179 Key words: Alta Murgia, dry- grasslands, Mediterranean vegetation, phytosociology, Scorzoneretalia villosae, syntaxonomy. Ključne besede: Alta Murgia, suha travišča, sredozemska vegetacija, fitosociologija, Scorzoneretalia villosae, sintaksonomija. Corresponding author: Massimo T erzi E-mail: massimo.terzi@ibbr.cnr.it Received: 13. 1. 2023 Accepted: 13. 3. 2023 A new Asphodelus ramosus-dominated association from the Murge Plateau (SE Italy) Abstract The plant communities dominated by Asphodelus ramosus are quite common in the Mediterranean Basin, especially in the most degraded vegetation stages caused by grazing and fires. The aim of this paper is to provide a phytosociological description of the Asphodelus ramosus-dominated plant community of the Murge Plateau, in southeastern Italy, through 28 phytosociological relevés. Cluster analysis (flexible Beta method) and ordination (non-metric multidimentional scaling) were used to compare this plant community with other dry grassland associations in the same area and with other Asphodelus ramosus-dominated plant communities from Italy and western Balkans. The results allowed the description of a new association for the Murge Plateau: the Gelasio columnae-Asphodeletum ramosi. The new association has been tentatively classified in the alliance Hippocrepido glaucae-Stipion austroitalicae (Scorzoneretalia villosae order), because of the presence of several species typical of this alliance, although it is intermediate between this alliance and the more thermophilous vegetation of the Lygeo sparti-Stipetea tenacissimae class. Iz vleček Rastlinske združbe s prevladujočo vrsto Asphodelus ramosus so v Sredozemlju precej pogoste, še posebej na najbolj degradiranih rastiščih, ki so posledica požarov in paše. Cilj tega članka je fitocenološki opis združbe s prevladujočo vrsto Asphodelus ramosus s platoja Murge v jugovzhodni Italiji na osnovi 28 fitocenoloških popisov. Za primerjavo rastlinskih združb z drugimi asociacijami suhih travišč z istega območja in drugimi združbami z vrsto Asphodelus ramosus iz Italije in Zahodnega Balkana, smo uporabili klastrsko analizo (metoda Beta flexible) in ordinacijo (nemetrično večrazsežnostno lestvičenje). Rezultati so nam omogočili opis nove asociacije na platoju Murge: Gelasio columnae-Asphodeletum ramosi. Novo asociacijo smo začasno uvrstili v zvezo Hippocrepido glaucae-Stipion austroitalicae (red Scorzoneretalia villosae) zaradi prisotnosti številnih značilnih vrst te zveze, čeprav je njen položaj med imenovano zvezo in bolj termofilno vegetacijo razreda Lygeo sparti-Stipetea tenacissimae. Massimo Terzi1  DOI: 10.2478/hacq-2022-0020 22/2 • 2023, 179–195 1 Institute of Biosciences and BioResources (IBBR) - National Research Council (CNR), Bari, Italy 22/2 • 2023, 179–195 180 Terzi Asphodelus ramosus-dominated vegetation Introduction Grassland ecosystems are of great importance for biodi- versity conservation (e.g. Wilson et al., 2012; Biurrum et al., 2019). The Habitats Directive (Council Directive 92/43/EEC), which aims to promote the maintenance of European biodiversity, lists many grassland types among the natural habitats involved in the formation of the Eu- ropean ecological network of special areas of conservation (see European Commission, 2013). The Murge Plateau, in southeastern Italy, is character- ized by large expanses of Mediterranean dry grasslands, already classified in the following three habitat types: “Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (*important orchid sites)” (code: 6210), “Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea” (code 6220), and “Eastern sub-mediterranean dry grasslands” (code 62A0). A herbaceous vegetation dominated by Asphode- lus ramosus inhabits the same area, but there are very few data on this vegetation type; consequently, the floristic relationships with the other grassland associations already described for the area are also poorly known. Asphodelus ramosus L. is a steno-Mediterranean species occurring in all countries bordering the Mediterranean Basin (Pignatti, 1982; Euro+Med, 2022). It is found in many vegetation types (e.g. scattered matorral) but is most abundant in the degraded stages of the regression series of Mediterranean ecosystems subjected to over- grazing and recurrent fires (Giacomini et al., 1958; Le Houerou et al., 1981; Pantis & Margaris, 1988; Noy- Meir, 1990; Breckle, 2002). Indeed, Asphodelus ramosus is unpalatable for most domestic animals and is fostered by fires due to its ecological features and potential dis- ruption of antagonistic interactions (Camarda et al., 2016; García et al., 2016). From a phytosociological standpoint, Asphodelus ramo- sus is currently considered a species belonging to the class- es Ononido-Rosmarinetea and Lygeo sparti-Stipetea tenacis- simae (Brullo et al., 2010, 2020; FloraVeg.EU, 2022). On the other hand, some authors proposed a new class, the Charybdido pancratii-Asphodeletea ramosi, to represent the plant communities of “perennial herbaceous macro- phytes” (Biondi et al., 2016), also including those domi- nated by Asphodelus ramosus. In the Western Balkans, some Asphodelus ramosus- dominated plant communities have traditionally been ar- ranged within the order Scorzoneretalia villosae [syn. Scor- zonero villosae-Chrysopogonetalia grylli], currently framed in the class Festuco-Brometea (Horvatić, 1963; Šegulja, 1970; Royer, 1991; Stanišić-Vujačić et al., 2022 and refer- ences therein). This order is also present in southern Italy with the endemic alliance Hippocrepido glaucae-Stipion austroitalicae, particularly widespread along the Murge Plateau, in central Apulia (Figure 1, Forte et al., 2005). Asphodelus ramosus is quite common in this area and has often been recorded in various grassland associations of this alliance, although always in a subordinate position to other species, such as Stipa austroitalica (Forte et al., 2005; Biondi & Guerra, 2008; T erzi et al., 2010). The lat- ter is by far one of the most important species in the area, being listed as a priority species under the Habitats Direc- tive. However, in some areas, possibly in heavily grazed ones, grasslands dominated by Stipa austroitalica give way to another physiognomic type dominated by Asphodelus ramosus. On the basis of the above, this paper aims to: 1) pro- vide new phytosociological data of the Asphodelus ramo- sus-dominated plant community of the Murge Plateau, 2) assess the ecological and floristic differences of this plant community compared to the dry grassland associations already described for the area, and 3) determine its syn- taxonomic framework by comparing it with other Aspho- delus ramosus-dominated plant communities from Italy and the Western Balkans. Methods Study Area The Murge Plateau stretches between central Apulia and eastern Basilicata, SE Italy. The northwestern area of the Murge, known as “Alta Murgia”, is part of the Natu- ra2000 network, and includes the “Alta Murgia National Park”, and a Special Area of Conservation/ Special Protec- tion Areas (“Murgia Alta”). The portion that extends into the Basilicata region is usually referred to as “Murgia Materana” whereas, to the southwest, the Murge slopes down towards the Ionian Sea along a semi-circular area (Ionian Arc) furrowed by deep karst canyons, and is usually referred to as “Murgia Tarantina”. Large expanses of dry rocky grasslands on limestone substrate, often outcropping, characterize the Murge landscape. Those grasslands are traditionally used as ex- tensive pastures mainly for sheep and goats. Several dry grassland associations have been described in the area (T able S1): Acino suaveolentis-Stipetum austroitalicae (AcS, Forte et al., 2005, Alta Murgia), Cytiso spinescentis-Stipe- tum austroitalicae (CyS, Forte et al., 2005, Murgia Mat- erana), Irido pseudopumilae-Scorzoneretum columnae (IrS, Terzi et al., 2010, between Alta Murgia and Murgia Tar- antina), Convolvulo elegantissimi-Stipetum austroitalicae (CoS), Centaureo apulae-Andropogonetum distachyi (CeA) 22/2 • 2023, 179–195 181 Terzi Asphodelus ramosus-dominated vegetation and Stipo austroitalicae-Hyparrhenietum hirtae (StH, Bi- ondi & Guerra, 2008, Murgia Tarantina). According to the bioclimatic classification system of Rivas-Martínez et al. (2011), the macrobioclimate of the area is Mediterranean, the bioclimate is pluviose- sonal-oceanic with thermotypes ranging from lower Meso-Mediterranean to lower supra-Mediterranean and ombrotypes ranging from upper dry to lower subhumid (Pesaresi et al., 2014). Data analysis The new phytosociological data consist of 28 phytosocio- logical relevés taken according to the Braun-Blanquet ap- proach (Westhoff & van der Maarel, 1980) in dry herba- ceous vegetation where Asphodelus ramosus was dominant (i.e. the species with the highest cover). The relevés were sampled in areas clearly subjected to sheep-goat grazing (also observed in the field during sampling), at an altitude of 320 to 665 m a.s.l., in the northwestern part of the Murge Plateau. Plot sizes ranged from 25 to 50 m 2 with the exception of one relevé of 70 m 2 (Table 1 and Table S5). The main physical and biological characteristics of the phytocoenoses (e.g. slope, exposure, vegetation cover) were recorded for each relevé, along with the complete list of vascular plants and their cover-abundance values esti- mated using the traditional Braun-Blanquet scale (Braun- Blanquet, 1932). The new relevés were analysed together with 82 other, taken from the scientific literature and belonging to the dry grassland associations already described for the Murge hills (Table S1). The taxa recorded only at the genus level were removed from the data set, as well as bryophytes and lichens that were recorded inconsistently (see also Guari- no et al., 2022). Thus, the whole data set formed a matrix of 110 relevés (28 + 82) sharing 376 taxa. The taxon scores originally recorded according to the Braun-Blanquet scale, were replaced by the midpoints of the relevant percentage cover intervals, or their estimates (Lepš & Hadincová, 1992: r = 0.1; + = 0.5; 1 = 3; 2 = 15; 3 = 37.5; 4 = 62.5; 5 = 87.5). In order to reduce the influ- ence of dominant taxa, the taxon scores were square root transformed before cluster analysis and ordination (see also Tichy et al., 2020). The data matrix was subjected to hierarchical agglomerative Q-mode clustering using the Flexible Beta method, setting β = -0.25, on a Bray-Curtis dissimilarity matrix. The dendrogram was cut to such a level as to obtain clearly phytosociological interpretable clusters. Since the new relevés were taken in phytocoenoses se- lected on the basis of a dominance criterion (i.e. Asphode- lus ramosus dominant), a second clustering was performed after transforming the data to presence/absence form in order to assess the importance of the specific composi- tion of the main clusters, by seeking common clusters between the two dendrograms (based on quantitative and presence/absence data respectively). Non-metric multidimensional scaling ordination (NMS), using the Bray–Curtis dissimilarity index, was used to visualize the floristic relationships among the relevés and the main clusters. Cluster analysis and NMS were performed in PC-ORD 6.22; NMS through the “slow and thorough” option of the autopilot mode, which implies 6 starting axes, a maximum of 500 iterations with 250 real runs and 250 randomized runs, and an instabil- ity criterion of 0.0000001 (McCune & Mefford, 2011). The ordination diagram was ecologically interpreted by passively projecting the Ellenberg Ecological Indicator Values (EIVs) and life-forms spectra, both weighted by taxa cover values, into the ordination space, with a cut-off level at r 2 = 0.3. The Kruskal-Wallis test was used to find statistically significant differences in EIVs and life-forms among the main clusters of relevés. Subsequent non-parametric pair- wise comparisons were performed with correction for multiple comparisons according to Siegel & Castellan (1988), by using the R software (R Core Team, 2022) through the packages FSA 0.9.3 (Ogle et al., 2022) and pgirmess 2.0.0 (Giraudoux, 2022). The Indicator Species Analysis (ISA) according to Du- frêne & Legendre (1997) was used to identify the Indica- tor Species (IndSp) associated with main clusters of relevés and their combinations in larger groups (see De Caceres et al., 2010). The Indicator Values (IndVal) were calcu- lated for all taxa occurring in at least three relevés. The statistical significance of the relationship between a taxon and the group for which its IndVal yielded the highest value, was tested by a Monte Carlo test with 10000 per- mutations. The ISA was run in R software (R Core T eam, 2022) through the package indicspecies 1.7.12 (De Cac- eres & Legendre, 2009) In order to visualize the floristic relationships between the Asphodelus ramosus-dominated plant community from the Murgia Plateau and other Asphodelus ramosus- dominated plant communities/associations from Italy and western Balkans (Figure 1; T able S2), a NMS was run on a second data matrix, relevés × taxa [104 × 416]. The NMS was performed through the “slow and thorough” option of the PC-ORD autopilot mode, as described above. Given the importance of chorological information for the definition of high rank syntaxa (Pignatti et al., 1995), chorological spectra based on presence/absence data of each relevé were calculated and projected in the ordina- tion diagram as joint plots, with a cut-off level at r 2 = 0.3. 22/2 • 2023, 179–195 182 Terzi Asphodelus ramosus-dominated vegetation Chorotypes, EIVs and life-forms were retrieved from Pignatti et al. (2005). Figure 1 was carried out by using R software (R Core Team, 2022), and the packages ggmap (Kahle & Wickham, 2013), sf (Pebesma, 2018), and rnat- uralearth (South, 2017). Taxonomic nomenclature follows the online flora Euro+Med (2022), with the exception of Koeleria splen- dens. Different taxonomic interpretations of the vari- ability and distribution areas of Koeleria splendens and related species (e.g. Koeleria lobata, K. subcaudata) have Figure 1: Study area. Asphodelus ramosus-dominated associations and plant communities from Italy and Western Balkans (see also Table S2): AA = Alkanno tinctoriae-Asphodeletum ramosi, from Gargano (IT); Ac1 = Asphodelus ramosus community, from the Buna River area (AL); Ac2 = Aspho- delus ramosus community from Caltagirone, Sicily (IT); AF = Asphodelino luteae-Feruletum communis, from Gargano (IT); Asp = Gelasio columnae- Asphodeletum ramosi, the new association from the Murge Plateau (IT); BC = Bromo erecti-Chrysopogonetum grylli, from Ćemovsko polje, near Podgorica, Montenegro (ME); CA = Charybido pancratii-Asphodeletum ramosi from Gargano (IT); CF = Carlino siculae-Feruletum communis from T rapani (CF1) and Palermo (CF2) (IT); NA = Narcisso tazettae-Asphodeletum microcarpi, from Istria (HR); TA = Thapsio garganicae-Asphodeletum ramosii, from the island of Pianosa, T uscany (IT). Slika 1: Preučevano območje. Asociacije in združbe s prevladujočo vrsto Asphodelus ramosus v Italiji in na Zahodnem Balkanu (glej tudi Tabelo S2): AA = Alkanno tinctoriae-Asphodeletum ramosi iz Gargana (IT); Ac1 = združba z Asphodelus ramosus z območja ob reki Bojani (AL); Ac2 = združba z Asphodelus ramosus z območja Caltagirone, Sicilija (IT); AF = Asphodelino luteae-Feruletum communis iz Gargana (IT); Asp = Gelasio columnae- -Asphodeletum ramosi, nova asociacija s platoja Murge (IT); BC = Bromo erecti-Chrysopogonetum grylli s Ćemovskega polja pri Podgorici, Črna Gora (ME); CA = Charybido pancratii-Asphodeletum ramosi iz Gargana (IT); CF = Carlino siculae-Feruletum communis pri mestih T rapani (CF1) in Palermo (CF2) (IT); NA = Narcisso tazettae-Asphodeletum microcarpi iz Istre (HR); TA = Thapsio garganicae-Asphodeletum ramosii, z otoka Pianosa, Toskana (IT). 22/2 • 2023, 179–195 183 Terzi Asphodelus ramosus-dominated vegetation been published (e.g. Brullo et al., 2009; Quintanar et al., 2009; Quintanar & Castroviejo, 2013) but a more de- tailed taxonomic revision on this issue for the study area (Italy and Western Balkans) is still awaited. Since Koeleria splendens plays an important role in the syntaxonomy of dry grassland vegetation of the area – e.g., it has been used as the name-giving taxon of the Balkan syntaxa Koeleri- etalia splendentis and Chrysopogono grylli-Koelerion splend- entis – it has been used in its wide meaning, including both the Italian and Western Balkans populations (e.g. Pignatti, 1982). Syntaxonomic nomenclature follows the EuroVeg- Checklist (EVC, Mucina et al., 2016; EuroVeg.EU 2022), except where indicated. Results The dendrogram based on quantitative data (Figure 2b) was pruned at the sixth partitioning level so as to obtain seven main clusters of relevés, clearly representative of the six associations already described for the area, and an additional main cluster ("Asp" in Figure 2, rels. 3–28 in Table 1) formed by the relevés with dominant Asphodelus ramosus. Two new relevés (rels. 1–2 in Table 1), however, were included in a subcluster of the main cluster AcS ("tr" in Figure 2). The two main clusters Asp and AcS merge together at the fifth partitioning level (Figure 2b). The second partitioning level separates on one side the associations Stipo austroitalicae-Hyparrhenietum hirtae (StH) and Centaureo apulae-Andropogonetum distahyum (CeA), described for the lower elevations of the Murgia Tarantina and already ascribed to the class Lygeo sparti- Stipetea tenacissimae (T erzi et al., 2010). On the other side of the dendrogram there are the associations Convolvulo- Stipetum austroitalicae (CoS), Irido-Scorzoneretum colum- nae (IrS) and Cytiso-Stipetum austroitalicae (CyS). The main clusters are also fairly well characterized in the dendrogram based on presence/absence data (Fig- ure 2a), with few exceptions. The main clusters StH and CoS, indeed, are no longer distinguishable and are mixed into the same group (StH+CoS in Figure 2a; see also Terzi et al., 2010). The subcluster "tr" merges with Asp (relevés dominated by Asphodelus ramosus) and can thus be considered intermediate between the main clus- ters AcS and Asp. The main clusters obtained from the classification based on quantitative data (i.e. Figure 2b) are considered and discussed below. The relevés where Asphodelus ramosus dominated form a clearly identifiable cluster (Asp) that in both dendrograms merges with AcS (Figure 2a/b). Their most frequent taxa are Asphodelus ramosus subsp. ramosus, Carlina corymbosa, Eryngium campestre and Helianthemum salicifolium. As- phodelus ramosus is clearly the dominant species, followed by Stipa austroitalica subsp. austroitalica, and Dactylis glomerata subsp. hispanica. On the other hand, the species with the greatest cover in AcS, is Stipa austroitalica, fol- lowed by Festuca circummediterranea, and Bromopsis erecta (the latter sporadically present in Asp). The NMS of associations from the Murge hills (Fig- ure 3) resulted in a three-axis solution with a final stress of 12.2. The coefficient of determination for the correlations between ordination distances and distances in the original space, indicates that the NMS explains 87.7 percent of the variation. More in detail, axis 1 explains most of the variation (49.7%), followed by axis 2 (23.3%) and axis 3 (14.7%, not shown). In the ordination diagram (Fig- ure 3), two groups of relevés are clearly distinguishable. The first includes relevés of the associations of the Lygeo sparti-Stipetea tenacissimae class, i.e. StH and CeA. The second group, on the right side of the diagram, includes Figure 2: Hierarchical clustering (Flexible Beta method, β = -0.25; Bray-Curtis dissimilarity) of relevés of dry grassland associations from the Murge hills. 2a) clustering based on presence/absence data, 2b) clustering based on quantitative data. Main clusters: AcS = Acino suaveolentis-Stipetum austroitalicae; Asp = Gelasio columnae-Aspho- deletum ramosi; tr = transition between AcS and Asp; CyS = Cytiso spinescentis-Stipetum austroitalicae; IrS = Irido pseudopumilae-Scorzo- ner etum columnae; CoS = Convolvulo elegantissimi-Stipetum austroit- alicae; CeA = Centaureo apulae-Andropogonetum distachyi; StH = Stipo austroitalicae-Hyparrhenietum hirtae. Slika 2: Hierarhična klasifikacija (metoda Flexible Beta, β = -0.25; Bray-Curtisova mera različnosti) popisov asociacij suhih travišč z gričevja Murge. 2a) klastri na osnovi prisotnosti/odsotnosti, 2b) klastri na osnovi kvantitativnih podatkov. Glavni klastri: AcS = Acino suave- olentis-Stipetum austroitalicae; Asp = Gelasio columnae-Asphodeletum ramosi; tr = prehod med AcS in Asp; CyS = Cytiso spinescentis-Stipetum austroitalicae; IrS = Irido pseudopumilae-Scorzoneretum columnae; CoS = Convolvulo elegantissimi-Stipetum austroitalicae; CeA = Centau- reo apulae-Andropogonetum distachyi; StH = Stipo austroitalicae-Hypar- rhenietum hirtae. 22/2 • 2023, 179–195 184 Terzi Asphodelus ramosus-dominated vegetation the AcS, IrS and Cys, already classified within the order Scorzoneretalia villosae (Festuco-Brometea class), together with the new relevés of the cluster Asp. The relevés of the association CoS are in an intermediate position between the previous two groups. The Asp cluster partially over- laps with both AcS, on one side, and IrS, on the other. The relevés of the Asp cluster were indeed sampled in the same distribution areas of those two associations, with which they share several species (see also Table S3). Figure 3: Non-metric multidimensional scaling of relevés of dry grassland associations from the Murge hills. AcS = Acino suaveolentis- Stipetum austroitalicae (empty triangles); Asp = Gelasio columnae-Aspho- deletum ramosi (filled stars); CeA = Centaureo apulae-Andropogonetum distachyi (empty squares); CoS = Convolvulo elegantissimi-Stipetum aus- troitalicae (filled triangles); CyS = Cytiso spinescentis-Stipetum austroit- alicae (filled circles); IrS = Irido pseudopumilae-Scorzoneretum columnae (empty circles); StH = Stipo austroitalicae-Hyparrhenietum hirtae (filled squares); H = Hemicryptophytes; T = Therophytes; tem = temperature; con = continentality; rea = soil reaction; alt = altitude. Slika 3: Nemetrično večrazsežnostno lestvičenje popisov asociacij suhih travišč z gričevja Murge. AcS = Acino suaveolentis-Stipetum austroitalicae (prazni trikotniki); Asp = Gelasio columnae-Aspho- deletum ramosi (polne zvezde); CeA = Centaureo apulae-Andropo- gonetum distachyi (prazni kvadrati); CoS = Convolvulo elegan- tissimi-Stipetum austroitalicae (polni trikotniki); CyS = Cytiso spinescentis-Stipetum austroitalicae (polni krogi); IrS = Irido pseudopumilae-Scorzoneretum columnae (prazni krogi); StH = Stipo austroitalicae-Hyparrhenietum hirtae (polni kvadrati); H = hemi- kriptofiti; T = terofiti; tem = temperatura; con = kontinentalnost; rea = reakcija tal; alt = višina. Axis 1 is positively correlated with the percentages of therophytes and negatively with hemicryptophytes and soil reaction. A high percentage of annual species is found in the Asp and IrS clusters. Axis 2 is negatively correlated with altitude and continentality and positively correlated with temperature. Therefore, Acs, and CyS are character- ized by a higher continentality, while StH, which was re- corded at the lowest altitudes (along with CeA and CoS), has a higher temperature (Figure 3). Life-forms and EIVs significantly differ among the seven clusters (Table S4). Focused comparisons between Asp and the other associations showed that it significantly differs from AcS for soil reaction, nutrients, therophytes, hemicryptophytes, and from IrS for nutrients, geophytes, hemicryptophytes, and phanerophytes. Generally, Asp differs from the other associations mainly for nutrients, and soil reactions, as far as EIVs are concerned, and for hemicryptophytes and therophytes, as far as life-forms are concerned (Table S4). Temperature discriminates Asp from CeA and CyS, humidity discriminates Asp from CeA and StH, and continentality differentiates Asp from CoS and CeA (Table S4). The IndSp associated with the Asp cluster (Table S3) belong mainly to the Stipo-Trachynietea distachyae (e.g. T rifolium angustifolium, Vulpia ciliata) and anthropogenic classes, such as Artemisietea vulgaris (e.g. V erbascum macru- rum, Onopordum illyricum). The highest IndVal were re- corded for Trifolium angustifolium and Linum tryginum. Other IndSp are associated with groups resulting from the combination of Asp with other clusters, especially IrS, AcS and Cys (Table S3). As for the character species of the Charybdido pancratii-Asphodeletea ramosi indicated by Biondi et al. (2016), most of them turned out to be IndSp of combinations of main clusters. For instance, Squilla pancration is associated with CeA+CoS+StH, Ferula communis with AcS+Asp+CoS+StH, Thapsia garganica subsp. garganica with AcS+Asp+CyS+IrS, and Asphodelus ramosus and Asphodeline lutea with AcS+Asp+CyS+StH (Table S3). Some common grasses of the Murge Plateau, such as Festuca circummediterranea and Bromopsis erecta, are as- sociated with main clusters combinations excluding Asp, where those taxa have been recorded rarely (Table S3). The NMS of relevés of plant communities dominat- ed by Asphodelus ramosus from Italy and western Bal- kans resulted in a three axes solution with a final stress of 13.27. Most of the variance is explained by axis 1 (41.7 %) whereas decreasing values were obtained for axis 2 (20.4 %) and axis 3 (11.9%, not shown). Plant communities from Sicily, Gargano and Tuscany (Italy), mostly included in the Charybdido pancratii- Asphodeletea ramosi by Biondi et al. (2016), are on the right side of the ordination diagram (Figure 4). On the left side, the Balkan plant communities (Figure 4: NA, BC and Ac1) are separated from Asp (upper side), which therefore turns out to be floristically different from the other associations previously described. 22/2 • 2023, 179–195 185 Terzi Asphodelus ramosus-dominated vegetation Figure 4: Non-metric multidimensional scaling of Asphodelus ramosus- dominated associations/plant communities from Italy and Western Balkans (see also Table S2). AA = Alkanno tinctoriae-Asphodeletum ramosi, from Gargano (IT); Ac1 = Asphodelus ramosus community, from the Buna River area (AL); Ac2 = Asphodelus ramosus community from Caltagirone, Sicily (IT); AF = Asphodelino luteae-Feruletum communis, from Gargano (IT); Asp = Gelasio columnae-Asphodeletum ramosi, the new association from the Murge Plateau (IT); BC = Bromo erecti-Chrysopogonetum grylli, from Ćemovsko polje, near Podgorica, Montenegro (ME); CA = Charybido pancratii-Asphodeletum ramosi from Gargano (IT); CF = Carlino siculae-Feruletum communis from Sicily (IT); NA = Narcisso tazettae-Asphodeletum microcarpi, from Istria (HR); TA = Thapsio garganicae-Asphodeletum ramosi, from the island of Pianosa, Toscana (IT). Chorotypes: Ms = steno-Mediterranean, Md = euri-Mediterranean, Ee = East European, Es = Eurosiberian. Slika 4: Nemetrično večrazsežnostno lestvičenje popisov asociacij/ združb s prevladujočo vrsto Asphodelus ramosus v Italiji in na Zaho- dnem Balkanu (glej tudi Tabelo S2). AA = Alkanno tinctoriae-Asphode- letum ramosi, iz Gargana (IT); Ac1 = Asphodelus ramosus community, from the Buna River area (AL); Ac2 = Asphodelus ramosus community from Caltagirone, Sicily (IT); AF = Asphodelino luteae-Feruletum communis, from Gargano (IT); Asp = Gelasio columnae-Asphodeletum ramosi, the new association from the Murge Plateau (IT); BC = Bromo erecti-Chrysopogonetum grylli, from Ćemovsko polje, near Podgorica, Montenegro (ME); CA = Charybido pancratii-Asphodeletum ramosi from Gargano (IT); CF = Carlino siculae-Feruletum communis from Sicily (IT); NA = Narcisso tazettae-Asphodeletum microcarpi, from Istria (HR); TA = Thapsio garganicae-Asphodeletum ramosi, from the island of Pianosa, Toscana (IT). Horotipi: Ms = stenomediteranski, Md = evri- mediteranski, Ee = vzhodnoevropski, Es = evrosibirski. Eurosiberian (Es) and East European (Ee) taxa are more represented in the Balkans (Figure 4). Axis 1 is positively correlated with steno-Mediterranean taxa whereas axis 2 is positively correlated with Euri-Mediterranean taxa (less represented in the Charybdido pancratii-Asphodeletum ra- mosi, CF in Figure 4). Discussion The Asphodelus ramosus-dominated plant community of the Murge Plateau was found to be floristically and eco- logically different from the other grassland associations in the area. Therefore, the new association Gelasio columnae- Asphodeletum ramosi ass. nov. (holotypus rel. 16, Table 1) is described (Figure 5). Its distribution area overlaps the one of the associations Acino-Stipetum austroitalicae and (partially) Irido-Scorzoneretum villosae, from which it differs in the ecological indicators concerning edaphic conditions, such as nutrients and soil reaction. On the other hand, the ecological indicators related to climatic conditions, such as temperature, humidity, and continen- tality, discriminate the Gelasio columnae-Asphodeletum ramosi from the associations of the order Cymbopogono- Brachypodietalia ramosi present in the data set. From the floristic point of view, although several taxa were found to be IndSp of the new association (e.g. T rifolium angustifoli- um, Linum tryginum), the Gelasio columnae-Asphodeletum ramosi can be identified in the field by the dominance of Asphodelus ramosus (recorded with low frequency and cover in the IrS), and the absence of species common in the AcS (e.g. Festuca circummediterranea, Bromopsis erecta, Dianthus sylvestris subsp. longicaulis). The presence of taxa typical of the Hippocrepido glaucae-Stipion austroitalicae (e.g. Gelasia villosa subsp. columnae, Stipa austroitalica subsp. austroitalica, Thymus spinulosus, Carduus nutans subsp. perspinosus) distinguishes this association from others dominated by Asphodelus ramosus from other areas. The structure of the new association is influenced by the high proportion of therophytes (interposed among peren- nials), mainly of the classes Stipo-Trachynietea distachyae, Helianthemetea guttati and Chenopodietea, and by the lower proportion of hemicryptophytes. The presence of some ruderal taxa typical of the veg- etation types subjected to zoo-anthropogenic disturbance (e.g. Verbascum macrurum, Salvia verbenaca, Onopordum illyricum) indicates that Gelasio columnae-Asphodeletum ramosi represents a stage in the regression series caused by overgrazing, possibly combined with frequent fires. Overgrazing often leads to an increase in the cover of Asphodelus ramosus along with other unpalatable plants and thistles, such as Thapsia garganica, Asphodeline lutea, Ferula communis, Eryngium campestre, and Carlina cor- ymbosa (e.g., Camarda et al., 2016), as observed in the Gelasio columnae-Asphodeletum ramosi. The presence of ruderal taxa has also been observed in other plant communities dominated by Asphodelus ramosus, such as the Carlino siculae-Feruletum communis, described in Sicily and originally classified in the order Carthametalia lanatii and in the class Artemisietea vul- 22/2 • 2023, 179–195 186 Terzi Asphodelus ramosus-dominated vegetation garis [syn. Onopordetea acanthi] (Gianguzzi et al., 1996; Gianguzzi & La Mantia, 2008). That association occurs on calcareous substrates (as the Gelasio columnae-Aspho- deletum ramosi), in severely degraded vegetation due to overgrazing, with vegetation cover ranging from 50% to 85% (Gianguzzi & La Mantia, 2008). Also the Thapsio garganicae-Asphodeletum ramosi – another Asphodelus ramosus-dominated association from Pianosa Island (T us- cany, Italy) – was originally classified in the Artemisietea vulgaris, in the order Brachypodio ramosi-Dactylidetalia hispanicae (Foggi et al., 2008); the authors avoided clas- sifying this association in the Lygeo sparti-Stipetea tenacis- simae because the diagnostic taxa of this class are poorly represented in the vegetation of Pianosa Island. How- ever, the Brachypodio ramosi-Dactylidetalia hispanicae is currently considered a syntaxonomic synonym of the Cymbopogono-Brachypodietalia ramosi which, in turn, is framed in the class Lygeo sparti-Stipetea tenacissimae (Mucina et al., 2016). Several taxa present in this associa- tion, e.g., Asphodelus ramosus, Carlina corymbosa, Dactylis glomerata subsp. hispanica, Pallenis spinosa subsp. spinosa, Thapsia garganica, Ferula communis, Squilla pancration, have been considered typical of this class (e.g. Brullo et al., 2010; FloraVeg.EU, 2022). The co-occurrences of xerophilous perennial taxa of the class Lygeo sparti-Stipetea tenacissimae together with oth- ers of nitrophilous-ruderal vegetation was also observed in another plant community dominated by Asphodelus ramosus from Sicily (Poli-Marchese & Grillo, 2003). As a consequence, this community and some others from southern Italy and Malta, containing Asphodelus ramosus (as subordinated species), have been classified in this class and in the order Cymbopogono-Brachypodietalia ramosi [syn. Hyparrhenietalia hirtae] (Brullo et al., 2001, 2010, 2020; Poli-Marchese & Grillo, 2003). A plant communi- ty dominated by Asphodelus ramosus from Murge was also considered to belong to this class (Perrino et al., 2014). In this case, the authors showed a dendrogram in which the relevés of this community merged with those of the Acino suaveolentis-Stipetum austroitalicae, indicating some floristic similarities. The results of this work are in line with those men- tioned above, where the Gelasio columnae-Asphodeletum ramosi includes numerous ruderal species (cf. Table 1, e.g. species from Chenopodietea, Artemisietea vulgaris) along with others from the Lygeo sparti-Stipetea tenacissimae, fre- quently associated with Asphodelus ramosus even in asso- ciations from other geographic contexts. In addition, the Figure 5: Gelasio columnae-Asphodeletum ramosi from the Murge Plateau, south-eastern Italy (Photo: M. Terzi, 13th May 2021). Slika 5: Gelasio columnae-Asphodeletum ramosi na planoti Murge, jugovzhodna Italija (foto: M. Terzi, 13.5.2021). 22/2 • 2023, 179–195 187 Terzi Asphodelus ramosus-dominated vegetation Gelasio columnae-Asphodeletum ramosi also includes some important diagnostic taxa of the Hippocrepido glaucae- Stipion austroitalicae. This alliance is currently framed in the order Scorzo- neretalia villosae (but see also Terzi et al., 2022b), which was originally described in the Western Balkans to rep- resent the grassland vegetation at the interface between the Central European class Festuco-Brometea and the Mediterranean Lygeo sparti-Stipetea tenacissimae [syn. Thero-Brachypodietea] (Terzi, 2011, 2015). Indeed, the most xerothermic Balkan alliance of this order, the Chrys- opogono grylli-Koelerion splendentis, has been arranged in both classes (Horvatić, 1973; Royer, 1991). This alliance includes associations with Asphodelus ramosus, also as the dominant species, which have been described along the Adriatic side of the Balkans, from Istria (Šegulja, 1970) to Montenegro and Albania (Fanelli et al., 2015; Stanišić- Vujačić et al., 2022). In Italy, the most xerothermic al- liance of the Scorzoneretalia villosae, in contact with the Cymbopogono-Brachypodietalia ramosi, is represented by the Hippocrepido glaucae-Stipion austroitalicae. As cited above, the Gelasio columnae-Asphodeletum ramosi includes species of both these orders. The results of this work, however, show that this association is floristically more similar to the other associations of the Scorzoneretalia vil- losae than to those in the data set belonging to the Lygeo sparti-Stipetea tenacissimae (Figures 2–4). Another interesting approach to the syntaxonomy of Asphodelus-dominated plant communities was proposed by Biondi et al. (2016) who described the class Chary- bido pancratii-Asphodeletea ramosi, and the order Aspho- deletalia ramosi to include “the communities of perennial herbaceous macrophytes that invade perennial grasslands, and sometimes grasslands of biennial or annual species, that are abandoned or underused or were previously un- der cultivation” (Biondi et al., 2016: 13). Diagnostic spe- cies of the class and subordinate units include Asphodelus ramosus and other taxa usually associated with it, such as Thapsia garganica, Squilla pancration, Asphodeline lutea, Ferula communis, and Carlina corymbosa. Although those taxa are often found together, also in the Murge Plateau, the Gelasio columnae-Asphodeletum ramosi and some other Asphodelus ramosus-dominant as- sociations (e.g. the Carlino siculae-Feruletum communis) do not represent abandoned or underused grasslands as much as they represent plant communities under zoo- anthropogenic disturbances. In the drier areas of the Mediterranean Basin, Aspho- delus ramosus often becomes dominant as a result of fire and overgrazing, as in the North African ermes which are the most degraded stage of the regressive vegetation series (Le Hoeurou, 1973). The ermes are defined as low herba- ceous vegetation, with a marked seasonal rate of develop- ment, such that the vegetation is generally open except during the wet season, when it may completely cover the ground (Ionesco & Sauvage, 1962). Unpalatable plants (e.g., Asphodelus ramosus, Squilla pancration) and thistles, along with many ephemeral species occupying the spaces between the perennials, are quite common. Although the floristic compositions of Asphodelus ramosus-dominated plant communities from North Africa and other geo- graphic contexts are different from those from Italy, there are some structural similarities. The syntaxonomic con- cept of the Charybido pancratii-Asphodeletea ramosi (and subordinated units), including associations from Italy and Western Balkans, was reviewed by Stanišić-Vujačić et al. (2022). These authors found important floristic dif- ferences between the Asphodelus associations from Italy and those from the Western Balkans, which they ascribed to Scorzoneretalia villosae and Asphodeletalia ramosi, re- spectively. That conclusion is partially confirmed by the results of this paper, given that the Balkan associations were found to be separated from those from Italy (Fig- ure 4), and characterized by a higher percentage of East European and Eurisiberian taxa and a lower percentage of steno-Mediterranean taxa. The proposal to update the standard phytosociological classification of European vegetation with the inclusion of the new class Charybdido pancratii-Asphodeletea ramosi and its subordinate units was rejected because the floristic delimitation of the new class towards other neighbouring ones (e.g. Lygeo sparti-Stipetea tenacissimae) had not been adequately addressed (Biurrun & Willner, 2020). Accord- ing to Brullo et al. (2020), a new class would not be justi- fied in areas with arid Mediterranean climate because nu- merous taxa of the Lygeo sparti-Stipetea tenacissimae, and in particular some caespitose grasses (e.g. Hyparrhenia hir- ta), co-occur together with the diagnostic taxa indicated by Biondi et al. (2016) for the new syntaxonomic units. Actually, in the case of the Gelasio columnae-Asphodeletum ramosi no such caespitose grasses were recorded. In ad- dition, along the Murge Plateau, many of the diagnostic taxa of the Charybdido pancratii-Asphodeletea ramosi were found to be associated with combinations of associa- tions of both the Scorzoneretalia villosae (i.e. Hippocrepido glaucae-Stipion austroitalicae) and Cymbopogono-Brach- ypodietalia ramosi (Table S3). As quoted above, without a large-scale revision for the Charybdido pancratii-Aspho- deletea ramosi to delimit it to neighbouring classes, this new syntaxonomic concept cannot be integrated into the standard phytosociological classification of European veg- etation (i.e. EVC, Biurrun & Willner, 2020). Therefore, although the concept of a high-rank syntaxonomic unit for communities dominated by Asphodelus ramosus seems 22/2 • 2023, 179–195 188 Terzi Asphodelus ramosus-dominated vegetation rather interesting, there is the need for a more compre- hensive syntaxonomic revision (possibly including vegeta- tion data from the entire distribution area of this species). The Gelasio columnae-Asphodeletum ramosi represents an intermediate vegetation type between the Hippocrepido glaucae-Stipion austroitalicae (Scorzoneretalia villosae) and the Cymbopogono-Brachypodietalia ramosi and there are reasons to classify it in both the orders. Although Aspho- delus ramosus is currently considered a species belonging to the class Lygeo sparti-Stipetea tenacissimae, the results of this paper indicate that the new association is more simi- lar to the associations of the Hippocrepido glaucae-Stipion austroitalicae rather than to those of that class present in the data set. The occurrence of taxa such as Stipa austroi- talica, Gelasia villosa subsp. columnae, Thymus spinulosus, Euphorbia nicaeensis subsp. nicaeensis, Carduus nutans subsp. perspinosus together with the dominant Asphodelus ramosus, indicates that the new association still belongs to the Hippocrepido glaucae-Stipion austroitalicae. The Gelasio columnae-Asphodeletum ramosi is therefore classified in this alliance, which, in turn, is ascribed by the EVC (Mucina et al., 2016) to the Scorzoneretalia villosae order and the Festuco-Brometea class. It is worth mentioning that Terzi et al. (2022b) proposed to move the xerophytic alliances of this order to another class, the Helianthemo cani-Sesleri- etea nitidae (see Terzi et al. 2022a). However, a large-scale numerical analysis to support this interpretation is still missing, and the scheme below refers to the hierarchical syntaxonomic relationships of the EVC. In any case, given the above, the following classification scheme is tentative. Class: Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947 Order: Scorzoneretalia villosae Kovačević 1959 Alliance: Hippocrepido glaucae-Stipion austroitalicae Forte et Terzi in Forte, Perrino et Terzi 2005 Association: Gelasio columnae-Asphodeletum ramosi ass. nov. Other syntaxa quoted in the text Acino suaveolentis-Stipetum austroitalicae Forte et Terzi in Forte, Perrino et T erzi 2005; Artemisietea vulgaris Lohmey- er et al. in Tx. ex von Rochow 1951; Asphodeletalia ramosi Biondi in Biondi, Pesaresi, Galdenzi, Gasparri, Biscotti, Del Viscio et Casavecchia 2016; Brachypodio ramosi-Dac- tylidetalia hispanicae Biondi et al. 2001; Carlino siculae- Feruletum communis Gianguzzi, Ilardi et Raimondo 1993; Carthametalia lanati S. Brullo in S. Brullo et Marcenò 1985; Centaureo apulae-Andropogonetum distachyi Biondi et Guerra 2008; Charybdido pancratii-Asphodeletea ramosi Biondi in Biondi, Pesaresi, Galdenzi, Gasparri, Biscotti, Del Viscio et Casavecchia 2016; Charybido pancratii- Asphodeletum ramosi Biondi, Pesaresi, Galdenzi, Gasparri, Biscotti, Del Viscio et Casavecchia 2016; Chenopodietea Br.-Bl. in Br.-Bl. et al. 1952; Chrysopogono grylli-Koeler- ion splendentis Horvatić 1973; Convolvulo elegantissimi- Stipetum austroitalicae Biondi et Guerra, 2008; Cym- bopogono-Brachypodietalia ramosi Horvatić 1963; Cytiso spinescentis-Stipetum austroitalicae Terzi et Forte in Forte, Perrino et T erzi 2005; Helianthemetea guttati Rivas Goday et Rivas-Mart. 1963; Helianthemo cani-Seslerietea nitidae Terzi, Di Pietro et Theurillat 2022; Hyparrhenietalia hir- tae Rivas-Mart. 1978; Irido pseudopumilae-Scorzoneretum columnae Di Pietro, Misano et Terzi in Terzi, D’Amico et Di Pietro 2010; Koelerietalia splendentis Horvatić 1973; Lygeo sparti-Stipetea tenacissimae Rivas-Mart. 1978; On- onido-Rosmarinetea Br.-Bl. in A. Bolòs y Vayreda 1950; Onopordetea acanthii Br.-Bl. 1967; Scorzonero villosae- Chrysopogonetalia grylli Horvatić et Horvat in Horvatić 1963; Stipo austroitalicae-Hyparrhenietum hirtae Biondi et Guerra 2008; Stipo-Trachynietea distachyae S. Brullo in S. Brullo et al. 2001; Thapsio garganicae-Asphodeletum ra- mosi Foggi, Cartei et Pignotti 2008; Thero-Brachypodietea ramosi Br.-Bl. ex A. Bolòs y Vayreda et O. de Bolòs 1950. Acknowledgements This research has been carried out with the support of the Alta Murgia National Park Authority (Italy). I thank Romeo Di Pietro and Francesca Casella for helpful dis- cussions on a preliminary draft of this paper, and Antun Alegro and an anonymous reviewer for their comments and suggestions. Massimo Terzi  https://orcid.org/0000-0001-8801-6733 Supplementary materials Table S1: Sources of phytosociological data for the dry grassland associations of the Murge hill. T able S2: Sources of phytosociological data for the Aspho- delus ramosus-dominated associations/plant communities. T able S3: Indicator Species for the main clusters and their combinations in larger groups. Table S4: Kruskal-Wallis test for Ecological Indicator Values and life-forms spectra and post hoc pairwise comparisons against the Gelasio columnae-Asphodeletum ramosi. Table S5: Dates, geographical coordinates, altitudes and sporadic species of relevés in Table 1. 22/2 • 2023, 179–195 189 Terzi Asphodelus ramosus-dominated vegetation References Biondi, E., & Guerra, V. (2008). Vegetazione e paesaggio vegetale delle gravine dell’arco jonico. Fitosociologia, 45, 57–125. Biondi, E., Pesaresi, S., Galdenzi, D., Gasparri, R., Biscotti, N., Del Viscio, G., & Casavecchia, S. (2016). Post-abandonment dynamic on Mediterranean and sub-Mediterranean perennial grasslands: the edge vegetation of the new class Charybdido pancratii-Asphodeletea ramosi. Plant Sociology, 53, 3–18. https://doi.org/10.7338/pls2016532/01 Biurrun I, Pielech R, Dembicz I, Gillet F , Kozub Ł, Marcenò C, Reitalu T, Van Meerbeek K, Guarino R, Chytrý M, Pakeman RJ, Preislerová Z, Axmanová I, Burrascano S, Bartha S, Boch, S, Bruun, H. H., Conradi, T., De Frenne, P ., Essl, F ., Filibeck, G., Hájek, M., Jiménez-Alfaro, B., Kuzemko, A., Molnár, Z., Pärtel, M., Pätsch, R., Prentice, H. C., Roleček, J., Sutcliffe, L. M. E., Terzi, M., Winkler, M., Wu, J., Aćić, S., Acosta, A. T. R., Afif, E., Akasaka, M., Alatalo, J. M., Aleffi, M., Aleksanyan, A., Ali, A., Apostolova, I., Ashouri, P ., Bátori, Z., Baumann, E., Becker, T., Belonovskaya, E., Alonso, J. L. B., Berastegi, A., Bergamini, A., Bhatta, K. B., Bonini, I., Büchler, M.-O., Budzhak, V., Bueno, Á., Buldrini, F ., Campos, J.-A., Cancellieri, L., Carboni, M., Ceulemans, T., Chiarucci, A., Chocarro, C., Conti, L., Csergő, A. M., Cykowska-Marzencka, B., Czarniecka-Wiera, M., Czarnocka-Cieciura, M., Czortek, P ., Danihelka, J., de Bello, F ., Deák, B., Demeter, L., Deng, L., Diekmann, M., Dolezal, J., Dolnik, C., Dřevojan, P ., Dupré, C., Ecker, K., Ejtehadi, H., Erschbamer, B., Etayo, J., Etzold, J., Farkas, T., Farzam, M., Fayvush, G., Fernández Calzado, M. R., Finckh, M., Fjellstad, W., Fotiadis, G., García-Magro, D., García-Mijangos, I., Gavilán, R. G., Germany, M., Ghafari, S., Giusso del Galdo, G. P ., Grytnes, J.-A., Güler, B., Gutiérrez-Girón, A., Helm, A., Herrera, M., Hüllbusch, E. M., Ingerpuu, N., Jägerbrand, A. K., Jandt, U., Janišová, M., Jeanneret, P ., Jeltsch, F ., Jensen, K., Jentsch, A., Kącki, Z., Kakinuma, K., Kapfer, J., Kargar, M., Kelemen, A., Kiehl, K., Kirschner, P ., Koyama, A., Langer, N., Lazzaro, L., Lepš, J., Li, C.-F ., Yonghong Li, F ., Liendo, D., Lindborg, R., Löbel, S., Lomba, A., Lososová, Z., Lustyk, P ., Luzuriaga, A. L., Ma, W., Maccherini, S., Magnes, M., Malicki, M., Manthey, M., Mardari, C., May, F ., Mayrhofer, H., Meier, E. S., Memariani, F ., Merunková, K., Michelsen, O., Mesa, J. M., Moradi, H., Moysiyenko, I., Mugnai, M., Naqinezhad, A., Natcheva, R., Ninot, J. M., Nobis, M., Noroozi, J., Nowak, A., Onipchenko, V., Palpurina, S., Pauli, H., Pedashenko, H., Pedersen, C., Peet, R. K., Pérez-Haase, A., Peters, J., Pipenbaher, N., Pirini, C., Pladevall-Izard, E., Plesková, Z., Potenza, G., Rahmanian, S., Rodríguez-Rojo, M. P ., Ronkin, V., Rosati, L., Ruprecht, E., Rusina, S., Sabovljević, M., Sanaei, A., Sánchez, A. M., Santi, F ., Savchenko, G., Sebastià, M.-T., Shyriaieva, D., Silva, V., Škornik, S., Šmerdová, E., Sonkoly, J., Sperandii, M. G., Staniaszek-Kik, M., Stevens, C., Stifter, S., Suchrow, S., Swacha, G., Świerszcz, S., Talebi, A., T eleki, B., Tichý, L., Tölgyesi, C., T orca, M., Török, P ., Tsarevskaya, N., Tsiripidis, I., T urisová, I., Ushimaru, A., Valkó, O., Van Mechelen, C., Vanneste, T ., Vasheniak, I., Vassilev, K., Viciani, D., Villar, L., Virtanen, R., Vitasović-Kosić, I., Vojtkó, A., Vynokurov, D., Waldén, E., Wang, Y., Weiser, F ., Wen, L., Wesche, K., White, H., Widmer, S., Wolfrum, S., Wróbel, A., Yuan, Z., Zelený, D., Zhao, L., & Dengler, J. (2021). Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 32, e13050. https:// doi.org/10.1111/jvs.13050 Biurrun, I., & Willner, W. (2020). First report of the European Vegetation Classification Committee (EVCC). Vegetation Classification and Survey, 1, 145–147. https://doi.org/10.3897/VCS/2020/60352 Braun-Blanquet, J. (1932). Plant Sociology – the study of plant communities. (translated, revised and edited by G. D. Fuller and G. D. Conrad; reprint of 1983). Koeltz scientific books, Koenigstein, Germany. Breckle, S.-W. (2002). Walter’s vegetation of the Earth. Springer-Verlag, Berlin, Germany. Brullo, C., Brullo, S., Del Galdo, G. G., Guarino, R., Minissale, P ., Scuderi, L., Siracusa, G., Sciandrello, S., & Spampinato, G. (2010). The Lygeo-Stipetea class in Sicily. Annali di Botanica, 0, 57–84. https:// doi.org/10.4462/annbotrm-9119 Brullo, S., Brullo, C., Cambria, S., & Del Galdo, G. G. (2020). The vegetation of the Maltese Islands. Springer Nature Switzerland AG, Cham, Switzerland. Brullo, S., Del Galdo, G. G., & Minissale, P . (2009). Taxonomic revision of the Koeleria splendens C. Presl group (Poaceae) in Italy based on morphological characters. Plant Biosystems, 143, 140–161. https:// doi.org/10.1080/11263500802709764 Brullo, S., Scelsi, F ., & Spampinato, G. (2001). La vegetazione dell'Aspromonte. Laruffa,Editore, Reggio Calabria. Camarda, I., Brunu, A., Carta, L., & Vacca, G. (2016). Incendies, paturage et biodiversité dans la montagne du Gennargentu (Sardaigne). Flora Mediterranea, 26, 163–177. https://doi.org/10.7320/ FlMedit26.163 De Cáceres, M., & Legendre, P . (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90, 3566–3574. https://doi.org/10.1890/08-1823.1 De Cáceres, M., Legendre, P ., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119, 1674–84. https://doi.org/10.1111/j.1600-0706.2010.18334.x Dufrêne, M., & Legendre, P . (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366. https://doi.org/10.1890/0012- 9615(1997)067[0345:SAAIST]2.0.CO;2 Euro+Med (2022). Euro+Med PlantBase, the information resource for Euro-Mediterranean plant diversity. Published at http://www. europlusmed.org [accessed 10 September 2022]. European Commission (2013). Interpretation Manual of European Union habitats. EUR 28 version, 1–144. https://ec.europa.eu/ environment/nature/legislation/habitatsdirective/docs/Int_Manual_ EU28.pdf Fanelli, G., De Sanctis, M., Gjeta, E., Mullaj, A., & Attorre, F . (2015). The vegetation of the Buna river protected landscape (Albania). Hacquetia, 14, 129–174. https://doi.org/0.1515/hacq-2015-0008 FloraVeg.EU (2022). Database of European Flora and Vegetation. www.floraveg.eu [accessed 10 September 2022] Foggi, B., Cartei, L., & Pignotti, L. (2008). La vegetazione dell’Isola di Pianosa (Arcipelago Toscano, Livorno). Braun-Blanquetia, 43, 3–41. Forte, L, Perrino, E. V., & Terzi, M. (2005) Le praterie a Stipa austroitalica Martinovsky ssp. austroitalica dell’Alta Murgia (Puglia) e della Murgia Materana (Basilicata). Fitosociologia, 42, 83–103. García, Y., Castellanos, M. C., & Pausas, J. G. (2016). Fires can benefit plants by disrupting antagonistic interactions. Oecologia, 182, 1165–1173. https://doi.org/10.1007/s00442-016-3733-z Giacomini, V., Fenaroli, L., & Ferlan, L. (1958). Conosci l'Italia: Volume II: La Flora. Touring Club Italiano, Milano Gianguzzi, L., & La Mantia, A. (2008). Contributo alla conoscenza della vegetazione e del paesaggio vegetale della Riserva Naturale ‘Monte Cofano’ (Sicilia occidentale). Fitosociologia, 45, suppl. 1, 3–55. Gianguzzi, L., Ilardi, V., & Raimondo, F . M. (1996). La vegetazione del Promontorio di Monte Pellegrino (Palermo). Quaderni di Botanica Ambientale e Applicata, 4(1993), 79–137. Giraudoux, P . (2022) pgirmess: Spatial Analysis and Data Mining for Field Ecologists. R package version 2.0.0, https://CRAN.R-project. org/package=pgirmess. 22/2 • 2023, 179–195 190 Terzi Asphodelus ramosus-dominated vegetation Guarino, R., Guccione, M., & Gillet, F . (2022). Plant communities, synusiae and the arithmetic of a sustainable classification. Vegetation Classification and Survey, 3, 7–13. https://doi.org/10.3897/VCS.60951 Horvatić, S. (1963). Vegetation map of the island of Pag, with a review of the vegetation units of the coast of Croatia. Acta Biologica (Zagreb), 4, 3–187. Horvatić, S. (1973). Syntaxonomic analysis of the vegetation of dry grassland and stony meadows in Eastern Adriatic coastal Karts district based on the latest phytocoenological research. Fragmenta Herbologica Jugoslavica, 32, 1–15. Ionesco, T., & Sauvage, C. (1962). Les types de végétation du Maroc: essai de nomenclature et de définition. Ministère de l'Agriculture, Sous-Direction de la Recherche Agronomique et de l'Enseignement Agricole, Rabat, Morocco Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5, 144–161. http://journal.r-project.org/ archive/2013-1/kahle-wickham.pdf Le Houerou, H. N. (1981). Impact of man and his animals on Mediterranean vegetation. In F . Castri, D. W. Goodall, & R. L. Specht (Eds.), Ecosystems of the World 11. Mediterranean-Type Shrublands (pp. 479–521). Elsevier, Amsterdam, Netherlands. Lepš, J., & Hadincová, V. (1992). How reliable are our vegetation analyses? Journal of Vegetation Science, 3, 119–124. https://doi. org/10.2307/3236006 McCune, B., & Mefford, M. J. (2011). PC-ORD. Multivariate analysis of ecological data. Version 6.0 MjM Software, Gleneden Beach, Oregon, USA. Mucina, L., Bültman, H., Dierssen, K., Theurillat, J.-P ., Dengler, J., Čarni, A., Šumberová, K., Raus, T., Di Pietro, R., Gavilán Garcia, R., Chytrý, M., Iakushenko, D., Schaminée, J. H. J., Bergmeier, E., Santos Guerra, A., Daniëls, F . J. A., Ermakov, N., Valachovič, M., Pigantti, S., Rodwell, J. S., Pallas, J., Capelo, J., Weber, H. E., Lysenko, T., Solomeshch, A., Dimopoulos, P ., Aguiar, C., Freitag, H., Hennekens, S. M., & Tichý, L. (2014). Vegetation of Europe: hierarchical floristic classification system of plant, lichen, and algal communities. Applied Vegetation Science, 19, 3–264. https://doi.org/10.1111/avsc.12257 Noy-Meir, I. (1990) Responses of two semiarid rangeland communities to protection from grazing. Israel Journal of Botany, 39, 431– 442. Ogle, D. H., Doll, J. C., Wheeler, P ., & Dinno, A. (2022). FSA: Fisheries Stock Analysis. R package version 0.9.3, https://github.com/ fishR-Core-Team/FSA. Pantis, J., & Margaris, N. S. (1988). Can systems dominated by asphodels be considered as semi-deserts? International Journal of Biometeorology, 32, 87– 91. https://doi.org/10.1007/BF01044899 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10, 439–446. https://doi. org/10.32614/RJ-2018-009 Perrino, E. V., Brunetti, G., & Farrag, K. (2014). Plant communities in multi-metal contaminated soils: a case study in the National Park of Alta Murgia (Apulia region-Southern Italy). International Journal of Phytoremediation, 16, 871– 888. https://doi.org/10.1080/15226514.2 013.798626 Pesaresi, S., Galdenzi, D., Biondi, E., & Casavecchia, S. (2014). Bioclimate of Italy: application of the worldwide bioclimatic classification system. Journal of Maps, 10, 538–553. Pignatti, S. (1982). Flora d’Italia. Edagricole, Bologna. Pignatti, S., Menegoni, P ., & Pietrosanti, S. (2005). Biondicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia, 39, 1–97. Pignatti, S., Oberdorfer, E., Schaminée, J. H. J., & Westhoff, V. (1995). On the concept of vegetation class in phytosociology. Journal of Vegetation Science, 6(1), 143–152. https://doi.org/10.2307/3236265 Poli Marchese, E., & Grillo, M. (2003). Grassland vegetation on the archeological sites of the Caltagirone area (Southern Italy). Annali di Botanica, 3, 159–178. Quintanar, A., & Castroviejo, S. (2013). Taxonomic revision of Koeleria (Poaceae) in the western Mediterranean basin and Macaronesia. Systematic Botany, 38, 1029–1061. https://doi. org/10.1600/036364413X674698 Quintanar, A., Glazkova, E., & Castroviejo, S. (2009). On the identity and typification of Koeleria lobata (M. Bieb.) Roem. & Schult. (Pooideae, Gramineae). T axon, 58, 617–620. https://doi.org/10.1002/ tax.582024 R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rivas-Martínez, S., Sáenz, S. R., & Penas, A. (2011). Worldwide bioclimatic classification system. Global Geobotany, 1, 1–634.  Royer, J. M. (1991). Synthèse eurosibérienne, phytosociologique et phytogéographique de la classe des Festuco-Brometea. Dissertationes Botanicae, 178, 1–296. Šegulja, N. (1970). Vegetation of the northeastern part of the Labinština in Istria. Acta Botanica Croatica, 29, 157–172. Siegel, S., & Castellan, N. J. (1988). Non parametric statistics for the behavioural sciences. MacGraw Hill Int., New York, pp. 213–214. South, A. (2017). rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/ package=rnaturalearth. Stanišić-Vujačić, M., Stešević, D., Hadžiablahović, S., Caković, D., & Šilc, U. (2022). An Asphodelus ramosus dominated plant community in Montenegro: fringe or grassland? Acta Botanica Croatica, 81, 12–22. Terzi, M. (2011). Nomenclatural revision for the order Scorzonero- Chrysopogonetalia. Folia Geobotanica, 46, 411–444. http://www.jstor. org/stable/23064934. Terzi, M. (2015). Numerical analysis of the order Scorzoneretalia villosae. Phytocoenologia, 45, 11–32. doi:10.1127/phyto/2015/0009 Terzi, M., Di Pietro, R., & D’Amico, F . S. (2010). Indicator Species Analysis applied to communities with Stipa austroitalica Martinovsky and relevant syntaxonomic problems. Plant Sociology, 47, 3–28. Terzi, M., Di Pietro, R., & Theurillat, J.-P . (2022a). Nomenclature of Italian syntaxa of the classes Festuco hystricis-Ononidetea striatae and Rumici-Astragaletea siculi. Plant Biosystems, 155, 1213–1225. https:// doi.org/10.1080/11263504.2021.2013338 Terzi, M., Jasprica, N., Pandža, M., Milović, M., & Caković, D. (2022b). Diversity and ecology of Salvia officinalis communities in the Western Balkans. Plant Biosystems, doi: 10.1080/11263504.2022.2098868 Tichý, L., Hennekens, S. M., Novák, P ., Rodwell, J. S., Schaminée, J. H., & Chytrý, M., 2020. Optimal transformation of species cover for vegetation classification. Applied Vegetation Science, 23, 710–717. https://doi.org/10.1111/avsc.12510 Westhoff, V., & van der Maarel, E. (1980). The Braun-Blanquet approach. In: R. H. Whittaker (Ed.), Classification of plant communities (pp. 287–399). 2nd ed. Junk/The Hague, Boston/London. Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant species richness: the world records. Journal of Vegetation Science, 23, 796–802. https://doi.org/10.1111/j.1654-1103.2012.01400.x 22/2 • 2023, 179–195 191 Terzi Asphodelus ramosus-dominated vegetation Table 1: Gelasio columnae-Asphodeletum ramosi ass. nov., * holotypus rel. 16; rels 1–2: transition towards the Acino suaveolentis-Stipetum austroitalicae. Tabela 1: Gelasio columnae-Asphodeletum ramosi ass. nov., * holotypus rel. 16; rels 1–2: prehod k asociaciji Acino suaveolentis-Stipetum austroitalicae. relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16* 17 18 19 20 21 22 23 24 25 26 27 28 l.f. chorotype aspect (°) 0 340 0 0 0 0 0 0 2 0 0 10 250 148 10 270 290 180 120 260 140 210 260 240 310 270 250 250 chorotype slope (°) 0 3 0 0 0 0 0 0 2 0 0 3 2 15 3 3 3 2 2 20 3 3 2 2 4 5 5 5 life-form vegetation cover (%) 95 100 80 80 80 75 75 75 85 80 90 75 75 90 80 85 70 100 100 100 95 80 50 80 80 85 85 85 plot size (m 2 ) 30 30 30 40 30 30 30 30 25 30 25 25 25 30 25 25 25 50 50 50 70 40 50 50 50 50 30 30 Gelasio columnae-Asphodeletum ramosi Asphodelus ramosus subsp. ramosus 4 4 4 4 4 3 3 3 3 3 4 3 3 4 4 4 4 4 5 4 3 3 3 3 3 3 3 3 G Steno-Medit Gelasia villosa subsp. columnae + 1 . 3 1 + . 2 2 . 2 2 1 . 2 2 2 + 1 + + 2 + + + + 2 1 H Endemic Hippocrepido glaucae-Stipion austroitalicae Stipa austroitalica subsp. austroitalica 2 2 3 2 + . . 3 2 + + . 2 + + + + + 1 3 + 3 2 + 3 3 2 1 H Endemic Thymus spinulosus 2 2 + 2 2 2 3 . + 2 2 . . . . + + 1 + 1 + 2 . 2 2 2 2 1 Ch Endemic Carduus nutans subsp. perspinosus . . + + + + + . . + + . + + . + . + + + . . + + + + + . H Endemic Crepis neglecta subsp. corymbosa + . . . + . + + + + + + + . 1 1 1 . . + + . + . + . + + T Endemic Euphorbia nicaeensis subsp. nicaeensis + + . + + + + . + 2 . + 1 + + + + . . . . . + . + + . + G Steno-Medit Erysimum crassistylum . . . . . + . + . . . . . . . . . + + + . . + . . + . . H Euri-Medit Potentilla detommasii + + . . . . . . + + . . . . . . . + . . . . . . . . . . H SE-European Iris pseudopumila . . + + . . . . . . . . . . . . . . + . . . . . . . . . G Endemic Hippocrepis glauca . . . . . . . . . . . . . . . . . . . . . + . . . . . . H European Scorzoneretalia villosae and Festuco-Brometea Eryngium campestre + + + + 2 + + + + + + + 2 + + + 2 + 2 + + + + 1 + + 2 + H Euri-Medit Asphodeline lutea^ + + . . 2 2 + . + + . . + 1 . + . + + . 1 . + 1 + + + + G Euri-Medit Convolvulus cantabrica . . . + + 2 . + . . + + + + 1 + + . . 1 . + . + 1 + . . H Euri-Medit Galium corrudifolium 2 + . + + + . . + + . . . + . + . + + 1 . . . 2 + 2 . 1 H Steno-Medit Centaurea deusta . + . . + + + + 2 + . . . . . . . . . . + 1 + 1 + + . 2 H Endemic Eryngium amethystinum + . + + . + + . + + . + . . . + . . + . . + . 1 + . . 1 H Euri-Medit Koeleria splendens . + + + + + + . 2 2 . . + . . . . . . . . + . . 2 2 . 3 H Montane Phlomis herba-venti subsp. herba-venti + + . + . + . + + . + . . . . + . + 1 . . . . + . + + . H Steno-Medit Ornithogalum gussonei + . . . + . + . + + . + + . + . 1 . . . . . . . . . + . G Steno-Medit Sanguisorba minor . + . . + + . . . + . + . . . . . . . . . 2 + . + 1 . + H Paleotemperate Tragopogon porrifolius . + + . . . . . . . . . . + + . . r + + + . . + . . . + H Euri-Medit T eucrium chamaedrys subsp. chamaedrys 2 1 . . . . 1 + + 2 . . . 2 . 1 . . . + . . . . . . . 2 Ch Euri-Medit Anthyllis vulneraria . . . + . . + . 2 + . . + . . . + . . . . . . . 2 + . 1 H Euri-Medit Seseli tortuosum + . . . . . . . 2 . + . 1 . . . + . . . . . + + + 2 . . H Steno-Medit Phleum ambiguum + . . . . + . . . + . . . . . . . . + + . . . + 2 3 . . H Endemic Bupleurum baldense . . . . . . + . + + . . . . . . . . . . . . . + + . . + T Steno-Medit 22/2 • 2023, 179–195 192 Terzi Asphodelus ramosus-dominated vegetation relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16* 17 18 19 20 21 22 23 24 25 26 27 28 l.f. chorotype Asperula aristata subsp. scabra . . + . + . + . . + . . . . . . . . . . . + . . . . . . H Montane Arabis hirsuta . . . . + . . + + . . . . . . . . . . . . . + . . . + . H European Echium vulgare . . . . . . + . . + . . . + . . . . . . . . . + . + . . H European Bromopsis erecta 2 3 . . + . . . . . . . . . . . . . + . . . . . . 2 . . H Paleotemperate Hypericum perforatum + + . . . + . . 2 . . . . . . . . . . . + . . . . . . . H Paleotemperate Leopoldia comosa . . . . . . . . + . + . . . + . + . . . . . . . . . . . G Euri-Medit Medicago falcata . + . . . . . + . . . . . . + . . . . . . + . . . . . . H Eurasian Centaurium erythraea . . . . . . . . + . . . . . . . . . . . . . . . r . . + H Paleotemperate Cuscuta epithymum . . + + . . . . . . . . . . + . . . . . . . . . . . . . T Eurasian Ophrys bertolonii . . . . . . . + . . . + + . . . . . . . . . . . . . . . G Steno-Medit Trigonella gladiata . . . . . . . . . + . . . . . + + . . . . . . . . . . . T Steno-Medit Potentilla pedata . . . . . . . . . + . . . . . . . . . . . . . + . . . . H Euri-Medit Satureja montana . . . . . . . . . . . + . . . . . . . . . + . . . . . . Ch Montane Carex flacca . . . . + . . . . . . . . . . . . . . . . . . . . . + . H European Silene otites . . . . . . . . . . . . . . . . . . . . . . + + . . . . H Eurasian Stipa capillata . . . . . . . . . + . . . . . . . . . . . . . . . . . + H Eurasian Festuca circummediterranea . 2 . . . . . . . . . . . . . . . . . . . . . . + . . . H Euri-Medit Lygeo sparti-Stipetea tenacissimae Carlina corymbosa^ . . 2 + 2 2 2 2 + + 1 2 + + 2 2 2 + + + + + 2 + + + 2 + H Steno-Medit Dactylis glomerata 1 . 1 2 + 2 2 + + + 2 2 + + 2 + 3 2 2 1 2 . 2 2 2 + + 2 H Steno-Medit Pallenis spinosa subsp. spinosa + . + + + + + + . + + + . + + + . . . + + 1 + + + + . . H Euri-Medit Thapsia garganica subsp. garganica^ + + . + 2 + 1 + + . + + 1 2 + + + + . . . . + + . . 2 . H Steno-Medit Sixalix atropurpurea subsp. maritima . . + . 1 + + . + + . r + + . . . r . . + + 2 + + + + + H Steno-Medit Reichardia picroides + + + + + . . + + . . + + . + . + . + + + + + . . + + . H Steno-Medit Ferula communis^ + + + + + + + + + + . . . . + . . . . . . + + . + + . + H Euri-Medit Convolvulus althaeoides subsp. tenuissimus . . . . . + . + 2 + . + + + . . . + 1 + + . 1 . + . + + H Steno-Medit Micromeria graeca s.l. . . . . . + + . + 1 . . . . . . . . . . + . + . 2 2 . . Ch Steno-Medit Squilla pancration^ . . + + . . . . . . . . + . . . . + 1 1 . + . . . + . . G Steno-Medit Stipo-Trachynietea distachyae Hypochaeris achyrophorus + + + + + . + 1 + + + + + + + + + 2 2 + + + + + + . 1 1 T Steno-Medit Sherardia arvensis + . + 1 1 + 1 + + . + + + 1 + + + 1 2 + + + + + . + 1 + T Euri-Medit Linum strictum + L. corymbulosum + . + + + + + 1 + + + + + + + 1 + + . . + . + 2 + 1 + 1 T Steno-Medit Vulpia ciliata . . 1 + 1 + + 1 1 1 . + 1 . 2 + + + + . + + + + 1 + . + T Euri-Medit Trifolium scabrum . . + . + + + 1 + + + . + . 1 + + + + + + 1 + 1 + . + + T Euri-Medit Trifolium stellatum + . . + . + + 1 + + + 2 2 . 2 1 2 + + + + + . 1 + + + . T Euri-Medit Trifolium angustifolium + . . + 1 2 . + + + + 1 + + . 1 + + 1 + + . 1 . + . + + T Euri-Medit Tordylium apulum 1 + + 1 + + + + + . 2 1 1 + + 1 + 1 1 + + . . . . . 1 . T Steno-Medit 22/2 • 2023, 179–195 193 Terzi Asphodelus ramosus-dominated vegetation relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16* 17 18 19 20 21 22 23 24 25 26 27 28 l.f. chorotype Trifolium campestre + + . + 1 1 . 2 + + . + . 1 . + . 1 + + + + + + 1 1 . 1 T Paleotemperate Trachynia distachya . 2 . . 2 1 1 . 2 + 2 . . . + 1 + + + 1 . . 2 . 2 + . . T Steno-Medit Medicago minima + . . . . + + 2 . . 1 . 1 . 2 + + + + + + 1 . . + . 1 . T Euri-Medit Catapodium rigidum + . + . + + + . . . . . . 1 + . + + 1 + . + + + + . . + T Euri-Medit Euphorbia exigua + . + . . . + . + + . + . . + + + . + + . + + + + . . . T Euri-Medit Tordylium officinale . . 1 . + . . . 2 + . + + . . . . + . . . + + + + + . 1 T Euri-Medit Sideritis romana subsp. romana . . + . . . + . + . . + + . + . + . . + + + + + 1 . . . T Steno-Medit Crepis rubra + . . . + . . + + + . + + . . . + 2 . . . . + + + . . + T Steno-Medit Hedypnois rhagadioloides + . . . . + . . + + + + . . . . + 1 + + . + + . . . . . T Steno-Medit Lagurus ovatus . . 1 . . . 1 + + 1 . . + . . . . + . . . + . . + . . . T Euri-Medit Valerianella eriocarpa + . . . . + . . . + + + . . . + 1 . . . . . . . . . + . T Steno-Medit Polygala monspeliaca + . . . . . + + + . . . + . + . . . + . . + . . . . . . T Steno-Medit Medicago rigidula . . . . . . . . . + . . + . . + + . + . . . . + . . + . T Euri-Medit Ononis reclinata subsp. reclinata . . 1 . . . . + . . . + 1 . + . + . . . . + . . . . . . T Euri-Medit Hippocrepis biflora + . . + . . . . . . . . . . . . . . 1 + + . . + . . + . T Euri-Medit Ajuga iva . . . . . + . . . . . . + . . . . . . . . + + . r + . . T Steno-Medit Filago germanica . . . . . . . . . . . . . . . + . + 1 . . . . + + . . . T Paleotemperate Medicago disciformis . . + . . . . . . . . . . . + . . + + + . . . . . . . . T Steno-Medit Petrorhagia dubia . . . . . . + . . . . . + . . . . + . . . . + . + . . . T Steno-Medit Silene nocturna . . + . . . . . + . . . . . . . . . . . . . + . + + . . T Steno-Medit Hippocrepis ciliata . . + . . . . . . . . . + . . + . . . . . + . . . . . . T Steno-Medit Xeranthemum inapertum . . . . . . . . . . . . . . . . . + 1 . . . . . 1 . . + T European Medicago orbicularis . . . . . . . . . . . . . . . . . + . + . . . . . . + . T Euri-Medit Coronilla scorpioides + . . . . . . . . . . . . . . . + . . + . . . . . . . . T Euri-Medit Crepis neglecta subsp. neglecta . + . . . . . . . . . . . . . . . . . . + . r . . . . . T Euri-Medit Artemisietea vulgaris Daucus carota + + + . + + + + + + + + . + + + . . . . + + 2 + 2 + + + H Paleotemperate Salvia verbenaca + + . . . . . . . . + + . + . . + + 2 + + . + + . . + . H European Verbascum macrurum . . + + . + + . . + . . + . . . . . + . . . + . . r . . H Montane Onopordum illyricum . . . . + + . . . . + + + . . . . + + + . . . . . . . . H Steno-Medit Salvia argentea . . . + + + . . + + . . . . . . . + + . . . . r . . . . H Steno-Medit Carthamus lanatus subsp. lanatus . . . . . + . . . . 2 + + . . . . + 1 . . . + . . . . . T Euri-Medit Silene vulgaris . . . + . . + . . . . . + . . . + . . + . . . . . . . . T Paleotemperate Echium asperrimum . . . + . . . + . . . . . . . . . . + . . . . . . . + . H Steno-Medit Verbascum pulverulentum . . . . . + . . . . . . . . . . . . . . + . r . . . . . H European Chenopodietea Avena barbata s.l. 1 . 1 + + + + . + 1 + + 1 1 + + + 2 3 1 2 1 2 1 1 2 + 1 T Euri-Medit 22/2 • 2023, 179–195 194 Terzi Asphodelus ramosus-dominated vegetation relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16* 17 18 19 20 21 22 23 24 25 26 27 28 l.f. chorotype Dasypyrum villosum 2 1 . 1 1 . 1 + + . + 1 + 2 1 1 1 4 4 2 1 1 + 2 + 2 + + T Euri-Medit Crepis vesicaria + + + + + + . + + + + + + . 2 2 2 + + + + . + . + + + + T Atlantic Bromus cf. scoparius + . + . + + + + + 1 + + 1 . + + + + + + 1 + 1 + + . . + T Steno-Medit Bellardia trixago + . 1 + + + + . + . 1 + + + + + 1 . . . + + + + 1 1 . + T Euri-Medit Aegilops geniculata + + . 2 + 1 + 2 + . 2 2 . . 1 1 1 2 2 1 . + 1 . + . + . T Steno-Medit Anagallis arvensis + . + + . . . . . + + + 1 . + + 1 + + + . . + . . . + . T Euri-Medit Urospermum dalechampii . . + + + . . + + + + + + . 2 . + . . . + . + . . . + . H Euri-Medit Anisantha madritensis + 1 + . . . . . 1 + . + + . + . . 1 1 . 3 . . . 1 . . . T Euri-Medit Hirschfeldia incana + . . . . . + . . . + + + . . . . + 1 + . . + r . . . . T Euri-Medit Althaea hirsuta + + . + . + . . . + . . . . . . . 1 1 + . . + + . . . . T Euri-Medit Plantago lagopus . . . . . . + . + 1 . . . . . + . 1 + . . 1 1 . . . . . T Steno-Medit Scorpiurus muricatus + . . . . + . . . . . . . . . . . + + + . . . . . . + . T Euri-Medit Alyssum simplex . . . . . . . . . . . . . . . . . + + + . . . + . . . + T Euri-Medit Nigella damascena . . . . . . . . . . . . . + . . . + + + + . . . . . . . T Euri-Medit Malope malacoides . + . + . . . . . . . . . . . . . + + . . . . . . . 2 . T Steno-Medit Scandix pecten-veneris . . . . . . + . . . . . . . . . . r + + . . . . . . . . T Euri-Medit Astragalus hamosus . . . . . . . . + . . . + . . . . . r . . . . . . . + . T Euri-Medit Galium parisiense . . . . . . . . . . . . . . . . + + + . . . . . . . + . T Euri-Medit Urospermum picroides . . . . . . . . . . + . . . . . . + + + . . . . . . . . T Euri-Medit T aeniatherum caput-medusae + + . . . . . . 1 . . . . . . . . . . . . . . . . . . + T Steno-Medit Lolium rigidum + . . . . + . . . . . + . . . . . . . . . . . . . . + . T Widespread Geropogon hybridus . . . . . . . . . . . . . . . . . . + . . . + . . + . . T Steno-Medit Knautia integrifolia subsp. integrifolia . . . . . . . . . + . . . . . + . + . . . . . . . . . . T Euri-Medit Galactites tomentosus . . . . . . . . . . . . . . . . . 1 1 + . . . . . . . . H Steno-Medit Lathyrus cicera . . . . . . . + . . . . . . . . . r . + . . . . . . . . T Euri-Medit Vicia bithynica . + . . . . . . . 1 . . . . . . . . . . . . . . . . + . T Euri-Medit Helianthemetea guttati Helianthemum salicifolium + . 1 + 1 1 1 2 1 1 1 1 1 + + 1 1 + + + 1 + 1 + 1 1 + + T Euri-Medit Cynosurus echinatus 1 + . + 1 + 1 1 1 + . + . 1 + + . + 1 + + . 1 + 2 2 + + T Euri-Medit Briza maxima 1 1 . . + + . 1 + 1 + + + 2 + + 1 + + + + + 1 1 . . + 1 T Widespread Linum tryginum . . + + . . + + 1 + 1 + + + . 1 1 . + . + . 1 + 1 + . . T Euri-Medit Crupina crupinastrum . + . . . . . + + . . . + . . . + + . . + + + . + + . . T Steno-Medit Onobrychis caput-galli . . . . . . + + . . + + . . 1 + + . . + + . . . . . . . T Steno-Medit Asterolinon linum-stellatum + . + . . + . . . + . + + . . . . . . . . + . + . . . + T Steno-Medit Aira elegantissima . . . . . . . . . . . . . . . + 1 . . . . . . . + . . + T Euri-Medit Trifolium cherleri . . + . . . . + . . . . . . + . . . . . . . . . . . . . T Euri-Medit Aira cupaniana + + . . . . . . . 1 . . . . . . . . . . . . . . . . . . T Steno-Medit 22/2 • 2023, 179–195 195 Terzi Asphodelus ramosus-dominated vegetation relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16* 17 18 19 20 21 22 23 24 25 26 27 28 l.f. chorotype Other taxa Poa bulbosa subsp. bulbosa + . + + . + + + + + + + 1 . 2 2 2 + + . . + + + + + + . H Paleotemperate T eucrium capitatum subsp. capitatum . . . + 2 + + 2 + 2 . . . . + + + + . . . + + . + + . 1 Ch Steno-Medit Elaeoselinum asclepium 2 2 . + . . . . + 2 . . . . . . . + + + . . + + . + . . H Steno-Medit Petrorhagia saxifraga subsp. gasparrinii . . . . . . . . . . . . + + . . + . + . + . + 1 + 1 . . H Euri-Medit Linum bienne . + . . . + + . . + . . . . . . . . . . + . + . + + + . H Atlantic Petrorhagia prolifera . . . . . + . . . . . . . . . . + . + . . . . + . + . + T Euri-Medit Plantago serraria . . . + + . . . . . . + + . . . . + . . . . . . . . 1 . H Steno-Medit Onobrychis aequidentata . . . . + . + + . . . + . . + . 2 . . . . . . . . . . . T Steno-Medit Rumex thyrsoides . . . . . + . . . . . . . . + . . + + . + . . . . r . . H Euri-Medit Cachrys libanotis + . . . + . . . . . . . + . . . . . . . + . . . + + . . H Euri-Medit Cachrys pungens + . . . 2 . . . . + . . . . . . . . . . + . . + . . . + H Euri-Medit Pyrus spinosa . . . . . + . . . . . . . . . . . + + . . . + . . r . . P Steno-Medit Alkanna tinctoria . . . . . . + . . . . . + + . . . . . . . + . . . + . . H Steno-Medit Stachys cretica subsp. salviifolia . + . . . + . + . . . . . 1 . . . . . 1 . . . . . . . . H Steno-Medit Euphorbia apios . + . . . . . . . . . . . . . . + . + + . . . . . . . . G Euri-Medit Biscutella didyma + . . . + . . . . . . . . . + + . . . . . . . . . . . . T Euri-Medit Serapias vomeracea + + . . . . . . + . . . + . . . . . . . . . . . . . . . G Euri-Medit Asparagus acutifolius^ . . . . . . . . . . . . . + . . . . + + . . . . . . . . P Steno-Medit Crataegus monogyna . . . + + . . . . . . . . . . . . . 2 . . . . . . . . . P Paleotemperate Euphorbia myrsinites . . . . . + . . + . . . . . . . . . . . . + . . . . . . Ch European Allium cf. apulum . . . . . . . . . . . . . . . . . . . . . . . + + + . . G Endemic Astragalus sesameus . . . . . . . . . . . . 1 . . . . . . . . + . + . . . . T Steno-Medit Clinopodium nepeta subsp. glandulosum . . . . . . . + . . . . . 1 . . . . . . + . . . . . . . T Montane Euphorbia peplus . . . . . . . . . . . . . . + . . . . + . . + . . . . . T Eurosiberian Anthoxanthum odoratum + . . . . . . . . 1 . + . . . . . . . . . . . . . . . . H Eurasian Sonchus asper + + . . . . . . . . . . . . . . . . . . . . . + . . . . T Eurasian Sporadic taxa 7 4 5 1 1 1 5 3 4 3 2 3 4 4 1 0 1 5 5 13 4 7 3 3 2 2 2 5 * = holotypus of the Gelasio columnae-Asphodeletum ramosi ass. nov. ^ = diagnostic taxa of the class Charybdido pancratii-Asphodeletea ramosi according to Biondi et al. (2016)