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Abstract

In this paper we consider a distance-regular graph Γ. Fix a vertex x of Γ and consider
the corresponding subconstituent algebra T = T (x). The algebra T is the C-algebra gener-
ated by the Bose-Mesner algebra M of Γ and the dual Bose-Mesner algebra M∗ of Γ with
respect to x. We consider the subspaces M,M∗,MM∗,M∗M,MM∗M,M∗MM∗, . . .
along with their intersections and sums. In our notation, MM∗ means Span{RS | R ∈
M,S ∈ M∗}, and so on. We introduce a diagram that describes how these subspaces are
related. We describe in detail that part of the diagram up to MM∗ + M∗M . For each
subspace U shown in this part of the diagram, we display an orthogonal basis for U along
with the dimension of U . For an edge U ⊆ W from this part of the diagram, we display
an orthogonal basis for the orthogonal complement of U in W along with the dimension of
this orthogonal complement.

Keywords: Subconstituent algebra, Terwilliger algebra, distance-regular graph.
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1 Introduction
In this paper we consider a distance-regular graph Γ. Fix a vertex x of Γ and consider
the corresponding subconstituent algebra (or Terwilliger algebra) T = T (x) [32]. The
algebra T is the C-algebra generated by the Bose-Mesner algebra M of Γ and the dual
Bose-Mesner algebra M∗ of Γ with respect to x. The algebra T is finite-dimensional and
semisimple [32]. So it is natural to study the irreducible T -modules. These modules are
used in the study of hypercubes [14, 26], dual polar graphs [20, 38], spin models [6, 10],
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codes [13, 28], the bipartite property [4, 5, 9, 16, 21, 22, 23, 25, 27], the almost-bipartite
property [3, 8, 17], the Q-polynomial property [5, 7, 11, 12, 18, 19, 27, 35], and the thin
property [15, 24, 30, 31, 33, 34, 36, 37].

In this paper we discuss the algebra T using a different approach. We consider the
subspaces M,M∗,MM∗,M∗M,MM∗M,M∗MM∗, . . . along with their intersections
and sums; see Figure 1. We describe the diagram of Figure 1 up toMM∗+M∗M . For each
subspace U shown in this part of the diagram, we display an orthogonal basis for U along
with the dimension of U . For an edge U ⊆ W from this part of the diagram, we display
an orthogonal basis for the orthogonal complement of U in W along with the dimension
of this orthogonal complement. Our main results are summarized in Theorems 6.1 and 6.2.
In the last part of the paper we summarize what is known about the part of diagram above
MM∗ +M∗M , and we give some open problems.

2 Preliminaries
In this section we recall some facts about distance-regular graphs. We will use the fol-
lowing notation. Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra
consisting of the matrices whose rows and columns are indexed by X and whose entries
are in C. For B ∈ MatX(C) let B, Bt, and tr(B) denote the complex conjugate, the
transpose, and the trace of B, respectively. We endow MatX(C) with the Hermitean inner
product 〈 , 〉 such that 〈R,S〉 = tr(RtS) for all R,S ∈ MatX(C). The inner product
〈 , 〉 is positive definite. Let U, V denote subspaces of MatX(C) such that U ⊆ V . The
orthogonal complement of U in V is defined by U⊥ = {v ∈ V | 〈v, u〉 = 0 for all u ∈ U}.

Let Γ = (X, E) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set E . Let ∂ denote the shortest path-length distance
function for Γ. Define the diameter D := max{∂(x, y) | x, y ∈ X}. For a vertex x ∈ X
and an integer i ≥ 0 define Γi(x) = {y ∈ X | ∂(x, y) = i}. For notational convenience
abbreviate Γ(x) = Γ1(x). For an integer k ≥ 0, we say that Γ is regular with valency k
whenever |Γ(x)| = k for all x ∈ X . We say that Γ is distance-regular whenever for all
integers h, i, j (0 ≤ h, i, j ≤ D) and x, y ∈ X with ∂(x, y) = h, the number

phij := |Γi(x) ∩ Γj(y)|

is independent of x and y. The integers phij are called the intersection numbers of Γ. From
now on assume that Γ is distance-regular with diameter D ≥ 3. We abbreviate ki := p0ii
(0 ≤ i ≤ D). For 0 ≤ i ≤ D let Ai denote the matrix in MatX(C) with (x, y)-entry

(Ai)xy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i,
x, y ∈ X.

We call Ai the i-th distance matrix of Γ. We call A = A1 the adjacency matrix of Γ. Ob-
serve that Ai is real and symmetric for 0 ≤ i ≤ D. Note that A0 = I is the identity matrix
in MatX(C). Observe that

∑D
i=0Ai = J , where J is the all-ones matrix in MatX(C).

Observe that for 0 ≤ i, j ≤ D,

AiAj =

D∑
h=0

phijAh. (2.1)
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For integers h, i, j (0 ≤ h, i, j ≤ D) we have

ph0j = δhj , (2.2)

p0ij = δijki. (2.3)

Let M denote the subalgebra of MatX(C) generated by A. By [2, p. 44] the matrices
A0, A1, . . . , AD form a basis for M . We call M the Bose-Mesner algebra of Γ. By [1,
p. 59, 64], M has a basis E0, E1, . . . , ED such that

(i) E0 = |X|−1J ;

(ii)
∑D

i=0Ei = I;

(iii) Et
i = Ei (0 ≤ i ≤ D);

(iv) Ei = Ei (0 ≤ i ≤ D);

(v) EiEj = δijEi (0 ≤ i, j ≤ D).

The matrices E0, E1, . . . , ED are called the primitive idempotents of Γ, and E0 is called
the trivial idempotent. For 0 ≤ i ≤ D let mi denote the rank of Ei. For 0 ≤ i ≤ D let
θi denote an eigenvalue of A associated with Ei. Let λ denote an indeterminate. Define
polynomials {ui}Di=0 in C[λ] by u0 = 1, u1 = λ/k, and

λui = ciui−1 + aiui + biui+1 (1 ≤ i ≤ D − 1).

By [2, p. 131, 132],

Aj = kj

D∑
i=0

uj(θi)Ei (0 ≤ j ≤ D), (2.4)

Ej = |X|−1mj

D∑
i=0

ui(θj)Ai (0 ≤ j ≤ D). (2.5)

Since EiEj = δijEi and by (2.4) we have AjEi = kjuj(θi)Ei = EiAj (0 ≤ i, j ≤ D).
By [1, Theorem 3.5] we have the orthogonality relations

D∑
i=0

ui(θr)ui(θs)ki = δrsm
−1
r |X| (0 ≤ r, s ≤ D), (2.6)

D∑
r=0

ui(θr)uj(θr)mr = δijk
−1
i |X| (0 ≤ i, j ≤ D). (2.7)

We recall the Krein parameters of Γ. Let ◦ denote the entry-wise multiplication in
MatX(C). Note that Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D. So M is closed under ◦. By [2,
p. 48], there exist scalars qhij ∈ C such that

Ei ◦ Ej = |X|−1
D∑

h=0

qhijEh (0 ≤ i, j ≤ D). (2.8)
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We call the qhij the Krein parameters of Γ. By [2, Proposition 4.1.5], these parameters are
real and nonnegative for 0 ≤ h, i, j ≤ D.

We recall the dual Bose-Mesner algebra of Γ. Fix a vertex x ∈ X . For 0 ≤ i ≤ D let
E∗i = E∗i (x) denote the diagonal matrix in MatX(C) with (y, y)-entry

(E∗i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i,
y ∈ X.

We call E∗i the i-th dual idempotent of Γ with respect to x. Observe that

(i)
∑D

i=0E
∗
i = I;

(ii) E∗ti = E∗i (0 ≤ i ≤ D);

(iii) E∗i = E∗i (0 ≤ i ≤ D);

(iv) E∗i E
∗
j = δijE

∗
i (0 ≤ i, j ≤ D).

By construction E∗0 , E
∗
1 , . . . , E

∗
D are linearly independent. Let M∗ = M∗(x) denote the

subalgebra of MatX(C) with basis E∗0 , E
∗
1 , . . . , E

∗
D. We call M∗ the dual Bose-Mesner

algebra of Γ with respect to x.
We now recall the dual distance matrices of Γ. For 0 ≤ i ≤ D let A∗i = A∗i (x) denote

the diagonal matrix in MatX(C) with (y, y)-entry

(A∗i )yy = |X|(Ei)xy y ∈ X. (2.9)

We call A∗i the dual distance matrix of Γ with respect to x and Ei. By [32, p. 379], the
matrices A∗0, A

∗
1, . . . , A

∗
D form a basis for M∗. Observe that

(i) A∗0 = I;

(ii)
∑D

i=0A
∗
i = |X|E∗0 ;

(iii) A∗ti = A∗i (0 ≤ i ≤ D);

(iv) A∗i = A∗i (0 ≤ i ≤ D);

(v) A∗iA
∗
j =

∑D
h=0 q

h
ijA
∗
h (0 ≤ i, j ≤ D).

From (2.4) and (2.5) we have

A∗j = mj

D∑
i=0

ui(θj)E
∗
i (0 ≤ j ≤ D), (2.10)

E∗j = |X|−1kj
D∑
i=0

uj(θi)A
∗
i (0 ≤ j ≤ D). (2.11)
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3 The subconstituent algebra T

In this section we study the subconstituent algebra of a distance-regular graph. For the
rest of the paper, fix a distance-regular graph Γ and a vertex x of Γ. Let T = T (x)
denote the subalgebra of MatX(C) generated by M,M∗. The algebra T is called the
subconstituent algebra (or Terwilliger algebra) [32]. In order to describe T , we consider
how M,M∗ are related. We will use the following notation. For any two subspaces R,S
of MatX(C) we define RS = Span{RS | R ∈ R, S ∈ S}. Consider the subspaces
M,M∗,MM∗,M∗M,MM∗M,M∗MM∗, . . . along with their intersections and sums.
To describe the inclusions among the resulting subspaces we draw a diagram; see Figure 1.
In this diagram, a line segment that goes upward from U to W means that W contains U .

Consider the diagram in Figure 1. For each subspace U shown in the diagram, we seek
an orthogonal basis for U and the dimension of U . Also, for each edge U ⊆ W shown in
the diagram, we seek an orthogonal basis for the orthogonal complement of U in W along
with the dimension of this orthogonal complement. We accomplish these goals for that part
of the diagram up to MM∗ + M∗M . Our main results are summarized in Theorems 6.1
and 6.2. Before we get started, we recall a few inner product formulas.

Lemma 3.1 ([11, Lemma 3.1, Lemma 4.1]). For 0 ≤ h, i, j, r, s, t ≤ D,

(i) 〈E∗i AjE
∗
h, E

∗
rAsE

∗
t 〉 = δirδjsδhtkhp

h
ij ,

(ii) 〈EiA
∗
jEh, ErA

∗
sEt〉 = δirδjsδhtmhq

h
ij .

The following result is well-known.

Lemma 3.2 ([32, Lemma 3.2]). For 0 ≤ h, i, j ≤ D,

(i) E∗i AhE
∗
j = 0 if and only if phij = 0,

(ii) EiA
∗
hEj = 0 if and only if qhij = 0.

Lemma 3.3 ([29, Lemma 10]). For 0 ≤ h, i, j, r, s, t ≤ D,

〈AiE
∗
jAh, ArE

∗
sAt〉 =

D∑
`=0

k`p
`
irp

`
jsp

`
ht.

4 The subspace M + M∗

Our goal in this section is to analyze the inclusion diagram up to M +M∗. We begin with
the trace of elements in M and M∗.

Lemma 4.1. For 0 ≤ i ≤ D,

(i) tr(Ai) = δ0i|X|,

(ii) tr(Ei) = mi,

(iii) tr(E∗i ) = ki,

(iv) tr(A∗i ) = δ0i|X|.
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M∗MM∗MM∗M

MM∗M ∩M∗MM∗

MM∗M +M∗MM∗

T

CI

MM∗ +M∗M

M∗MMM∗

MM∗ ∩M∗M

M +M∗

M∗M

M ∩M∗

Figure 1: Inclusion diagram.
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Proof. (i): Follows from the definition of Ai.
(ii): Since Ei is diagonalizable, we have tr(Ei) = rank(Ei) = mi.
(iii): Follows from the definition of E∗i .
(iv): By (2.5) and since

E0 = |X|−1J = |X|−1
D∑
i=0

Ai,

we have
D∑
i=0

(1− ui(θ0))Ai = 0.

Since {Ai}Di=0 are linearly independent, we obtain ui(θ0) = 1 for 0 ≤ i ≤ D. By (2.6),
(2.10) and (iii), we have

tr(A∗i ) = mi

D∑
j=0

uj(θi) tr(E∗j ) = mi

D∑
j=0

uj(θi)uj(θ0)kj = δ0i|X|.

Next we obtain some inner products.

Lemma 4.2. For 0 ≤ i, j ≤ D,

(i) 〈Ai, Aj〉 = δijki|X|,

(ii) 〈Ei, Ej〉 = δijmi,

(iii) 〈E∗i , E∗j 〉 = δijki,

(iv) 〈A∗i , A∗j 〉 = δijmi|X|.

Proof. (i): Use (2.1) and Lemma 4.1.
(ii): By Lemma 4.1 and since EiEj = δijEi.
(iii): Since E∗i E

∗
j = δijE

∗
i (0 ≤ i, j ≤ D) and by Lemma 4.1 (iii).

(iv): By (2.10) and (iii), we obtain

〈A∗i , A∗j 〉 = 〈mi

D∑
h=0

uh(θi)E
∗
h,mj

D∑
`=0

u`(θj)E
∗
` 〉 = mimj

D∑
h=0

uh(θi)uh(θj)kh.

By (2.6), we have 〈A∗i , A∗j 〉 = mimjδijm
−1
j |X| = δijmi|X|.

The algebra M has two bases {Ai}Di=0 and {Ei}Di=0. The algebra M∗ has two bases
{A∗i }Di=0 and {E∗i }Di=0. Next we show that these bases are orthogonal.

Lemma 4.3. Each of the following is an orthogonal basis for M :

{Ai}Di=0, {Ei}Di=0.

Moreover, each of the following is an orthogonal basis for M∗:

{A∗i }Di=0, {E∗i }Di=0.



192 Ars Math. Contemp. 17 (2019) 185–202

Proof. By Lemma 4.2 and the comment below it.

Recall that A0 = I = A∗0. Next we compute some inner products between M and M∗.

Lemma 4.4. For 0 ≤ i, j ≤ D,

〈Ai, A
∗
j 〉 = δi0δ0j |X|ki.

Proof. Observe that 〈Ai, A
∗
j 〉 = 〈AiA

∗
0A0, A0A

∗
jA0〉. By Lemma 3.3 and (2.2), (2.6) and

(2.10), the result follows.

The next results describe orthogonal bases for M +M∗ and M ∩M∗.

Lemma 4.5. The following is an orthogonal basis for M +M∗:

AD, . . . , A1, I, A
∗
1 . . . , A

∗
D.

Proof. Immediate from Lemmas 4.2 and 4.4.

Lemma 4.6.
dim(M +M∗) = 2D + 1.

Proof. Immediate from Lemma 4.5.

Lemma 4.7. We have

M ∩M∗ = CI and dim(M ∩M∗) = 1.

Proof. Observe that I ∈M ∩M∗. By linear algebra, we have

dim(M ∩M∗) = dim(M) + dim(M∗)− dim(M +M∗).

By construction dim(M) = D + 1, dim(M∗) = D + 1. By this and Lemma 4.6,
dim(M ∩M∗) = 1. The result follows.

Lemma 4.8. The following statements hold:

(i) The matrices {Ai}Di=1 form an orthogonal basis for the orthogonal complement of
M ∩M∗ in M .

(ii) The matrices {A∗i }Di=1 form an orthogonal basis for the orthogonal complement of
M ∩M∗ in M∗.

(iii) The matrices {Ai}Di=1 form an orthogonal basis for the orthogonal complement of
M∗ in M +M∗.

(iv) The matrices {A∗i }Di=1 form an orthogonal basis for the orthogonal complement of
M in M +M∗.

Proof. Follows from definitions of M,M∗ along with Lemmas 4.5 and 4.7.

Lemma 4.9. Each of the following subspaces has dimension D:

(M ∩M∗)⊥ ∩M, (M ∩M∗)⊥ ∩M∗,
(M∗)⊥ ∩ (M +M∗), M⊥ ∩ (M +M∗).

Proof. Immediate from Lemma 4.8.
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5 The subspace MM∗ + M∗M

Our goal in this section is to analyze the inclusion diagram from M + M∗ up to
MM∗ +M∗M . We begin with a few inner product formulas.

Lemma 5.1. For 0 ≤ i, j, r, s ≤ D,

(i) 〈AiA
∗
j , A

∗
rAs〉 = δisδjr|X|kimjui(θj),

(ii) 〈AiA
∗
j , ArA

∗
s〉 = δirδjs|X|kimj ,

(iii) 〈A∗iAj , A
∗
rAs〉 = δirδjs|X|kimj .

Proof. (i): Since

〈AiA
∗
j , A

∗
rAs〉 = tr(A∗jAiA

∗
rAs) =

∑
y∈X

∑
z∈X

(A∗j )yy(Ai)yz(A∗r)zz(As)zy

and by (2.9), it follows that

〈AiA
∗
j , A

∗
rAs〉 = |X|2

∑
y∈X

∑
z∈X

(Ej)xy(Ai)yz(Er)xz(As)zy

= |X|2
∑
y∈X

∑
z∈X

(Ej)xy(Ai ◦As)yz(Er)zx.

Since Ai ◦As = δisAi (0 ≤ i, s ≤ D), we get

〈AiA
∗
j , A

∗
rAs〉 = |X|2δis

∑
y∈X

∑
z∈X

(Ej)xy(Ai)yz(Er)zx.

Since ∑
y∈X

∑
z∈X

(Ej)xy(Ai)yz(Er)zx = |X|−1 tr(EjAiEr),

we have
〈AiA

∗
j , A

∗
rAs〉 = |X|δis tr(EjAiEr) = |X|δis tr(ErEjAi).

Since EiEj = δijEi (0 ≤ i, j ≤ D), we obtain

〈AiA
∗
j , A

∗
rAs〉 = |X|δisδjr tr(EjAi) = |X|δisδjr〈Ej , Ai〉.

By (2.5) and Lemma 4.2 (i), we get 〈Ej , Ai〉 = mjui(θj)ki. Hence

〈AiA
∗
j , A

∗
rAs〉 = δisδjr|X|kimjui(θj).

(ii): Since A0 = I , we get 〈AiA
∗
j , ArA

∗
s〉 = 〈AiA

∗
jA0, ArA

∗
sA0〉. By (2.10), we

obtain

〈AiA
∗
j , ArA

∗
s〉 = mjms

D∑
h=0

uh(θj)

D∑
`=0

u`(θs)〈AiE
∗
hA0, ArE

∗
`A0〉.

From Lemma 3.3 we have

〈AiE
∗
hA0, ArE

∗
`A0〉 =

D∑
t=0

ktp
t
irp

t
h`p

t
00.
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By (2.2) and (2.3), we obtain

〈AiA
∗
j , ArA

∗
s〉 = mjms

D∑
h=0

uh(θj)

D∑
`=0

u`(θs)k0p
0
irp

0
h`

= δirkimjms

D∑
h=0

uh(θj)uh(θs)kh.

By (2.6), we get

〈AiA
∗
j , ArA

∗
s〉 = δirkimjmsδjsm

−1
s |X| = δirδjs|X|kimj .

(iii): Since

〈A∗iAj , A
∗
rAs〉 = tr((A∗iAj)

t(A∗rAs)) = tr(AjA
∗
iA
∗
rAs) = tr(A∗iA

∗
rAsAj)

and

A∗iA
∗
r =

D∑
h=0

qhirA
∗
h

and by (2.1), we get

〈A∗iAj , A
∗
rAs〉 =

D∑
h=0

D∑
`=0

qhirp
`
js tr(A∗hA`) =

D∑
h=0

D∑
`=0

qhirp
`
js tr(A`A

∗
h)

=

D∑
h=0

D∑
`=0

qhirp
`
js tr(At

`A
∗
h) =

D∑
h=0

D∑
`=0

qhirp
`
js〈A`, A

∗
h〉.

From Lemma 4.4, we have

D∑
h=0

D∑
`=0

qhirp
`
js〈A`, A

∗
h〉 = |X|

D∑
h=0

D∑
`=0

qhirp
`
jsδ`0δh0k` = |X|q0irp0jsk0 = |X|q0irp0js.

By (2.3) and since q0ir = δirmi, we obtain

〈A∗iAj , A
∗
rAs〉 = δirδjs|X|kjmi.

Next we obtain orthogonal bases for MM∗ and M∗M .

Lemma 5.2. The following statements hold:

(i) The matrices {AiA
∗
j | 0 ≤ i, j ≤ D} form an orthogonal basis for MM∗.

(ii) The matrices {A∗jAi | 0 ≤ i, j ≤ D} form an orthogonal basis for M∗M .

Proof. Immediate from Lemma 5.1.

Lemma 5.3. Each of the following subspaces has dimension (D + 1)2:

MM∗, M∗M.
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Proof. Immediate from Lemma 5.2.

Our next goal is to obtain an orthogonal basis for MM∗ +M∗M .

Lemma 5.4. We have

MM∗ +M∗M =

D∑
i=0

D∑
j=0

Span{AiA
∗
j , A

∗
jAi} (orthogonal direct sum).

Proof. Immediate from Lemma 5.1.

Corollary 5.5. We have

dim(MM∗ +M∗M) =

D∑
i=0

D∑
j=0

dim(Span{AiA
∗
j , A

∗
jAi}).

Proof. Immediate from Lemma 5.4.

Definition 5.6. For 0 ≤ i, j ≤ D let Hi,j denote the 2 × 2 matrix of inner products for
AiA

∗
j , A

∗
jAi.

Lemma 5.7. For 0 ≤ i, j ≤ D,

Hi,j = |X|kimj

(
1 ui(θj)

ui(θj) 1

)
.

Proof. Immediate from Lemma 5.1 and Definition 5.6.

Lemma 5.8. For 0 ≤ i, j ≤ D we have

det(Hi,j) = |X|2k2im2
j (1− (ui(θj))

2).

Proof. Immediate from Lemma 5.7.

Corollary 5.9. For 0 ≤ i, j ≤ D, det(Hi,j) = 0 if and only if ui(θj) = ±1.

Proof. Immediate from Lemma 5.8.

Lemma 5.10. The following elements are orthogonal for 0 ≤ i, j ≤ D:

AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi.

Moreover

||AiA
∗
j +A∗jAi||2 = 2|X|kimj(1 + ui(θj)),

||AiA
∗
j −A∗jAi||2 = 2|X|kimj(1− ui(θj)).

Proof. Immediate from Lemma 5.7.

Lemma 5.11. The following statements hold for 0 ≤ i, j ≤ D:

(i) Assume ui(θj) = 1. Then AiA
∗
j = A∗jAi and this common value is nonzero.
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(ii) Assume ui(θj) = −1. Then AiA
∗
j = −A∗jAi and this common value is nonzero.

(iii) Assume ui(θj) 6= ±1. Then AiA
∗
j , A

∗
jAi are linearly independent.

Proof. (i), (ii): Immediate from Lemma 5.10.
(iii): Immediate from Lemma 5.8.

Lemma 5.12. For 0 ≤ i, j ≤ D we give an orthogonal basis for Span{AiA
∗
j , A

∗
jAi} in

Table 1.

Table 1: An orthogonal basis for Span{AiA
∗
j , A

∗
jAi}.

Case Orthogonal basis Dimension

ui(θj) = ±1 AiA
∗
j 1

ui(θj) 6= ±1 AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi 2

Proof. Follows from Definition 5.6 and Lemmas 5.7 and 5.11.

Corollary 5.13. The following is an orthogonal basis for MM∗ +M∗M :

{AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi | 0 ≤ i, j ≤ D, ui(θj) 6= ±1}

∪ {AiA
∗
j | 0 ≤ i, j ≤ D, ui(θj) = ±1}.

Proof. Immediate from Lemmas 5.4 and 5.12.

Our next goal is to find the dimension of MM∗ +M∗M .

Definition 5.14. Define an integer P as follows:

P = |{(i, j) | 1 ≤ i, j ≤ D,ui(θj) = ±1}|.

Remark 5.15. Recall that u0(θj) = 1 and ui(θ0) = 1 for 0 ≤ i, j ≤ D. By [2, A.5], the
graph Γ is primitive if and only if Γi is connected for 1 ≤ i ≤ D. From Definition 5.14
and [2, Proposition 4.4.7] we have P = 0 if and only if Γ is primitive.

Lemma 5.16.
dim(MM∗ +M∗M) = 2D2 + 2D + 1− P.

Proof. Immediate from Corollary 5.13 and Definition 5.14.

Our next goal is to obtain an orthogonal basis for MM∗ ∩M∗M .

Lemma 5.17.
dim(MM∗ ∩M∗M) = 2D + 1 + P.

Proof. By linear algebra, we have

dim(MM∗ ∩M∗M) = dim(MM∗) + dim(M∗M)− dim(MM∗ +M∗M).

By Lemmas 5.3 and 5.16, the result follows.
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Lemma 5.18. The following is an orthogonal basis for MM∗ ∩M∗M :

{AiA
∗
j | 0 ≤ i, j ≤ D, ui(θj) = ±1}.

Proof. Immediate from Lemmas 5.11 and 5.17.

We now have orthogonal bases forMM∗, M∗M , MM∗∩M∗M andMM∗+M∗M .
The next results establish an orthogonal basis for certain orthogonal complements along
with the dimension for these orthogonal complements.

Lemma 5.19. The matrices {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) = ±1} form an orthogonal

basis for the orthogonal complement of M +M∗ in MM∗ ∩M∗M .

Proof. Follows from Lemmas 4.5 and 5.18.

Lemma 5.20. The following statements hold:

(i) The matrices {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogonal basis for the

orthogonal complement of MM∗ ∩M∗M in MM∗.

(ii) The matrices {A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogonal basis for the
orthogonal complement of MM∗ ∩M∗M in M∗M .

Proof. Follows from Lemmas 5.2 and 5.18.

Lemma 5.21. The following statements hold:

(i) The matrices {ui(θj)AiA
∗
j −A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogo-

nal basis for the orthogonal complement of MM∗ in MM∗ +M∗M .

(ii) The matrices {AiA
∗
j − ui(θj)A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogo-

nal basis for the orthogonal complement of M∗M in MM∗ +M∗M .

Proof. (i): By Lemma 5.1, for 0 ≤ i, j, r, s ≤ D

〈ArA
∗
s +A∗sAr, ui(θj)AiA

∗
j −A∗jAi〉

= ui(θj)〈ArA
∗
s, AiA

∗
j 〉 − 〈ArA

∗
s, A

∗
jAi〉+ ui(θj)〈A∗sAr, AiA

∗
j 〉 − 〈A∗sAr, A

∗
jAi〉

= δirδjs|X|kimjui(θj)− δirδjs|X|kimjui(θj)

+ δirδjs|X|kimj(ui(θj))
2 − δirδjs|X|kimj

= δirδjs|X|kimj((ui(θj))
2 − 1).

By similar arguments,

〈ArA
∗
s −A∗sAr, ui(θj)AiA

∗
j −A∗jAi〉 = δirδjs|X|kimj(1− (ui(θj))

2)

for 0 ≤ i, j, r, s ≤ D. By Lemma 5.1, for 0 ≤ i, j, r, s ≤ D

〈ArA
∗
s, ui(θj)AiA

∗
j −A∗jAi〉 = ui(θj)〈ArA

∗
s, AiA

∗
j 〉 − 〈ArA

∗
s, A

∗
jAi〉

= δirδjs|X|kimjui(θj)− δirδjs|X|kimjui(θj)

= 0.

By Lemma 5.2 and Corollary 5.13, the result follows.
(ii): Similar to the proof of (i).
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Lemma 5.22. The following subspace has dimension P :

(M +M∗)⊥ ∩ (MM∗ ∩M∗M).

Proof. Immediate from Definition 5.14 and Lemma 5.19.

Lemma 5.23. Each of the following subspaces has dimension D2 − P :

(MM∗ ∩M∗M)⊥ ∩MM∗, (MM∗ ∩M∗M)⊥ ∩M∗M,

(MM∗)⊥ ∩ (MM∗ +M∗M), (M∗M)⊥ ∩ (MM∗ +M∗M).

Proof. Immediate from Definition 5.14 and Lemmas 5.20 and 5.21.

6 Summary of main results
In Sections 4 and 5 we obtained an orthogonal basis and the dimension for each subspace
U in the diagram of Figure 1 up to MM∗ + M∗M . Also, for each edge U ⊆ W shown
in this part of the diagram of Figure 1, we obtained an orthogonal basis for the orthogonal
complement of U in W along with the dimension of this orthogonal complement. The
results are summarized in this section.

Theorem 6.1. In each row of Table 2 we describe a subspace U in the diagram of Figure 1.
We give an orthogonal basis for U along with the dimension of U .

Table 2: An orthogonal basis for each subspace U in the diagram of Figure 1 along with its
dimension.

Subspace U Orthogonal basis for U Dimension of U

M ∩M∗ I 1

M {Ai}Di=0 D + 1

M∗ {A∗i }Di=0 D + 1

M +M∗ {AD, . . . , A1, I, A
∗
1, . . . , A

∗
D} 2D + 1

MM∗ ∩M∗M {AiA
∗
j | 0 ≤ i, j ≤ D,ui(θj) = ±1} 2D + 1 + P

MM∗ {AiA
∗
j | 0 ≤ i, j ≤ D} (D + 1)2

M∗M {A∗jAi | 0 ≤ i, j ≤ D} (D + 1)2

MM∗ +M∗M

{AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi |

0 ≤ i, j ≤ D,ui(θj) 6= ±1}
∪ {AiA

∗
j | 0 ≤ i, j ≤ D,ui(θj) = ±1}

2D2 + 2D + 1− P



S. Sumalroj: A diagram associated with the subconstituent algebra of a distance-regular graph 199

Theorem 6.2. In each row of Table 3 we describe an edge U ⊆ W from the diagram of
Figure 1. We give an orthogonal basis for the orthogonal complement of U in W along
with the dimension of this orthogonal complement.

Table 3: An orthogonal basis for the orthogonal complement of U in W in the diagram of
Figure 1 along with the dimension of this orthogonal complement.

Orthogonal basis Dimension
U W for U⊥ ∩W of U⊥ ∩W

M ∩M∗ M {Ai}Di=1 D

M ∩M∗ M∗ {A∗i }Di=1 D

M M +M∗ {A∗i }Di=1 D

M∗ M +M∗ {Ai}Di=1 D

M +M∗ MM∗ ∩M∗M {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) = ±1} P

MM∗ ∩M∗M MM∗ {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} D2 − P

MM∗ ∩M∗M M∗M {A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} D2 − P

MM∗ MM∗ +M∗M
{ui(θj)AiA

∗
j −A∗jAi |

1 ≤ i, j ≤ D, ui(θj) 6= ±1} D2 − P

M∗M MM∗ +M∗M
{AiA

∗
j − ui(θj)A∗jAi |

1 ≤ i, j ≤ D, ui(θj) 6= ±1} D2 − P

7 Open problems

In this section, we give some open problems and suggestions for future research. Earlier in
the paper we discussed the diagram of Figure 1. In this discussion we analyzed the diagram
up to MM∗ + M∗M . The remaining part of the diagram is not completely understood.
We mention what is known. By Lemma 3.1 the subspace M∗MM∗ has an orthogonal
basis {E∗i AjE

∗
h | 0 ≤ h, i, j ≤ D, phij 6= 0}. Similarly, the subspace MM∗M has an

orthogonal basis {EiA
∗
jEh | 0 ≤ h, i, j ≤ D, qhij 6= 0}.

Problem 7.1. Find an orthogonal basis for the following subspaces:

(i) MM∗M ∩M∗MM∗,

(ii) MM∗M +M∗MM∗.

Problem 7.2. In each row of Table 4 we give an edgeU ⊆W from the diagram of Figure 1.
Find an orthogonal basis for the orthogonal complement of U inW for the following cases.
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Table 4: Subspaces U and W from the diagram of Figure 1.

U W

MM∗ +M∗M MM∗M ∩M∗MM∗

MM∗M ∩M∗MM∗ MM∗M

MM∗M ∩M∗MM∗ M∗MM∗

MM∗M MM∗M +M∗MM∗

M∗MM∗ MM∗M +M∗MM∗
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