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Abstract

The aim of this paper is the study and classification of spherical f-tilings by scalene
triangles T and isosceles triangles T ′. Due to the complexity of this wide class of tilings, we
consider a subclass performed by the adjacency of the shortest side of T and the longest side
of T ′. It consists of seven families of f-tilings (four families with one discrete parameter
and one continuous parameter, two families with one discrete parameter and one sporadic
f-tiling). We also analyze the combinatorial structure of all these families of f-tilings, as
well as the group of symmetries of each tiling and the transitivity classes of isohedrality
and isogonality.

Keywords: Dihedral f-tilings, combinatorial properties, spherical trigonometry, symmetry groups.
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1 Introduction
A folding tessellation or folding tiling (f-tiling, for short) of the sphere S2 is an edge-to-
edge finite polygonal tiling τ of S2 such that all vertices of τ satisfy the angle-folding
relation, i.e., each vertex is of even valency and the sums of alternate angles around each
vertex are equal to π.
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F-tilings are intrinsically related to the theory of isometric foldings of Riemannian man-
ifolds, introduced by Robertson [8] in 1977. In some situations (beyond the scope of this
paper), the edge-complex associated to a spherical f-tiling is the set of singularities of some
spherical isometric folding.

The classification of f-tilings was initiated by Breda [1], with a complete classification
of all spherical monohedral (triangular) f-tilings. Afterwards, in 2002, Ueno and Agaoka
[9] have established the complete classification of all triangular monohedral tilings of the
sphere (without any restrictions on angles). Curiously, the triangular tilings of even valency
at any vertex are necessarily f-tilings. Dawson has also been interested in special classes of
spherical tilings, see [3, 4, 5], for instance. Spherical f-filings by two noncongruent classes
of isosceles triangles have recently obtained [2, 7].

From now on,

(i) T denotes a spherical scalene triangle with internal angles α > β > γ and side
lengths a > b > c;

(ii) T ′ denotes a spherical isosceles triangle with internal angles (δ, δ, ε), δ 6= ε, and side
lengths (d, d, e),

as illustrated in Figure 1.
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Figure 1: A spherical scalene triangle, T , and a spherical isosceles triangle, T ′.

Taking into account the area of the prototiles T and T ′, we have

α+ β + γ > π and 2δ + ε > π.

As α > β > γ, we also have α > π
3 . In [6] it was established that any f-tiling by T and T ′

has necessarily vertices of valency four.
We begin by pointing out that any f-tiling by T and T ′, in which the shortest side of T

is equal to the longest side of T ′, has at least two cells congruent to T and T ′, respectively,
such that they are in adjacent positions and in one and only one of the situations illustrated
in Figure 2. Our aim in this paper is to classify f-tilings in the first case of adjacency
(Figure 2-Case I).

Next section contains the main results of this paper. In Subsection 2.1 we describe
six families of spherical f-tilings and one single f-tiling that we may obtain in this case
of adjacency. The combinatorial structure of these f-tilings and the classification of the
group of symmetries and also the transitivity classes of isogonality and isohedrality are
presented in Subsection 2.2. The proof of the main result consists in a long and exhaustive
methodology and it is presented in Section 3.
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Figure 2: Distinct cases of adjacency.

2 Main result
2.1 f-tilings in the adjacency case I

Theorem 2.1. Let T and T ′ be a spherical scalene triangle and a spherical isosceles
triangle, respectively, such that they are in one of the adjacent positions illustrated in Fig-
ure 2-Case I. Then, from this we obtain six families of spherical f-tilings and one isolated
f-tiling,

Dkδ (k ≥ 3), Gk (k ≥ 4), Ḡk (k ≥ 4), H,
Fkβ (k ≥ 4), Ikβ (k ≥ 3), J kβ (k ≥ 4),

that satisfy, respectively:

(i) α+ δ = π, δ + β + ε = π, kγ = π, ε = εk(δ), δ ∈
(
δkmin,

π
2

)
, k ≥ 3, where

εk(δ) = 2 arccot
(

2 cos
π

k
csc 2δ − cot δ

)
and

δkmin = arccos

√
1 + 8 cos πk − 1

4
;

(ii) α+ δ = π, α+ β + ε = π, δ + β + γ = π, kγ = π, δ = δk, k ≥ 4, where

δk = arccot

(
1

2
tan

π

2k

(
2− sec2

π

2k

))
;

(iii) α + δ = π, α + β + ε = π, δ + β + γ = π, 2β + γ + ε = π, kγ = π, δ = δk,
k ≥ 4;

(iv) α+ δ = π, α+ γ + γ = π, 3β + ε = π, 5γ = π, where

β = β0 = 4 arctan

√
3 + 4

√
5− 2

√
22 + 6

√
5;

(v) α + δ = π, 2β + γ + ε = π, kγ = π, α = α1
k(β), β ∈

(
β1k
min, β

1k
max

)
, k ≥ 4,

where

α1
k(β) = arccos

(
− cos

π

k
sec

π

2k
cos
(
β +

π

2k

))
,

β1k
min = max

{
π

k
, arccos

(
1

2
sec

π

2k

)
− π

2k

}
and

β1k
max =

(k − 1)π

2k
;
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(vi) α+ δ = π, 2β + ε = π, kγ = π, α = α2
k(β), β ∈

(
β2k
min,

π
2

)
, k ≥ 3, where

α2
k(β) = arccos

(
− cos

π

k
cosβ

)
and

β2k
min = max

{
π

k
, arccos

√
cos2 πk + 8− cos πk

4

}
;

(vii) α+ ε = π, β + 2δ = π, kγ = π, α = α3
k(β), β ∈

(
π
k , β

3k
max

)
, k ≥ 4, where

α3
k(β) = arccos

(
2 sin2 β

2
− cos

π

k

)
and

β3k
max = 2 arcsin

√
1 + 8 cos πk − 1

4
.

For each family of f-tilings we present the distinct classes of congruent vertices in
Figure 3 (including the respective number of vertices in each tiling).
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Figure 3: Distinct classes of congruent vertices.

Particularizing suitable values for the parameters involved in each case, the correspond-
ing 3D representations of these families of f-tilings are given in Figures 4 – 10.
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(a) D3
δ (b) D4

δ (c) D5
δ

Figure 4: f-tilings in the adjacency case I; the Dkδ family.

(d) G4 (e) G5 (f) G6

Figure 5: f-tilings in the adjacency case I; the Gk family.

(g) Ḡ4 (h) Ḡ5 (i) Ḡ6

Figure 6: f-tilings in the adjacency case I; the Ḡk family.
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(j)H

Figure 7: f-tilings in the adjacency case I; the isolated f-tiling.

(k) F4
β (l) F5

β (m) F6
β

Figure 8: f-tilings in the adjacency case I; the Fkβ family.

(n) I3β (o) I4β (p) I5β

Figure 9: f-tilings in the adjacency case I; the Ikβ family.
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(q) J 4
β (r) J 5

β (s) J 6
β

Figure 10: f-tilings in the adjacency case I; the J kβ family.

2.2 Symmetry groups and combinatorial structure

In this subsection we present the group of symmetries of each spherical f-tiling mentioned
in Theorem 2.1. The number of transitivity classes of tiles and vertices of each tiling is
indicated in Table 1.

Any symmetry of Dkδ , k ≥ 3, fixes the north pole N = (0, 0, 1) (and consequently the
south pole S = −N ) or maps N into S (and consequently S into N ). The symmetries that
fix N are generated, for instance, by the rotation Rz2π

k

(of an angle 2π
k around the z axis)

and the reflection ρyz (on the coordinate plane y ◦ z) giving rise to a subgroup of G(Dkδ )
isomorphic to Dk, the dihedral group of order 2k. Now, the map

φ = Rzπ
k
◦ ρxy = ρxy ◦Rzπ

k

is a symmetry ofDkδ that changesN and S. One has φ2k−1 ◦ρyz = ρyz ◦φ and φ has order
2k. It follows that φ and ρyz generate G(Dkδ ), and so it is isomorphic to D2k. Moreover,
Dkδ is 2-tile-transitive and 3-vertex-transitive with respect to this group.

The analysis considered to the combinatorial structure of Dkδ also applies to the family
of f-tilings Gk, k ≥ 4. And so G(Gk) = D2k. Gk is 3-isohedral and 4-isogonal.

Concerning the family of f-tilings Ḡk, k ≥ 4, we have that G(Ḡk) = Dk, since in this
case there is no symmetry sending the north pole into the south pole. Moreover, Ḡk has 6
transitivity classes of tiles, and so it is 6-isohedral. The vertices of Ḡk form 8 transitivity
classes.

Regarding the symmetry group of H, the symmetries that fix N are generated by the
rotation Rz2π

5

and the reflection ρyz on the plane x = 0. On the other hand,

φ = Rzπ
5
◦ ρxy

is also a symmetry of H that sends N into S. Thus, we conclude that G(H) is isomorphic
to D10, the dihedral group of order 20. H is 4-tile-transitive and 5-vertex-transitive.

Any symmetry of Ikβ , k ≥ 3, fixes N or maps N into S. The symmetries that fix N are
generated, for instance, by the rotation Rz2π

k

of order k and the reflection ρyz , giving rise

to a subgroup S of G(Ikβ) isomorphic to Dk. To obtain the symmetries that send N into
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S it is enough to compose each element of S with ρxy . Since ρxy commutes with Rzπ
k

and
ρyz , we may conclude that G(Ikβ) is isomorphic to C2 ×Dk. Ikβ has 2 transitivity classes
of tiles with respect to the group of symmetries and 3 transitivity classes of vertices.

Similarly to previous cases, we have G(Fkβ ) = G(J kβ ) = D2k. Fkβ is 3-isohedral and
4-isogonal and J kβ is 2-isohedral and 3-isogonal.

The combinatorial structure of the class of spherical f-tilings described in the previous
subsection, including the symmetry groups, is summarized in Table 1. Our notation is as
follows:

• |V | is the number of distinct classes of congruent vertices;

• N1 and N2 are, respectively, the number of triangles congruent to T and T ′, respec-
tively;

• G(τ) is the symmetry group of each tiling τ and the indices of isohedrality and
isogonality for the symmetry group are denoted, respectively, by #isoh. and #isog.

3 Proof of Theorem 2.1
In the case of adjacency I, any f-tiling by T and T ′ has at least two cells congruent to
T and T ′, respectively, such that they are in adjacent positions and in one and only one
of the situations illustrated in Figure 2. After certain initial assumptions are made, it is
usually possible to deduce sequentially the nature and orientation of most of the other
tiles. Eventually, either a complete tiling or an impossible configuration proving that the
hypothetical tiling fails to exist is reached. In the diagrams that follow, the order in which
these deductions can be made is indicated by the numbering of the tiles. For j ≥ 2, the
location of tiling j can be deduced directly from the configurations of tiles (1, 2, . . . , j−1)
and from the hypothesis that the configuration is part of a complete f-tiling, except where
otherwise indicated.

Observe that we have δ > π
3 . Also, as d = c and using spherical trigonometric formu-

las, we get
cos γ + cosα cosβ

sinα sinβ
= cot δ cot

ε

2
. (3.1)

Proof of Theorem 2.1. We consider separately the subcases illustrated in Figure 2-Case I.

Case I.1: With the labeling of Figure 11(a), at vertex v1 we must have

α+ δ < π or α+ δ = π.

Case I.1.1: Suppose firstly that α + δ < π. If α < δ, we must have α + δ + kε = π,
with k ≥ 1. Due to the existence of vertices of valency four, it follows that δ = π

2 , and
consequently, by Equation (3.1), cos γ+cosα cosβ = 0. Nevertheless, this is not possible,
since cos γ > cosβ > cosα > 0. Therefore, α ≥ δ. It follows that α > β > δ > ε > γ
and α + δ + kγ = π, with k ≥ 1; see Figure 11(b). Note that θ1 = γ, otherwise at vertex
v2 we get α+ β = π = γ + ε, which is an impossibility. Now, we have

θ2 = γ, θ2 = δ or θ2 = ε.

Case I.1.1.1: If θ2 = γ, we obtain the configuration illustrated in Figure 12(a). Due to the
edge lengths, at vertex v3 we must have θ3 +β+ρ ≤ π, with ρ ≥ ε, which implies θ3 = ε.
At vertex v4 we reach a contradiction, as α+ δ + ρ > π, for all ρ ∈ {α, β, δ, ε}.
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Figure 12: Local configurations.

Case I.1.1.2: If θ2 = δ (Figure 12(b)), we reach an impossibility at vertex v4, since
δ + δ + ρ > π, for all ρ ∈ {α, β, δ, ε}. Note that θ3 cannot be γ (tile 11), as it implies a
sum of alternate angles at vertex v3 including the angles β, ρ1 and ρ2, with ρ1 ∈ {α, β}
and ρ2 ∈ {α, β, δ, ε}, which is not possible due to the dimensions of the involved angles.

Case I.1.1.3: Finally we consider θ2 = ε (Figure 13(a)). At vertex v3 we must have
δ + β + k̄γ = π, k̄ > k. Nevertheless, an incompatibility between sides at this vertex
cannot be avoided.

Case I.1.2: Suppose now that α + δ = π (consequently β + γ > δ > π
3 ). If α = δ = π

2 ,
we also get γ = π

2 , which is not possible. On the other hand, if δ > π
2 > α (> β > γ), we

obtain cot δ < 0, thereby making Equation (3.1) infeasible. Thus, α > π
2 > δ. With the
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Figure 13: Local configurations.

labeling of Figure 13(b), we have

θ1 = δ, θ1 = ε, θ1 = β or θ1 = α.

Case I.1.2.1: If θ1 = δ, we get the configuration illustrated in Figure 14(a). Note that, at
vertex v2, it is not possible to have δ + δ + kγ = π, with k ≥ 1, and δ + δ + β + γ > π.
At vertex v3 we must have α + β + kε = π, with k ≥ 1. Nevertheless, at this vertex we
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Figure 14: Local configurations.
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reach a contradiction, since (δ+ δ+ β) + (α+ β+ ε) > (δ+ δ+ ε) + (α+ β+ γ) > 2π.

Case I.1.2.2: If θ1 = ε, we obtain the configuration of Figure 14(b). Note that if θ2 = γ,
we would get the angles (δ, ε, γ, β, . . .) in one of the sum of alternate angles at vertex v2;
but (δ+ ε+ γ+β) + (α+ δ) = (δ+ δ+ ε) + (α+β+ γ) > 2π, which is not possible; at
tile 11, it is easy to observe that θ3 6= α, γ, δ; on the other hand, θ3 cannot be ε, otherwise,
at vertex v3, we get δ + δ + β = π, but (α+ δ) + (δ + δ + β) + (ε+ δ + β + ε+ · · · ) >
2(δ + δ + ε) + (α+ β + γ) > 3π, which is a contradiction; a similar reasoning applies to
the choice of θ4 and the fact that k̄ = 1 in the sum δ+β+ k̄ε = π, at vertex v2. We denote
the continuous family of f-tilings illustrated in Figure 14(b) by Dkδ , where

α+ δ = π, δ + β + ε = π and kγ = π, with k ≥ 3.

As 0 < ε < δ < π
2 , using Equation (3.1) we get

cos πk + cos δ cos(δ + ε)

sin(δ + ε)
=

cos δ cos ε2
sin ε

2

⇐⇒ cos
π

k
sin

ε

2
= cos δ sin

(
δ +

ε

2

)
⇐⇒ cos

π

k
= cos δ sin δ cot

ε

2
+ cos2 δ

⇐⇒ cot
ε

2
= 2 cos

π

k
csc 2δ − cot δ.

Therefore,
ε = εk(δ) = 2 arccot

(
2 cos

π

k
csc 2δ − cot δ

)
, k ≥ 3,

with δ ∈
(
δkmin,

π
2

)
, where

δkmin = arccos

√
1 + 8 cos πk − 1

4
>
π

3

is obtained when ε = δ. The graph of this function for δkmin < δ < π
2 is outlined in

Figure 15, for different values of k. 3D representations of D3
δ , D4

δ and D5
δ are given in

Figures 4(a) – 4(c).

Case I.1.2.3: Consider θ1 = β (Figure 16(a)). At vertex v1 we cannot have α+ β = π =
ε + γ, as α > δ > ε and β > γ. Thus, α > π

2 > δ > β > γ > ε and α + β + kε = π,
k ≥ 1. It is easy to observe that k = 1, as k > 1 lead to a vertex with a sum of alternate
angles including the angles δ, δ and ρ, with ρ ∈ {α, β, δ, ε}, which is not possible due to
the dimensions of the involved angles. The last configuration extends to the one illustrated
in Figure 16(b). At vertex v2 we have necessarily one of the following situations:

(i) δ + β + β = π;

(ii) δ + β + γ = π.

Note that δ + β + kε = π, k > 1 lead to a vertex with a sum of alternate angles including
the angles δ, δ and ρ, with ρ ∈ {α, β, δ, ε}.

(i) If δ + β + β = π, we obtain the configuration illustrated in Figure 17(a). Note that,
at vertex v3, we cannot have α+γ+γ+kρ = π, with ρ ∈ {γ, ε} and k ≥ 1, otherwise we
get (α+γ+γ+kρ)+(α+δ)+(δ+β+β) ≥ (α+β+γ)+(α+β+γ)+(δ+δ+ε) > 3π,
which is not possible.
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Figure 16: Local configurations.

At vertex v4 we must have kγ = π, with k ≥ 4. As δ = 2γ and π < δ+δ+ε = 4γ+ε,
we conclude that k = 4, which is not possible as δ < π

2 .
(ii) If δ + β + γ = π, the last configuration gives rise to the one illustrated in Fig-

ure 17(b), where θ2 can be ε or δ. According to the selection for θ2, we obtain the planar
representations illustrated in Figures 18(a) and 18(b), respectively. In the first case we have

α+ δ = π, α+ β + ε = π, δ + β + γ = π, kγ = π, with k ≥ 4,

and

δ = δk = arccot

(
1

2
tan

π

2k

(
2− sec2

π

2k

))
.
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Figure 17: Local configurations.

Note that by Equation (3.1) we have

cos πk + cos δ cos(δ + π
k )

sin(δ + π
k )

= −
cos δ sin

(
δ + π

2k

)
cos
(
δ + π

2k

)
⇐⇒ cos

π

k
cos
(
δ +

π

2k

)
+ cos δ cos

π

2k
= 0

⇐⇒ 2 cos δ cos3
π

2k
− sin δ cos

π

k
sin

π

2k
= 0

⇐⇒ cot δ = tan
π

2k
− 1

2
tan

π

2k
sec2

π

2k
.

We denote this family of f-tilings by Gk, k ≥ 4. 3D representations of Gk, k = 4, 5, 6,
are presented in Figures 5(d) – 5(f).

In the second case we have

α+ δ = π, α+ β + ε = π, δ + β + γ = π, 2β + γ + ε = π,

kγ = π, with k ≥ 4, and δ = δk;

we denote this family of f-tilings by Ḡk. 3D representations, for k = 4, 5, 6, are presented
in Figures 6(g) – 6(i).

Case I.1.2.4: If θ1 = α (Figure 19(a)), we must have β < δ, otherwise there is no way to
satisfy the angle-folding relation around vertex v1. Then, α > π

2 > δ > β > γ and δ > ε.
Now, we have

θ2 = β, θ2 = γ or θ2 = ε.

Note that θ2 cannot be δ, as δ + β + ε+ ρ > π, for all ρ ∈ {β, γ}.
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Figure 19: Local configurations.

Case I.1.2.4.1: If θ2 = β, we get the configuration illustrated in Figure 19(b), where
α + 2γ = π and, at vertex v1, 3β + kε = π, k ≥ 1. As k > 1 implies the existence of a
vertex with a sum of alternate angles containing δ + δ + β, and (3β + kε) + (2δ + β) +
(α + δ) ≥ (α + β + γ) + 2(2δ + ε) > 3π, we conclude that k = 1. Now, θ3 ∈ {ε, γ}.
If θ3 = ε (Figure 20(a)), at vertex v2 we reach a contradiction, as for ρ ∈ {β, γ}, we get
δ + β + ε + ρ ≥ δ + β + ε + γ > 2δ + ε > π. On the other hand, if θ3 = γ, the last
configuration extends to the one illustrated in Figure 20(b).

If θ4 = ε (Figure 21(a)), at vertex v3 we must have δ+ 2β = π, as δ+ 2β+ ρ > π, for
all ρ ∈ {α, β, γ, δ, ε} (note that α + β + ε = 3β + ε = π, implying γ > ε; consequently
α > π

2 > δ > β > γ > ε). As kγ = π, 4γ = δ+ 2γ < α+ 2γ = π and 6γ = 3δ > π, we
conclude that k = 5. Jointly with the remaining conditions, we obtain α = 3π

5 , β = 3π
10 ,

γ = π
5 , δ = 2π

5 and ε = π
10 . Nevertheless, under these conditions, Equation (3.1) is

impossible. On the other hand, if θ4 = δ, we obtain the planar representation illustrated in
Figure 21(b). We have

α =
3π

5
, β = 4 arctan

√
3 + 4

√
5− 2

√
22 + 6

√
5,

γ =
π

5
, δ =

2π

5
, and ε = π − 3β.

We denote this f-tiling byH, whose 3D representation is presented in Figure 7(j).

Case I.1.2.4.2: If θ2 = γ, we obtain the configuration illustrated in Figure 22(a). Note
that, at vertex v1, all the alternate angle sums containing β+β+γ+ρ, with ρ ∈ {α, β, γ, δ},
exceed π, and so β + β + γ + kε = π, with k = 1 (k ≥ 1 implies the existence of a vertex
with alternate sum δ + δ + β = π and ε > β).
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Figure 20: Local configurations.

Now, θ3 must be β or γ.
In the first case (Figure 22(b)), we observe that at vertex v3 we must have δ+δ+β = π,

implying at vertex v4 the existence of an alternate angle sum containing α + β + γ > π,
which is an impossibility.

On the other hand, if θ3 = γ, the last configuration extends to the one illustrated in
Figure 23. We denote this family of f-tilings by Fkβ , where

α+ δ = π, 2β + γ + ε = π and kγ = π, with k ≥ 4.

As γ = π
k < β < δ, β + γ > δ, using Equation (3.1) we get

cos πk + cosα cosβ

sinβ
=
− cosα sin

(
β + π

2k

)
cos
(
β + π

2k

)
⇐⇒ cos

π

k
cos
(
β +

π

2k

)
+ cosα cos

π

2k
= 0

⇐⇒ cosα = − cos
π

k
+ sec

π

2k
cos
(
β +

π

2k

)
.

Therefore,

α = α1
k(β) = arccos

(
− cos

π

k
sec

π

2k
cos
(
β +

π

2k

))
, k ≥ 4,
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Figure 22: Local configurations.
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with β ∈
(
β1k
min, β
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max

)
, where
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, arccos
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)
− π

2k

}
and β1k

max =
(k − 1)π

2k

are obtained, respectively, when ε = γ or ε = δ and α = δ. Note that if ε = δ, we get

cos
(

2β +
π

k

)
= − cos

π

k
sec

π

2k
cos
(
β +

π

2k

)
⇐⇒ cos

π

2k

(
2 cos2

(
β +

π

2k

)
− 1
)

= − cos
π

k
cos
(
β +

π

2k

)
⇐⇒ cos

(
β +

π

2k

)
=
− cos πk +

√
cos2 πk + 8 cos2 π

2k

4 cos π
2k

⇐⇒ cos
(
β +

π

2k

)
=
− cos πk +

(
2 cos2 π

2k + 1
)

4 cos π
2k

⇐⇒ cos
(
β +

π

2k

)
=

1

2
sec

π

2k
.

The graph of α = α1
k(β), for β1k

min < β < β1k
max, is outlined in Figure 24, for different

values of k. Note that the condition ε < δ is equivalent to α < 2β + π
k .
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Figure 24: α = α1
k(β), with β1k

min < β < β1k
max, and for and for k = 4, 5, 6, . . . ,∞.

3D representations of F4
β , F5

β and F6
β are given in Figures 8(k) – 8(m).

Case I.1.2.4.3: If θ2 = ε (Figure 19(a)), at vertex v1 we must have

(i) β + β + kε = π, k ≥ 1,

(ii) β + β + β + kε = π, k ≥ 1 or

(iii) β + β + γ + kε = π, k ≥ 1.
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Note that in all these cases k must be one, otherwise we reach a vertex with alternate sum
δ + δ + β = π and other vertex surrounded in cyclic order by (α, ε, β, . . .), which is not
possible.

In case (i), β+β+ ε = π, we obtain the planar representation of Figure 25. We denote
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Figure 25: Planar representation of Ikβ .

this family of f-tilings by Ikβ , where α + δ = π, 2β + ε = π and kγ = π, with k ≥ 3.
Using Equation (3.1), we get

α = α2
k(β) = arccos

(
− cos

π

k
cosβ

)
, k ≥ 3,

with

max

{
π

k
, arccos

√
cos2 πk + 8− cos πk

4

}
< β <

π

2
,

where the lower and upper bounds are obtained, respectively, when ε = γ or ε = δ and
α = δ. The graph of this function is outlined in Figure 26, for different values of k. Note
that the condition ε < δ is equivalent to α < 2β.

3D representations of Ikβ , for k = 3, 4, 5, are illustrated in Figures 9(n) – 9(p).
In case (ii), β + β + β + ε = π, using similar arguments applied before, the local

configuration extends to the f-tilingH, obtained in Case I.1.2.4.1.
In the last case, by symmetry we obtain the families of f-tilings Fkβ and Ḡk, k ≥ 4, of

Cases I.1.2.4.2 and I.1.2.3(ii), respectively.

Case I.2: With the labeling of Figure 27(a), at vertex v1 we must have

β + δ = π or β + δ < π.

Case I.2.1: Suppose firstly that β+δ = π. As δ = β = π
2 implies γ = π

2 , we have δ 6= β.
If δ > β, by Equation (3.1), we conclude that α > π

2 , preventing a feasible assignment
for θ1 and θ2. In turn, if δ < β, we obtain a vertex (v2) surrounded by four angles δ. As
2δ < β+δ = π, we would have 2δ+ρ ≤ π, with ρ ∈ {α, β, γ, δ, ε}, which is not possible.
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Figure 27: Local configurations.

Case I.2.2: Suppose now that β + δ < π. As in Case I.2.1, if δ ≥ π
2 , we obtain

α > π
2 and no assignment for θ1 and θ2 is possible. Thus, δ < π

2 and, as any tiling has
necessarily vertices of valency four, we have α ≥ π

2 . Now, observing Figure 27(a), we
have θ1 ∈ {δ, ε, β}.

Case I.2.2.1: If θ1 = δ, we obtain the configuration illustrated in Figure 27(b). Vertex v3
must have valency three, but in this case we get α + β + δ = π = δ + ε + γ, implying
ε > α, which is not possible.

Case I.2.2.2: If θ1 = ε, the last configuration extends uniquely to the one illustrated in
Figure 28. Note that at vertex v4, θ2 must be β and the vertex must have valency three
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(2β > β+γ > δ). We denote this family of f-tilings by J kβ , where α+ ε = π, 2δ+β = π
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Figure 28: Planar representation of J kβ .

and kγ = π, with k ≥ 4. Using Equation (3.1) we get

cos πk + cosα cosβ

2 sin β
2

= sin
β

2
(1− cosα)

⇐⇒ cos
π

k
+ cosα

(
2 cos2

β

2
− 1

)
= 2

(
1− cos2

β

2

)
(1− cosα)

⇐⇒ cosα = 2 sin2 β

2
− cos

π

k
.

Therefore,

α = α3
k(β) = arccos

(
2 sin2 β

2
− cos

π

k

)
, k ≥ 4,

with
π

k
< β < 2 arcsin

√
1 + 8 cos πk − 1

4
,

where the lower and upper bounds are obtained, respectively, when β = γ and ε = δ. The
graph of this function is outlined in Figure 29, for different values of k.

3D representations of J kβ , for k = 4, 5, 6, are illustrated in Figures 10(q) – 10(s).

Case I.2.2.3: Finally, if θ1 = β, at vertex v3 (see Figure 27(a)) we have α + β ≤ π.
α + β = π = ε + γ implies ε > α > π

2 > δ, which is a contradiction. As any tiling
has necessarily vertices of valency four, we conclude that α + β + kε = π, k ≥ 1, and
α + δ = π at vertex v2, as illustrated in Figure 30, configuration coincident with the one
presented in Figure 16(b), which leads to the families of f-tilings Gk and Ḡk (Case I.1).
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