smart materials”. to life with the first demonstrations of metamaterials. Although various artificial electromagnetic structures were developed also Author's biography before, the idea of metamaterials or “beyond” Marko Bosiljevac was born in materials developed in 2000 initiated a major Zagreb in 1980. He received B.Sc., and Ph.D. degrees in electrical evolution in the field of electromagnetics resulting engineering from the University of in many new communication and microwave Zagreb, Faculty of Electrical devices and applications. Metamaterial is defined Engineering and Computing (FER), as any material which has been engineered to have Zagreb, Croatia, in 2005 and 2012, respectively. From properties not found in naturally occurring March 2006 he was working at the Department of materials and usually it is a composite of different Wireless Communications at FER. He was a visiting materials arranged in some kind of periodic lattice researcher at the University of Siena, Italy in 2010 and where the period is much smaller than the 2011. As of March 2016 he is Assistant Professor at the operating wavelength. This concept has resulted in Department of Wireless Communications at FER. He many various demonstrations that were later published more than 50 papers in journals and conference proceedings in the area of analytical and extended and converted to actual applications, numerical modelling and development of various such as super-lenses with infinite resolution, electromagnetic and optical structures and systems. Dr. electromagnetic "invisibility cloaks”, Bosiljevac also participated in the organization of miniaturization of waveguides, resonators, several doctoral schools and international conferences antennas and other communication and microwave and he serves as a technical reviewer for several components. Also, the original term of international scientific journals. He received silver metamaterials diversified in many other directions medal "Josip Lončar" from FER for outstanding Ph.D. in electromagnetics, and today there are passive thesis in 2012. and active metamaterials, metasurfaces, higher- 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 516/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 517/541 SRK K 2022 25TH SEMINAR R ON N RADIO O COMMUNICATIONS From m Metamaterialss too Smartt Materials Overview w off meta-conceptss inn microwavee applications Marko Bosiljevac University of Zagreb Faculty of Electrical Engineering and Computing, Croatia University Unive ive y rsity ity of of of Zagreb Zagreb Facultyy of of Electrical al Engineeringg and d Computing www.fer.unizg.hr AI ICT Robotics Sustainable Energy Biomedical Engineering Advanced Components Transportation Systems 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 517/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 518/541 aolab.fer.hr – Applied Optics Laboratory • Research and development of optical sensors based on optical fibers as sensing elements • Development of advanced RF circuits and amplifiers • Microwave components analysis and development • Development of novel radar systems and applications • Analysis and development in the field microwave metamaterials, metasurfacas and higher-symmetry devices SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 3 Outline • What are metamaterials? • “Metamaterials” before 2001 and after • Limitless possibilities? • Diversification of the metamaterials idea • “Meta” is a great prefix! • Passive and active structures • Metasurfaces • Higher-symmetry structures and surfaces • Conclusion: Smart materials and surfaces SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 4 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 518/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 519/541 What are metamaterials? • Concept of metamaterial (for radio/microwave field) • PHWD = meta = beyond Providing that a << O, the structure behaves as a homogeneous material with some new P and H � artificial materials � Metamaterials SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 5 What are metamaterials? • From electricity and magnetism towards electromagnetic theory Dielectric polarization Michael Faraday James Clerk Maxwell EM induction SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 6 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 519/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 520/541 What are metamaterials? • From electromagnetic theory towards radio communications Basic concepts in electromagnetism are described with two fields and two “positive” numbers! , , ̂, … … ∞ + SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 7 What are metamaterials? • Many forms of artificial materials were investigated in the past – stained glass in churches, chiral structures by Jagadis Chunder Bose, etc… • Major shift happened with the question – What would happen if P and H were negative numbers? , , ̂, … … ∞ ± Victor Veselago (1967) energy phase • Negative-index materials were first described theoretically by Victor Veselago in 1967. He proved that such materials could transmit light and that the phase velocity vector could be made anti-parallel to the direction of Poynting vector (direction of the energy). This is contrary to wave propagation in naturally occurring materials. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 8 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 520/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 521/541 What are metamaterials? • There are no “negative” (P < 0 and H < 0 ) materials in nature! • If there were, we could have inverted Snell’s law! SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 9 “Metamaterials” before 2001 • Historical artificial materials examples: • 13th century stained glass windows in Notre-Dame Cathedral and La Sainte-Chapelle in Paris - their colors originate from plasmonic effects arising from various metallic inclusions in the glass. • In the late part of the 19th century, Jagadis Chunder Bose published his work on the rotation of the plane of polarization by man-made twisted structures = artificial chiral structures by today’s definition. • In 1980s interest grew for periodic optical structures with more than one dimension – photonic crystals (Eli Yablonovitch) • Essential idea was to expand the Bragg grating principle to 3D Bragg grating Photonic crystals SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 10 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 521/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 522/541 “Metamaterials” before 2001 • Different concepts similar to Bragg gratings were present in microwaves – corrugations, soft and hard surfaces, ... • Small revolution came with Sievenpiper/Yablonovitch paper on “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band“ • This renewed and ignited the interest for artificial EM materials Microwave frequency bandgap D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, "High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band", IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059-2074, November, 1999 SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 11 “Metamaterials” before 2001 • Sir John Pendry in 2000 theoretically extended the work of Veselago, Yablonovitch and Sievenpiper and published a paper “Negative Refraction Makes a Perfect Lens” J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85, 3966 – October 2000 SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 12 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 522/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 523/541 Metamaterials after 2001 • The first “negative” metamaterial – Smith at al. (UCSD) 05/2000 Wires: negative H Rings: negative P • Second experiment - confirmation of Smith results – Hrabar, Barbarić, Ereš, 07/2000 SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 13 Metamaterials after 2001 Experimental verification of Negative Experimental verification of Negative Refraction (Shelby et al. 2001) Refraction (Hrabar, Bartolic, 2002) SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 14 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 523/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 524/541 Metamaterials after 2001 • Since the first experiment the idea has reached maturity and practical applications SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 15 Possibilities – Invisibility cloak? Schurig, Pendry et al. Ivsic, Sipus et al. IEEE Hrabar, Sipus et al. Science Express 2006 TAP, 2009. IEEE TAP, 2010. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 16 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 524/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 525/541 “Meta” is a great prefix! • The term “metamaterials” was extremely successful in the science community and gave rise to various meta-concepts • Metasurfaces • Meta-atoms instead of unit cells • Active metamaterials • Metatronics • ... Pai-Yen Chen, Christos Argyropoulos, and Andrea Alù, Broadening the Cloaking Bandwidth with Non-Foster Metasurfaces, Phys. Rev. Lett. 111, 233001 – December 2013 SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 17 Passive and active metamaterial structures • Passive “negative” metamaterials – due to resonance they are always narrowband • Broadband operation is possible with the use of active metamaterials based on negative capacitors and inductors (non-Foster elements) SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 18 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 525/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 526/541 Metasurfaces • From metamaterials to metasurfaces SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 19 Metasurfaces SR S K 2022 RK 2022 - 25TH 25 S TH E S MINAR ON RADI EMINAR O O CO N RADIO C M O MU MM NICATIO UNICATI N O S S 20 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 526/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 527/541 Metasurfaces • Example: Surface-waves supporting metasurfaces Application: Luneburg lens antenna • The ideal Luneburg lens is a spherical lens that posses the property to focus an incoming plane wave into a single point on the lens edge. Luneburg radial coordinate law for the refractive 2 index § U · n 2 ¨ ¸ © R ¹ lens radius SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 21 Metasurfaces Designed for h = 2.3 mm 1 Designed for h = 5.75 mm 2 M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, “Non-uniform Metasurface Luneburg Lens Antenna Design,” IEEE Transactions on Antennas and Propagation, Vol. 60, pp. 4065-4073, Sep. 2012. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 22 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 527/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 528/541 Metasurfaces • Example: Analysis and design of cascaded curved metasurfaces • Radomes and vehicle (e.g. airplane) covers • dielectric radome – mechanical protection for antennas • metasurface – electromagnetic filter and focusing lens • radome + metasurface = mechanical & electromagnetic protection and focusing element SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 23 Metasurfaces • Example: Analysis and design of cascaded curved metasurfaces • Analysis of one metasurface layer • local periodicity approach • Analysis of multilayer metasurface structure • transparent surface impedance & ABCD matrix formulation: Y Y (Z, k ) surf surf t Z. Sipus, M. Bosiljevac, A.Grbic, “Modelling Cascaded Cylindrical Metasurfaces Using Sheet Impedances and a Transmission Matrix Formulation,” IET Microwaves Antennas & Propagation, Vol. 12, No. 7, pp. 1041-1047, 2018. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 24 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 528/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 529/541 Metasurfaces • Example: Analysis and design of cascaded curved metasurfaces ª A Bº ª 1 0º ª A B TL 1 , TL 1 , º ª 1 0º « » « » � « » � « » ¬ C D¼ ¬ Y 1 C D Y surf 1 , ¼ ¬ TL 1, TL 1 , ¼ ¬ 1 surf ,2 ¼ ª A B 1 0 TL, N 1 TL, N 1 º ª º � !� « » � « » ¬ C D Y 1 TL, N 1 TL, N 1 ¼ ¬ surf , N ¼ Z. Sipus, M. Bosiljevac, A.Grbic, “Modelling Cascaded Cylindrical Metasurfaces Using Sheet Impedances and a Transmission Matrix Formulation,” IET Microwaves Antennas & Propagation, Vol. 12, No. 7, pp. 1041-1047, 2018. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 25 Metasurfaces • Example: Analysis and design of cascaded curved metasurfaces D. Barbarić, M. Bosiljevac and Z. Šipuš, "Analysis of Curved Metasurfaces Based on Method of Moments," 2020 14th European Conference on Antennas and Propagation (EuCAP), 2020, pp. 1-5,. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 26 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 529/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 530/541 Higher-symmetry structures and surfaces Glide Twist 1) A. A. Hes He s s e s l, el, M. M. H. H. Chen, Chen, R. C. C M. M. Li, Li, and A. A A. A Oliner, Oliner, “Propagation “Propagation in period periodically ically loaded loaded waveguides waveguid with higher symmetries,” Proceedings of the IEEE, vol. 61, no. 2, pp. 183–195, Feb. 1973. 2) R. Mittra, S. Laxpati, “Propagation in a Wave Guide With Glide Reflection Symmetry”, Can. J. Phys., 43, 353-372 (1965) 3) R. Kieburtz, J. Impagliazzo, “Multimode propagation on radiating traveling-wave structures with glide-symmetric excitation”, IEEE Trans. Antennas and Propag. , 18, 3-7 (1970). SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 27 Higher-symmetry structures and surfaces • Twist symmetry in nature: Glide Twist SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 28 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 530/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 531/541 Higher-symmetry structures and surfaces • Conventional structure versus glide symmetry: Glide Twist M. Ebrahimpouri, E. Rajo-Iglesias, Z. Sipus, O. Quevedo-Teruel, “Cost- effective Integrated Waveguide Circuits Based on Glide-Symmetry Holey EBG Structure”, IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 2, pp. 927-934, Feb. 2018. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 29 Higher-symmetry structures and surfaces • This technology can be employed to design a number of electromagnetic components: • Example: Waveguides Waveguide with air gap Waveguide with air gap and holey EBG SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 30 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 531/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 532/541 Higher-symmetry structures and surfaces 3 GHz 4 GHz 6 GHz • Ultra-wide band response demonstrated from 3GHz to 18GHz: 8 GHz 10 GHz 12 GHz • Electric field distribution: • Point source to plane wave transformation. 14 GHz 16 GHz 18 GHz 3 GHz 6 GHz 12 GHz 18 GHz O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn, “Ultra wide band metasurface lenses based on off-shifted opposite layers,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 484-487, 2016. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 31 Higher-symmetry structures and surfaces • Glide-symmetric holes Lens perimeter loaded with pins 1 -1 O. Quevedo-Teruel, J. Miao, M. Mattsson, A. Algaba-Brazalez, M. Johansson, L. Manholm, “Glide-symmetric fully-metallic Luneburg lens for 5G Communications at Ka-band”, IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1588-1592, Sept. 2018. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 32 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 532/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 533/541 COST Symat • SYMAT - COST ACTION CA18223 – FUTURE COMMUNICATIONS WITH HIGHER- SYMMETRIC ENGINEERED ARTIFICIAL MATERIALS • The SyMat COST Action has the ambition to promote an international research community proposing innovative solutions to the demand of omnipresent connections in today’s society. Higher data rates and shared platforms can only be achieved if a new class of communicating devices becomes available at millimeter waves. SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 33 Smart materials and surfaces • NANOARCHITECTRONICS is a new technology aimed at conceiving, designing and developing reconfigurable, adaptive and cognitive structures, sensorial surfaces and functional “skins” with unique physical properties and engineering applications in the whole electromagnetic spectrum; through assembling building blocks at nanoscale in hierarchical architectures • Overview of the concept: • https://ec.europa.eu/futurium/en/system/files/ged/foreseen_ntx_roadmap_1.pdf SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 34 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 533/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 534/541 Smart materials and surfaces Examples of new Nanomaterial for computing and communications http://web.ece.ucdavis.edu/~saif/pub/papers/NanomatIEE7ECOM.pdf b) construction of NTX devices (artistic rendering from Nature Nanotechnology 10, 11–15 (2015) doi:10.1038/nnano.2014.314) SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 35 Conclusion •Thank you for your attention! • aolab.fer.hr • marko.bosiljevac@fer.hr ESA 2021 Metasurface TEM horn SRK 2022 - 25TH SEMINAR ON RADIO COMMUNICATIONS 36 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 534/541 25. SEMINAR RADIJSKE KOMUNIKACIJE ▪ LJUBLJANA ▪ 2. do 4. FEBRUARJA 2022 535/541 PLAKATI POSTERS II. 25th SEMINAR ON RADIO COMMUNICATIONS ▪ LJUBLJANA ▪ 2nd to 4th FEBRUARY 2022 535/541 sprejemnik ik, ki ki omogoča OSNMA sprejeto NAV NAV sporočilo sporočilo TESLA verižni potrditev TESLA izračun ključ ključa priponke sprejem ? izračunana priponka priponke priponka = TESLA izvorni potrditev TESLA ključ izvornega ključa javni ni ključ f ta. ng . o IEEE sing tic- CNN o the ent and u 2020, rmed da ation tion y. Elas o str e op of sc opy 7401-7422, a erim ties o sc evalua o 104129, pp. with e . ocess input p ed wher exp ain re-liability spectr Pr spectr 11, outperf , simplific tructiv 811, the 1D e ulsed no. o. , tion des p n and 8 show acy th uncert ata ation on- and on d N gas-phase vol. ith n 206, . ahertz terials , O forma ata e d accur w o S. ter vol. Ma , . , f erials n ased t or o o terahertz st ans b ed m classific using Sy Mat of . tio tr results, chenk b ation irm robus the sis La perties Yur stage o rial", ll. te xtrac SD THz-FDS nf e ably of analy I.N.; alPr Ma e Inte. e ep W co or on of a, acturing m ativ o lo classific m ss tit e D omising as anov 810–816 emh Mechanic ve 2 techniques Str n pr as 5, C tion w consider Dolg quan ” themanuf the , f the w sis, rnale 2. E o D reduction .I.; at K 2015, and ying rma t , e Ext tif gave ation SD analy D fo ith WS an terials ativ t w f W Quan under Maribor Zaytsev ma Technol. ans o enabled e ." “Qualit al 4. WS tr Sci. The V.; mponen tion E. l. , co et 2000 ation classific tion cy , a t efficiency D2 and ences ahertz et forma ela en insignific composit ovlev Li alicek, De n ici Ter 0.1016/j.chemolab.2020.104129. efer Yak Z. 1 J.V tic Conclusion The classific similar The corr eff results. bias, with R [1] polymer Trans. [2] independen doi: [3] Plas 2015 Cesta 45, ctionu Fdin-F IP Gleich Spectrum ss eak o Cr 5 1. P g 0 0 0 0 linp 0.976 Yellow Dušan sam acije, indowing n FC w 0 0 0 0 erahertz Spectroscopy Computer Science, Koroška W u o L 0.975 White Re el 3. D 2 2 2x low komunik ing and vn 0 0 0 e 4. 2. 2022 nov 1 0.01 0.959 Co Green u 8/ ata L WSD Re D with e radijsk Engineer w trix 0 0 0 Ra 0.03 0.958 Blue 3 3x 1 Ljubljana, 2.- technique tructur vn ocessing 2 Co SD 8/ fusion ma 0.96 0.042 0.041 0.025 0.024 Black 25. seminar epr Con pr d CNN s ta e a T �����ȱ����ñȱǰȱ��ċȱ������ǰȱ d C 8 Blue Black , Faculty of Electrical enia; andrej.sarjas@um.si, blaz.pongrac1@um.si, dusan.gleich@um.si ta tion-W D x Green White /Set Yellow t 2 50 u D Slov Da Dila pIn WS esults – Optimiz R y t t o of Maribor tic p In s: tic o The 2D the tw vised tha bias, las plas er,and almos cessed step to e t p ersity osc 0.1-1.2 ta f aterials o in egligible o m is da ork. een super pr n een t learning. four Windowing ta The spectr tic receiv a e ensur emen tw tha THz f ith ar Netw o da betw w The Univ ation down-sampling plas the and be or in vised D ts a 1D evice. using 1 al easur d ahertz f s m The ter and vect o hich taset gap w and t classific Ter b duces s. super Neur consis der da 1550 Automated Inorganic Pigment Classification in Plastic Material using T (1D) ta, tro techniques tic ork ansmit reor essing classified sing in THz cessing da an emen t ma using tr u o action, o t e orithm aSc Netw lutional tion the THz er frequency 2D extr step tha suppr easur aut al w ectly e-pr vo alg dila y of Ter pr to m on b an igmen the dir ith p THz dimensional in C main xity Neur A y el tation w the ts t een signals ta a velope nov cessing las tness in tw one da en Dila tup tup a o . esen ganic a classif be THz oach. sing se epr spectrum bus comple pr 1D The acy inor lutional ed to u pr ro tal se tal placed rk s vo appr oach e. ’s the o duced tection, is tennas. o tly The accur w on placed forms de Spectrum an oduction C acquir pr appr of tr terial’ ere ans oposed ocedur ta. In This ma and w the learning THz impossible this tr efficien pr Peak pr with da classifier reducing loss Experimen Experimen sample PCAs SRK 2022 r 9 t , r e fo e ed sis tric veo IEEE tur f las the real The the acy soil- , Topics lutional tection rk o ound 731–735, sarc mois ed vo de o show analy tes gr of polarime p. 1–4 soil Apertur The the accur ughness p con ro ,4 ve Select object pp. etw s. reduce ta the tion. f main o eep n ted to tima % f ace no. d for polarimetri 2014 yer to o s attering. da 2010, es retrie y surf 0, ,2003 6, thetic 1 the la results to urnal ork ne sc 13 with radia . omfr e Jo consis al tivit and vol ag etw ,Ju Syn adapt ell possibility e using n used tal w ed ters IEEE 153–16 Sensi 727–744 tur al ters, pack Radar ation to tric e pp. eur e the radar ame Let ,pp. ar 1, ation n volutional ork as within Zribi: mois par 4 fic band w tempor orithm, tw thod mpar 2015 M. soil pertur ace no. softw alg ,no.7 A con L activ able to 1, al classi ne eas co ates Sensing 4 and e surf volutional Experimen is volume me ta f get multi ar e L-band o ,vol. n thetic ar da ,vol. totypeo empor Tar co in eep using al and which r indic emotR pr Syn d e , the SAR ata. fo Dupuis, c A Sensing alued on and version Sensing multit e ebnik: ed ground a X. tur elu yer d thod In x-v neur R e arXiv:1505.02496, la e using om z, Pace: Laz t ence roposed etated values thus . emot S. er s, me fr acquir p emot G yesian R egio. R eprin R , tur ba mois the veg ed polarimetri Cloude: Comple Conf ernande a and pr AI S. and and een The yer of and tion Geoscience and ti, Tu, Estimation oposed soil la ession mois results the and en arXiv IEEE , using Z. ellwich: opean H2020 betw tasets t the ts, equency by vations es, .H Eur Maribor pr da of Dubois-F by ta. oposed tima tier regr Pulvir ser Lee, O pr tal of measur s P. soils, ta th Pot L. . imag 8 ed 2021 rk soil tha es Ob multifr da al Geoscience E. and in and o da a ce a, C.-Y tion e emen e of k, on , sar ta, and w is n the ed the dicc Earth tinel-1 for ang da support ts volutional tur tur re s Baghdadi, ters Pier W ch tima n t . agricultur Hajnse sen yer fe ork N .Haensch ame e I. N. L. R Comparison poin 2018 Conclusion This es Radar co la dimensionality tha valued experimen show mois when measur mois Re om Applied polsar esear [1] par bar 2013 [2] Transactions [3] fr in [4] netw [5] in R Cesta 45, 2000 Moisture Aperture Radar Data andrej.sarjas@um.si Soil acije, for Computer Science, Koroška ork for munik g and ko netw e 4. 2. 2022 ta Synthetic da Blaž Pongrac, Andrej Sarjaš with adijsk ession R 2018 gr e re SA year tur . Ljubljana, 2.- ection sults om tation fr mois m det L-band re esen Network e syste 25. seminar r of tal soil r dusan.gleich@um.si, blaz.pongrac1@um.si, volutional tur image repr te Dušan Gleich, con d wa SAR GBR r , Faculty of Electrical Engineerin enia; te mois o ocessing Slov OS-2 Pauli tima arib Deep soil Pr Experimen AL in Es M r r y ge e e rk is is e ork o of o of fo b the ar Neural polarimetric eep and 100 d lar This tur This SAR mor layer ts sub- fully er ased each tion tw es b maps. t in ersity of Maribor r netw real 9 ting in filt lutional mois o ed tric which a Ne functions, A vo tur tha functions using nsis emen using e also which handle results. the fea is ted soil of one domain. al co optional f is o o con channel s, fully The Univ al combina y ending imag tw ation ation can AR) and y ation connect polarime b esen it volutional Neur the (S an an sed, measur verified layer valued timation. is ermine V-CNN alled the repr activ ognition yer t activ u ed and re C con gener e la x es fully fully -c ause s det is rec in s, as ound er response efo co een and categoriz Radar er the t esen w yer w gr volutional follow yer CNN iddenh er outputs. e bec e or , la volutional on la to The ther and betw good valued nsis output repr comple amet rk L-band in filt x , s o opout, 1000 yer s. CNN, V-CNN as and Regression using imag co Con par dr results la input C s er Apertur yer yer etw ation input ell popular la la , . pooling within e n sedu using tal alued c input filt in w volution, value ference pooling inputs year shown comple tic s, deep tur al e x v input al the dif as s, very the CV-CNN W The real input a eur of ver con er few has the yer fined pooling Hidden s. value la mois n s. regulariz ain t Syn de omple ts se odes the m filt valued ame ts r The s. yer yer the experimen ts. y multichannel ay x pas and fo poses soil la acquisition and la b y enc omain bec of c esen valued yer fully b dimensionality with D arr d x la rop for poin e consis ed 2 x mple the pr tion. e SAR The ork as co oduction volutional ar volutional volutional, ession ained the ever,the volutional tr er tabases tima mple n ta. ound tw CNN ocessed mple In Ov learning da paper (CV-CNN) es co hidden con and paper (CNN) co con regr each da gr Structur ne A sampling connect pr obt response reducing Same on How channel co con with SRK 2022 . na te 3 tih je le No. nal slike bilo 14th 00 t. tio obliki, mina se al ravni SS2 Ca (desno). abo nen tnos R AP riščenja uspelo 2012 GPR-jih, je šolskimi A terna in G In ke a cm. las (IEEE ko realni vezov je s nI ina 15 upor sklop W .in Ieee ars v d m kompo na fizični dings T vinsk za am anje system. ra e ko IC tjo SFC ni n a onu PR 2011 etectio ocee . G geo trik globini pri n ed Pr tična a GPR Drugi žnos se n ki Delov polig tric IEEE ma plas vo omenjenih ev. mo e sta namen na 2012. landmin Technology 858-861 zakopana in z če. polarime for Symposium. pr p. ezn enčne večinoma po rešit sklop ta G je tem, tar in o) opani izdela prisotna ted (GPR). je GPR tric sam je Za sis c 2011: Sensing Po koher kjer (lev Zak na abili ki moun ss), anih tema olju Radar e ar al zadnji olarime sis ,kio EC ok (Ig tform ating emot upor R GPR, statične e pla Full-P tudi tik ati full-polarimetri vezov and ti redlag ev Penetr vel p radarjih. tir ving oN na smo Symposium širit in mo ound a enija; CW je dela elene atorijsk Gr aveform iz raz oblema no pr a zaž Geoscience Sensing eloping ulti-w . eloping e , Slov se Tretji M ki namen enutnih na vseh labor Dev ence IEEE Dev tr na implemen ne atur er al. tional emot ta v al. al., R uspeli et d pri er et Conf ., 2003. et o val acije. lit ternaIn and Maribor ati o X., y,A X., sklop, Za več avlja in , o tional , ov vi V. tak vezo IEEE Feng Yar Feng 2000 A ezult Sklep Pr U in boljši na polariz specifično tem uspešno odpr potrjeno minami. Viri terna [1] In [2] 2003 03CH37477). [3] Geoscience R Cesta 45, (t.i. z adarju tehniki adarja , Koroška acij geor CW r CW zvočni lenih odbojeve v SF acije, SF a eč polariz zaž pri ev tur ne v munik o in informatiko rešit struk ko ajema v a e 4. 2. 2022 teles odboje t z avljanja temelji Danijel Šipoš čunalništv danijel.sipos@um.si radijsk lenih žnos odinsk odpr e šumov). er zaž rincipu za mo mom Ljubljana, 2.- ne p te a avljanje tem super-het sis 25. Seminar tik odpr sis an ana anim podobnem oblema tivno grir Pr Na ak edlag edlag te Pr Pr in Fakulteta za elektrotehniko, ra a - v v v na ti ter an za šjem teva tem ano tudi ov način S ave super- tnem acije, boljšo zah enčnim onskih onu W izdela gije tem ušen m. povr abo onomija tinuir tr izboljšali to n o ekv ekcijo načrt alni sis eizk sklopljeneg avt ener resolucijo polariz nudi polig upor tema. ko fr elek močnos pr erza v Mariboru, pod det o in sis oplov tim a tinuous mogoče abo nudi aba tak bil ak polarimetrični ačno za po tnem anja čno sklopljen radar za detekcijo eksplozivnih Univ a as dodatno zr zr anih tavljen teles omejena ddaja in je teža eg o Con por tem Skrbno upor tes sk bilo o bi eds e, Polno delov voj sis omogoč ebo je zelo ki je tegrir analogno-digit tem Da pr ter na raz stopnič slik zivnih a adar , in nizk pa Sis Zra s kar potr er e teles. sk ezpilotnim splo namenjen K tudi oplov geor radar tode oviti čju, delu br azuje abo ek todi ak Frequency temu hibridni v odbojev teles. zr ju me signala. adar me izloči kot prik vo upor zagot na a cijo a je delan obmo adar po te Kljub zivnih geor lju ek oplovu. raz iz epped z elenih zivnih o cialnim acija primarno ak St tem em splo ok geor det zr pri ilb abo s sk zaž mer ek temelji splo je eluje m strukturi d tr oddaneg m te in vedbo. ki ne ek e ko disert za ezpilotneg je iz z in (ang. upor t u merjenja, a in br skrb sis Z time dimenzije vo sk a nen tno t cen alnik or zna adarja anje om en odinski vos avljanje širi atorijsk od aj ezpilotnem šneg ak CW). mpak ejemnik, er o raz epo mbinaciji ačno sklopljen Uv Dokt geor zemlje br tak posebno namenom valov kor SF celot kompo ko nek najmanjših spr het ojačev kak odpr ki pr labor ko Zr SRK 2022 ܯܴ ܯ ܯ ܶ ܴ ܯܶ ݄ ݐǡ ߬ ൌ ෍ ܣ௜݁௝ଶగ௙೔௧ߜ ߬ െ ߬௜ ௜ ݄ଵǡଵ ݐǡ ߬ ڮ ݄ଵǡெ ݐǡ ߬ ೅ ܪ ݐǡ ߬ ൌ ڭ ڰ ڭ ݄ெ ݐǡ ߬ ೃǡଵ ݐǡ ߬ ڮ ݄ெೃǡெ೅ Strokovni seminar Radijske komunikacije se je razvil iz izobraževalne dejavnosti, ki jo je pod O seminarju okriljem projekta TEMPUS JEN-04202 v letih 1993 do 1997 izvajala Fakulteta za elektrotehniko The seminar Univerze v Ljubljani. Seminar je namenjen strokovnemu izpopolnjevanju strokovnjakov radijskih komunikacij in drugih, ki jih to področje zanima. Vključen je v program izvajanja vseživljenjskega izobraževanja na Fakulteti za elektrotehniko v Ljubljani. Njegov namen je osveževanje, razširjanje izpopolnjevanje in poglabljanje znanja ter dvig strokovnosti zaposlenih strokovnjakov na področju optičnih komunikacij. Seminar obsega uvodni del, namenjen obnavljanju in razširjanju znanja, ter strokovni del, namenjen seznanjanju in poglabljanju v strokovna vprašanja o sistemih in njihovih sestavnih delih. Izvedenski del seminarja, ki ga izvajajo priznani vabljeni strokovnjaki, obsega nekatera pomembnejša razvojna vprašanja. Seminar on Radio Communications evolved from the activities running at the Faculty of Electrical Engineering University of Ljubljana, during the period from 1993 to 1997 under the auspices of the European project TEMPUS JEN-04202 granted for the same period. The seminar si intended to communication professionals and other involved into the field of radio communications. It is part of the continuing education programme at the Faculty of Electrical Engineering in Ljubljana. Its primer porpuse is to enhance the expertise of professionals in the field of radio communications. The seminar consists of two parts: one part is dedicated to basic technical topics aiming to refresh fundamental knowledge in radio communications, and the second part is intended to the latest research and development achievements and trends from spectrum regulation, standardization, systems and solutions, all from international and national experts. 0G, 2G, 3G, 3GPP, 4G, 5G, aktuatorji, antena, antena cigara, BLE, brezžične tehnologije, Ključna gesla Brezžično globalno omrežje (WGAN), CEPT/EU, časovno kritične komunikacije, DECT, Keywords EC/CEPT, elektromagnetno valovanje, eMBB, EMS, ETSI, Giga-bitni radio, govorna komunikacija, GSM-R, IoT, IoT naprave, ITS, ITU-R, LTE-M, metamateriali, milimetrski valovi, MMDS/BWA, MU-MIMO, NB-IoT, Nesamostojno omrežje 5G, nevtroni, NMT450, nosljive naprave, NR-RedCap, OFDMA, O-RAN, pametna mesta, pametna območja, pametni telefon, PPDR, Prihodnji sistem radijskih komunikacij za železnice (FRMCS), privid varnosti, radar s sintetično odprtino (SAR), satelitski internet, senzorji, sevanje, sinhronizacija, smernost, Sodostop z ortogonalno frekvenčno porazdelitvijo (OFDMA), SpaceX, Starlink, UIC, WiFi6, WiFi 6 Mesh, Wireless Broadband Alliance (WBA), WLAN, WRC-23 0G, 2G, 3G, 3GPP, 4G, 5G, actuators, antenna, BLE, CEPT/EU, cigar antenna, Digital Enhanced Cordless Telecommunication (DECT), directivity, EC/CEPT, electromagnetic waves, eMBB, EMF, ETSI, Future Railway Mobile Communication System (FRMCS), Gbit radio, GSM-R, IoT, IoT devices, ITS, ITU-R, LTE-M, metamaterials, millimeter waves, MMDS/BWA, MU-MIMO, NB-IoT, neutrons, NMT450, Non-standalone 5G network, NR-RedCap, Orthogonal Frequency Division Multiple Access (OFDMA), O-RAN, PPDR, radiation, satellite internet, security theater, senzors, smart areas, smart cities, smart phone, SpaceX, Starlink, synchronization, Synthetic Aperture, Radar, Time-critical communication, UIC, voice communication, werable devices, WiFi 6, WiFi 6 Mesh, Wireless Broadband Alliance (WBA), Wireless Global Area Network (WGAN), wireless technologies, WLAN, WRC-23 Grebenc Marko, Hilt Attila, Ivančič Mirko, Javornik Tomaž, Jelen Matjaž, Koršič Luka, Kos Anton, Avtorji Lekić Darko, Lesić Ivan, Majcen Drago, Markovič Jure Janez, Marković Sanja, Mišović Božo, Noel Authors Guillaume, Novak Csaba, Osredkar Roman, Pavšek-Taškov Meta, Penko Gorazd, Pongrac Blaž, Samardžić Klaus, Sarjaš Andrej, Senčar Srdič Marjana, Snoj Luka, Snoj Boštjan, Sterle Janez, Sušnik Rudolf, Šipoš Danijel, Švigelj Aleš, Turčinović Filip, Umek Anton, Varšek Janja, Vidmar Matjaž