© Acta hydrotechnica 18/29 (2000), Ljubljana ISSN 1581-0267 5 UDK: 532.528:532.542.1 UDC: 532.528:532.542.1 Izvirni znanstveni č lanek Scientific paper KAVITACIJSKI TOK MED PREHODNIMI REŽIMI V CEVNIH SISTEMIH TRANSIENT CAVITATING FLOW IN PIPING SYSTEMS Anton BERGANT Sprememba pretoč ne hitrosti povzroč i prirastek in padec tlaka v cevnem sistemu. Kontinuiteta kapljevine je prekinjena, ko se tlak v sistemu zniža na parni tlak kapljevine. Prispevek zajema fizikalne osnove kavitacijskega toka pri parnem tlaku kapljevine med prehodnimi režimi (pretrganje kapljevinskega stebra). Kavitacijski tok je popisan z enač bami faznih stanj, ki jih rešujemo z analitič nimi in numerič nimi metodami. Metode reševanja enač b so vgrajene v diskretni in kombinirani kavitacijski model. Numerič ni rezultati so primerjani z rezultati meritev v laboratoriju. Rezultati, dobljeni s kombiniranim modelom, se v splošnem najbolj ujemajo z meritvami. Kombinirani kavitacijski model, v primerjavi z diskretnim kavitacijskim modelom, bolj natanč no popisuje fizikalno sliko kavitacijskega toka. Ključ ne besede: cevni sistemi, nestacionarni kavitacijski tok, vodni udar, parna kavitacija, pretrganje vodnega stebra, diskretni kavitacijski model, kombinirani kavitacijski model, eksperimentalna postaja A change of flow velocity in a piping system induces either an increase or a decrease in pressure. Liquid column separation occurs when the pressure drops to the liquid vapour pressure. This paper deals with physical phenomena of transient vaporous cavitating flow in pipelines. Column separation in pipelines is described by a set of equations representing a particular physical state of the fluid. The equations are solved separately by analytical and numerical methods. The solution methods are integrated into a discrete vapour cavity model and an interface vaporous cavitation model. Numerical results are compared with the results of laboratory measurements. A comparison between the results shows that the interface model simulates the physics of the transient cavitating flow more accurately than the discrete vapour cavity model. Key words: piping systems, transient cavitating flow, water hammer, vaporous cavitation, water column separation, discrete cavity model, interface vaporous cavitation model, experimental apparatus 1. UVOD Hidravlični cevni sistemi delujejo pri različnih pretočnih režimih. Sprememba pretoč ne hitrosti povzroč i prirastek in padec tlaka v cevnem sistemu. Kontinuiteta tekoč ine je prekinjena (pretrganje kapljevinskega stebra), ko se tlak v sistemu zniža na parni tlak kapljevine (pojav kavitacije). Obstajata dva tipa pretrganja stebra. Prvi je lokalna parna kavitacija z velikim kavitacijskim razmernikom (približno ena). Drugi je področ je kontinuiranega kavitacijskega toka vzdolž določ ene dolžine cevovoda. V tem primeru je kavitacijski razmernik majhen (približno nič ). Prispevek obravnava fizikalne zakonitosti in teoretič ne modele kavitacijskega 1. INTRODUCTION Hydraulic systems operate on a broad range of operating regimes. A change of flow velocity in a piping system induces either an increase or a decrease in pressure. Liquid column separation occurs when the pressure drops to the liquid vapour pressure (transient cavitating flow). Two distinct types of column separation may occur. The first type is a localised vapour cavity with a large void fraction (close to 1). The second type of column separation is distributed vaporous cavitation that may extend over long sections of the pipe. The void fraction for this case is small (close to 0). This paper deals with physical phenomena and theoretical models of Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 6 toka med prehodnimi režimi v cevnih sistemih. Izsledki teoretič nih raziskav so podprti s preizkusi kavitacije pri parnem tlaku kapljevine. Glavni poudarek je v predstavitvi novih teoretič nih modelov, izvedbi originalnih preizkusov in teoretič no-eksperimentalni izlušč itvi fizikalnih zakonitosti kavitacijskega toka v cevovodu. V teoretič nem delu so podane enač be kavitacijskega toka in metode reševanja enač b. Kavitacijski tok med prehodnimi režimi v cevnih sistemih je popisan z enač bami vodnega udara, kontinuiranega kavitacijskega toka, kompresijskega skoka in diskretne kavitacije. Enač be vodnega udara rešujemo z metodo karakteristik. Enač be kontinuiranega kavitacijskega toka rešujemo z generalizirano analitič no-numerično metodo. Enač be kompresijskega skoka se rešujejo združeno z enač bami vodnega udara in kontinuiranega kavitacijskega toka s pomočjo Newton- Raphsonove metode. Kontinuitetna enač ba diskretne kavitacije pa je rešena numerič no, v kombinaciji s kompatibitetnimi enač bami vodnega udara ali enač bami kontinuiranega kavitacijskega toka. Metode reševanja enač b kavitacijskega toka so kombinirane v diskretni in kombinirani kavitacijski model. Diskretni kavitacijski model generira kavitacije pri robnih pogojih in v numerič nih vozlišč ih vzdolž cevovoda, ko tlak v kapljevini pade na parni tlak. Cevni odseki med vozlišč i so modelirani kot cevni odseki s kapljevinskim tokom. Temu sledi predstavitev novega kombiniranega kavitacijskega modela, ki zajema eksplicitni popis diskretnih kavitacij in področ ij kontinuiranega kavitacijskega toka. Model zajema poljubno kombinacijo področ ij kontinuiranega kavitacijskega toka in diskretnih kavitacij v cevovodu s poljubnim nagibom. Eksperimentalne raziskave kavitacijskega toka med prehodnimi procesi so nujno potrebne za boljše razumevanje fizikalnega pojava in overitev postavljenih teoretič nih modelov. V prispevku orisana preizkusna postaja dovoljuje raziskave kavitacijskega toka pri kontroliranih pretočnih pogojih. Prilagodljivost postaje, rač unalniško krmiljena regulacija tlaka v tlačnih rezervoarjih, zapiralni mehanizem s torzijsko vzmetjo in transient vaporous cavitating flow in pipelines. The theoretical findings are verified by column separation measurements in the laboratory. The main objective of this paper is to present novel theoretical models that are verified by experiments and to improve the understanding of the column separation phenomena in pipelines. The theoretical part of the paper describes pipeline column separation equations and their solution methods. Transient cavitating flow in pipelines is described by water hammer equations, two-phase flow equations for a distributed vaporous cavitation region, shock equations and equations for a discrete vapour cavity. Water hammer equations are solved by the method of characteristics. Two-phase flow equations are solved by a generalized analytical-numerical method. The shock equations are coupled with water hammer compatibility equations and two-phase flow equations, and then solved by the Newton- Raphson method. The discrete vapour cavity continuity equation is solved numerically, and then coupled with water hammer compatibility equations or two-phase flow equations. The solution methods for column separation equations may be incorporated into discrete vapour cavity models and an interface vaporous cavitation model. The discrete cavity model allows vapour cavities to form at interior pipe sections and boundaries when liquid pressure drops to the liquid vapour pressure. A liquid phase between the computational sections is assumed. Then a novel interface vaporous cavitation model is presented. The model treats discrete vapour cavities and distributed cavitation regions explicitly, and it handles the various interactions between the particular physical state of the fluid in a number of pipeline configurations . Experimental investigation of transient cavitating flow in pipelines should be performed in order to improve an understanding of the phenomena and to verify theoretical models. An experimental apparatus that enables research of column separation phenomena under controlled flow conditions is presented. The flexible experimental apparatus for investigating transient cavitating flow in Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 7 vizualizacija kavitacijskega toka z rač unalniško krmiljeno hitrosnemalno kamero predstavljajo novosti na področ ju eksperimentalnih raziskav prehodnih pojavov s kavitacijskim tokom v cevih sistemih. Primerjava rezultatov izrač una in meritev pokaže, da se rezultati, dobljeni s kombiniranim kavitacijskim modelom v splošnem najbolj ujemajo z meritvami. Kombinirani kavitacijski model v primerjavi z diskretnim kavitacijskim modelom bolj natančno reproducira fizikalno sliko kavitacijskega toka. Odstopanja rezultatov izrač una med obravnavanimi modeli izhajajo iz nač ina popisa kontinuiranega kavitacijskega toka. Iz teoretič no-eksperimentalne analize kavitacijskega toka v sistemu rezervoar- cevovod-ventil-rezervoar sledi, da kavitacijski tok med prehodnimi režimi v cevnih sistemih zajema področ ja kontinuiranega kavitacijskega toka in diskretnih kavitacij. 2. ENAČ BE VODNEGA UDARA IN KA VITACIJSKEGA TOKA Kavitacijski tok med prehodnimi režimi v cevnih sistemih opišemo z enač bami vodnega udara, kontinuiranega kavitacijskega toka, kompresijskega skoka in diskretne kavitacije. 2.1 ENAČ BE VODNEGA UDARA Enačbe vodnega udara popisujejo nestacionarni kapljevinski tok v cevovodu. Kontinuitetna in gibalna enač ba se glasita (Wylie & Streeter, 1993): pipelines incorporates several novel features, including a computer controlled system for maintaining a specified pressure in the tanks, a torsional spring valve actuator and flow visualization, with the aid of computer controlled high-speed video. A comparison between the computational and experimental results shows that the interface vaporous cavitation model gives the best fit. The interface vaporous cavitation model simulates the physics of the transient cavitating flow more accurately than the discrete vapour cavity model. The discrepancies between the two types of models may be attributed to the different description of vaporous cavitation zones. Theoretical and experimental investigations of column separation events in a reservoir-pipeline-valve-reservoir system reveal the occurrence of discrete vapour cavities and vaporous cavitation zones during transient regimes in pipelines. 2. PIPELINE COLUMN SEPARATION EQUATIONS Transient cavitating flow in pipelines is described by water hammer equations, two- phase flow equations for a distributed vaporous cavitation region, shock equations and equations for a discrete vapour cavity. 2.1 WATER HAMMER EQUATIONS Water hammer equations describe the unsteady liquid flow in pipelines. The equations are the continuity equation and the equation of motion (Wylie & Streeter, 1993): 0 g a sinθ + 2 = ∂ ∂ + − ∂ ∂ ∂ ∂ x v v x H v t H (1) 0 2 | | λ g = + ∂ ∂ + ∂ ∂ + ∂ ∂ D v v x v v t v x H (2) Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 8 2.2 ENAČ BE KONTINUIRANEGA KAVITACIJSKEGA TOKA Enač be kontinuiranega kavitacijskega toka opisujejo enokomponentni dvofazni tok v cevovodu, ko je tlak tekoč ine enak parnemu tlaku kapljevine. Pri konstantnem tlaku tekoč ine udarni valovi ne propagirajo vzdolž cevovoda. Kontinuitetna in gibalna enač ba homogene zmesi kapljevine in parnih mehurč kov se glasita (Bergant & Simpson, 1992; Wylie & Streeter, 1993): 2.2 TWO-PHASE FLOW EQUATIONS FOR A DISTRIBUTED VAPOROUS CAVITATION REGION Two-phase flow equations for a distributed vaporous cavitation region describe the unsteady one-component two-phase flow of liquid-vapour mixture in pipelines at a pressure set to the liquid vapour pressure. Pressure waves do not propagate at an assumed constant vapour pressure. The two- phase flow equations are the continuity equation and the equation of motion (Bergant & Simpson, 1992; Wylie & Streeter, 1993): 0 = ∂ ∂ − ∂ ∂ + ∂ ∂ x v x v t m v m v α α (3) 0 2 λ + sinθ g + + = ∂ ∂ ∂ ∂ D v v x v v t v m m m m m (4) 2.3 ENAČ BE KOMPRESIJSKEGA SKOKA Enač be kompresijskega skoka popisujejo fazno spremembo homogene zmesi kapljevine in parnih kavitacij (enokomponentni dvofazni tok, enačbe kontinuiranega kavitacijskega toka) v kapljevino (enofazni tok, enač be vodnega udara). Sprememba faze je posledica potovanja kompresijskega vala enofaznega toka v področ je dvofaznega toka, kjer je tlak zmesi enak parnemu tlaku kapljevine. Parne kavitacije (mehurč ki) kondenzirajo, kapljevina pa se komprimira. Kontinuitetna in gibalna enačba kompresijskega skoka se glasita (Bergant & Simpson, 1992): 2.3 SHOCK EQUATIONS Shock equations describe a phase change of a homogeneous mixture of liquid and liquid- vapour bubbles (one-component two-phase flow, two-phase flow equations) back to liquid (one-phase flow, water hammer equations). The phase change is induced by the propagation of the compression wave from liquid into the liquid-vapour mixture at the pressure set to the liquid vapour pressure. Liquid-vapour bubbles condense; the liquid is compressed. Shock equations are the continuity equation and the equation of motion (Bergant & Simpson, 1992): 0 ) ( α ) ( 2 = − −       + − m v sv s s v v H H a g a (5) 0 ) )( ( ) ( = − − − + − s m m sv s a v v v v H H g (6) 2.4 ENAČ BE DISKRETNE KAVITACIJE Diskretno kavitacijo obravnavamo kot robni pogoj (pretrganje kapljevinskega stebra). Sprememba volumna kavitacije je izražena s kontinuitetno enačbo diskretne kavitacije (Streeter, 1969): 2.4 EQUATIONS FOR A DISCRETE VAPOUR CAVITY A discrete vapour cavity is treated as a boundary condition (fluid column separation). The growth and subsequent decay of the cavity is defined by the continuity equation (Streeter, 1969): Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 9 dt = V v v A u t t vc in ) ( − ∫ (7) Pritok kapljevine ali tekoč ine v kavitacijo in iztok iz nje sta izrač unana z enač bami vodnega udara ali kontinuiranega kavitacijskega toka. 3. ANALITIČ NE IN NUMERIČ NE METODE Enačbe vodnega udara (1) in (2), kontinuiranega kavitacijskega toka (3) in (4), kompresijskega skoka (5) in (6), in diskretne kavitacije (7) lahko rešujemo z eksplicitnimi ali hibridnimi metodami (Bergant, 1992). V prispevku obravnavamo eksplicitne metode, ki so v primerjavi s hibridnimi metodami numerič no bolj stabilne in fizikalno jasne. Metode združimo v numerič ni model za analizo kavitacijskega toka. Uporaba metode karakteristik za reševanje enač b vodnega udara (1) in (2) (Wylie & Streeter 1993; Simpson & Bergant 1994): a) kompatibilitetna enačba za pozitivno karakteristiko ∆ x/∆ t=a: The continuity e quation is coupled to the water hammer equations and/or two-phase liquid-vapour mixture flow equations in order to account for flow velocities. 3. ANALYTICAL AND NUMERICAL METHODS A separate or combined approach (Bergant, 1992) to the solution of water hammer (1) and (2), two-phase flow (3) and (4), and shock equations (5) and (6), and a discrete vapour cavity equation (7) may be adopted. The paper deals with the separate solution of these equations. This approach gives a more stable and physically sound solution than the combined approach. The solution methods are integrated into a numerical algorithm for column separation analysis. A method of characteristics solution for water hammer equations (1) and (2) (Wylie & Streeter, 1993; Simpson & Bergant, 1994): a) compatibility eq. along the positive characteristic line ∆ x/∆ t=a: uj P P j Q B C H − = (8) b) kompatibilitetna enačba za negativno karakteristiko ∆ x/∆ t=-a: b) compatibility e q. along the negative characteristic line ∆ x/∆ t=-a: j M M j Q B C H + = (9) v kombinaciji z analitič nimi in numerič nimi metodami kavitacijskega toka omogoč a dokaj natanč no obravnavanje fizikalnega pojava (Q = vA). V fizikalni ravnini pot-č as zasledujemo potovanje ekspanzijskih in kompresijskih valov, kondenzacijo področ ij kontinuiranega kavitacijskega toka ter formiranje in zrušitev diskretnih kavitacij. Vgraditev diskretnih kavitacij v numerič na vozlišč a v metodi karakteristik daje diskretni kavitacijski model (Streeter, 1969; Wylie & Streeter, 1993; Simpson & Bergant, 1994). Kombinirani kavitacijski model združuje kompletne enač be vodnega udara in kavitacijskega toka (Streeter, 1983; Bergant & Simpson, 1992). coupled with analytical and numerical methods for cavitating flow regions provides a reasonable treatment of the physical phenomena (Q = vA). The propagation of rarefaction and compression waves, condensation of vaporous cavitation zones, and the growth and subsequent decay of discrete cavities can be visualized in the xt plane. Incorporating discrete cavities into the computational sections of the method of characteristics leads to the discrete cavity model (Streeter, 1969; Wylie & Streeter, 1993; Simpson & Bergant, 1994). Coupling the complete set of column separation methods gives the interface vaporous cavitation model (Streeter, 1983; Bergant & Simpson, 1992). Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 10 3.1 ANALITIČ NO-NUMERIČ NO REŠEVANJE ENAČ B KONTINUIRANEGA KAVITACIJSKEGA TOKA Enač bi (3) in (4) lahko rešujemo analitič no ali numerič no (Streeter, 1 993; Simpson, 1 986; Bergant, 1992). V prispevku je predstavljen kombinirani analitič no-numerični pristop reševanja obravnavanih enačb v cevi s poljubnim nagibom (Bergant, 1992). V prvem koraku s pomočjo analitične integracije gibalne enač be (4) izrač unamo pretoč no hitrost homogene zmesi tekoč ine v m , v drugem pa s pomoč jo numerič ne integracije kontinuitetne enač be (3) kavitacijski volumski razmernik α v . Integracija hitrosti v m iz (4) je odvisna od nagiba cevovoda in začetne kavitacijske hitrosti v mi v č asu t i , ko ekspanzijski val v poljubni toč ki x vzdolž cevovoda povzroč i padec tlaka na parni tlak kapljevine. Zač etno kavitacijsko hitrost v mi izrač unamo iz enač be (8) ali (9) (H j = H v ). Rezultati integracije enač be (4) so (Bergant, 1 992): a) cevovod z nagibom pri θ θ θ θv mi > 0: - tok proti smeri osne komponente gravitacijske sile: 3.1 ANALYTICAL AND NUMERICAL INTEGRATION FOR TWO-PHASE LIQUID-VAPOUR MIXTURE EQUATIONS Equations (3) and (4) can be solved analytically or numerically (Streeter, 1993; Simpson, 1986; Bergant, 1992). A combined analytical-numerical approach to the solution of these equations developed for an arbitrary sloping pipeline is presented (Bergant, 1992). First the velocity of liquid-vapour mixture v m is calculated from (4) by analytical integration; then the void fraction α v is estimated by the numerical integration of (3). Integration of v m from (4) depends on the pipe slope and the inception velocity of the liquid-vapour mixture v mi at time t i at an arbitrary distance x along the pipeline, at which the rarefaction wave drops the pressure to the liquid-vapour pressure. The inception velocity v mi is calculated from (8) or (9) (H j = H v ). The results of integration for equation (4) are (Bergant, 1992): a) Sloping pipe with θ θ θ θv mi > 0: - flow in the reverse direction of the x- component of the body force (gravity): ()         − −         = − i mt mt mi mt m t t D v v v v v 2 λ ) sign(θ tan tan 1 (10) kjer je gravitacijska hitrost izražena z enač bo v mt = (2gD|sinθ|/λ) 1/2 , funkcija predznaka nagiba cevovoda pa z izrazom sign(θ) = {+1 za θ > 0; -1 za θ < 0}. - tok v smeri osne komponente gravitacijske sile: in which v mt = (2gD|sinθ|/λ) 1/2 is the terminal velocity of the liquid-vapour mixture and sign(θ) = {+1 for θ > 0; -1 for θ < 0} is the sign function of pipe slope θ. - flow in the direction of the x-component of the body force (gravity): 1 1 / ) ( λ ) sign(θ / ) ( λ ) sign(θ + − = − − − − D t t v D t t v mt m r mt r mt e e v v (11) kjer je t r č as zaustavitve pretoka: in which the time of the flow reversal t r is:         + = − mt mi mt i r v v v D t t 1 tan λ 2 ) sign(θ (12) Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 11 b) cevovod z nagibom pri θ θ θ θv mi < 0: b) Sloping pipe with θ θ θ θv mi < 0: () () D t t v mi mt mi mt D t t v mi mt mt mi mt m i mt i mt e v v v v e v v v v v v / ) ( λ ) sign(θ / ) ( λ ) sign(θ − − − − + + − + + − = (13) c) horizontalni cevovod: c) Horizontal pipe: ) ( )λ sign( 2 2 i mi mi mi m t t v v D Dv v − + = (14) kjer je sign(v mi ) = {+1 za v mi > 0; -1 za v mi < 0} funkcija predznaka začetne kavitacijske hitrosti v mi . Numerič na integracija kontinuitetne enač be (3) v č asu t ob vpeljavi utežnega koeficienta v č asovni smeri ψ (Wylie, 1984) da: in which sign(v mi ) = {+1 for v mi > 0; -1 for v mi < 0} is the sign function of inception velocity v mi . Numerical integration of continuity equation (3) at time t, using a weighting factor ψ in time direction (Wylie, 1984) gives: () () () () [ ]() () () [ ] { } x t v v v v t t j m t t j m t j m t j m t t k v t k v ∆ ∆ − − + − + = ∆ − ∆ − + + ∆ − , , 1 , , 1 , , ψ 1 ψ α α (15) kjer je j število gorvodne in j+1 število dolvodne računske toč ke k-tega cevnega odseka dolžine ∆ x (∆ x=a∆ t). 3.2 NUMERIČ NA METODA ZA REŠEVANJE ENAČ B KOMPRESIJSKEGA SKOKA Enač bi kompresijskega skoka (5) in (6) tvorita sistem algebraič nih enač b. Obravnavani enač bi opisujeta č elo kapljevinskega stebra, ki propagira v področje kontinuiranega kavitacijskega toka. Enač bi (5) in (6) rešujemo združeno z ustrezno kompatibilitetno enač bo (8) ali (9) (glede na smer potovanja skoka), kinematič no enač bo gibanja kompresijskega skoka v č asovnem intervalu ∆ t: in which j is a number of the upstream node and j+1 is a number of a downstream node for the computational reach k of length ∆ x (∆ x=a∆ t). 3.2 NUMERICAL METHOD FOR COUPLED SHOCK EQUATIONS Shock equations (5) and (6) form a system of algebraic equations. The two equations describe the movement of the shock wave front into the vaporous cavitation zone. Equations (5) in (6) are solved simultaneously with the appropriate compatibility equation (8) or (9) (depending on the direction of travel of the interface), kinematic equation for the length of the front movement during time step ∆ t: t v a L L m s t t t ∆ + + = ∆ − (16) in gibalno enač bo za kapljevinski steber dolžine L t : and equation of motion for the liquid plug of length L t : () 0 ) ( 2 λ ) ( sign , , 2 = − ∆ − − − ∆ − ∆ − t t j j t t t j j t s j s Q Q t gA L Q Q gDA L H H a (17) Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 12 kjer je sign(a s ) = {+1 za a s > 0; -1 za a s < 0} funkcija predznaka hitrosti širjenja kompresijskega skoka in H j višina na gorvodni strani kapljevinskega stebra (Q uj = Q j ) (Bergant & Simpson, 1999). V obravnavanem združenem nelinearnem sistemu enač b (5), (6), (8) ali (9), (1 6) in (1 7) so neznanke a s , H j , H s , L t in Q j . Hitrost v m izrač unamo iz ustrezne enač be (1 0) do (1 4) in α v iz (1 5). Sistem nelinearnih enač b rešujemo numerično z Newton-Raphsonovo metodo (Carnahan et al., 1969). 3.3 NUMERIČ NO REŠEVANJE ENAČ B DISKRETNE KAVITACIJE Sprememba volumna diskretne kavitacije je dobljena z numerič no integracijo kontinuitetne enač be (7). Integracija v deltoidni mreži metode karakteristik da (Wylie, 1984; Simpson & Bergant, 1994): in which sign(a s ) = {+1 for a s > 0; -1 for a s < 0} is the sign function of shock wave speed a s and H j is the head at the upstream side of the liquid plug (Q uj = Q j ) (Bergant & Simpson, 1999). The unknowns in the coupled nonlinear system of equations (5), (6), (8) or (9), (16) and (17) are a s , H j , H s , L t in Q j . Velocity v m is computed from one of the equations (10) to (14) and α v from (15). The nonlinear system of equations is solved numerically by the Newton-Raphson method (Carnahan et al., 1969). 3.3 NUMERICAL SOLUTION OF DISCRETE VAPOUR CAVITY EQUATIONS A change of a discrete vapour cavity volume is obtained by a numerical integration of the continuity e quation (7). Integration within the staggered grid of the method of characteristics gives (Wylie, 1984; Simpson & Bergant, 1994): ()() ( ) ( ) ( ) [ ] t Q Q Q Q V V t uj t j t t uj t t j t t j vc t j vc ∆ − + − − + = ∆ − ∆ − ∆ − 2 ψ ψ 1 , , 2 , 2 , 2 , , (18) Pritok kapljevine oziroma homogene zmesi kapljevine in parnih mehurč kov v kavitacijo in iztok iz nje sta izrač unana s kompatibilitetno enač bo vodnega udara (8) ali (9) (H j = H v ) oziroma enač bo za izrač un pretoč ne hitrosti kontinuiranega kavitacijskega toka (ena od (10) do (14)). 3.4 DISKRETNI KAVITACIJSKI MODEL Diskretni kavitacijski model generira kavitacije pri robnih pogojih in v numerič nih vozlišč ih vzdolž cevovoda, ko se tlak v cevnem sistemu zniža na parni tlak kapljevine. Cevni odseki med vozlišč i so simulirani kot odseki s kapljevinskim tokom. Kontinuitetna enač ba (1 8) za diskretno kavitacijo v numerič nem vozlišč u (robnem pogoju) je za obravnavani primer združena s kompatibilitetnimi enač bami vodnega udara (8) in (9) (H j = (H v ) j ). Kapljevinska faza se vnovič vzpostavi pri negativnem volumnu diskretne kavitacije (zrušitev kavitacije). Temu sledi standardni izrač un vodnega udara s kompatibilitetnima enač bama (8) in (9), vse dokler se tlak vonvič ne zniža na parni tlak. Nerealno visoke amplitude in razlike v The liquid or liquid-vapour mixture inflow and outflow are computed either by the water hammer compatibility equations (8) or (9) (H j = H v ) or by the equation for the liquid-vapour mixture (one of (10) to (14)). 3.4 DISCRETE CAVITY MODEL Discrete cavity model allows cavities to form at boundary and interior pipeline computational sections when the pressure drops to the liquid-vapour pressure. A liquid flow between the computational sections is assumed. The continuity equation (18) for the discrete cavity at the computational section is coupled with the water hammer compatibility equations (8) and (9) (H j = (H v ) j ). The liquid flow at a section is re-established when the cavity collapses as a result of negative cavity volume. The standard water hammer solution using equations (8) and (9) proceeds until the pressure drops to the liquid-vapour pressure. The cause of the unrealistic pressure amplitudes and phase shifts as computed by Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 13 č asovnem poteku tlakov (višin), dobljenih z obravnavanim diskretnim kavitacijskim modelom izvirajo iz aproksimativnega opisa kontinuiranega kavitacijskega toka (Bergant, 1992). Opis diskretnih kavitacij in kontinuiranega kavitacijskega toka po tem modelu je identič en. Izboljšani diskretni kavitacijski model, z bolj natanč nim obravnavanjem nastanka in zrušitve kavitacije, vgrajen v deltoidno mrežo metode karakteristik poimenujemo modificirani kavitacijski model (MDKM (Bergant, 1992)). Obravnavani model daje zadovoljive rezultate, kadar omejimo število cevnih odsekov (največ ji volumen diskretne kavitacije naj ne presega 10 odstotkov volumna cevnega odseka (Simpson & Bergant, 1994)). Dodatek plina v parno kavitacijo zaduši nerealne tlač ne pulze (plinski kavitacijski razmernik α g ≤ 10 -7 (Wylie, 1984)). V prispevku je Wylijev model modificiran z vgraditvijo diskretnih parnih kavitacij ob robnih pogojih (ventil) in upoštevanju samo kapljevinskega toka v vozlišč u ob rezervoarju. Modificirani model imenujemo splošni diskretni kavitacijski model (SDKM (Bergant, 1992)). 3.5 KOMBINIRANI KAVITACIJSKI MODEL Kombinirani kavitacijski model (KKM (Bergant, 1992; Bergant & Simpson, 1992)) zajema izrecni popis diskretnih kavitacij in področ ij kontinuiranega kavitacijskega toka. Modificirani diskretni kavitacijski model (MDKM), ki ob uporabi deltoidne mreže metode karakteristik oblikuje diskretne kavitacije robnih pogojev (ventil) in v numerič nih vozlišč ih vzdolž cevovoda, je podlaga za postavitev kombiniranega kavitacijskega modela. Analitič no-numerič ni modul za obravnavanje kontinuiranega kavitacijskega toka in numerič ni modul za obravnavanje kompresijskega skoka, sta temeljna elementa v transformaciji modificiranega kavitacijskega modela v kombinirani kavitacijski model. Rezultati matematično-fizikalne in eksperimentalne analize indicirajo (Bergant, 1992; Bergant & Simpson, 1999), da kombinirani kavitacijski model, v primerjavi z diskretnimi kavitacijskimi modeli, bolj natančno reproducira fizikalno sliko kavitacijskega toka. To bomo pokazali tudi v tem prispevku. the discrete vapour cavity model has been attributed to the approximate description of the distributed vaporous cavitation zones (Bergant, 1992). The model describes the discrete cavities and vaporous cavitation zones in the same manner. An improved (modified) discrete vapour cavity model (MDKM) including a more concise description of the cavity growth and decay within the staggered grid of the method of characteristics has been developed (Bergant, 1992). The MDKM gives reasonably accurate results when the number of computational reaches is restricted (the maximum cavity size should be less than 10% of the computational reach size (Simpson & Bergant, 1994)). The unrealistic pressure spikes can be suppressed when a small gas void fraction (α g ≤ 10 -7 (Wylie, 1984)) is selected. A modified (generalized) Wylie's model, in which a gas cavity at the valve is replaced by a vapour cavity, and liquid flow is assumed at the reservoir section, has been developed (SDKM (Bergant, 1992)). 3.5 INTERFACE VAPOROUS CAVITATION MODEL The interface vaporous cavitation model (KKM (Bergant, 1992; Bergant & Simpson, 1992)) explicitly describes discrete cavities and vaporous cavitation regions. The modified discrete vapour cavity model (MDKM) algorithm, which allows cavities to form at computational sections within the staggered grid of the method of characteristics, has been used as a basis for the development of the interface vaporous cavitation model. The incorporation of numerical modules for the description of vaporous cavitation zones and interfaces (shock waves) are two important features in modifying the discrete cavity model. Results from the numerical and experimental analysis (Bergant, 1992; Bergant & Simpson, 1999) showed an improved performance of the interface vaporous cavitation model with comparison to the discrete cavity model. The same conclusions are expected to be drawn in this paper. Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 14 4. PREIZKUSNA POSTAJA Preizkusna postaja za raziskave kavitacijskega toka med prehodnimi režimi v cevnih sistemih je instalirana v Robinovem hidravlič nem laboratoriju univerze v Adelaidi, Avstralija (Bergant, 1992; Bergant & Simpson, 1995). Merilna postaja je sestavljena iz cevovoda z nagibom (bakrena cev; premer D = 0,022 m, dolžina L = 37,2 m, kot nagiba cevovoda θ = 3,2 o ), priključ enega na tlač ni rezervoar z leve in tlač ni rezervoar z desne strani - glej sliko 1 . Največ ji tlak v cevovodu je 5 MPa, v tlač nih kotlih pa 0,69 MPa. Izbrano dolžino cevovoda določ ajo prostorske dimenzije laboratorija in zahteve po najmanjših energijskih izgubah v sistemu. Prehodni pojav je induciran z zapiranjem kroglastega zasuna. Ventil je lahko instaliran ob tlač nih rezervoarjih ali v sredini cevovoda. Lokacija vgradnje ventila in smer pretoka v cevovodu omogoč ata simuliranje poljubnega tipa hidravlič nega sistema (pretoč ni sistem hidroelektrarne, č rpalni sistem). Ventil je zaprt roč no ali s pomoč jo zapiralnega mehanizma na torzijsko vzmet (t c < 0,01 s). Smer pretoka vode v cevovodu je poljubna glede na tlač no razliko v obeh rezervoarjih. To omogoč a študij razmer v cevovodu s pozitivnim in negativnim nagibom. Elektronska regulacija tlaka v kotlih omogoč a izbiro poljubne pretoč ne hitrosti in statične višine. Nastavitev parametrov je omejena z zmogljivostjo rezervoarjev in kompresorja. Pretoč ni medij v sistemu je demineralizirana voda. Merjene stacionarne velič ine so tlak v obeh rezervoarjih, barometerski tlak in temperatura zraka. Velič ine, merjene v odvisnosti od č asa, so tlak na treh ekvidistantnih mestih vzdolž cevovoda (tlač no zaznavalo Kistler 61 0 B), odprtje ventila in temperatura vode v sistemu. Meritev časovno odvisnih veličin je registrirana s pomoč jo merilnega rač unalnika Concurrent 6655, z vgrajenim analogno/digitalnim (A/D) pretvornikom. Stacionarna pretoč na hitrost v cevovodu je dobljena z volumetrič no metodo in metodo vodnega udara. Hitrost zvoka je določ ena s č asom potovanja primarnega udarnega vala od ventila do tlač nih zaznaval. Ob ventilu je vgrajen fleksibilni transparentni blok (polikarbonat), ki je aktivne dolžine 0,1 2 m. 4. EXPERIMENTAL APPARATUS An experimental apparatus for investigating transient cavitating flow in pipelines is installed in the Robin Hydraulic Laboratory at the University of Adelaide, Australia (Bergant, 1992; Bergant & Simpson, 1995). The apparatus is comprised of a sloping pipeline (copper pipe of diameter D = 0.022 m, length L = 37.2 m, pipe slope θ = 3.2 o ) connecting two pressurized tanks (reservoirs) - see Figure 1. The design pressure of the pipeline is 5 MPa, and of the two tanks is 0,69 MPa. Spatial dimensions of the laboratory and required minimum energy losses governed the selection of the pipeline length in the system. The transient event is initiated by the closure of the ball valve. The valve can be located at either reservoir or at the midpoint of the pipeline. The variable position of the valve and the arbitrary direction of the initial flow velocity provide the simulation of various types of pipe configurations (hydroelectric power plant, pumping system). The valve is closed manually by hand, or it is closed by a torsional spring actuator (t c < 0.01 s). A specified pressure in each of the tanks governs the direction of the steady-state flow velocity in a pipeline; thus, investigation of transient events in either an upward or a downward sloping pipeline can be performed. The specified initial flow velocity and head are adjusted by a pressure control system. However, the net water volume in the two tanks and the capacity of the air compressor limit adjustment of these parameters. Demineralized water was used as the fluid. The measured steady-state quantities are the pressure in each reservoir, barometric pressure, and ambient temperature. Time- dependent quantities are the pressures at three equidistant points along the pipeline (Kistler 610 B pressure transducers), the valve opening, and the water temperature in the pipeline. Data acquisition and processing are performed with a Concurrent 6655 real-time UNIX data acquisition computer. The steady- state velocity in the pipeline is measured by the volumetric method and the water hammer method. The water hammer wave speed is obtained from the measured time for the wave to travel between the closed valve and the quarter point nearest the valve. A flexible flow visualization block (polycarbonate) of 0.12 m Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 15 Prosojna sekcija omogoča opazovanje in snemanje kavitacijskega toka s hitrosnemalnim videom Kodak Ektapro 1000 (Bergant & Simpson, 1996). Merilne napake so obdelane v poroč ilu (Bergant in Simpson, 1 995). active length is positioned at the valve. A high-speed video Kodak Ektapro 1000 was used to photograph the transient cavitating flow (Bergant & Simpson, 1996). The uncertainties in measurements are given in a report by Bergant and Simpson (1995). Slika 1. Preizkusna postaja. Figure 1. Experimental apparatus. 5. PRIMERJA V A REZULTATOV IZRAČ UNA IN MERITEV Primerjava rezultatov izrač una z meritvami tlaka zagotavlja podlago za verifikacijo postavk v razvitih kavitacijskih modelih (MDKM, SDKM, KKM). V prispevku obravnavamo primer zapiranja ventila, ki je vgrajen na nizvodnem koncu cevovoda s pozitivno strmino (glej sliko 1 ). Pretoč ni pogoji so: − stacionarna pretoč na hitrost v 0 = 1,50 m/s, − višina v gorvodnem tlač nem kotlu H ur = 22 m, − č as zapiranja ventila t c = 0,009 s, − hitrost širjenja udarnih valov a = 1319 m/s. V numerič ni analizi smo izbrali naslednje parametre: − število cevnih odsekov N = 16, − utežni koeficient ψ = 1, − plinski kavitacijski razmernik v SDKM α g = 10 -7 . 5. COMPARISON OF COMPUTATIONAL AND EXPERIMENTAL RESULTS A comparison of computational and experimental pressures serves as a basis for the verification of the proposed column separation models (MDKM, SDKM, KKM). The paper deals with a rapid closure of the valve positioned at the downstream end of the upward sloping pipe (see Figure 1). The flow conditions are: − initial steady-state flow velocity v 0 = 1.50 m/s, − head in upstream end reservoir H ur = 22 m, − valve closure time t c = 0.009 s, − water hammer wave speed a = 1319 m/s. The selected parameters in numerical analysis are: − number of reaches in pipeline N = 16, − weighting factor ψ = 1, − gas void fraction in SDKM α g = 10 -7 . 2.03 m 0.0 m Pipeline Cevovod D = 0.022 m L = 37.2 m Ventil Valve Tlač no zaznavalo Pressure transducer Tlač ni rezervoar Pressurized reservoir D = 0.485 m V = 0.378 m 3 Tlač ni rezervoar Pressurized reservoir D = 0.566 m V = 0.509 m 3 Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 16 Slika 2. Primerjava izmerjenih in po MDKM izrač unanih višin H dv pri ventilu in H cp na polovici dolžine cevovoda. Figure 2. Comparison of measured and MDKM computed heads H dv at the valve and H cp at the midpoint of the pipeline. Izmerjeni tlaki so podani kot piezometrič ne višine (višine) z osnovnico na vrhu cevi priključ ene na gorvodni rezervoar (kota 0,0 m na sliki 1 ). Primerjamo č asovni potek (t) piezometrič nih višin na gorvodni strani hitro zapornega ventila H dv in polovici dolžine cevovoda H cp . Višini sta izmerjeni s pomoč jo piezoelektrič nih tlač nih zaznaval Kistler 61 0 B. Višina ob gorvodnem tlač nem rezervoarju H ur je konstantna. Dodatno izmerjeni višini na četrtinah dolžine cevovoda s pomoč jo induktivnih tlač nih zaznaval Druck PDCR 81 0 sta podobni višini na polovici dolžine cevovoda. Izmerjeni in izrač unani piezometrič ni višini pri ventilu H dv in na polovici dolžine cevovoda H cp sta primerjani na sliki 2 za MDKM, sliki 3 za SDKM in sliki Measured pressures are presented as piezometric heads (heads) with a datum level at the top of the pipe at the upstream end reservoir (elevation 0.0 m in Figure 1). The temporal behaviour (t) of piezometric heads at the valve H dv and at the midpoint of the pipeline H cp is compared. The two heads are measured by the Kistler 610 B piezoelectric pressure transducers. The head adjacent to the upstream reservoir is the reservoir head H ur . Supplementary measurements of heads at the two quarter points by the Druck PDCR 810 strain-gauge pressure transducers show similar behaviour to the results at the midpoint. The measured and computed piezometric heads at the valve H dv and at the midpoint H cp are compared in Figure 2 for MDKM, in Figure 3 for SDKM, and in Figure 4 for KKM. The -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 -40.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 -40.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 Meritev; Measurement MDKM H dv (m) t (s) b) a) Meritev; Measurement MDKM H cp (m) t (s) Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 17 4 za KKM. Največ ja višina v cevnem sistemu je višina vodnega udara pri ventilu. Najmanjša višina vzdolž cevovoda je enaka parni tlač ni višini kapljevine. Izrač unani č as eksistence prve diskretne kavitacije pri ventilu (t = 0,321 s za MDKM; t = 0,331 s za SDKM; t = 0,329 s za KKM) se razlikuje od izmerjenega č asa (t = 0,339 s). Za drugo, tretje in č etrto pretrganje vodnega stebra pri ventilu pa se izmerjeni in izrač unani č asi eksistence kavitacije dobro ujemajo. Izrač unani in izmerjeni tlač ni pulzi, ki sekvenčno slede nastanku in zrušitvi diskretne kavitacije pri ventilu (slike 2a, 3a in 4a) in kondenzaciji kombiniranih področ ij kontinuiranega kavitacijskega toka in diskretnih kavitacij vzdolž cevovoda v kapljevinsko fazo (slike 2b, 3b in 4b), se ujemajo v zadovoljivi meri. maximum head in the pipeline is the water hammer head at the valve. The minimum head along the pipeline is the liquid-vapour pressure head. The computed duration of the first cavity at the valve (t = 0,321 s for MDKM; t = 0,331 s for SDKM; t = 0,329 s for KKM) differs from the measured time (t = 0,339 s). There is a good match between the measured and computed duration of the cavity for the second, third and fourth column separation at the valve. There is a reasonable agreement between the computed and measured pressures induced by the collapse of a large discrete cavity at the valve (Figures 2a, 3a and 4a), and pressures induced by the condensation of vaporous cavitation zones and the collapse of discrete vapour cavities along the pipeline (Figures 2b, 3b and 4b). Slika 3. Primerjava izmerjenih in po SDKM izrač unanih višin H dv pri ventilu in H cp na polovici dolžine cevovoda. Figure 3. Comparison of measured and SDKM computed heads H dv at the valve and H cp at the midpoint of the pipeline. -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 -40.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 -40.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 Meritev; Measurement SDKM H dv (m) t (s) b) a) Meritev; Measurement SDKM H cp (m) t (s) Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 18 Primerjava rezulatov izrač una in meritev pokaže, da se rezultati, dobljeni s KKM v splošnem najbolj u jemajo z meritvami. Dodatek najmanjše količ ine plina (zraka) v diskretnih kavitacijah zaduši intenziteto visokofrekvenč nih tlač nih pulzov, ustvarjenih z MDKM. KKM v primerjavi z diskretnima kavitacijskima modeloma (MDKM, SDKM) bolj natanč no podaja fizikalno sliko kavitacijskega toka. The KKM model gives the best results. A small amount of gas which is added to the discrete vapour cavity attenuates the high- frequency pressure spikes generated by the MDKM. The KKM describes transient cavitating flow more accurately than the two discrete cavity models (MDKM, SDKM). Slika 4. Primerjava izmerjenih in po KKM izrač unanih višin H dv pri ventilu in H cp na polovici dolžine cevovoda. Figure 4. Comparison of measured and KKM computed heads H dv at the valve and H cp at the midpoint of the pipeline. -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 -40.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 -40.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 Meritev; Measurement KKM H dv (m) t (s) b) a) Meritev; Measurement KKM H cp (m) t (s) Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 19 6. ZAKLJUČ KI Prispevek zajema fizikalne temelje kavitacijskega toka pri parnem tlaku kapljevine med prehodnimi režimi v cevih sistemih (pretrganje kapljevinskega stebra). Kavitacijski tok je popisan z enač bami faznih stanj, ki jih rešujemo z analitičnimi in numeričnimi metodami. Metode reševanja enač b so vgrajene v diskretni in kombinirani kavitacijski model. Meritve vodnega udara in pretrganja vodnega stebra smo izvedli v preizkusni postaji. Prehodni pojavi nastanejo zaradi hitrega zapiranja dolvodnega ventila. Primerjava rezulatov izračuna in meritev pokaže, da se rezultati, dobljeni s KKM, v splošnem najbolj ujemajo z meritvami. Sklepamo, da razlike med rezultati izrač una z obravnavanimi kavitacijskimi modeli in meritev izvirajo iz aproksimativnega opisa področ ij kontinuiranega kavitacijskega toka in diskretnih kavitacij. Odstopanja v manjši meri izvirajo tudi iz diskretizacije v numerič nem modelu (∆ t = L/(aN) = 37,2/(1319×16) = 0,00176 s), aproksimacije nestacionarnega koeficienta trenja kapljevine s stacionarnim Darcy-Weisbachovim koeficientom trenja λ (Bergant & Simpson, 1994) in merilne negotovosti (Bergant & Simpson, 1995). 6. CONCLUSIONS The paper deals with the description of the transient cavitating flow in piping systems (liquid-column separation). Column separation is described by a set of equations representing a particular liquid phase. The analytical and numerical methods for solving these equations are integrated into discrete cavity and interface vaporous cavitation models. Water hammer and column separation measurements were performed in a laboratory apparatus. The transient event was initiated by a rapid closure of the downstream end valve. The KKM model results fit the experimental results most accurately. The basic source of discrepancies between the computed and measured results originates from the approximate modelling of the vaporous cavitation zones and the discrete cavities along the pipeline. In addition, discrepancies may be also attributed to discretization in the numerical models (∆ t = L/(aN) = 37.2/(1319×16) = 0.00176 s), the unsteady friction coefficient being approximated as a steady-state Darcy- Weisbach friction coefficient λ (Bergant & Simpson, 1994), and uncertainties in the measurement (Bergant & Simpson, 1995). VIRI - REFERENCES Bergant, A. (1 992). Kavitacijski tok med prehodnimi režimi v cevnih sistemih (Transient cavitating flow in piping systems). PhD Thesis, University of Ljubljana, Ljubljana (Slovenia), in Slovene. Bergant, A., Simpson, A.R. (1992). Interface model for transient cavitating flow in pipelines. Unsteady flow and fluid transients, R. Bettess and J. Watts, eds., A.A. Balkema, Rotterdam, 333 - 342. Bergant, A., Simpson, A.R. (1994). Estimating unsteady friction in transient cavitating pipe flow. Water pipeline systems, D.S. Miller, ed., Mechanical Engineering Publications, London, 3 - 16. Bergant, A., Simpson, A.R. (1995). Water hammer and column separation measurements in an experimental apparatus. Report No. R128, Department of Civil and Environmental Engineering, University of Adelaide. Bergant, A., Simpson, A.R. (1 996). Vizualizacija kavitacijskega toka med prehodnimi režimi v cevnih sistemih - Visualisation of transient cavitating flow in pipelines. Strojniški vestnik - Journal of Mechanical Engineering, 42(1-2), 1 - 16. Bergant, A. and Simpson A.R. (1999). Pipeline column separation flow regimes. Journal of Hydraulic Engineering, ASCE, 125(8), 835 - 848. Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969). Applied numerical methods. John Wiley and Sons, New York, USA. Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 20 Simpson, A.R. (1986). Large water hammer pressures due to column separation in a sloping pipe, PhD Thesis, University of Michigan, Ann Arbor, USA. Simpson, A.R., Bergant, A. (1994). Numerical comparison of pipe column-separation models. Journal of Hydraulic Engineering, ASCE, 120(3), 361 - 377. Streeter, V.L. (1969). Water hammer analysis. Journal of the Hydraulic Division, ASCE, 95(6), 1959 - 1972. Streeter, V.L. (1983). Transient cavitating pipe flow. Journal of Hydraulic Engineering, ASCE, 109(11), 1408 - 1423. Wylie, E.B. (1984). Simulation of vaporous and gaseous cavitation. Journal of Fluids Engineering, ASME, 106(3), 307 - 311. Wylie, E.B., Streeter, V.L. (1993). Fluid transients in systems. Prentice Hall, Inc., Englewood Cliffs, USA. OZNAKE - NOTATION A preč ni prerez, pipe area; a hitrost širjenja udarnih valov v kapljevini, water hammer wave speed; a s hitrost širjenja kompresijskega skoka, shock wave speed; B M , B P konstanti v kontinuitetnih enač bah vodnega udara, known constants in water hammer compatibility equations; C M , C P konstanti v kontinuitetnih enač bah vodnega udara, known constants in water hammer compatibility equations; D premer cevovoda, pipe diameter; g zemeljski pospešek, gravitational acceleration; H piezometrič na višina (višina): H=p/(ρg)+z=h+z, piezometric head (head): H=p/(ρg)+z=h+z, H cp višina na polovici dolžine cevovoda, head at the midpoint; H dv višina pri ventilu (gorvodna stran), head at the valve (upstream end); H s višina na gorvodni strani kompresijskega skoka, head on the water hammer side of the shock wave front; H sv višina na dolvodni strani kompresijskega skoka, head on the distributed vaporous cavitation side of the shock wave front; H ur višina v gorvodnem tlač nem rezervoarju, head in upstream end reservoir; H v višina pri parnem tlaku kapljevine, liquid-vapour head; h tlač na višina, pressure head; j številka vozlišč a, number of computational section; k številka cevnega odseka, number of computational reach; L dolžina cevovoda, pipe length; N število cevnih odsekov, number of reaches in pipeline; p tlak, pressure; Q pretok, pretok iz vozlišč a, discharge, discharge at the downstream side of the computational section; Q u pretok v vozlišč e, discharge at the upstream side of the computational section; t č as, time; t c č as zapiranja ventila, valve closure time; t i č as nastopa kavitacije, time of cavitation inception; t in č as nastopa diskretne kavitacije, time of inception of the discrete vapour cavity; Bergant, A.: Kavitacijski tok med prehodnimi režimi v cevnih sistemih - Transient Cavitating Flow in Piping Systems © Acta hydrotechnica 18/29 (2000), 3-21, Ljubljana 21 t r č as zaustavitve pretoka, time of flow reversal in liquid-vapour mixture zone; V volumen, volume; V vc volumen diskretne kavitacije, discrete vapour cavity volume; v pretoč na hitrost, hitrost iz vozlišč a, flow velocity, velocity at the downstream side of the vapour cavity; v m pretoč na hitrost homogene zmesi kapljevine in parnih kavitacij (mehurč kov), liquid-vapour mixture velocity; v mi zač etna kavitacijska hitrost, inception velocity of liquid-vapour mixture; v mt gravitacijska hitrost, terminal velocity in the distributed cavitation region; v u hitrost v vozlišč e, velocity at the upstream side of the vapour cavity; v 0 stacionarna pretoč na hitrost, initial flow velocity; x koordinata, distance; z geodetska višina, pipeline elevation; α g plinski kavitacijski razmernik, gas void fraction; α v parni kavitacijski razmernik, void fraction of vapour; ∆ t č asovni korak, time step; ∆ x dolžina cevnega odseka, reach length; θ strmina cevovoda, pipe slope; λ Darcy - Weisbachov koeficient trenja, Darcy-Weisbach friction factor; ρ gostota tekoč ine, liquid density; and ψ utežni koeficient. weighting factor. Naslov avtorja - Author's Address doc.dr. Anton Bergant Litostroj E.I. d.o.o. Litostrojska 40, SI - 1000 Ljubljana Email: anton.bergant@litostroj-ei.si