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This study presents a novel symbiotic adaptive particle swarm optimization (SAPSO) for neuro-fuzzy 
network design. The proposed SAPSO uses symbiotic evolution and adaptive particle swarm 
optimization with neighborhood operator (APSO-NO) to improve the performance of the traditional 
PSO. In APSO-NO, we combine the neighborhood operator and the adaptive particle swarm 
optimization to tune the particles that are most significant. Simulation results have shown that the 
proposed SAPSO performs better and requires less computation time than the traditional PSO. 
Povzetek: Razvita je nova metoda nevronskih mrež z uporabo roja delcev. 

1 Introduction 
Neuro-fuzzy networks (NFNs) have been demonstrated 
to be successful [1]-[9]. Two typical types of NFNs are 
the Mamdani-type and TSK-type models. In Mamdani-
type NFNs [3]-[4], the minimum fuzzy implication is 
used in fuzzy reasoning. In TSK-type NFNs [5]-[8], the 
consequent of each rule is a function input variable. The 
generally adopted function is a linear combination of 
input variables plus a constant term. Many researchers 
[6]-[7] have shown that using TSK-type NFNs achieve 
superior performance in network size and learning 
accuracy than using Mamdani-type NFNs. 

Training parameters is a problem in the design of a 
NFN. To solve this problem, back-propagation (BP) 
training is widely used [3]-[8]. It is a powerful training 
technique that can be applied to networks. Nevertheless, 
the steepest descent technique is used in BP training to 
minimize the error function. The algorithm may allow 
the local minima to be reached very quickly, yet the 
global solution may never be found. In addition, the 
performance of BP training depends on the initial values 
of the system parameter, and for different network 
topologies, new mathematical expressions for each 
network layer have to be derived. Considering the 
disadvantages mentioned above, one might be faced with 
suboptimal performances, even for a suitable NFN 
topology. Hence, techniques capable of training network 
parameters and finding a global solution while 
optimizing the overall structure are needed. 

In this respect, a new algorithm, called particle 
swarm optimization (PSO), appears to be a better 
algorithm than the BP algorithm. It is an evolutionary 

computation technique developed by Kennedy and 
Eberhart in 1995 [10]. The underlying motivation for the 
development of the PSO algorithm was the social 
behavior of animals, such as birds flocking together, fish 
swimming in schools, and insects swarming together. 
Several researchers have used the PSO method to solve 
some optimization problems, like control problems [11]-
[13] and neural network design [14]-[15]. 

The performance of most stochastic optimization 
algorithms, including the PSO and genetic algorithms 
(GAs), declines as the dimensionality of the search space 
increases. These algorithms stop when they generate a 
solution that falls in the optimal region, a small volume 
of the search space surrounding the global optimum. The 
probability in stochastic optimization algorithms 
decreases exponentially as the dimensionality of the 
search space increases. It is clear that, in a similar 
topology, it is harder to find the global optimum in a 
high-dimensional problem than it is in a low-dimensional 
problem. One way to overcome this exponential increase 
in difficulty is to partition the search space into lower 
dimensional subspaces, as long as the optimization 
algorithm can guarantee that it will be able to search 
every possible region of the search space. 

In this paper, a novel learning algorithm, called 
symbiotic adaptive particle swarm optimization (SAPSO), 
that tunes the parameters of NFNs is proposed. The 
proposed SAPSO is different from the traditional PSO. In 
the traditional PSO, each particle represents a fuzzy 
system. But in SAPSO, each particle represents only one 
fuzzy rule. A R-rule fuzzy system is constructed by 
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selecting and combining R particles from a given swarm. 
The proposed SAPSO consists of symbiotic evolution 
and adaptive particle swarm optimization with 
neighborhood operator to improve the performance of the 
traditional PSO. 

The advantages of the proposed SAPSO are 
summarized as follows: (1) SAPSO can reduce 
population sizes; (2) the computation request of SAPSO 
is less than that of the traditional PSO in each generation; 
(3) in the learning process, the relative parameters in a 
fuzzy system are searched; they prevent interference 
from other parameters that can find what the best 
parameter values are; (4) the adjusting parameter strategy 
of SAPSO is more significant than the traditional PSO. 

The rest of this paper is organized as follows. After 
reviewing of training algorithms for NFNs in Section 2, 
Section 3 illustrates the structure of the TSK-type fuzzy 
model. An overview of PSO is given in Section 4. A 
novel symbiotic adaptive particle swarm optimization 
(SAPSO) is proposed in Section 5. Sections 6 and 7 
respectively present the simulation results and discussion. 
Finally, the conclusion is given in the last section. 

2 Related works 
Besides the most-applied BP algorithm, some other 
traditional optimization approaches had been applied to 
training NFNs, such as the Broyden-Fletcher- Goldfarb-
Shanno (BFGS) [16]-[17], conjugate gradient (CG) [18]-
[19], and Levenberg-Marquardt (LM) [20]-[21] methods. 

In the context of deterministic unconstrained 
optimisation, quasi-Newton (QN) methods, sometimes 
called variable metric methods, are well-known 
algorithms for finding local minima of specific functions. 
QN methods are based on Newton's method to find the 
stationary point of a function, where the gradient is zero. 
Newton's method assumes that the function can be 
locally approximated as a quadratic in the region around 
the optimum, and requires the first and second 
derivatives [22], i.e. the gradient vector and the Hessian 
matrix, to find the stationary point. Moreover, the 
Newton's method and its variants require that the Hessian 
is positive definite - a condition that is difficult to 
guarantee in practice. 

Conjugate Gradient methods are in principle 
approaches suitable for large-scale problems [23]. The 
basic idea of CG methods is to find the stepsize along a 
linear combination of the current gradient vector and the 
previous search direction. On the other hand, equipped 
with a damping factor, the LM (so-called damped Gauss-
Newton) methods are capable of relaxing the difficulties 
of Hessian-based training, i.e. the ill-conditioning of the 
Hessian matrix. In addition, when the damping factor is 
zero, the LM methods become identical to the Gauss-
Newton approach; while as the damping factor gets close 
to infinity, the LM methods are then get equivalent to the 
steepest descent method. 

As indicating in the Introduction section, although 
the traditional second-order approaches generally have 
faster convergent speeds, they are still in the situation of 
local optimization. Evolutional approaches such as 

particle swarm optimization (PSO) [10], differential 
evolution (DE) [21], and symbiotic evolution (SE) [25] 
have been developed for training NFNs [26]-[28], 
respectively. Since this paper focuses on the PSO 
approach, the concepts of DE and SE methods are 
omitted here and suggested to refer the relevant literature 
for further details, whereas the overview of the PSO and 
our proposed symbiotic adaptive PSO are presented in 
this paper. 

3 Structure of a TSK-type neuro-
fuzzy network (TNFN) 

A fuzzy model is a knowledge-based system 
characterized by a set of rules that model the relationship 
between the control input and output. The reasoning 
process is defined by means of the inference method, 
aggregation operators, and fuzzy connectives. The fuzzy 
knowledge base contains the definitions of fuzzy sets, 
which are stored in a fuzzy database, and a collection of 
fuzzy rules. 

Fuzzy rules are defined by their antecedents and 
consequents, which relate an observed input state to a 
desired control action. Most fuzzy systems employ the 
inference method proposed by Mamdani, in which the 
consequent parts are defined by fuzzy sets [1]. A 
Mamdani-type fuzzy rule has the form: 
IF x1 is Aij (mij, Ojj)andX2 is A2j(m2j, O2j)...and 

xn
 is Anj ( m n j ,  0.nj) 

THEN y' is Bj (mj ,oj) (1) 

where m i j and o j represent a Gaussian membership 

function with mean and deviation, respectively, of the ith 
dimension and the jth rule node. The consequents Bj of 
the jth rule are aggregated into one fuzzy set for the 
output variable y'. Crisp action is obtained through 
defuzzification, which calculates the centroid of the 
output fuzzy set. The more common fuzzy inference 
method proposed by Mamdani, Takagi, Sugeno, and 
Kang introduced a modified inference scheme [5]. The 
first two parts of the fuzzy inference process, fuzzifying 
the inputs and applying the fuzzy operator, are exactly 
the same. A Takagi-Sugeno-Kang (TSK)-type fuzzy 
model employs different implications and aggregation 
methods than the standard Mamdani controller. Instead 
of fuzzy sets being used, the conclusion part of a rule is a 
linear combination of the crisp inputs. 
IFx1 is Ajj (m1j , O j j )and x2 is A2j(m2j , o2j )...and xn is 

Anj ( m n j , Onj
 ) 

THEN y'=w0j+wljx1+.+Wn^n (2) 

Since the consequent of a rule is crisp, the 
defuzzification step becomes obsolete in the TSK 
inference scheme. Instead, the control output is computed 
as the weighted average of the crisp rule outputs. This 
computation is less expensive than calculating the center 
of gravity. 
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The structure of the TSK-type neuro-fuzzy 
network (TNFN) is shown in Fig. 1, where n and R are, 
respectively, the number of input dimensions and the 
number of rules. It is a five-layer network structure. The 
functions of the nodes in each layer are described as 
follows: 
Layer 1 (Input Nodes): No function is performed in this 
layer. The node only transmits input values to layer 2. 

U(1) = xt, i = 1—n (3) 
Layer 2 (Membership Function Nodes): Nodes in this 
layer correspond to one linguistic label of the input 
variables in layer 1; that is, the membership value 
specifying the degree to which an input value belongs to 
a fuzzy set is calculated in this layer. For an external 
input xi , the following Gaussian membership function is 
used: 

( 
j = 'j 

k - m I 12 A 

j = 1 - R (4) 

(3) u, = n ,(2) (5) 

Layer 4 (Consequent Nodes): Nodes in this layer are 
called consequent nodes. The input to a node in layer 4 is 
the output delivered from layer 3, and the other inputs are 
the input variables from layer 1, as depicted in Fig. 1. For 
this kind of node, we have 

u j4) = u f V o j (w0j + I wjx') (6) 

X j I u f K j + £ j ) 

y = u(5) j = 1 j=1 (7) 

j=1 

,(3) I 
j = 1 

(3) 

where m i j and <JH are, respectively, the center and the y v 

width of the Gaussian membership function of the jth 
term of the ith input variable x t . 
Layer 3 (Rule Nodes): The output of each node in this 
layer is determined by the fuzzy AND operation. Here, 
the product operation is utilized to determine the firing 
strength of each rule. The function of each rule is 

where the summation is over all the inputs, and Wj are 
the corresponding parameters of the consequent part. w^ 
can be any real value. If wi}=0, i >0, the TNFN model in 
this case will be called the zero-order TNFN model. 
Layer 5 (Output Node): Each node in this layer 
corresponds to one output variable. The node integrates 
all the actions recommended by layers 3 and 4 and acts 
as a defuzzifier with 

Figure 1: Structure of the TNFN model. 

4 An overview of particle swarm 
optimization 

Particle swarm optimization (PSO) [10] is a recently 
invented high performance optimizer that possesses 
several highly desirable attributes, including a basic 
algorithm that is easy to understand and implement. This 
algorithm is similar to genetic algorithms and 
evolutionary algorithms, but requires less computational 
memory and fewer lines of code. The PSO conducts 
searches using a population of particles which 
correspond to individuals in GA. Each particle has a 

velocity vector v. and a position vector xt to represent a 
possible solution. 

Consider an optimization problem that requires the 
simultaneous optimization of variables. A collection or 
swarm of particles are defined, where each particle is 
assigned a random position in the N-dimensional 
problem space so that each particle's position 
corresponds to a possible solution of the optimization 
problem. The particles fly rapidly, moving at their own 
respective velocities, and search the space. PSO has a 
simple rule, namely, that each particle has three choices 
in evolution: (1) insist on itself; (2) move towards its 
own current best position; each particle remembers its 
own personal best position that it has found, called the 
local best; (3) move towards the current best position of 
the population; each particle also knows the best position 
found by any other particle in the swarm, called the 
global best. PSO reaches a balance among these three 
choices. 

At each time step, each of the particle positions is 
scored to obtain a fitness value based on how well it 
solves the current problem. Using the local best position 
(Lbest) and the global best position (Gbest), a new 
velocity for each particle is updated using 

'=1 

'=1 
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v,(k +1) = m * v, (k) + fa * rand() * (Lbest - xt (k)) ( 8 ) 

+ fa * rand() * (Gbest - xt (k)) 

where m, fa, andfa2 are called the coefficient of inertia, 
the cognitive study, and the society study, respectively. 
The term rand() refers to uniformly distributed random 

numbers in [0, 1]. The term vi is limited to the 

range + v max. If the velocity violates this limit, it will be 
set to its proper limit. The concept of the updated 
velocity is illustrated in Fig. 2. 

Figure 2: The diagram of the updated velocity in the PSO. 

A variable velocity enables every particle to search 
around its individual best position and the global best 
position. Based on the updated velocities, each particle 
changes its position according to the following: 

x, (k +1) = x, (k ) + v, (k +1) (9) 

When every particle is updated, the fitness value of 
each particle is calculated again. If the fitness value of 
the new particle is higher than those of the local 
best/global best, then the local best/global best will be 
replaced with the new particle. When the above updating 
processes are repeated step-by-step, the whole population 
will evolve toward the optimum solution. A detailed 
flowchart is shown in Fig. 3. 

5 The symbiotic adaptive particle 
swarm optimization (SAPSO) 

In this section, we will introduce the symbiotic adaptive 
particle swarm optimization (SAPSO) for NFN design. 
SAPSO uses symbiotic evolution and adaptive particle 
swarm optimization with neighborhood operator. The 
detailed process is described below. 

5.1 The Design of Neuro-Fuzzy Network 
Using SAPSO 

Symbiotic evolution was first proposed in an implicit 
fitness-sharing algorithm that was used in an immune 
system model [31]. Unlike the traditional PSO that uses 
each particle in a swarm as a full solution to a problem, 
in symbiotic evolution, each individual in a population 
represents only a partial solution to a problem. The goal 
of each individual is to form a partial solution that will be 
combined with other partial solutions currently in the 
population to build an effective full solution. In a normal 
evolution algorithm, a single individual is responsible for 
the overall performance, and is assigned a fitness value 
according to its performance. In symbiotic evolution, the 
fitness of an individual (a partial solution) is calculated 
by summing up the fitness values of all possible 
combinations of that individual with other current 
individuals (partial solutions) and then dividing the sum 
by the total number of combinations. The representation 
of a fuzzy system using SAPSO is shown in Fig. 4. 

In Fig. 4, we can see that if we need R rules to 
construct a fuzzy system, we will have R sub-swarms. 
Each sub-swarm produces its own sub-particles. The 
current best parameters, called the cooperative best 
(Cbest), of the fuzzy system are recorded. As with the 
traditional PSO, the velocities and sub-particles in every 
sub-swarm need to be updated. 

The evolution process of SAPSO includes coding, 

Rule f.f Rule 2.k . . . U <*;>.\ RuleAP 

Rule l.k RuleZP jiule (R-I)J^ Rule/?./1 j 

Swarm 

1 
j Cbest/ Cbest 2 ... j Cbest ffl-y j Cbest/? j 

Cooperative 
Best (Cbest) 

Figure 4: The representation of a fuzzy system by 
SAPSO. 

Figure 3: The typical PSO flowchart illustrates the steps 
and update equations. 

m 1 j m 2 j ° 2 j m n j W 0 j W 1 j 
w nj 

Figure 5: Coding a rule of SAPSO into a sub-particle. 
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initialization, fitness assignment, and sub-particle 
updating. The coding step is concerned with the 
membership functions and the fuzzy rules of a fuzzy 
system that represent the particles in SAPSO. The 
initialization step assigns the sub-swarm values before 
the evolution process. The fitness assignment step gives a 
suitable fitness value to each fuzzy system during the 
evolution process. The complete learning process is 
described step by step below. 

A. Coding step: The first step in SAPSO is to code a 
fuzzy rule into a sub-particle. Figure 5 shows a fuzzy 
rule that is given by Eq. (2), 
where m i j and represent a Gaussian membership 

function with mean and deviation in the ith 
dimension and the jth rule node, respectively. 

B. Initialization step: Before SAPSO is designed, an 
initial sub-swarm should be generated. As in the 
traditional PSO, an initial sub-swarm is generated 
randomly within a fixed range. 

C. Fitness assignment step: As mentioned before for 
SAPSO, the fitness value of a rule (a sub-particle) is 
calculated by summing up the fitness values of all 
the possible combinations, which are randomly 
selected, and then dividing the sum by the total 
number of combinations. The details for assigning 
the fitness value are described step-by-step as 
follows. 
Step 1: Randomly choose one sub-particle from 
each sub-swarm and assemble it to form a particle. 
This particle represents a fuzzy system derived from 
these sub-particles. 
Step 2: Evaluate the performance of every fuzzy 
system that is generated from Step 1 to obtain a 
fitness value. 
Step 3: The fitness records are initially set to zero. 
Accumulate the fitness value of the selected sub-
particles to the fitness records. 
Step 4: Repeat the above steps until each rule (sub-
particle) in a sub-swarm has been selected a 
sufficient number of times, and record how many 
times each sub-particle has participated in the fuzzy 
systems. 
Step 5: Divide the accumulated fitness value of each 
sub-particle by the number of times it has been 
selected. The average fitness value represents the 
performance of a rule. In this paper, the fitness value 
is designed according to the follow formulation: 

Fitness Value= 1 /(1 + ̂  E (y, y ) / T ) (10) 

w h e r e E ( y , y ) = £ ( y - y , . ) 2 ( 1 1 ) 

where y represents the true value of the th output, 

~y represents the predicted value, E(y, y)is an error 
function, and T represents the number of the training 
data of each generation. 

D. Updating velocities and sub-particles: When the 
fitness value of each sub-particle is obtained from 

the fitness assignment step, the Lbest of each sub-
particle and the Gbest of each sub-swarm are 
updated simultaneously using adaptive particle 
swarm optimization with neighborhood operator 
(APSO-NO). The algorithm of APSO-NO is 
described in subsection 4.2. 

E. Updating cooperative best (Cbest): When the 
fitness value of every fuzzy system is obtained, we 
can find the best fuzzy system in each generation. If 
the fitness value of any fuzzy system is higher than 
the best cooperative one, the cooperative best will be 
replaced. 

The steps mentioned above are repeated until the 
predetermined condition is achieved. 

5.2 The Adaptive Particle Swarm 
Optimization with Neighborhood 
Operator (APSO-NO) 

In recent years, many researchers [30], [32] have 
proposed using stability analysis on dynamic PSO in 
order to obtain an understanding on how it searches for a 
global optimal solution and the strategy it uses to tune 
parameters. 

In this paper, the velocity of a particle at the (k+i)-th 
iteration is redefined for SAPSO as follows: 

v, (k +1) = m* v, (k) + fa * rand() * (Lbest - xl (k)) 

+ * rand() * (Gbest - x, (k)) 

+ tj)3 * rand() * (Cbest - x, (k)) 

(12) 

wherec , fa, , a n d a r e called the coefficient of inertia, 

cognitive study, group study, and society study, 
respectively. We hope to accelerate every sub-particle in 
a direction toward the best self (Gbest), the best of a 
partial solution (Lbest), and the best of the full solution 
(Cbest). The particle will be reduced to one dimension 
for easy analysis. Thus, Eq. (12) is rewritten as follows: 

v(k +1) = m * v(k) + a * (Z - x(k)) (13) 

where a = fa * rand() + fa * rand() + fa * rand() (14) 

Z = fa * rand()* Lbest + * rand()*Gbest + fa * rand()*Cbest ( 1 5 ) 

The reduced formulas of APSO-NO can be 
expressed as follows: 

v(k +1) = a* v(k) +a* y(k) 
(16) 

y(k +1) = -a * v(k) + (1 -a)* y(k) 

where y(k) = Z - x(k) 

The reduced system can then be written into a form using 
matrix algebra. 

Pk+1 = MPk (17) 

where Pk 

More generally, Pk = MkP0. Thus, the system is defined 
completely by M. The eigenvalues of M are 

' v(k)" , M = 
m a 

_ y(k )_ -c 1 -a 

a 
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4 = 

4 = 

_ ® +1 a •\j(® + 1-a)2 - 4 ® 
2 2 2 

® +1 a 4(® +1 -a)2 - 4® 

(18) We can redefine Eq. (12) based on the above results 
as follows: 

vt (k +1) _ ® * Vi (k) + 3K,a * rand() * (Lbest - xi (k)) 

+ 3k2a* rand() * (Gbest - xi (k)) 
A 

+ 3k3a * rand() * (Cbest - xi (k)) 

(25) 

According to stability theory, the behavior of a particle is 
stable if and only if < 1and |l2| < 1 . Since the 

eigenvalues l 1 , l 2are a function of the parameters®, where a = ®+1-24® + 4<5V®(26) 
and03 , eigenvalue analysis will be carried out under the 
following four conditions to find the stable condition of 
the system. The detailed proofs refer to [30]. 

(1) ® _ 0, ^ 0 < a < 2 

(2) a < ® + 1 - 24®, ^ 0 < ® < 1 

(3)® + 1 - 24® <a < ® +1 + 24®, ^ 0 < ® < 1 

(4)® +1 + 24® <a, ^ 0 < ® < 1 

(19) 

Based on the above analysis and with the use of the 
parameters a and ® , the criterion of 
convergence < 1 and ^ 

0 < a < 2c + 2 
0 < ® < 1 

I < 1 can be written as follows: 

(20) 

The analysis of vibration for a period is also investigated 
[30]. In condition (3) of Eq. (29), in 

since (® + 1-a)2 -4c < 0 when ® +1 - 24® < a < ® +1 + 24® 
, 2 becomes a complex number, and a can be described 
as follows: 

a _ ® +1 - 24® + 434® 

where 0 < S < 1 
(21) 

Because X is a complex number, it can be expressed as a 
polar coordinate X = \x\e0 • If T is to be the period of the 

reduced system, 

T _ 
2 n 2n 

tan 4 Im 
Re 

2n 
(22) 

•y/- (® + 1 - a ) 2 + 4® 
a < ® +1 

tan 2 
® + 1 - a 

2 

If Eq. (21) is used instead of a , then Eq. (22) can be 
written as follows: 

T _- 2n 

- , 2 V S - S 2 

tan 
1 - 2 S 
2% 

n + tan M S-S 1  

1 - 2S 

(S < 0.5) 

(S > 0.5) 

(23) 

It was shown from Eq. (14) that is a random number 
distributed in [0, ( 0 + + 03)] and that its average value 

, + 0 + 03 . We use three parameters, K1 , K2 and K3 , is*!. 
3 

where 0 < K, + K2 + K3 < 1. Therefore, 

_ 3 K, A 

= K, : k2 : K3 ^ •< (24) 

I _ 3k3a 

The qualitative relation between the search trajectory 
of the reduced system and the parameters is summarized 
as follows: 
(1).If 0 < ® < 1and ® closes to0 , the convergence 
tendency of the system will increase. 
If 1 < ® and ® faces to w , the divergence tendency of 
the system will increase. 
(2).If0 < a < 1and a closes t o 1 , the dynamics of the 
system becomes a vibration. 
(3). If the parameters 0 < Kx +K 2 +K i < 1 and any of the 
other coefficients closes to 1, Z moves toward the 
corresponding best (Lbest, Gbest or Cbest). 

In addition to the above method, another concept, 
called the neighborhood operator, is introduced in [15]. It 
prevents a swarm from tending to the global best 
prematurely in the search process. If it commits early to 
the global best in the search process, it may be trapped in 
a poor local minimum. In the neighborhood operator, the 
Gbest is not a fixed value. Therefore, Eq. (25) can be 
rewritten as follows: 

Vt (k +1) _ ® * Vt (k) + 3K, a * rand() * (Lbest - xt (k)) 
A 

+ 3K2a * rand() * (Vbest - xt (k)) 
A 

+ 3K3a * rand() * (Cbest - xt (k)) 

(27) 

where Vbest is defined as the best solution in the 
neighborhood around the sub-particles that are waiting to 
be updated. The neighborhood is identified by 
calculating the distances between the candidate sub-
particles and the other sub-particles. The pseudo code is 
shown in Fig. 6. We can see that the number of 
neighborhoods gradually increases according to the 
generations. When the generations are close to terminal 
conditions, Vbest tends toward Gbest. 

1. Get dist[i] by calculating distances between the 
candidate sub-particle and all other sub-particle. 

2. Find the dist max from dist[i]. 
3. Define a threshold 

i = 0.5 + 0.5*(iterationnow /iterationmax) 
4. if i <0.8 

if i > dist[i]/ dist 
Figure 6: The pseudo code for finding Vbest in every 
iteration. 

6 Simulation results 
In this section, the proposed SAPSO is applied to 

the TNFN design and compared with the traditional PSO. 
Both SAPSO and the traditional PSO are used to adjust 

A A A 

2 2 2 

B 

3K2a 
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the antecedent and consequent parameters of fuzzy rules 
in TNFN. 

We use three different simulations for all methods. 
The first simulation uses the example given by Narendra 
and Parthasarathy [33]. The second simulation predicts 
the chaotic time series [34], and the third example 
approximates a piecewise function [35]. In our 
simulations, the numbers of swarms and sub-swarms are 
set to 50 and 10. The initial parameters of the traditional 
PSO and SAPSO are given in Table 1. In SAPSO, we use 
different parameter values to observe the effect on 
performance. All the programs are developed using 
MATLAB 6.1 software, and each problem is simulated 

on a Pentium III 1GHz desktop computer. Each 
experiment is run 20 times. 

Table 1: The initial parameters of the traditional PSO and 
the SAPSO. 

Example 1-Identification of Nonlinear Dynamic System 
The first example used for identification is described 

by the difference equation 
y(k) y(k +1) = 

1 + y 2(k) 
+ u (k) (28) 

The output of this equation depends nonlinearly on both 
its past value and the input, but the effects of the input 
and output values are not additive. The training input 
patterns are randomly generated in the interval [-2, 2] for 
the training data. In this problem, we use five fuzzy rules, 
and evolution progressed for 1000 generations. 

After 1000 generations, the average best root mean 
square error (RMSE) of the output approximates 0.016. 
Figures 7 (a)-(b) show the outputs of the two methods for 

the input u(k)=sin(2nk/25). Figure 8 and Table 2 show 
the learning curves and the performance of PSO and 
SAPSO with different parameter values. 

^""""---Parameter 
k M I ) k 2 ( ^ 2 ) K 3 £ Model 

o k M I ) k 2 ( ^ 2 ) K 3 £ 

Traditional PSO 0.4 2.0 2.0 NA NA 
SAPSO1 0.4 0.3 0.3 0.3 0.5 
SAPSO2 0.4 0.5 0.5 0 0.5 
SAPSO3 0.4 0.5 0 0.5 0.5 
SAPSO4 0.4 0.2 0.4 0.4 0.5 
SAPSO5 0.4 0.2 0.4 0.4 0.6-0.4 
SAPSO6 0.4 0.1 0.3 0.6 0.3 
SAPSO 7 0.4 0.1 0.3 0.6 0.5 
SAPSOS 0.4 0.1 0.3 0.6 0.7 
SAPSO9 0.4 0.1 0.3 0.6 0.6-0.4 

Model RMSE(Ave) RMSE(Best) 

Traditional PSO 0.023 0.011 

SAPSO1 0.100 0.059 

SAPSO2 0.068 0.024 

SAPSO3 0.066 0.035 

SAPSO4 0.031 0.012 

SAPSO5 0.038 0.024 

SAPSO6 0.099 0.057 

SAPSO 7 0.037 0.020 

SAPSOS 0.119 0.108 

SAPSO9 0.016 0.012 

Table 2: The performance comparison with two methods. 

Figure 8: The learning curves of the PSO and the SAPSO 
with different parameter values. 

Example 2-Prediction of the Chaotic Time Series 
The Mackey-Glass chaotic time series x(t) in 
consideration here is generated from the following delay 
differential equation: 

* ( t ) = ^ X ( t " T ) - 0.1 x( t ) (29) 
dt 1 + x10 (t - z ) 

Crowder [34] extracted 1000 input-output data pairs {x, 
yd} which consisted of four past values of x(t), i.e. 

[x(t -18) , x(t -12), x(t - 6), x(t); x(t + 6)] (30) 

where t=17 and x(0)=1.2. There are four inputs into the 
model, corresponding to the values of x(t), and one 
output representing the value x(t+At), where At is a time 
prediction into the future. The first 500 pairs (from x(1) 
to x(500)) are the training data set, while the remaining 
500 pairs (from x(501) to x(1000)) are the testing data set 
used for validating the proposed method. The number of 
fuzzy rules is set to 6. The average best RMSE of the 
prediction output approximates 0.009 after 1000 
generations. 

Figures 9 (a) and (b) show the prediction results of 
PSO and SAPSO. Table 3 shows the comparison results 
of the prediction performance of all methods. Figure 10 
shows the RMSE curves of the two models. 
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(a) (b) 

Figure 9: The prediction results of (a) the PSO and (b) 
the SAPSO. 

Model RMSE(Ave) RMSE(Best) 

Traditional PSO 0.012 0.006 

SAPSO7 0.025 0.013 

SAPSO2 0.015 0.010 

SAPSO3 0.015 0.012 

SAPSO4 0.010 0.006 

SAPSO5 0.010 0.007 

SAPSO6 0.029 0.012 

SAPSO 7 0.011 0.008 

SAPSOS 0.019 0.010 

SAPSO9 0.009 0.006 

Table 3: The performance comparison with two methods 

Example 3-Approximation of the Piecewise Function 
The piecewise function was studied by Zhang [35] and 
Xu [36] and is defined as: 

i - 2 .186x - 12.864 - 10 < x < - 2 

f (x ) = | 4 .246x - 2 < x < 0 

110e-°05x-0-5 s in[(0.03x + 0 .7)x] 0 < x < 10 

(31) 

outputs of the function f with the PSO method and the 
SAPSO9 method. The solid line represents the output of 
function f , and the dotted line represents the 
approximation of various methods. The results 
comparing our model with PSO are tabulated in Table 4. 

Figure 11: The learning curves of the PSO and the 
SAPSO with different parameter values for piecewise 
problem. 

Figure 10: The learning curves of the PSO and the 
SAPSO with different parameter values for prediction 
problem. 

(a) (b) 
Figure 12: The results of approximation using (a) the 
PSO method and (b) the SAPSO9 method. 

Model RMSE(Ave) RMSE(Best) 

Traditional PSO 0.28 0.12 

SAPSO7 3.35 3.15 

SAPSO2 1.15 0.45 

SAPSO3 0.33 0.16 

SAPSO4 0.43 0.14 

SAPSO5 0.24 0.13 

SAPSO6 2.96 2.18 

SAPSO 7 0.21 0.09 

SAPSOS 0.64 0.36 

SAPSO9 0.20 0.09 

over the domain D = [-10, 10]. The piecewise function is 
continuous and can be analyzed. However, traditional 
analytical tools are inadequate and often fail. This failure 
may be due to two reasons, namely, the wide-band 
information hidden at the turning points and the 
amalgamation of linearity and nonlinearity. 

In this example, 200 training input patterns are 
uniformly generated from Eq. (31). Seven fuzzy rules are 
generated in this example. The RMSE curve is shown in 
Fig. 11 with all methods. Figures 12 (a)-(b) show the 

Table 4: The performance comparison with two methods. 

The average computation time per generation for 
three examples with the PSO and SAPSO is tabulated in 
Table 5. We only update the value of sub-particles in 
each sub-swarm for SAPSO, and the total adjusted 
parameters of SAPSO are less than that of PSO. 
Therefore, the computation time required by SAPSO is 
less than that by PSO. 
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N^xample Identification N^xample 
of Nonlinear 

Prediction of Approximation \ of Nonlinear 
Approximation 

\ the Chaotic of the Piecewise \ Dynamic \ Dynamic 
Time Series Function 

Model \ System 

PSO 1.21 7.5 3.15 
SAPSO 0.35 1.70 0.65 

Table 5: The average computation time of three 
examples for the PSO and the SAPSO (Unit: sec). 

7 Discussion 
From the above experimental results, we find that the 
parameters S affect the performance of 
SAPSO. In order to test the relationship between the 
search trajectory and the parameters, we use the same 
value of , K2, K3 and a in SAPSO6, SAPSO7, SAPSO8, 
and SAPSO9. We define the collection degree (CD) of a 
sub-swarm for each generation as follows: 

N N 

CD = X XI\particle (i) " particle (j)|| ( 3 2 ) 

1=1 j=i+1 

where N is the number of sub-swarms and || || is the 2-

norm (the Euclidean one for a vector). When CD is small, 
the particles are close to each other. 

Figures 13 (a)-(c) and figures 14 (a)-(c) show the 
simulation results of example 1 whenSis 0.3, 0.7, and 
0.6, diminishing to 0.4 gradually by increasing the 
learning steps. It is observed that the convergence speed 
of sub-particles in five sub-swarms is fastest whenS is 
0.3, and the dynamics of five sub-swarms are always 
vibration whenS is 0.7, as seen in Fig. 13 (b). 

The two situations mentioned are detrimental to the 
performance of the system. In Fig. 14 (a), the RMSE 
curves are sharp in the beginning and do not move 
afterwards. In Fig. 14 (b), the RMSE curves are like a 
ladder and drop slowly. Therefore, we hope to combine 
the advantages of the two situations mentioned and find 
the appropriate method for setting the parameters. We 
make the value of S big enough to increase the chance of 
search in the beginning and then gradually reduce 
generations in number. We find that the performance of 
SAPSO5 and SAPSO9 is better than the others from the 
experiments. Moreover, from the above experimental 
results, the performance of the system is better 
when^ <k2 < K3 . 

8 Conclusion 
In this paper, a novel symbiotic adaptive particle swarm 
optimization (SAPSO) that adjusts the parameters of 
fuzzy systems was presented. The proposed SAPSO 
approach allows control over the dynamic characteristics 
of particles. The efficiency of the proposed SAPSO was 
demonstrated by its application to identification, 
prediction, and approximation of function problems. 
Simulation results show that the proposed SAPSO has 
better learning performance and less computation time 
requirements than the traditional PSO method. 

1 Pfnfw^pTÎr W 

(b) 

(c) 
Figure 13: The collection degree for five sub swarm of 
example1 in learning processes whenS is (a) 0.3, (b) 0.7, 
and (c) 0.6~0.4. 

(a) (b) 

(c) 
Figure 14: The RMSE curves for five sub-swarm of 
example1 in learning processes whenS is (a) 0.3, (b) 0.7, 
and (c) 0.6~0.4. 
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