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Abstract

In this paper we give a proof that the largest set of perfect matchings, in which any two
contain a common edge, is the set of all perfect matchings that contain a fixed edge. This
is a version of the famous Erdős-Ko-Rado theorem for perfect matchings. The proof given
in this paper is algebraic, we first determine the least eigenvalue of the perfect matching
derangement graph and then use properties of the perfect matching polytope to prove the
result.
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1 Introduction
A perfect matching in the complete graph K2k is a set of k vertex disjoint edges. Two per-
fect matchings intersect if they contain a common edge. In this paper we use an algebraic
method to prove that the natural version of the Erdős-Ko-Rado (EKR) theorem holds for
perfect matchings. This theorem shows that the largest set of perfect matchings, with the
property that any two intersect, is the set of the all perfect matchings that contain a specific
edge.
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The algebraic method in this paper is similar to the proof that the natural version of
the EKR theorem holds for permutations in [4]. In this paper we determine the least eigen-
value for the perfect matching derangement graph. This, with the Delsarte-Hoffman bound,
implies that a maximum intersecting set of perfect matchings corresponds to a facet in the
perfect matching polytope. The characterization of the maximum set of intersecting perfect
matchings follows from the characterization of the facets of this polytope.

Meagher and Moura [8] proved a version of the EKR theorem holds for intersecting
uniform partitions using a counting argument [8]. This result includes the EKR theorem
for perfect matchings. It is interesting that the counting argument in [8] is straight-forward,
except for the case of perfect matchings; in this case a more difficult form of the counting
method is necessary.

2 Perfect matchings
A perfect matching is a set of vertex disjoint edges in the complete graph K2k. This is
equivalent to a partition of a set of size 2k into k-disjoint classes, each of size 2. The
number of perfect matchings in K2k is

1

k!

(
2k

2

)(
2k − 2

2

)
· · ·
(
2

2

)
= (2k − 1)(2k − 3) · · · 1.

For an odd integer n define

n!! = n(n− 2)(n− 4) · · · 1.

With this notation, there are (2k − 1)!! perfect matchings.
We say that two perfect matchings are intersecting if they both contain a common edge.

Further, a set of perfect matchings is intersecting if the perfect matchings in the set are
pairwise intersecting. If e represents a pair from {1, . . . , 2k}, then e is an edge of K2k.
Define Se to be the set of all perfect matchings that include the edge e. For any edge e, the
set Se is intersecting. Any set Se, where e is a pair from {1, . . . , 2k}, is called a canonically
intersecting set of perfect matchings. For every e

|Se| = (2k − 3)!! = (2k − 3)(2k − 5) · · · 1.

The main result of this paper can be stated as follows.

Theorem 2.1. The largest set of intersecting perfect matchings in K2k has size (2k− 3)!!.
The only sets that meet this bound are the canonically intersecting sets of perfect matchings.

3 Perfect matching derangement graph
One approach to proving EKR theorems for different objects is to define a graph where the
vertices are the objects and two objects are adjacent if and only if they are not intersecting
(see [4, 9, 15] for just a few examples of where this is done). This is the approach that we
take with the perfect matchings.

We use the standard graph notation. A clique in a graph is a set of vertices in which
any two are adjacent; a coclique is a set of vertices in which no two are adjacent. If X is a
graph, then ω(X) denotes the size of the largest clique, and α(X) is the size of the largest
coclique. A graph is vertex transitive if its automorphism group is transitive on the vertices.
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For a vertex-transitive graph, there is a relationship between the maximum clique size and
maximum coclique size known as the clique-coclique bound. The next result is this bound.

Theorem 3.1. Let X be a vertex-transitive graph, then

α(X)ω(X) ≤ |V (X)|.

The eigenvalues of a graph are the eigenvalues of the adjacency matrix of the graph.
Similarly, the eigenvectors and eigenspaces of the graph are the eigenvectors and eigenspa-
ces of the adjacency matrix.

Define the perfect matching derangement graph M(2k) to be the graph whose vertices
are all perfect matchings on K2k and vertices are adjacent if and only if they have no
common edges. Theorem 2.1 is equivalent to the statement that the size of the maximum
coclique in M(2k) is (2k − 3)!! and that only the canonically intersecting sets meet this
bound.

The number of vertices in M(2k) is (2k − 1)!!. The degree of M(2k), denoted by
d(2k), is the number of perfect matchings that do not contain any the edges from some
fixed perfect matching. This number can be calculated using the principle of inclusion-
exclusion:

d(2k) =

k−1∑
i=0

(−1)i
(
k

i

)
(2k−2i−1)!!. (3.1)

In practice, this formula can be tricky to use, but we will make use the following simple
lower bound on d(2k).

Lemma 3.2. For any k

d(2k) > (2k − 1)!!−
(
k

1

)
(2k − 3)!!.

Proof. For any i ∈ {0, . . . , k − 1}(
k

i

)
(2k − 2i− 1)!! =

i+ 1

k − i

(
k

i+ 1

)
(2k − 2i− 1)(2k − 2(i+ 1)− 1)!!

>

(
k

i+ 1

)
(2k − 2(i+ 1)− 1)!!

(since i+1
k−i (2k−2i−1) > 1 for these values of i). This implies that the terms in Equation 3.1

are strictly decreasing in absolute value. Since it is an alternating sequence, the first two
terms give a lower bound on d(2k).

Next we give some simple properties of the perfect matching derangement graph, in-
cluding a simple proof of the bound in Theorem 2.1 that uses the clique-coclique bound.

Theorem 3.3. Let M(2k) be the perfect matching derangement graph.

1. The graph M(2k) is vertex transitive, and Sym(2k) is a subgroup of the automor-
phism group of M(2k).

2. The size of a maximum clique in M(2k) is 2k − 1.
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3. The size of a maximum coclique in M(2k) is (2k − 3)!!.

Proof. It is clear that the group Sym(2k) acts transitively on the perfect matchings and,
though this action, each permutation in Sym(2k) gives an automorphism of M(2k).

Let C be a clique in M(2k). For every perfect matching in C, the element 1 is matched
with a different element of {2, 3, . . . , 2k}. Thus the size of C is no more than 2k − 1. A
1-factorization of the complete graph on 2k vertices is a clique of size 1

k

(
2k
2

)
in M(2k).

Since a 1-factorization of K2k exists for every k, the size of the maximum clique is exactly
1
k

(
2k
2

)
= 2k − 1.

Since M(2k) is vertex transitive, the clique-coclique bound, Theorem 3.1, holds so

α(M(2k)) ≤ (2k − 1)!!
1
k

(
2k
2

) = (2k − 3)!!.

Since the size of any canonically intersecting set meets this bound, we have that

α(M(2k)) = (2k − 3)!!.

4 Perfect matching association scheme
We have noted that the group Sym(2k) acts on the set of perfect matchings. Under this
action, the stabilizer of a single perfect matching is isomorphic to the wreath product of
Sym(2) and Sym(k). This is a subgroup of Sym(2k) and is denoted by Sym(2) o Sym(k).
Thus the set of perfect matchings in K2k correspond to the set of cosets

Sym(2k)/(Sym(2) o Sym(k)).

This implies that the action of Sym(2k) on the perfect matchings is equivalent to the ac-
tion of Sym(2k) on the cosets Sym(2k)/(Sym(2) o Sym(k)). This action produces a per-
mutation representation of Sym(2k). We will not give much detail on the representation
theory of the symmetric group, rather we will simply state the results that we need a refer
the reader to any standard text on the representation theory of the symmetric group, such
as [1, 3, 7, 12].

Each irreducible representation of Sym(2k) corresponds to an integer partition λ ` 2k;
these representations will be written as χλ and the character will be denoted by χλ. The
Sym(2k)-module will be denoted by Vλ. Information about the representation is contained
in the partition. For example, the dimension of the representation can be found just from
the partition using the hook length formula.

For any group G, the trivial representation of G is denoted by 1G (and the character
by 1G). If χ is a representation of a group H ≤ Sym(n), then indSym(n)(χ) is the rep-
resentation of Sym(n) induced by χ. Similarly, if χ is a representation of Sym(n), then
resH(χ) is the restriction of χ to H . The permutation representation of Sym(2k) acting
on Sym(2k)/(Sym(2) o Sym(k)) is the representation induced on Sym(2k) by the trivial
representation on Sym(2) o Sym(k) which is denoted by indSym(2k)(1Sym(2)oSym(k)) (see
[5, Chapter 13] for more details).

For an integer partition λ ` k with λ = (λ1, λ2, . . . , λ`), let 2λ denote the partition
(2λ1, 2λ2, . . . , 2λ`) of 2k. It is well-known (see, for example, [13, Example 2.2]) that
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decomposition of the permutation representation of Sym(2k) from its action on the perfect
matchings is

indSym(2k)(1Sym(2)oSym(k)) =
∑
λ`k

χ2λ.

The multiplicity of each irreducible representation in this decomposition is one, this
implies that indSym(2k)(1Sym(2)oSym(k)) is a multiplicity-free representation. This im-
plies that the adjacency matrices of the orbitals from the action of Sym(2k) on the cosets
Sym(2k)/(Sym(2) o Sym(k)) defines an association scheme on the perfect matchings (see
[5, Section 13.4] for more details and a proof of this result). This association scheme is
known as the perfect matching scheme. Each class in this scheme is labelled with a parti-
tion 2λ = (2λ1, 2λ2, . . . , 2λ`). Two perfect matchings are adjacent in a class if their union
forms a set of ` cycles with lengths 2λ1, 2λ2, . . . , 2λ` (this association scheme is described
in more detail in [5, Section 15.4] and [10]).

The graph M(2k) is the union of all the classes in this association scheme in which
the corresponding partition contains no part of size two. This means that each eigenspace
of M(2k) is the union of modules of Sym(2k); each module in this union is a Sym(2k)-
module V2λwhere λ ` k. If ξ is an eigenvalue of M(2k), and its eigenspace includes the
Sym(2k)-module V2λ, then we say that ξ is the eigenvalue for V2λ. Conversely, we denote
the eigenvalue for V2λ by ξ2λ.

The next lemma contains a formula to calculate the eigenvalue for the Sym(2k)-module
V2λ. This gives considerable information about the eigenvalues of M(2k). For a proof the
general form of this formula see [5, Section 13.8], we only state the version specific to
perfect matchings. If M denotes a perfect matching and σ ∈ Sym(2k), we will use Mσ to
denote the matching formed by the action of σ on M .

Lemma 4.1. Let M be a fixed perfect matching in K2k. Let H ⊆ Sym(2k) be the set of
all elements σ ∈ Sym(2k) such that M and Mσ are not intersecting. The eigenvalue of
M(2k) for the Sym(2k)-module V2λ is

ξ2λ =
d(2k)

2k k!

∑
x∈H

χ2λ(x).

The Sym(2k)-module V2λ is a subspace of the ξ2λ-eigenspace and the dimension of this
subspace is χ2λ(1).

This formula can be used to calculate the eigenvalue corresponding to a module for the
matching derangement graph, but it is not effective to determine all the eigenvalues for a
general matching derangement graph. In Section 6 we will show another way to find some
of the eigenvalues.

5 Delsarte-Hoffman bound
In Section 6, we will give an alternate proof of the bound in Theorem 2.1 that uses the eigen-
values of the matching derangement graph. This proof is based on the Delsarte-Hoffman
bound, which is also known as the ratio bound. The advantage of this bound is that when
equality holds we get additional information about the cocliques of maximum size. This
information can be used to characterize all the sets that meet the bound. The Delsarte-
Hoffman bound is well-known and there are many references, we offer [5, Theorem 2.4.1]
for a proof.
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Theorem 5.1. Let X be a k-regular graph with v vertices and let τ be the least eigenvalue
of A(X). Then

α(X) ≤ v

1− k
τ

.

If equality holds for some coclique S with characteristic vector vS , then

vS −
|S|
|V (X)|

1

is an eigenvector with eigenvalue τ .

If equality holds in the Delsarte-Hoffman bound, we say that the maximum cocliques
are ratio tight.

The Delsarte-Hoffman bound can be used to prove the EKR theorem for sets. Si-
milar to the situation for the perfect matchings, the group Sym(n) acts on the subsets
of {1, . . . , n} of size k. This action is equivalent to the action of Sym(n) on the cosets
Sym(n)/(Sym(n−k)×Sym(k)). This action corresponds to a permutation representation,
namely

indSym(n)(1Sym(n−k)×Sym(k)) =

k∑
i=0

χ[n−i,i]. (5.1)

(Details can be found in any standard text on the representation theory of the symmetric
group.) This representation is multiplicity free and the orbital schemes from this action is
an association scheme better known as the Johnson scheme.

The Kneser graphK(n, k) is the graph whose vertices are all the k-sets from {1, . . . , n}
and two vertices are adjacent if and only if they are disjoint. The Kneser graph is a graph
in the Johnson scheme, it is the graph that corresponds to the orbitals of pairs of sets that
do not intersect. A coclique in K(n, k) is a set of intersecting k-sets. The Kneser graph
is very well-studied and all of its eigenvalues are known (see [6, Chapter 7] or [5, Section
6.6] for a proof).

Proposition 5.2. The eigenvalues of K(n, k) are

(−1)i
(
n− k − i
r − i

)
with multiplicities

(
n
i

)
−
(
n
i−1
)

for i ∈ {0, . . . , k}.

If we apply the Delsarte-Hoffman bound to K(n, k) we get the following theorem
which is equivalent to the standard EKR theorem. The characterization follows from the
second statement in the Delsarte-Hoffman bound, see [5, Section 6.6] for details.

Theorem 5.3. Assume that n > 2k. The size of the largest coclique in K(n, k) is
(
n−1
k−1
)
,

and the only cocliques of this size consist of all k-sets that contain a common fixed ele-
ment.

To apply the Delsarte-Hoffman bound to M(2k), we first need to determine the value
of the least eigenvalue of M(2k). We do not calculate all the eigenvalues of M(2k), rather
we calculate the two eigenvalues with the largest absolute value and then show that all other
eigenvalues have smaller absolute value.
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6 Eigenvalues of the matching derangement graph
In this section we determine the largest and the least eigenvalue of the matching derange-
ment graph. Further, we identify the modules that the eigenvalues are for. First we will use
a simple method to show that these two values are eigenvalues of M(2k).

For any edge e in K2k, the partition π = {Se, V (M(2k))/Se} is an equitable partition
of the vertices in M(2k). In fact, π is the orbit partition formed by the stabilizer of the
edge e in Sym(2k) (this subgroup is isomorphic to Sym(2) × Sym(2k − 2)) acting on
the set of all vertices of M(2k). Each vertex in Se is adjacent to no other vertices in
Se (since it is a coclique), and is adjacent to exactly d(2k) vertices in V (M(2k))/Se. A
straight-forward counting argument shows that each vertex in V (M(2k))/Se is adjacent to
exactly d(2k)/(2k−2) vertices in Se, and thus to d(2k)−d(2k)/(2k−2) other vertices in
V (M(2k))/Se. This implies that the quotient graph of M(2k) with respect to the partition
π is

M(2k)/π =

(
0 d(2k)

1
2k−2 d(2k)

2k−3
2k−2 d(2k)

)
.

The eigenvalues for the quotient graph M(2k)/π are

d(2k), − d(2k)

2k − 2
.

Since π is equitable, these are also eigenvalues of M(2k). The next result identifies the
modules which the eigenvalues are for.

Lemma 6.1. The eigenvalue of M(2k) for the Sym(2k)-module V[2k] is d(2k), and the
eigenvalue of M(2k) for the Sym(2k)-module V[2k−2,2] is −d(2k)/(2k − 2).

Proof. The first statement is clear using the formula in Lemma 4.1.
To prove the second statement, we will consider the equitable partition π defined above.

The partition π is the orbit partition of Sym(2)×Sym(2k−2) acting on the perfect match-
ings. Let H = Sym(2) × Sym(2k − 2) and denote the cosets of H in Sym(2k) by
{x0H = H,x1H, . . . , x2k2−k−1H}.

The −d(2k)/(2k − 2)-eigenvector of M(2k)/π lifts to an eigenvector v of M(2k). A
simple calculation shows that the entries of v are 1 − 1

2k−1 or − 1
2k−1 , depending on if

the index of the entry is in Se, or not. This means that v = ve − 1
2k−11, where ve is the

characteristic vector of Se.
The group Sym(2k) acts on the edges of K2k, and for each σ ∈ Sym(2k), we can

define
vσ = veσ −

1

2k − 1
1.

Under this action, the vector v is fixed by any permutation in H . If we define

V = span{vσ : σ ∈ Sym(2k)},

then V is a subspace of the −d(2k)/(2k − 2)-eigenspace. Moreover, V is invariant under
the action of Sym(2k), so it is also a Sym(2k)-module. To prove this lemma we need to
show that V is isomorphic to the Sym(2k)-module V[2k−2,2].

Let W be the Sym(2k)-module for the induced representation indSym(2k)(1H). By
Equation 5.1, W is the sum of irreducible modules of Sym(2k) that are isomorphic to
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M[2k], M[2k−1,1] and M[2k−2,2]. The vector space W is isomorphic to the vector space of
functions f ∈ L(Sym(2k)) that are constant on H . For each coset xH , let δxH(σ) be the
characteristic function for xH; so δxH(σ) is defined to be equal to 1 if σ is in xH , and
0 otherwise. Since W is the Sym(2k)-module for the representation induced by 1H , the
functions δxH form a basis for W (see [5, Section 11.13] for details).

Define the map f : V →W so that

f(vσ) = δσH −
1

2k − 1

2k2−k−1∑
i=0

δxiH .

Since vσ = vπ if and only if σH = πH , this function is well-defined. Further, it is a
Sym(2k)-module homomorphism. Thus V is isomorphic to a submodule ofW . Since V is
not trivial, it must be the Sym(2k)-module V[2k−2,2], since it is the only module (other than
the trivial) that is common to both indSym(2k)(1H) and indSym(2k)(1Sym(2)oSym(k)).

We have found two of the eigenvalues of M(2k), next we will show that all the re-
maining eigenvalues are smaller in absolute value. We need the following theorem by
Rasala [11] that gives bounds on the dimension of the irreducible representations of
Sym(n).

Theorem 6.2. For n ≥ 15, the irreducible representations with the seven smallest degrees
are given in the following table.

Representations Degree

[n], [1n] 1

[n− 1, 1], [2, 1n−2] n− 1

[n− 2, 2], [2, 2, 1n−4] 1
2n(n− 3)

[n− 2, 1, 1], [3, 1n−3] 1
2 (n− 1)(n− 2)

[n− 3, 3], [2, 2, 2, 1n−6] 1
6n(n− 1)(n− 5)

[n− 3, 1, 1, 1], [4, 1n−4] 1
6 (n− 1)(n− 2)(n− 3)

[n− 3, 2, 1], [3, 2, 1n−5] 1
3n(n− 2)(n− 4)

Next we will bound the size of the other eigenvalues. This bound follows from the
straightforward fact that ifA is the adjacency matrix of a graph, then the trace of the square
of A is equal to both the sum of the squares of the eigenvalues of A, and to twice the
number of edges in the graph. The proof of this result closely follows the proof of the least
eigenvalue of the derangement graph of the symmetric group by Ellis [2].

Theorem 6.3. For λ ` k, the absolute value of the eigenvalue of M(2k) for the Sym(2k)-
module V2λ is strictly less than d(2k)/(2k − 2), unless λ = [k] or λ = [k − 1, 1].

Proof. If 2k < 15, this theorem can be checked by directly calculating all the eigenvalues
(this can easily be done using a computational algebra program such as GAP [16]), so we
will assume that 2k ≥ 16.

Let A be the adjacency matrix of M(2k) and use ξ2λ to denote the eigenvalue for the
Sym(2k)-module V2λ. The sum of the eigenvalues of A2 is twice the number of edges in
M(2k), that is ∑

λ`k

χ2λ(1)ξ
2
2λ = (2k − 1)!! d(2k).
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From Lemma 6.1 we know the eigenvalues for two of the modules, so this bound can be
expressed as∑

λ`k
λ6=[k],[k−1,1]

χ2λ(1)ξ
2
2λ = (2k−1)!! d(2k)− d(2k)2 − (2k2−3k)

(
d(2k)

2k−2

)2

.

Since all the terms in left-hand side of the above summation are positive, any single term
is less than the sum. Thus

χ2λ(1)ξ
2
2λ ≤ (2k−1)!! d(2k)− d(2k)2 − (2k2−3k)

(
d(2k)

2k−2

)2

,

(where λ ` k and λ 6= [k], [k − 1, 1]). If |ξ2λ| ≥ d(2k)/(2k − 2), then this reduces to

χλ(1) ≤
(2k − 1)!!(2k − 2)2

d(2k)
− 6k2 + 11k − 4.

Using the bound in Lemma 3.2, this implies that

χλ(1) < 2k2 − k =
(2k)2 − (2k)

2
.

If |ξ2λ| ≥ d(2k)/(2k − 2), then 2λ must be one of the first four representations in the
table of Theorem 6.2. Thus 2λmust be either [2k] or [2k−2, 2], which proves the result.

We restate this result in terms of the least eigenvalue of the matching derangement
graph; noting that Theorem 6.3 implies that V[2k−2,2] is the only Sym(2k)-module that has
−d(2k)/(2k − 2) as its eigenvalue.

Corollary 6.4. The smallest eigenvalue of M(2k) is−d(2k)/(2k−2) and the multiplicity
of this eigenvalue is 2k2 − 3k.

7 The Sym(2k)-module V [2k−2,2]

Applying the Delsarte-Hoffman bound with the fact that −d(2k)/(2k − 2) is the least
eigenvalue of M(2k), proves that any canonical coclique is ratio tight since

|V (M(2k))|
1− d

τ

=
(2k − 1)!!

1− d(2k)

− d(2k)2k−2

= (2k − 3)!!.

For S a maximum coclique in M(2k) we will use vS to denote the characteristic vector
of S. The ratio bound implies that |S| = (2k − 3)!! and, further, that

vs −
1

2k − 1
1

is a −d(2k)/(2k − 2)-eigenvector. This vector is called the balanced characteristic vector
of S, since is it orthogonal to the all ones vector. Since the Sym(2k)-module V[2k−2,2] is the
only module for which the corresponding eigenvalue is the least (this follows directly from
Theorem 6.3) we have the following result which will be used to determine the structure of
the maximum cocliques in M(2k).

Lemma 7.1. The characteristic vector for any maximum coclique inM(2k) is in the direct
sum of the Sym(2k)-modules V[2k] and V[2k−2,2].
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A perfect matching is a subset of the edges in the complete graph, and thus can be
represented as a characteristic vector; this is a vector in R(

2k
2 ). Define the incidence matrix

for the perfect matchings in K2k to be the matrix U whose rows are the characteristic
vectors of the perfect matchings of K2k. The columns of U are indexed by the edges in
the complete graph and the rows are indexed by the perfect matchings. The column of U
corresponding to the edge e is the characteristic vector of Se.

We will show that the characteristic vector of any maximum coclique of M(2k) is a
linear combination of the columns of U .

Lemma 7.2. The characteristic vectors of the canonical cocliques of M(2k) span the
direct sum of the Sym(2k)-modules V[2k] and V[2k−2,2].

Proof. Let ve be the characteristic vector of Se. From Lemma 7.1, the vector ve − 1
2k−11

is in the Sym(2k)-module V[2k−2,2], and ve is in the direct sum of the Sym(2k)-modules
V[2k] and V[2k−2,2]. So all that needs to be shown is that the span of all the vectors ve has
dimension 2k2 − 3k + 1, or equivalently, that the rank of U is 2k2 − 3k + 1.

Let I denote the
(
k
2

)
×
(
k
2

)
identity matrix and A(2k, 2) the adjacency matrix of the

Kneser graph K(2k, 2). Then

UTU = (2k − 3)!!I + (2k − 5)!!A(2k, 2).

By Proposition 5.2, 0 is an eigenvalue of this matrix with multiplicity 2k − 1. Thus the
rank of UTU (and hence U ) is

(
2k
2

)
− (2k − 1) = 2k2 − 3k + 1.

This result, and the comments at the beginning of this section, imply the following
corollary.

Corollary 7.3. The characteristic vector of a maximum coclique in the perfect matching
derangement graph is in the column space of U .

Next we will show that this implies that any maximum coclique is a canonical inter-
secting set. To do this we will consider a polytope based on the perfect matchings.

8 The perfect matching polytope
The convex hull of the set of characteristic vectors for all the perfect matchings of a graph
K2k is called the perfect matching polytope of K2k. Let U be the incidence matrix defined
in the previous section, then the perfect matching polytope is the convex hull of the rows
of U . A face of the perfect matching polytope is the convex hull of the rows where Uh
achieves its maximum for some vector h. A facet is a maximal proper face of a polytope.

If S is a maximum coclique inM(2k), then from Corollary 7.3, we know that Uh = vs
for some vector h. If a vertex of K2k is in S, then the corresponding row of Uh is equal
to 1; conversely, if a vertex of K2k is not in S, then the corresponding row of Uh is
equal to 0. Thus a maximum intersecting set of perfect matchings is a facet of the perfect
matching polytope. In this section, we will give a characterization of the facets of the
perfect matching polytope for the complete graph.

Let S be a subset of the vertices of K2k and define the boundary of S to be the set of
edges that join a vertex in S to a vertex not in S. The boundary is denoted by ∂S and is
also known as an edge cut. If S is a subset of the vertices of K2k of odd size, then any
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perfect matching in K2k must contain at least one edge from ∂S. If S is a single vertex,
then any perfect matching contains exactly one element of ∂S. It is an amazing classical
result of Edmonds that these two constraints characterize the perfect matching polytope for
any graph. For a proof of this result see Schrijver [14].

Theorem 8.1. Let X be a graph. A vector x in R|E(X)| lies in the perfect matching poly-
tope of X if and only if:

(a) x ≥ 0;

(b) if S = {u} for some u ∈ V (X), then
∑
e∈∂S x(e) = 1;

(c) if S is an odd subset of V (X) with |S| ≥ 3, then
∑
e∈∂S x(e) ≥ 1.

If X is bipartite, then x lies in the perfect matching polytope if and only if the first two
conditions hold.

The constraints in Equation (b) define an affine subspace of R|E(X)|. The perfect
matching polytope is the intersection of this subspace with affine half-spaces defined by
the conditions in Equation (a) and Equation (c); hence the points in a proper face of the
polytope must satisfy at least one of these conditions with equality.

For any graph X (that is not bipartite) the vertices of a facet are either the perfect
matchings that miss a given edge, or the perfect matchings that contain exactly one edge
from ∂S for some odd subset S.

It follows from Theorem 8.1 that every perfect matching inK2k is a vertex in the perfect
matching polytope for the complete graph. But we can also determine the vertices of every
facet in this polytope.

Lemma 8.2. In the matching polytope of K2k, the vertices of a facet of maximum size are
the perfect matchings that do not contain a given edge.

Proof. Let F be a facet of the polytope of maximum size. From the above comments,
equality holds in at least one of equations∑

e∈∂S

x(e) ≥ 1

for all x ∈ F . Suppose S is the subset that defines such an equation, then S is an odd
subset of the vertices in K2k for which

∑
e∈∂S x(e) = 1 for all x ∈ F .

Let s be the size of S. Each perfect matching with exactly one edge in ∂S consists
of the following: a matching of size (s − 1)/2 covering all but one vertex of S; an edge
joining this missed vertex of S to a vertex in S; and a matching of size (2k − s − 1)/2
covering all but one vertex in S. Hence there are

(s− 2)!! s(2k − s) (2k − s− 2)!! = s!!(2k − s)!!

such perfect matchings. We denote this number by N(s) and observe that

N(s− 2)

N(s)
=

2k − s+ 2

s
.
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Hence for all s such that 3 ≤ s ≤ k we see that the values N(s) are strictly decreasing, so
the maximum size of a set of such vertices is N(3) = 3(2k − 3)!!.

On the other hand, the number of perfect matchings in K2k that do not contain a given
edge is

(2k − 1)!!− (2k − 3)!! = (2k − 2)(2k − 3)!!.

Since this is always larger than N(3), the lemma follows.

We now have all the tools to show that any maximum intersecting set of perfect match-
ings is the set of all matchings that contain a fixed edge.

Theorem 8.3. The largest coclique in M(2k) has size (2k − 3)!!. The only cocliques that
meet this bound are the canonically intersecting sets of perfect matchings.

Proof. Let S be a maximum coclique in M(2k) and let vS be the characteristic vector of
S. Then |S| = (2k−3)!!, by the Delsarte-Hoffman bound and Corollary 6.4. The Delsarte-
Hoffman bound, along with Theorem 6.3, further imply that the vector vS − 1

2k−11 is in
the Sym(2k)-module V[2k−2,2].

By Lemma 7.2, vS − 1
2k−11 is a linear combination of the balanced characteristic

vectors of the canonical cocliques. This also implies that vS is a linear combination of
the characteristic vectors of the canonical cocliques. So there exists a vector x such that
Ux = vS (where U is the matrix defined in Section 7).

Finally, by Lemma 8.2, S is a face of maximal size an it consists of all the perfect
matching that avoid a fixed edge. This implies that S is a canonical coclique of M(2k).
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