
Informática 35 (2011) 113-112 101

Identification and Prediction Using Neuro-Fuzzy Networks with
Symbiotic Adaptive Particle Swarm Optimization
Cheng-Jian Lin and Chun-Cheng Peng
Department of Computer Science and Information Engineering
National Chin-Yi University of Technology, Taichung County, Taiwan 411, R.O.C.
E-mail: cjlin@ncut.edu.tw, goudapeng@gmail.com

Chi-Yung Lee
Department of Computer Science and Information Engineering
Nankai University of Technology, Nantou, Taiwan 542, R.O.C.
E-mail: cylee@nkut.edu.tw

Keywords: particle swarm optimization, symbiotic evolution, neuro-fuzzy network, identification, prediction

Received: October 16, 2009

This study presents a novel symbiotic adaptive particle swarm optimization (SAPSO) for neuro-fuzzy
network design. The proposed SAPSO uses symbiotic evolution and adaptive particle swarm
optimization with neighborhood operator (APSO-NO) to improve the performance of the traditional
PSO. In APSO-NO, we combine the neighborhood operator and the adaptive particle swarm
optimization to tune the particles that are most significant. Simulation results have shown that the
proposed SAPSO performs better and requires less computation time than the traditional PSO.
Povzetek: Razvita je nova metoda nevronskih mrež z uporabo roja delcev.

1 Introduction
Neuro-fuzzy networks (NFNs) have been demonstrated
to be successful [1]-[9]. Two typical types of NFNs are
the Mamdani-type and TSK-type models. In Mamdani-
type NFNs [3]-[4], the minimum fuzzy implication is
used in fuzzy reasoning. In TSK-type NFNs [5]-[8], the
consequent of each rule is a function input variable. The
generally adopted function is a linear combination of
input variables plus a constant term. Many researchers
[6]-[7] have shown that using TSK-type NFNs achieve
superior performance in network size and learning
accuracy than using Mamdani-type NFNs.

Training parameters is a problem in the design of a
NFN. To solve this problem, back-propagation (BP)
training is widely used [3]-[8]. It is a powerful training
technique that can be applied to networks. Nevertheless,
the steepest descent technique is used in BP training to
minimize the error function. The algorithm may allow
the local minima to be reached very quickly, yet the
global solution may never be found. In addition, the
performance of BP training depends on the initial values
of the system parameter, and for different network
topologies, new mathematical expressions for each
network layer have to be derived. Considering the
disadvantages mentioned above, one might be faced with
suboptimal performances, even for a suitable NFN
topology. Hence, techniques capable of training network
parameters and finding a global solution while
optimizing the overall structure are needed.

In this respect, a new algorithm, called particle
swarm optimization (PSO), appears to be a better
algorithm than the BP algorithm. It is an evolutionary

computation technique developed by Kennedy and
Eberhart in 1995 [10]. The underlying motivation for the
development of the PSO algorithm was the social
behavior of animals, such as birds flocking together, fish
swimming in schools, and insects swarming together.
Several researchers have used the PSO method to solve
some optimization problems, like control problems [11]-
[13] and neural network design [14]-[15].

The performance of most stochastic optimization
algorithms, including the PSO and genetic algorithms
(GAs), declines as the dimensionality of the search space
increases. These algorithms stop when they generate a
solution that falls in the optimal region, a small volume
of the search space surrounding the global optimum. The
probability in stochastic optimization algorithms
decreases exponentially as the dimensionality of the
search space increases. It is clear that, in a similar
topology, it is harder to find the global optimum in a
high-dimensional problem than it is in a low-dimensional
problem. One way to overcome this exponential increase
in difficulty is to partition the search space into lower
dimensional subspaces, as long as the optimization
algorithm can guarantee that it will be able to search
every possible region of the search space.

In this paper, a novel learning algorithm, called
symbiotic adaptive particle swarm optimization (SAPSO),
that tunes the parameters of NFNs is proposed. The
proposed SAPSO is different from the traditional PSO. In
the traditional PSO, each particle represents a fuzzy
system. But in SAPSO, each particle represents only one
fuzzy rule. A R-rule fuzzy system is constructed by

mailto:cjlin@ncut.edu.tw
mailto:goudapeng@gmail.com
mailto:cylee@nkut.edu.tw

114 Informatica 35 (2011) 113-122 C.-J. Lin et al.

selecting and combining R particles from a given swarm.
The proposed SAPSO consists of symbiotic evolution
and adaptive particle swarm optimization with
neighborhood operator to improve the performance of the
traditional PSO.

The advantages of the proposed SAPSO are
summarized as follows: (1) SAPSO can reduce
population sizes; (2) the computation request of SAPSO
is less than that of the traditional PSO in each generation;
(3) in the learning process, the relative parameters in a
fuzzy system are searched; they prevent interference
from other parameters that can find what the best
parameter values are; (4) the adjusting parameter strategy
of SAPSO is more significant than the traditional PSO.

The rest of this paper is organized as follows. After
reviewing of training algorithms for NFNs in Section 2,
Section 3 illustrates the structure of the TSK-type fuzzy
model. An overview of PSO is given in Section 4. A
novel symbiotic adaptive particle swarm optimization
(SAPSO) is proposed in Section 5. Sections 6 and 7
respectively present the simulation results and discussion.
Finally, the conclusion is given in the last section.

2 Related works
Besides the most-applied BP algorithm, some other
traditional optimization approaches had been applied to
training NFNs, such as the Broyden-Fletcher- Goldfarb-
Shanno (BFGS) [16]-[17], conjugate gradient (CG) [18]-
[19], and Levenberg-Marquardt (LM) [20]-[21] methods.

In the context of deterministic unconstrained
optimisation, quasi-Newton (QN) methods, sometimes
called variable metric methods, are well-known
algorithms for finding local minima of specific functions.
QN methods are based on Newton's method to find the
stationary point of a function, where the gradient is zero.
Newton's method assumes that the function can be
locally approximated as a quadratic in the region around
the optimum, and requires the first and second
derivatives [22], i.e. the gradient vector and the Hessian
matrix, to find the stationary point. Moreover, the
Newton's method and its variants require that the Hessian
is positive definite - a condition that is difficult to
guarantee in practice.

Conjugate Gradient methods are in principle
approaches suitable for large-scale problems [23]. The
basic idea of CG methods is to find the stepsize along a
linear combination of the current gradient vector and the
previous search direction. On the other hand, equipped
with a damping factor, the LM (so-called damped Gauss-
Newton) methods are capable of relaxing the difficulties
of Hessian-based training, i.e. the ill-conditioning of the
Hessian matrix. In addition, when the damping factor is
zero, the LM methods become identical to the Gauss-
Newton approach; while as the damping factor gets close
to infinity, the LM methods are then get equivalent to the
steepest descent method.

As indicating in the Introduction section, although
the traditional second-order approaches generally have
faster convergent speeds, they are still in the situation of
local optimization. Evolutional approaches such as

particle swarm optimization (PSO) [10], differential
evolution (DE) [21], and symbiotic evolution (SE) [25]
have been developed for training NFNs [26]-[28],
respectively. Since this paper focuses on the PSO
approach, the concepts of DE and SE methods are
omitted here and suggested to refer the relevant literature
for further details, whereas the overview of the PSO and
our proposed symbiotic adaptive PSO are presented in
this paper.

3 Structure of a TSK-type neuro-
fuzzy network (TNFN)

A fuzzy model is a knowledge-based system
characterized by a set of rules that model the relationship
between the control input and output. The reasoning
process is defined by means of the inference method,
aggregation operators, and fuzzy connectives. The fuzzy
knowledge base contains the definitions of fuzzy sets,
which are stored in a fuzzy database, and a collection of
fuzzy rules.

Fuzzy rules are defined by their antecedents and
consequents, which relate an observed input state to a
desired control action. Most fuzzy systems employ the
inference method proposed by Mamdani, in which the
consequent parts are defined by fuzzy sets [1]. A
Mamdani-type fuzzy rule has the form:
IF x1 is Aij (mij, Ojj)andX2 is A2j(m2j, O2j)...and

xn
 is Anj (m n j , 0.nj)

THEN y' is Bj (mj ,oj) (1)

where m i j and o j represent a Gaussian membership

function with mean and deviation, respectively, of the ith
dimension and the jth rule node. The consequents Bj of
the jth rule are aggregated into one fuzzy set for the
output variable y'. Crisp action is obtained through
defuzzification, which calculates the centroid of the
output fuzzy set. The more common fuzzy inference
method proposed by Mamdani, Takagi, Sugeno, and
Kang introduced a modified inference scheme [5]. The
first two parts of the fuzzy inference process, fuzzifying
the inputs and applying the fuzzy operator, are exactly
the same. A Takagi-Sugeno-Kang (TSK)-type fuzzy
model employs different implications and aggregation
methods than the standard Mamdani controller. Instead
of fuzzy sets being used, the conclusion part of a rule is a
linear combination of the crisp inputs.
IFx1 is Ajj (m1j , O j j)and x2 is A2j(m2j , o2j)...and xn is

Anj (m n j , Onj
)

THEN y'=w0j+wljx1+.+Wn^n (2)

Since the consequent of a rule is crisp, the
defuzzification step becomes obsolete in the TSK
inference scheme. Instead, the control output is computed
as the weighted average of the crisp rule outputs. This
computation is less expensive than calculating the center
of gravity.

IDENTIFICATION AND PREDICTION USING. Informatica 35 (2011) 113-122 115

The structure of the TSK-type neuro-fuzzy
network (TNFN) is shown in Fig. 1, where n and R are,
respectively, the number of input dimensions and the
number of rules. It is a five-layer network structure. The
functions of the nodes in each layer are described as
follows:
Layer 1 (Input Nodes): No function is performed in this
layer. The node only transmits input values to layer 2.

U(1) = xt, i = 1—n (3)
Layer 2 (Membership Function Nodes): Nodes in this
layer correspond to one linguistic label of the input
variables in layer 1; that is, the membership value
specifying the degree to which an input value belongs to
a fuzzy set is calculated in this layer. For an external
input xi , the following Gaussian membership function is
used:

(
j = 'j

k - m I 12 A

j = 1 - R (4)

(3) u, = n ,(2) (5)

Layer 4 (Consequent Nodes): Nodes in this layer are
called consequent nodes. The input to a node in layer 4 is
the output delivered from layer 3, and the other inputs are
the input variables from layer 1, as depicted in Fig. 1. For
this kind of node, we have

u j4) = u f V o j (w0j + I wjx') (6)

X j I u f K j + £ j)

y = u(5) j = 1 j=1 (7)

j=1

,(3) I
j = 1

(3)

where m i j and <JH are, respectively, the center and the y v

width of the Gaussian membership function of the jth
term of the ith input variable x t .
Layer 3 (Rule Nodes): The output of each node in this
layer is determined by the fuzzy AND operation. Here,
the product operation is utilized to determine the firing
strength of each rule. The function of each rule is

where the summation is over all the inputs, and Wj are
the corresponding parameters of the consequent part. w^
can be any real value. If wi}=0, i >0, the TNFN model in
this case will be called the zero-order TNFN model.
Layer 5 (Output Node): Each node in this layer
corresponds to one output variable. The node integrates
all the actions recommended by layers 3 and 4 and acts
as a defuzzifier with

Figure 1: Structure of the TNFN model.

4 An overview of particle swarm
optimization

Particle swarm optimization (PSO) [10] is a recently
invented high performance optimizer that possesses
several highly desirable attributes, including a basic
algorithm that is easy to understand and implement. This
algorithm is similar to genetic algorithms and
evolutionary algorithms, but requires less computational
memory and fewer lines of code. The PSO conducts
searches using a population of particles which
correspond to individuals in GA. Each particle has a

velocity vector v. and a position vector xt to represent a
possible solution.

Consider an optimization problem that requires the
simultaneous optimization of variables. A collection or
swarm of particles are defined, where each particle is
assigned a random position in the N-dimensional
problem space so that each particle's position
corresponds to a possible solution of the optimization
problem. The particles fly rapidly, moving at their own
respective velocities, and search the space. PSO has a
simple rule, namely, that each particle has three choices
in evolution: (1) insist on itself; (2) move towards its
own current best position; each particle remembers its
own personal best position that it has found, called the
local best; (3) move towards the current best position of
the population; each particle also knows the best position
found by any other particle in the swarm, called the
global best. PSO reaches a balance among these three
choices.

At each time step, each of the particle positions is
scored to obtain a fitness value based on how well it
solves the current problem. Using the local best position
(Lbest) and the global best position (Gbest), a new
velocity for each particle is updated using

'=1

'=1

116 Informatica 35 (2011) 113-122 C.-J. Lin et al.

v,(k +1) = m * v, (k) + fa * rand() * (Lbest - xt (k)) (8)

+ fa * rand() * (Gbest - xt (k))

where m, fa, andfa2 are called the coefficient of inertia,
the cognitive study, and the society study, respectively.
The term rand() refers to uniformly distributed random

numbers in [0, 1]. The term vi is limited to the

range + v max. If the velocity violates this limit, it will be
set to its proper limit. The concept of the updated
velocity is illustrated in Fig. 2.

Figure 2: The diagram of the updated velocity in the PSO.

A variable velocity enables every particle to search
around its individual best position and the global best
position. Based on the updated velocities, each particle
changes its position according to the following:

x, (k +1) = x, (k) + v, (k +1) (9)

When every particle is updated, the fitness value of
each particle is calculated again. If the fitness value of
the new particle is higher than those of the local
best/global best, then the local best/global best will be
replaced with the new particle. When the above updating
processes are repeated step-by-step, the whole population
will evolve toward the optimum solution. A detailed
flowchart is shown in Fig. 3.

5 The symbiotic adaptive particle
swarm optimization (SAPSO)

In this section, we will introduce the symbiotic adaptive
particle swarm optimization (SAPSO) for NFN design.
SAPSO uses symbiotic evolution and adaptive particle
swarm optimization with neighborhood operator. The
detailed process is described below.

5.1 The Design of Neuro-Fuzzy Network
Using SAPSO

Symbiotic evolution was first proposed in an implicit
fitness-sharing algorithm that was used in an immune
system model [31]. Unlike the traditional PSO that uses
each particle in a swarm as a full solution to a problem,
in symbiotic evolution, each individual in a population
represents only a partial solution to a problem. The goal
of each individual is to form a partial solution that will be
combined with other partial solutions currently in the
population to build an effective full solution. In a normal
evolution algorithm, a single individual is responsible for
the overall performance, and is assigned a fitness value
according to its performance. In symbiotic evolution, the
fitness of an individual (a partial solution) is calculated
by summing up the fitness values of all possible
combinations of that individual with other current
individuals (partial solutions) and then dividing the sum
by the total number of combinations. The representation
of a fuzzy system using SAPSO is shown in Fig. 4.

In Fig. 4, we can see that if we need R rules to
construct a fuzzy system, we will have R sub-swarms.
Each sub-swarm produces its own sub-particles. The
current best parameters, called the cooperative best
(Cbest), of the fuzzy system are recorded. As with the
traditional PSO, the velocities and sub-particles in every
sub-swarm need to be updated.

The evolution process of SAPSO includes coding,

Rule f.f Rule 2.k . . . U <*;>.\ RuleAP

Rule l.k RuleZP jiule (R-I)J^ Rule/?./1 j

Swarm

1
j Cbest/ Cbest 2 ... j Cbest ffl-y j Cbest/? j

Cooperative
Best (Cbest)

Figure 4: The representation of a fuzzy system by
SAPSO.

Figure 3: The typical PSO flowchart illustrates the steps
and update equations.

m 1 j m 2 j ° 2 j m n j W 0 j W 1 j
w nj

Figure 5: Coding a rule of SAPSO into a sub-particle.

IDENTIFICATION AND PREDICTION USING. Informatica 35 (2011) 113-122 117

initialization, fitness assignment, and sub-particle
updating. The coding step is concerned with the
membership functions and the fuzzy rules of a fuzzy
system that represent the particles in SAPSO. The
initialization step assigns the sub-swarm values before
the evolution process. The fitness assignment step gives a
suitable fitness value to each fuzzy system during the
evolution process. The complete learning process is
described step by step below.

A. Coding step: The first step in SAPSO is to code a
fuzzy rule into a sub-particle. Figure 5 shows a fuzzy
rule that is given by Eq. (2),
where m i j and represent a Gaussian membership

function with mean and deviation in the ith
dimension and the jth rule node, respectively.

B. Initialization step: Before SAPSO is designed, an
initial sub-swarm should be generated. As in the
traditional PSO, an initial sub-swarm is generated
randomly within a fixed range.

C. Fitness assignment step: As mentioned before for
SAPSO, the fitness value of a rule (a sub-particle) is
calculated by summing up the fitness values of all
the possible combinations, which are randomly
selected, and then dividing the sum by the total
number of combinations. The details for assigning
the fitness value are described step-by-step as
follows.
Step 1: Randomly choose one sub-particle from
each sub-swarm and assemble it to form a particle.
This particle represents a fuzzy system derived from
these sub-particles.
Step 2: Evaluate the performance of every fuzzy
system that is generated from Step 1 to obtain a
fitness value.
Step 3: The fitness records are initially set to zero.
Accumulate the fitness value of the selected sub-
particles to the fitness records.
Step 4: Repeat the above steps until each rule (sub-
particle) in a sub-swarm has been selected a
sufficient number of times, and record how many
times each sub-particle has participated in the fuzzy
systems.
Step 5: Divide the accumulated fitness value of each
sub-particle by the number of times it has been
selected. The average fitness value represents the
performance of a rule. In this paper, the fitness value
is designed according to the follow formulation:

Fitness Value= 1 /(1 + ̂ E (y, y) / T) (10)

w h e r e E (y , y) = £ (y - y , .) 2 (1 1)

where y represents the true value of the th output,

~y represents the predicted value, E(y, y)is an error
function, and T represents the number of the training
data of each generation.

D. Updating velocities and sub-particles: When the
fitness value of each sub-particle is obtained from

the fitness assignment step, the Lbest of each sub-
particle and the Gbest of each sub-swarm are
updated simultaneously using adaptive particle
swarm optimization with neighborhood operator
(APSO-NO). The algorithm of APSO-NO is
described in subsection 4.2.

E. Updating cooperative best (Cbest): When the
fitness value of every fuzzy system is obtained, we
can find the best fuzzy system in each generation. If
the fitness value of any fuzzy system is higher than
the best cooperative one, the cooperative best will be
replaced.

The steps mentioned above are repeated until the
predetermined condition is achieved.

5.2 The Adaptive Particle Swarm
Optimization with Neighborhood
Operator (APSO-NO)

In recent years, many researchers [30], [32] have
proposed using stability analysis on dynamic PSO in
order to obtain an understanding on how it searches for a
global optimal solution and the strategy it uses to tune
parameters.

In this paper, the velocity of a particle at the (k+i)-th
iteration is redefined for SAPSO as follows:

v, (k +1) = m* v, (k) + fa * rand() * (Lbest - xl (k))

+ * rand() * (Gbest - x, (k))

+ tj)3 * rand() * (Cbest - x, (k))

(12)

wherec , fa, , a n d a r e called the coefficient of inertia,

cognitive study, group study, and society study,
respectively. We hope to accelerate every sub-particle in
a direction toward the best self (Gbest), the best of a
partial solution (Lbest), and the best of the full solution
(Cbest). The particle will be reduced to one dimension
for easy analysis. Thus, Eq. (12) is rewritten as follows:

v(k +1) = m * v(k) + a * (Z - x(k)) (13)

where a = fa * rand() + fa * rand() + fa * rand() (14)

Z = fa * rand()* Lbest + * rand()*Gbest + fa * rand()*Cbest (1 5)

The reduced formulas of APSO-NO can be
expressed as follows:

v(k +1) = a* v(k) +a* y(k)
(16)

y(k +1) = -a * v(k) + (1 -a)* y(k)

where y(k) = Z - x(k)

The reduced system can then be written into a form using
matrix algebra.

Pk+1 = MPk (17)

where Pk

More generally, Pk = MkP0. Thus, the system is defined
completely by M. The eigenvalues of M are

' v(k)" , M =
m a

_ y(k)_ -c 1 -a

a

118 Informatica 35 (2011) 113-122 C.-J. Lin et al.

4 =

4 =

_ ® +1 a •\j(® + 1-a)2 - 4 ®
2 2 2

® +1 a 4(® +1 -a)2 - 4®

(18) We can redefine Eq. (12) based on the above results
as follows:

vt (k +1) _ ® * Vi (k) + 3K,a * rand() * (Lbest - xi (k))

+ 3k2a* rand() * (Gbest - xi (k))
A

+ 3k3a * rand() * (Cbest - xi (k))

(25)

According to stability theory, the behavior of a particle is
stable if and only if < 1and |l2| < 1 . Since the

eigenvalues l 1 , l 2are a function of the parameters®, where a = ®+1-24® + 4<5V®(26)
and03 , eigenvalue analysis will be carried out under the
following four conditions to find the stable condition of
the system. The detailed proofs refer to [30].

(1) ® _ 0, ^ 0 < a < 2

(2) a < ® + 1 - 24®, ^ 0 < ® < 1

(3)® + 1 - 24® <a < ® +1 + 24®, ^ 0 < ® < 1

(4)® +1 + 24® <a, ^ 0 < ® < 1

(19)

Based on the above analysis and with the use of the
parameters a and ® , the criterion of
convergence < 1 and ^

0 < a < 2c + 2
0 < ® < 1

I < 1 can be written as follows:

(20)

The analysis of vibration for a period is also investigated
[30]. In condition (3) of Eq. (29), in

since (® + 1-a)2 -4c < 0 when ® +1 - 24® < a < ® +1 + 24®
, 2 becomes a complex number, and a can be described
as follows:

a _ ® +1 - 24® + 434®

where 0 < S < 1
(21)

Because X is a complex number, it can be expressed as a
polar coordinate X = \x\e0 • If T is to be the period of the

reduced system,

T _
2 n 2n

tan 4 Im
Re

2n
(22)

•y/- (® + 1 - a) 2 + 4®
a < ® +1

tan 2
® + 1 - a

2

If Eq. (21) is used instead of a , then Eq. (22) can be
written as follows:

T _- 2n

- , 2 V S - S 2

tan
1 - 2 S
2%

n + tan M S-S 1

1 - 2S

(S < 0.5)

(S > 0.5)

(23)

It was shown from Eq. (14) that is a random number
distributed in [0, (0 + + 03)] and that its average value

, + 0 + 03 . We use three parameters, K1 , K2 and K3 , is*!.
3

where 0 < K, + K2 + K3 < 1. Therefore,

_ 3 K, A

= K, : k2 : K3 ^ •< (24)

I _ 3k3a

The qualitative relation between the search trajectory
of the reduced system and the parameters is summarized
as follows:
(1).If 0 < ® < 1and ® closes to0 , the convergence
tendency of the system will increase.
If 1 < ® and ® faces to w , the divergence tendency of
the system will increase.
(2).If0 < a < 1and a closes t o 1 , the dynamics of the
system becomes a vibration.
(3). If the parameters 0 < Kx +K 2 +K i < 1 and any of the
other coefficients closes to 1, Z moves toward the
corresponding best (Lbest, Gbest or Cbest).

In addition to the above method, another concept,
called the neighborhood operator, is introduced in [15]. It
prevents a swarm from tending to the global best
prematurely in the search process. If it commits early to
the global best in the search process, it may be trapped in
a poor local minimum. In the neighborhood operator, the
Gbest is not a fixed value. Therefore, Eq. (25) can be
rewritten as follows:

Vt (k +1) _ ® * Vt (k) + 3K, a * rand() * (Lbest - xt (k))
A

+ 3K2a * rand() * (Vbest - xt (k))
A

+ 3K3a * rand() * (Cbest - xt (k))

(27)

where Vbest is defined as the best solution in the
neighborhood around the sub-particles that are waiting to
be updated. The neighborhood is identified by
calculating the distances between the candidate sub-
particles and the other sub-particles. The pseudo code is
shown in Fig. 6. We can see that the number of
neighborhoods gradually increases according to the
generations. When the generations are close to terminal
conditions, Vbest tends toward Gbest.

1. Get dist[i] by calculating distances between the
candidate sub-particle and all other sub-particle.

2. Find the dist max from dist[i].
3. Define a threshold

i = 0.5 + 0.5*(iterationnow /iterationmax)
4. if i <0.8

if i > dist[i]/ dist
Figure 6: The pseudo code for finding Vbest in every
iteration.

6 Simulation results
In this section, the proposed SAPSO is applied to

the TNFN design and compared with the traditional PSO.
Both SAPSO and the traditional PSO are used to adjust

A A A

2 2 2

B

3K2a

IDENTIFICATION AND PREDICTION USING. Informatica 35 (2011) 113-122 119

the antecedent and consequent parameters of fuzzy rules
in TNFN.

We use three different simulations for all methods.
The first simulation uses the example given by Narendra
and Parthasarathy [33]. The second simulation predicts
the chaotic time series [34], and the third example
approximates a piecewise function [35]. In our
simulations, the numbers of swarms and sub-swarms are
set to 50 and 10. The initial parameters of the traditional
PSO and SAPSO are given in Table 1. In SAPSO, we use
different parameter values to observe the effect on
performance. All the programs are developed using
MATLAB 6.1 software, and each problem is simulated

on a Pentium III 1GHz desktop computer. Each
experiment is run 20 times.

Table 1: The initial parameters of the traditional PSO and
the SAPSO.

Example 1-Identification of Nonlinear Dynamic System
The first example used for identification is described

by the difference equation
y(k) y(k +1) =

1 + y 2(k)
+ u (k) (28)

The output of this equation depends nonlinearly on both
its past value and the input, but the effects of the input
and output values are not additive. The training input
patterns are randomly generated in the interval [-2, 2] for
the training data. In this problem, we use five fuzzy rules,
and evolution progressed for 1000 generations.

After 1000 generations, the average best root mean
square error (RMSE) of the output approximates 0.016.
Figures 7 (a)-(b) show the outputs of the two methods for

the input u(k)=sin(2nk/25). Figure 8 and Table 2 show
the learning curves and the performance of PSO and
SAPSO with different parameter values.

^""""---Parameter
k M I) k 2 (^ 2) K 3 £ Model

o k M I) k 2 (^ 2) K 3 £

Traditional PSO 0.4 2.0 2.0 NA NA
SAPSO1 0.4 0.3 0.3 0.3 0.5
SAPSO2 0.4 0.5 0.5 0 0.5
SAPSO3 0.4 0.5 0 0.5 0.5
SAPSO4 0.4 0.2 0.4 0.4 0.5
SAPSO5 0.4 0.2 0.4 0.4 0.6-0.4
SAPSO6 0.4 0.1 0.3 0.6 0.3
SAPSO 7 0.4 0.1 0.3 0.6 0.5
SAPSOS 0.4 0.1 0.3 0.6 0.7
SAPSO9 0.4 0.1 0.3 0.6 0.6-0.4

Model RMSE(Ave) RMSE(Best)

Traditional PSO 0.023 0.011

SAPSO1 0.100 0.059

SAPSO2 0.068 0.024

SAPSO3 0.066 0.035

SAPSO4 0.031 0.012

SAPSO5 0.038 0.024

SAPSO6 0.099 0.057

SAPSO 7 0.037 0.020

SAPSOS 0.119 0.108

SAPSO9 0.016 0.012

Table 2: The performance comparison with two methods.

Figure 8: The learning curves of the PSO and the SAPSO
with different parameter values.

Example 2-Prediction of the Chaotic Time Series
The Mackey-Glass chaotic time series x(t) in
consideration here is generated from the following delay
differential equation:

* (t) = ^ X (t " T) - 0.1 x(t) (29)
dt 1 + x10 (t - z)

Crowder [34] extracted 1000 input-output data pairs {x,
yd} which consisted of four past values of x(t), i.e.

[x(t -18) , x(t -12), x(t - 6), x(t); x(t + 6)] (30)

where t=17 and x(0)=1.2. There are four inputs into the
model, corresponding to the values of x(t), and one
output representing the value x(t+At), where At is a time
prediction into the future. The first 500 pairs (from x(1)
to x(500)) are the training data set, while the remaining
500 pairs (from x(501) to x(1000)) are the testing data set
used for validating the proposed method. The number of
fuzzy rules is set to 6. The average best RMSE of the
prediction output approximates 0.009 after 1000
generations.

Figures 9 (a) and (b) show the prediction results of
PSO and SAPSO. Table 3 shows the comparison results
of the prediction performance of all methods. Figure 10
shows the RMSE curves of the two models.

120 Informatica 35 (2011) 113-122 C.-J. Lin et al.

(a) (b)

Figure 9: The prediction results of (a) the PSO and (b)
the SAPSO.

Model RMSE(Ave) RMSE(Best)

Traditional PSO 0.012 0.006

SAPSO7 0.025 0.013

SAPSO2 0.015 0.010

SAPSO3 0.015 0.012

SAPSO4 0.010 0.006

SAPSO5 0.010 0.007

SAPSO6 0.029 0.012

SAPSO 7 0.011 0.008

SAPSOS 0.019 0.010

SAPSO9 0.009 0.006

Table 3: The performance comparison with two methods

Example 3-Approximation of the Piecewise Function
The piecewise function was studied by Zhang [35] and
Xu [36] and is defined as:

i - 2 .186x - 12.864 - 10 < x < - 2

f (x) = | 4 .246x - 2 < x < 0

110e-°05x-0-5 s in[(0.03x + 0 .7)x] 0 < x < 10

(31)

outputs of the function f with the PSO method and the
SAPSO9 method. The solid line represents the output of
function f , and the dotted line represents the
approximation of various methods. The results
comparing our model with PSO are tabulated in Table 4.

Figure 11: The learning curves of the PSO and the
SAPSO with different parameter values for piecewise
problem.

Figure 10: The learning curves of the PSO and the
SAPSO with different parameter values for prediction
problem.

(a) (b)
Figure 12: The results of approximation using (a) the
PSO method and (b) the SAPSO9 method.

Model RMSE(Ave) RMSE(Best)

Traditional PSO 0.28 0.12

SAPSO7 3.35 3.15

SAPSO2 1.15 0.45

SAPSO3 0.33 0.16

SAPSO4 0.43 0.14

SAPSO5 0.24 0.13

SAPSO6 2.96 2.18

SAPSO 7 0.21 0.09

SAPSOS 0.64 0.36

SAPSO9 0.20 0.09

over the domain D = [-10, 10]. The piecewise function is
continuous and can be analyzed. However, traditional
analytical tools are inadequate and often fail. This failure
may be due to two reasons, namely, the wide-band
information hidden at the turning points and the
amalgamation of linearity and nonlinearity.

In this example, 200 training input patterns are
uniformly generated from Eq. (31). Seven fuzzy rules are
generated in this example. The RMSE curve is shown in
Fig. 11 with all methods. Figures 12 (a)-(b) show the

Table 4: The performance comparison with two methods.

The average computation time per generation for
three examples with the PSO and SAPSO is tabulated in
Table 5. We only update the value of sub-particles in
each sub-swarm for SAPSO, and the total adjusted
parameters of SAPSO are less than that of PSO.
Therefore, the computation time required by SAPSO is
less than that by PSO.

IDENTIFICATION AND PREDICTION USING. Informatica 35 (2011) 113-122 121

N^xample Identification N^xample
of Nonlinear

Prediction of Approximation \ of Nonlinear
Approximation

\ the Chaotic of the Piecewise \ Dynamic \ Dynamic
Time Series Function

Model \ System

PSO 1.21 7.5 3.15
SAPSO 0.35 1.70 0.65

Table 5: The average computation time of three
examples for the PSO and the SAPSO (Unit: sec).

7 Discussion
From the above experimental results, we find that the
parameters S affect the performance of
SAPSO. In order to test the relationship between the
search trajectory and the parameters, we use the same
value of , K2, K3 and a in SAPSO6, SAPSO7, SAPSO8,
and SAPSO9. We define the collection degree (CD) of a
sub-swarm for each generation as follows:

N N

CD = X XI\particle (i) " particle (j)|| (3 2)

1=1 j=i+1

where N is the number of sub-swarms and || || is the 2-

norm (the Euclidean one for a vector). When CD is small,
the particles are close to each other.

Figures 13 (a)-(c) and figures 14 (a)-(c) show the
simulation results of example 1 whenSis 0.3, 0.7, and
0.6, diminishing to 0.4 gradually by increasing the
learning steps. It is observed that the convergence speed
of sub-particles in five sub-swarms is fastest whenS is
0.3, and the dynamics of five sub-swarms are always
vibration whenS is 0.7, as seen in Fig. 13 (b).

The two situations mentioned are detrimental to the
performance of the system. In Fig. 14 (a), the RMSE
curves are sharp in the beginning and do not move
afterwards. In Fig. 14 (b), the RMSE curves are like a
ladder and drop slowly. Therefore, we hope to combine
the advantages of the two situations mentioned and find
the appropriate method for setting the parameters. We
make the value of S big enough to increase the chance of
search in the beginning and then gradually reduce
generations in number. We find that the performance of
SAPSO5 and SAPSO9 is better than the others from the
experiments. Moreover, from the above experimental
results, the performance of the system is better
when^ <k2 < K3 .

8 Conclusion
In this paper, a novel symbiotic adaptive particle swarm
optimization (SAPSO) that adjusts the parameters of
fuzzy systems was presented. The proposed SAPSO
approach allows control over the dynamic characteristics
of particles. The efficiency of the proposed SAPSO was
demonstrated by its application to identification,
prediction, and approximation of function problems.
Simulation results show that the proposed SAPSO has
better learning performance and less computation time
requirements than the traditional PSO method.

1 Pfnfw^pTÎr W

(b)

(c)
Figure 13: The collection degree for five sub swarm of
example1 in learning processes whenS is (a) 0.3, (b) 0.7,
and (c) 0.6~0.4.

(a) (b)

(c)
Figure 14: The RMSE curves for five sub-swarm of
example1 in learning processes whenS is (a) 0.3, (b) 0.7,
and (c) 0.6~0.4.

References
[1] C. T. Lin and C. S. G. Lee (1996), Neural Fuzzy

Systems: A Neuro-Fuzzy Synergism to Intelligent
System, NJ: Prentice-Hall.

[2] G. G. Towell and J. W. Shavlik (1993). Extracting
refined rules from knowledge-based neural
networks. Machine Learning, vol. 13, pp. 71-101.

[3] C. J. Lin and C. T. Lin (1997). An ART-based
fuzzy adaptive learning control network. IEEE
Trans. on Fuzzy Systems, vol. 5, no. 4, pp. 477-496.

[4] L. X. Wang and J. M. Mendel (1992). Generating
fuzzy rules by learning from examples. IEEE Trans.
on Systems, Man, Cybern., vol. 22, no. 6, pp. 1414-
1427.

[5] T. Takagi and M. Sugeno (1985). Fuzzy
identification of systems and its applications to
modeling and control. IEEE Trans. on Systems,
Man, Cybern., vol. SMC-15, pp. 116-132.

122 Informatica 35 (2011) 113-122

[6] J.-S. R. Jang (1993). ANFIS: Adaptive-network-
based fuzzy inference system. IEEE Trans. on
Systems, Man, and Cybern., vol. 23, pp. 665-685.

[7] C. F. Juang and C. T. Lin (1998). An on-line self-
constructing neural fuzzy inference network and its
applications. IEEE Trans. on Fuzzy Systems, vol. 6,
no.1, pp. 12-31.

[8] F. J. Lin, C. H. Lin, and P. H. Shen (2001). Self-
constructing fuzzy neural network speed controller
for permanent-magnet synchronous motor drive.
IEEE Trans. on Fuzzy Systems, vol. 9, no. 5, pp.
751-759.

[9] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima
(1992). Neural networks designed on approximate
reasoning architecture and their application. IEEE
Trans. on Neural Networks, vol. 3, no. 5, pp. 752-
759.

[10] J. Kennedy and R. Eberhart (1995). Particle swarm
optimization. Proc. IEEE Int'l Conf. Neural
Networks, pp. 1942-1948.

[11] Z. L. Gaing (2004). A particle swarm optimization
approach for optimum design of PID controller in
AVR system. IEEE Trans. on Energy Conversion,
vol. 19, Issue: 2, pp. 384-391.

[12] H. Yoshida, K. Kawata, Y. Fukuyama, S.
Takayama, and Y. Nakanishi (2000). A particle
swarm optimization for reactive power and voltage
control considering voltage security assessment.
IEEE Trans. on Power Systems, vol. 15, Issue: 4,
pp. 1232-1239.

[13] M. A. Abido (2002). Optimal design of power-
system stabilizers using particle swarm
optimization. IEEE Trans. on Energy Converston,
vol. 17, Issue: 3, pp. 406-413.

[14] C. F. Juang (2004). A hybrid of genetic algorithm
and particle swarm optimization for recurrent
network design. IEEE Trans. on Systems, Man and
Cybernetics, Part B, vol. 34, Issue: 2, pp. 997-1006.

[15] R. Mendes, P. Cortez, M. Rocha, and J. Neves
(2002). Particle swarms for feedforward neural
network training. Proc. Int'l Joint Conf. Neural
Networks, pp. 1895-1899.

[16] A. Savran (2007). an adaptive recurrent fuzzy
system for nonlinear identification. Applied Soft
Comp., vol. 7, pp. 593-600.

[17] Y. Oysal and S. Yilmaz (2010). an adaptive wavelet
network for function learning. Neural Comp. Appli.,
vol. 19, pp. 383-392.

[18] B. Cetisli and A. Barkana (2010). Speeding up the
scaled conjugate gradient algorithm and its
application in neuro-fuzzy classifier training. Soft
Comt., vol. 14, no. 4, pp. 365-378.

[19] B. Cetisli (2010). Development of an adaptive
neuro-fuzzy classifier using linguistic hedges: part
1. Expert Syst. Appli., vol. 37, pp. 6093-6101.

[20] Y. Bodyanskiy, V. Kolodyazhniy, and A. Stephan
(2001). An Adaptive Learning Algorithm for a
Neuro-fuzzy Network. Proc. Int'l Conf. 7th Fuzzy
Days, Dortmund, Germany, pp. 68-75.

[21] A. K. Palit and R. Babuska (2001). Efficient
Training Algorithm for Takagi-Sugeno Type

C.-J. Lin et al.

Neuro-Fuzzy Network. Proc. IEEE Int'l Conf.
Fuzzy Systems, Vol. 3, pp. 1367-1371.

[22] R. Fletcher (reprinted 2006). Practical methods of
optimization. Edn. 2nd, West Sussex: Wiley.

[23] P. E. Gill, W. Murray, and M. H. Wright (1981).
Practical Optimization. London: Academic Press.

[24] R. Storn and K. V. Price (1997). Differential
evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J.
Global Opt., vol. 11, no. 4, pp. 341-359.

[25] A. E. Douglas (1994). Symbiotic Interactions.
Oxford: Oxford University Press.

[26] C. J. Lin and C. F. Wu (2009). An Efficient
Symbiotic Particle Swarm Optimization for
Recurrent Functional Neural Fuzzy Network
Design. International Journal of Fuzzy Systems,
vol. 11, no. 4, pp. 262-271.

[27] C. H. Chen, C. J. Lin, and C. T. Lin (2009),
Nonlinear System Control Using Adaptive Neural
Fuzzy Networks Based on a Modified Differential
Evolution. IEEE Trans. on Systems, Man, and
Cybernetics—Part C: Applications and Reviews,
vol. 39, no. 4, pp. 459-473.

[28] C. H. Chen, C. J. Lin, and C. T. Lin (2009). Using
an Efficient Immune Symbiotic Evolution Learning
for Compensatory Neuro-Fuzzy Controller. IEEE
Trans. on Fuzzy Systems, vol. 17, no. 3, pp. 668-
682.

[29] P. N. Suganthan (1999). Particle swarm optimizer
with neighborhood operator. Proc. Congress on
Evolutionary Computation, vol. 3.

[30] K. Yasuda, A. Ide, and N. Iwasaki (2003). Adaptive
particle swarm optimization. Proc. IEEE Int'l Conf.
Systems, Man and Cybernetics, vol. 2, pp. 1554-
1559.

[31] D. E. Moriarty and R. Miikkulainen (1996).
Efficient reinforcement learning through symbiotic
evolution. Mach. Learn., vol. 22, pp. 11-32.

[32] M. Clerc and J. Kennedy (2002). The particle
swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. on
Evolutionary Computation, vol. 6, Issue: 1, pp. 58-
73.

[33] K. S. Narendra and K. Parthasarathy (1990),
Identification and control of dynamical systems
using neural networks. IEEE Trans. on Neural
Networks, vol. 1, no. 1, pp. 4-27.

[34] R. S. Crowder (1990). Predicting the Mackey-Glass
timeseries with cascade-correlation learning. Proc.
of the 1990 Connectionist Models Summer School,
Carnegie Mellon University, pp. 117-123.

[35] Q. Zhang and A. Benveniste (1992). Wavelet
Networks. IEEE Trans. on Neural Networks, pp.
889-898.

[36] D.W.C. Ho, P. A. Zhang, and J. Xu (2001). Fuzzy
Wavelet Networks for Function Learning. IEEE
Trans. on Fuzzy Systems, vol.9, pp. 200-211.

