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D. Klabučara, D. Kekezb

a Physics Department, Faculty of Science, Zagreb University, Bijenička c. 32,
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Abstract. Among other successes, the Schwinger-Dyson approach to nonperturbative QCD
provides the explanation of the constituent quark model with its quark masses which are
very different from the current, Lagrangian masses. Nevertheless, if the interaction kernel
contains also the perturbative part of the QCD interaction, the Schwinger-Dyson approach
also reproduces the known high-energy behavior of the quark masses predicted by pertur-
bative QCD.

The Schwinger-Dyson (SD) approach to physics of quarks, gluons and hadrons
(reviewed, e.g., in Refs. [1–3]) enables the direct contact with their fundamental
theory – QCD, through ab initio calculations of QCD Green’s functions. Also, SD
approach permits many phenomenological applications through various degrees
of modeling and approximations, which can nevertheless preserve some crucial
features of QCD like its chiral behavior.

In these proceedings we recapitulate from Ref. [4] the part pertaining to the
behavior of dressed quark masses, to point out that already several decades ago,
the SD approach even at a fairly simple model level provided the correct un-
derstanding of the quark masses even in the regime of nonperturbative QCD,
and the correct transition between nonperturbative and perturbative regimes of
QCD. That is, we explain how SD approach generates dynamically constituent
quark masses and thus leads to the constituent quark model in the low energy
regime, but is, at the same time, equivalent to the perturbative QCD in the high
energy regime if the interaction kernel contains the perturbative QCD part.

Because of nonperturbative features of QCD at low energies, one must con-
sider the strongly dressed two-point quark Green’s function, namely the quark
propagator S(q):

S−1(q) = A(q2)/q− B(q2) , (1)

is dressed very strongly indeed at low quark energies and momenta q. This means
that the propagator ”vector function” (i.e., wavefunction renormalization) A(q2)
can noticeably depart from 1, and that (what is much more important qualita-
tively and quantitatively) the propagator ”scalar function” B(q2) can exceed (at
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low q) the light current masses of the lightest (u and d) quarks drastically, by two
orders of magnitude. This is the nonperturbative QCD phenomenon of Dynami-
cal Chiral Symmetry Breaking (DχSB), which leads to the momentum-dependent
quark mass functionM(q2) = B(q2)/A(q2) with values, at low q2, of the order
of constituent quark masses.

The dressed propagator (1) is obtained by solving the quark two-point
(“gap”) SD equation for the appropriate quark flavor. But the big trouble with
SD equations is that they are a coupled system of integral equations for Green’s
functions of QCD, where an equation for a n-point function “calls” not only
other n-point functions (and lower), but also n+1-point functions, leading to the
intractable growing tower of SD equations, which must be at some point trun-
cated even in ab initio SD calculations. Concretely, the “gap” SD equation for the
quark propagator S(q) contains i) the dressed gluon propagator Gµν(q − k) and
ii) the dressed quark-gluon vertex Γν(k, q− k, q), and they both satisfy their own
SD equations. However, such SD calculations in the “ab initio research direction”
are beyond our present scope. Namely, the crucial insight on the dressed quark
masses can anyway be obtained by using an “educated Ansatz” Gµν(q − k) in-
stead of a proper solution Gµν(q − k) for the the dressed gluon propagator, and
by resorting to the commonly used rainbow-ladder approximation (i.e., with bare
quark-gluon vertices, Γν(k, q− k, q)→ γν):

S−1(q) = /q− m̃− i g 2st CF

∫
d4k

(2π)4
γµS(k)γνGµν(q− k) , (2)

where m̃ is the bare mass term of the pertinent quark flavor, breaking the chiral
symmetry explicitly. For the gluon propagator we use one of those which not
only lead to DχSB, but which also provides a remarkably successful description
of meson quark-antiquark bound states by the consistent usage in the rainbow-
ladder Bethe-Salpeter equation. That is, we use the effective, modeled Landau-
gauge gluon propagator of Jain and Munczek [5–7]:

g 2st CFG
µν(k) = G(−k2)(gµν −

kµkν

k2
) , (3)

where we have indicated that our convention is such that not only the strong cou-
pling constant gst, but also CF, the second Casimir invariant of the quark repre-
sentation, are absorbed into the function G. For the present case of SU(3)c, where
the group generators are λa/2, namely the (halved) Gell-Mann matrices, CF = 4

3
.

It is essential that the effective propagator function G is the sum of the per-
turbative (“ultraviolet”) contribution GUV and the nonperturbative (“infrared”)
contribution GIR:

G(Q2) = GUV(Q
2) +GIR(Q

2) , (Q2 = −k2) . (4)

The perturbative part GUV is required to reproduce correctly the ultraviolet (UV)
asymptotic behavior that unambiguously follows from QCD in its high–energy,
perturbative regime. Therefore, this part must essentially be given – up to the
factor 1/Q2 – by the running coupling constant αst(Q

2) which is well-known
from perturbative QCD, so that GUV is in fact not modeled.



Schwinger-Dyson approach to QCD ... 17

-q
2
[GeV

2
]

A
(q

2
)

1

1.2

1.4

1.6

1.8

2

10
-4

10
-3

10
-2

10
-1

1 10 10
2

10
3

10
4

Fig. 1. Our chiral-limit solution (the solid line) for the propagator function A(q2) is com-
pared with our massive solutions for various m̃(Λ) 6= 0 (the dotted lines marked by letters
denoting the pertinent flavors). The dashed line denotes theA(q2)-Ansatz (for u, d-quarks)
of [8], and also of Frank et al. [9] who have such parameters that the difference with respect
to the dashed line [8] cannot be seen on this figure.

From the renormalization group, in the spacelike region (Q2 = −k2),

GUV(Q
2) = 4πCF

αst(Q
2)

Q2
≈ 4π2CFd

Q2 ln(x0 + Q2

Λ2
QCD

)

1+ b ln[ln(x0 + Q2

Λ2
QCD

)]

ln(x0 + Q2

Λ2
QCD

)

 ,

(5)
where we employ the two–loop asymptotic expression for αst(Q

2), and where
d = 12/(33 − 2Nf), b = 2β2/β

2
1 = 2(19Nf/12 − 51/4)/(Nf/3 − 11/2)

2, and Nf is
the number of quark flavors. The parameter x0 is the infrared cutoff, introduced
to regulate the logarithmic behavior of GUV as the values ofQ2 approach Λ2QCD,
the dimensional parameter of QCD. As in [7], we use x0 = 10, but this is not
really important since the results are only very weakly sensitive to the values of
x0, as was already pointed out by [7]. Following [7], we set Nf = 5 and ΛQCD =

228MeV. Although the top quark has meanwhile been found, its mass scale is
far above the range of momenta relevant for nonperturbative and bound state
calculations, and even above the value of the UV cutoff needed in the massive
version of our SD equations (see below). Therefore, there is no need to revise
GUV (5) to include Nf = 6. (On the other hand, choosing Nf below 5 would
not be satisfactory because (i) the momentum range of the order of the b quark
mass still has non-negligible influence in our bound-state calculations, (ii) the b
quark mass is below the UV cutoff used in our “massive SD equations”, and (iii)
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sometimes we need the solutions for relatively high momenta, e.g., to be able to
see the asymptotic behavior of the propagator functions A(q2) and B(q2) – see
Figs. 1, 2 and 3.)

The case m̃ = 0 corresponds to the chiral limit where the current quark mass
m = 0, and where DχSB is the one and only cause (“source”) of the constituent
quark mass, defined as the mass function value at q2 = 0, namely M(0) =

B(0)/A(0) [5]. Of course, calling “the constituent mass” the value of the “momen-
tum-dependent constituent mass function” B(q2)/A(q2) at exactly q2 = 0 and
not on some other low q2, is a matter of a somewhat arbitrary choice. Another
conventional choice (e.g., in [10]) is to call the solution of −q2 = B2(q2)/A2(q2)

the Euclidean constituent-quark mass squared. However, since this is just a mat-
ter of choosing terminology, we stick to that of Jain and Munczek [6].

With the assumption that u and d quarks are massless, which is an excellent
approximation in the context of hadronic physics, solving of (2) yields the solu-
tions for A(q2) and B(q2), displayed in respective Fig. 1 and Fig. 2 by the solid
lines.

In these figures we also compare them with A(q2) and B(q2) correspond-
ing to the dressed propagator Ansätze of the references [8, 9], represented by the
dashed lines. Our massless solutions lead to the constituent u (and d) quark mass
B(0)/A(0) = 356MeV. The ratioB(q2)/A(q2), namely our momentum-dependent
mass functionM(q2), is depicted in Fig. 3 by the solid line, and the dashed line
represents the analogous ratio formed from A(q2) and B(q2) corresponding to
the Ansätze of Refs. [8, 9].

Note that our chiral-limit solutions for A(q2) and B(q2) differ a lot from the
Ansätze of Refs. [8, 9], even though the ratio, giving the mass function, is similar.

When m̃ 6= 0, the SD equation (2) must be regularized by a UV cutoffΛ [6,7],
and the bare mass m̃ is in fact a cutoff–dependent quantity. We adopted the pa-
rameters of [7], where (for Λ = 134 GeV) m̃(Λ2) is 3.1 MeV for the isosym-
metric u- and d-quarks, 73 MeV for s–quarks, 680 MeV for c–quarks, and 3.3
GeV for b–quarks. Solving of (2) then yields the solutions A(q2) and B(q2) for
“slightly massive” u- and d-quarks, “intermediately massive” s-quarks, as well
as the solutions for the heavy quarks c and b. We essentially reproduce the re-
sults of Ref. [7] (within the accuracy permitted by numerical uncertainties). The
A(q2) and B(q2) solutions for m̃(Λ2) 6= 0 are displayed in Figs. 1 and 2 by dot-
ted lines marked by u, d and s, c and b, indicating which flavor a curve pertains
to. For the lightest, u- and d-quarks (with m̃ = 3.1 MeV), both A(q2) and B(q2)
are only slightly above the curves representing our respective chiral-limit solu-
tions. More precisely, the difference is then at most 1.4% (at q2 = 0) for A(q2),
while for B(q2) the largest absolute value of the difference (again occurring at
q2 = 0) amounts to an excess of 6.2% over our chiral-limit solution. The excess
quickly becomes much smaller above −q2 = 0.2 GeV. Admittedly, at −q2 above
2 GeV, the relative difference between the “chiral” and “slightly massive” B(q2)’s
starts growing again because of the different asymptotic behaviors of these re-
spective solutions. They are, respectively, B(q2) ∼ [ln(−q2/Λ2QCD)]

d−1/q2 and
B(q2) ∼ 1/[ln(−q2/Λ2QCD)]

d, and are consistent with the asymptotic freedom of
QCD [11, 12]. (This in turn results in the asymptotic behavior of the momentum-
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Fig. 2. The comparison of our chiral-limit solution (the solid line) for the propagator func-
tionB(q2) with our massive solutions for various m̃(Λ) 6= 0 represented by the dotted lines
marked by letters denoting the pertinent flavors, and with the Ansatz (for u, d-quarks) for
B(q2) employed by [8] (the dashed line), and that of [9], which cannot be distinguished
from the dashed line in this plot.

dependent, dynamical mass functions B(q2)/A(q2), which is in accord with the
behavior in perturbative QCD [5–7,12,13]). However, the absolute values of these
B(q2)’s (even for the “slightly massive” case) and of their difference are already
very small at −q2 > 2 GeV.

The deep Euclidean asymptotic behavior B(q2) ∼ 1/[ln(−q2/Λ2QCD)]
d is ful-

filled also for the more massive flavors, but of course with very different coef-
ficients (which are essentially proportional to the current quark masses [6, 7]).
Also, A(q2) → 1 for all flavors as −q2 → ∞. For low −q2, however, A(q2)’s
belonging to different flavors exhibit interesting differences. The bump that char-
acterizes the least massive (or chiral) u, d-quarks is absent already in A(q2) of
our “intermediately massive” s-quark, for which the fall-off is almost monoton-
ical, as the increase (around −q2 ∼ 0.1 GeV) above the A(0)-value is practically
imperceptibly small. Moreover, for even heavier c− and especially b−quarks, the
A(q2)-values for even lowest −q2’s, are below the corresponding values of the
chiral-limit A(q2). Comparing the various A(q2)- and B(q2)-solutions illustrates
well how the importance of the dynamical dressing decreases as one considers
increasingly massive quark flavors.

These m̃ 6= 0 solutions give us the constituent mass B(0)/A(0) of 375 MeV for
the (isosymmetric) u- and d-quarks, 610 MeV for the s-quarks, 1.54 GeV for the
c–quarks, and 4.77 GeV for the b–quarks. These are very reasonable values. Also,
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Fig. 3. The solid line denotes our constituent quark mass function B(q2)/A(q2) in the chiral
limit, while the dotted lines (marked by letters indicating the pertinent flavors) denote our
constituent quark mass functions for m̃(Λ) 6= 0. The one following from the Ansätze of [8,9]
is denoted by the dashed line.

the momentum-dependent mass functions B(q2)/A(q2) – depicted in Fig. 3 – in
the presently chosen variant of the SD approach [5–7] behave for all flavors in the
way which correctly captures the differences between heavy and light quarks and
qualitatively agrees with the most advanced recent results on the quark masses
in the SD approach such as Ref. [14], where instead of simple regularization [6,7]
the full nonperturbative renormalization has been carried out and the quantita-
tive agreement with quenched lattice results achieved over a very wide range of
momenta.
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Kvarkovska snov v močnih magnetnih poljih
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V pričujočem prispevku skušamo razumeti razne lastnosti kvarkovske snovi, kot
jih opisuje model Nambuja in Jona-Lasinia v prisotnosti močnih magnetnih polj.
Najprej analiziramo raznovrstne fazne diagrame. Potem raziskujemo razlike, ki
nastanejo zaradi različnih vektorskih interakcij v Lagrangeovi gostoti in upora-
bimo izsledke za opis zvezdne snovi. Nato se ozremo na značilnosti dekonfinacije
in vzpostavitve kiralne simetrije pri kemičnem potencialu nič v okviru prepletene
Polyakovove verzije modela Nambuja in Jona-Lasinia. Končno proučimo lego
kritične točke za različne izbire kemičnega potenciala in gostote.

Schwinger-Dysonov pristop h kvantni kromodinamiki razloži
nastanek oblečenih mas kvarkov

D. Klabučara in D. Kekezb
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Croatia
b Rugjer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia

Poleg drugih uspehov Schwinger-Dysonov pristop k neperturbativni kvantni kro-
modinamiki razloži tudi to, zakaj so v efektivnih kvarkovih modelih oblečene
mase kvarkov zelo različne od golih mas. Če pa interakcijsko jedro vsebuje tudi
perturbativni delež kromodinamske interakcije, poda Schwinger-Dysonov pri-
stop tudi znano visokoenergijsko obnašanje kvarkovih mas, tako kot jih napove-
duje perturbativna kvantna kromodinamika.

Mezonski učinki pri osnovnih in resonančnih stanjih barionov

R. Kleinhappela, L. Cantonb, W. Plessasa in W. Schweigera
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Graz, Austria
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Za raziskavo mezonskih učinkov pri osnovnih in resonančnih stanjih barionov
smo vključili mezonske zanke v relativistični pristop s sklopljenimi kanali. Iz
računov, ki so bili doslej napravljeni na hadronskem nivoju, smo dobili rezul-
tate za oblečene mase osnovnega stanja in resonanc nukleona. S sklopitvijo na
pionski kanal smo dobili tudi širine resonanc, zlasti resonance ∆. Za zdaj smo
sicer izboljšali rezultate v primerjavi z računi z enim samim kanalom, vendar so
razpadne širine še vedno premajhne v primerjavi z meritvami.


