© Acta hydrotechnica 18/28 (2000), Ljubljana ISSN 1581-0267 61 UDK: 627.84 UDC: 627.84 Strokovni prispevek Professional paper HIDRA VLIČ NA PRESOJA VODOSTANA HE PLA VE II HYDRAULIC EV ALUATION OF THE HPP PLA VE II SURGE TANK Primož RODIČ Prispevek prinaša opis in rezultate hidravlič ne presoje vodostana elektrarne HE Plave II na reki Soč i, zaradi spremenjenih geometrijskih in hidravlič nih lastnosti sistema glede na predhodno študijo. Opisane so različ ne možnosti obratovanja turbine: na konstantni pretok, na konstantno moč in na konstantno odprtje. Na podlagi študije so bile, ob upoštevanju dovoljenega najnižjega in najvišjega nivoja gladine v vodostanu, z matematič nim modelom določ ene nove, več je vrednosti koeficientov upora dušilke. Ključ ne besede: HE Plave, vodostan, dušilka, robni pogoji, masne oscilacije This paper describes and brings the results of the hydraulic evaluation of the HPP Plave II surge tank on the Soč a River owing to the hydraulic and geometric characteristics changeover with regard to the preliminary study. Three different turbine operation possibilities are described: constant discharge operation; constant power operation and constant wicket gates opening operation. On the basis of this study considering the maximum and minimum permissible water levels in the surge tank with the mathematical model, the new, highest values of the throttle damping characteristics were evaluated. Key words: HPP Plave, surge tank, throttle, boundary conditions, mass oscillations 1. UVOD Na reki Soč i obratujejo tri več je elektrarne: HE Plave I, HE Doblar I in HE Solkan. Vzporedno s starima elektrarnama HE Plave I in HE Doblar I gradijo novi tlač no-derivacijski elektrarni HE Plave II in HE Doblar II, ki bosta izkoristili zajem vode v obstoječ ih akumulacijah, vendar z lastnim zajetjem, s cevovodom, z vodostanom in s strojnico. V prejšnjih študijah so bili določ eni temeljni geometrijski parametri obeh vodostanov in vrednosti uporov dušilk. Ker je prišlo v obdobju projektiranja vodostana HE Plave II do nekaterih geometrijskih sprememb in ker se je pri graditvi dovodnega tunela pokazala verjetnost večje hrapavosti od predvidene, posledič no, med drugim, več jega padca gladine v vodostanu pri zagonu turbine, je bila upravič ena potreba po novi hidravlič ni presoji. 1. INTRODUCTION Three large hydro power plants are already in operation on the Soč a River: HPP Plave I; HPP Doblar I and HPP Solkan. Parallel with the old ones, HPP Plave I and HPP Doblar I, the new pressure-diversion hydro power plants HPP Plave II and HPP Doblar II, with water supplies in the existing storage reservoirs, but with their own intakes, tunnels, surge tanks and power stations, are under construction. In the preliminary studies, the basic surge tank geometry parameters and throttles damping characteristics were defined. During the project time of the HPP Plave II surge tank, some geometric modifications were established, while during the pressure tunnel construction, a likelihood of increased roughness was proved, which means a greater water level fall in the surge tank. For these reasons, a new hydraulic evaluation was justified. Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 62 2. OPIS STARE IN NOVE ELEKTRARNE HE PLA VE I IN HE PLA VE II Zajetje HE Plave I je postavljeno na desnem bregu reke Soč e tik ob pregradi Ajba. V dovodnem tunelu, dolžine 6 km, teč e voda s prosto gladino. Na zač etku in na koncu je opremljen z boč nima prelivoma in šele tik pred strojnico preide v tlačni cevovod. Vodostana torej ni, saj se v primeru zapiranja turbine oblikuje povratni val, ki potuje nazaj po dovodnem tunelu oz. se voda preliva preko spodnjega boč nega preliva. V strojnici je vgrajena Kaplanova turbina z instaliranim pretokom 75 m 3 /s in generator z instalirano moč jo 1 5 MW. V nasprotju s staro elektrarno teč e voda v dovodnem tunelu HE Plave II (slika 1), ki ima premer 6.4 m in je dolg 5990 m, pod tlakom. Novo zajetje je postavljeno tik ob obstoječ em. Na koncu dovodnega tunela je predviden spoj s spodnjo vodostansko komoro. Ta je podkvastega prereza, širok in visok v osi 5.0 m; na oddaljenosti 102 m od spoja se razcepi na dva kraka, dolga 20 m, do dveh vertikalnih cilindrič nih jaškov s premerom 26.22 m in višine od dna komore ob jašku do pete kalote 20.04 m. Dovod se proti strojnici nadaljuje kot tlač ni cevovod dolžine 1 83 m, od tega 92 m s premerom 6.4 m in 81 m s premerom 5.5 m. Tudi v novi strojnici je predvidena Kaplanova turbina. Instalirani pretok nove elektrarne HE Plave II je 105 m 3 /s, bruto padec 26.92 m in največ ja moč agregata 20.5 MW. 3. VLOGA VODOSTANA V SISTEMU DERIV ACIJSKE ELEKTRARNE Vodostan je postavljen na mestu med obič ajno le rahlo nagnjenim daljšim dovodnim tunelom pod tlakom in strmo padajoč im tlač nim cevovodom. Gre za objekt, ki lahko sprejme in odda relativno velike količ ine vode. Odvisno od parametrov, lastnih vsakemu sistemu posebej, obstajajo različ ne oblike vodostanov: od najbolj preprostih, cilindrič nih, do zahtevnejših, s komorami, prelivi in z dušilkami. 2. HPP PLA VE I AND HPP PLA VE II DESCRIPTION The HPP Plave I intake is located on the right bank of the Soč a River, close to the Ajba Dam. The free surface water diversion tunnel is of 6 km length, with side weirs at the beginning and at the ending, and only close to the power station does it convert into penstock. There is no surge tank, because in case of the turbine closing, the return positive wave forms and water spills over the lower side of the weir. In the power station, a vertical Kaplan turbine with a rated discharge of 75 m 3 /s and a generator with a rated power of 15 MW are built in. Unlike HPP Plave I, HPP Plave II (Figure 1) has a low pressure diversion tunnel of 5990 m length and 6.4 m diameter. The new intake is located close to the old one. At the end of the pressure tunnel, a connection with the lower expansion chamber is foreseen. It is horseshoe shaped, with a width and height of 5.0 m; 102 m from the connection point it divides into two legs of 20 m length, to the surge shafts with a 26.22 m diameter and a 20.04 m height. The diversion tunnel continues to the power station as a penstock with a 183 m length, and a 92 m by 6.4 m and 81 m by 5.5 m diameter. In the power station, a vertical Kaplan turbine is also foreseen. The rated discharge of the new HPP Plave II is 105 m 3 /s, the gross head, 26.92 m and the maximum power, 20.5 MW. 3. SURGE TANK ROLE IN THE SYSTEM OF A DIVERSION TYPE HYDRO POWERPLANT The surge tank is located between the slightly inclined pressure conduit and the steeply sloping penstock. It can intercept or give away a relatively large amount of water. Dependant on the system parameters, the surge tank could be very simple, cylindrical, or more complicated, with expansion chambers, weirs and restricted orifices, i.e., throttles. Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 63 Slika 1 . Situacija in vzdolžni prerez od vodostana do strojnice HE Plave II. Figure 1. Ground plan and cross section from surge tank to HPP Plave II Power Station. V sistemu derivacijske elektrarne je vloga vodostana naslednja: − pred vodnim udarom šč iti dovodni tunel in tlač ni cevovod (zmanjšanje amplitud tlač nih valov v tlač nem cevovodu ugodno vpliva na stabilnost regulacije vodilnika in kontrolo hitrosti gonilnika), − v primeru zapiranja turbine sprejme razliko dotoka vode iz dovodnega tunela in odtoka skozi tlač ni cevovod, − v primeru odpiranja hitro zagotavlja potrebo po več jem pretoku. Vodostan mora biti projektiran tako, da so oscilacije nivoja gladine oz. piezometrič nega tlaka pod dušilko tudi v primeru obratovanja na konstantno moč (pogl. 4.3.1 ) dušene (to je t.i. hidravlič na stabilnost vodostana) in da so amplitude znotraj predpisanih meja. The surge tank role in the system of the diversion type hydro power plant is: − it protects the pressure tunnel and the penstock from pressure surges due to water hammering (the pressure surge reduction has a good influence on the wicket gate regulation stability and the turbine speed control), − in the case of turbine closing, it intercepts the difference between the inflow through the pressure tunnel and the outflow through the penstock, − in the case of turbine opening, it assures the need of a larger discharge. The oscillations of water level and piezometric pressure under the throttle, respectively, are damped in the properly projected surge tank, even in he case of constant power operation (sect. 4.3.1) (this is so-called hydraulic stability) with amplitudes within the regulation area. Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 64 Da bi bile oscilacije zagotovo dušene, je potrebno izpolniti dva kriterija: − Thomov kriterij, ki določa najmanjši potrebni horizontalni presek vodostana, ki se nato zaradi varnosti navadno poveč a za 50 do 80 odstotkov: In order that the oscillations should be damped, two conditions must be carry out: − Thoma’s criterion, which defines the least necessary surge tank horizontal cross section (which could be enlarged by 50 – 80% for safety’s sake): 1 1 2 1 1 2 2 R H A g Q L A neto ⋅ ⋅ ⋅ ⋅ > (1) − kriterij hidravlič nih izgub: − hydraulic losses criterion: 3 1 br H R < (2) pri č emer pomeni: A 2 horizontalni presek vodostana, [m 2 ] A 1 presek dovodnega tunela, [m 2 ] L 1 dolžina dovodnega tunela, [m] Q 1 pretok v dovodnem tunelu, [m 3 /s] g zemeljski pospešek, [s/m 2 ] H br bruto padec, [m] R 1 vsota hidravlič nih izgub v dovodnem tunelu, [m] H neto neto padec (= H br – R 1 ), [m]. 4. OSNOVNE ENAČ BE IN ROBNI POGOJI ZA RAČ UN MASNIH OSCILACIJ V VODOSTANU 4.1 DINAMIČ NA ENAČ BA Dinamič na enač ba opisuje tok vode v dovodnem tunelu, pri č emer se vztrajnost vodne mase v vodostanu zaradi relativno majhnih hitrosti zanemari. Enač ba, zapisana v obliki za numerič no reševanje, je naslednja: where it means: A 2 horizontal cross section, [m 2 ] A 1 pressure tunnel cross section, [m 2 ] L 1 pressure tunnel length, [m] Q 1 pressure tunnel discharge, [m 3 /s] g gravitational acceleration, [s/m 2 ] H br gross head, [m] R 1 pressure tunnel hydraulic losses sum, [m] H neto net head (= H br – R 1 ), [m]. 4. BASIC EQUATIONS AND BOUNDARY CONDITIONS FOR THE CALCULATION OF MASS OSCILLATIONS IN THE SURGE TANKS 4.1 DYNAMIC EQUATION The dynamic equation describes the water flow in the pressure tunnel, where the water mass persistence in the surge tank is neglected due to relatively small velocities. The equation, arranged for numerical calculation, is: t H L A g Q a ∆ ⋅ ⋅ ⋅ − = ∆ 1 1 1 (3) 2 2 2 1 1 1 Q Q r Q Q r z H a − + = (4) Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 65 pri čemer, poleg že zgoraj opisanih parametrov, pomeni še: Δ Q 1 sprememba pretoka v dovodnem tunelu, [m 3 /s] H a pospešna (akceleracijska) višina, ki je razlika med trenutnim nivojem gladine oz. piezometrič neim tlakom pod dušilko in tistim nivojem gladine, ki bi se vzpostavil v vodostanu, če bi v dovodnem tunelu ves č as tekel trenutni pretok Q 1 , [m] z odmik nivoja gladine v vodostanu od nivoja zgornje vode, [m] r 1 koeficient hidravličnega upora v dovodnem tunelu, [s 2 /m 5 ] r 2 koeficient upora dušilke, [s 2 /m 5 ] Q 2 pretok v vodostanu, [m 3 /s] Δ t č asovni korak, [s]. 4.2 KONTINUITETNA ENAČ BA Kontinuitetna enač ba opisuje dejstvo, da je algebraič na vsota vseh pretokov na spoju dovodnega tunela, vodostana in tlač nega cevovoda enaka 0: where it means: Δ Q 1 change of discharge in the pressure tunnel, [m 3 /s] H a accelerating height as the difference between the momentary water level or piezometric pressure level under the throttle and that water level which would re-establish, if the discharge in the pressure tunnel would be the momentary disharge Q 1 all the time, [m] z water level deviation in the surge tank from the headwater level, [m] r 1 hydraulic resistance coefficient in the pressure tunnel, [s 2 /m 5 ] r 2 throttle damping coefficient, [s 2 /m 5 ] Q 2 surge tank discharge, [m 3 /s] Δ t time step, [s]. 4.2 CONTINUITY EQUATION The continuity equation describes the fact that the algebraic sum of all discharges at the junction of the pressure tunnel, surge tank and penstock are equal to zero: 0 3 2 1 = + + Q Q Q (5) t z A Q ∆ ∆ − = 2 2 (6) pri č emer pomeni še: Q 3 pretok v tlač nem cevovodu oz. skozi turbino, [m 3 /s] Δ z sprememba gladine v vodostanu, [m]. 4.3 ROBNI POGOJI Levi (zgornji) robni pogoj predstavlja tako rekoč konstantna kota zajezbe. Desni (spodnji) robni pogoj pa predstavlja pretok Q 3 skozi turbino. Na sliki 2 je predstavljen diagram, v katerem so poleg krivulje vseh hidravlič nih izgub (*) na dovodnem tunelu in tlač nem cevovodu vrisane tri znač ilne krivulje, ki predstavljajo tri različ ne možnosti obratovanja turbine: na konstantno moč (I), na konstantni pretok (II) in na konstantno odprtje (III). where also means: Q 3 penstock (turbine) discharge, [m 3 /s] Δ z change of water level in the surge tank, [m] 4.3 BOUNDARY CONDITIONS The left (upper) boundary condition is the practically constant headwater level. The right (lower) boundary condition is the discharge Q 3 through the turbine. Figure 2 presents the diagram, whereby the side of the resistance curve (*), three characteristic curves, which represent three different possibilities of the turbine operation, are drawn into: constant power operation (I), constant discharge operation (II) and constant wicket gate opening operation (III). Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 66 Slika 2. Figure 2. 4.3.1 OBRATOVANJE NA KONSTANTNO MOČ Prehod obratovanja elektrarne na novo moč , ki jo zahteva električ no omrežje, pomeni tudi prehod iz starega v novo dinamič no ravnovesje. Zaradi tega se v vodostanu sprožijo masne oscilacije oz. temu ustrezne oscilacije tlaka na turbini. Da bi elektrarna že takoj po začetnem izvedenem manevru spremembe položaja vodilnika konstantno obratovala z novo moč jo, mora vodilnik ves č as poveč evati oz. zmanjševati pretok skozi turbino po naslednji zakonitosti: 4.3.1 CONSTANT POWER OPERATION: The transition of the power plant operation to the new power on the demand of the electric network, also means the transition from the old to the new dynamic equilibrium. The consequences are mass oscillations in the surge tank and pressure oscillations on the turbine. In order to operate on the constant new power immediately after the starting manoeuvre of changing the wicket gates position, the wicket gates must constantly magnify and reduce discharge through the turbine by the following equation. H c N Q ⋅ = 3 (7) kjer pomeni: N zahtevana konstantna moč , [MW] H tlak na turbini, [m] c spremenljivka, v kateri je vključ en koeficient izkoristka agregata (v tej študiji upoštevan kot konstanten). where it means: N demanded constant power, [MW] H pressure on the turbine, [m] c parameter with included unit efficiency (here adopted as constant) Rr H Hbr P1 P1' P0 P2' P2 +z -z Q III II I Hbr / 3 * H c N Q 3 ⋅ = . konst Q Q 30 3 = = H g 2 A Q vodilnik 3 ⋅ = Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 67 Manjši padec zahteva več ji pretok in obratno, kot je razvidno iz krivulje moč i (I) na sliki 2. Ta sicer seka krivuljo hidravlič nih izgub v dveh toč kah P 1 in P 2 . Ti predstavljata mogoč i kombinaciji pretoka in tlaka na turbini, ob zahtevani moč i v stanju dinamič nega ravnovesja. S poveč evanjem moč i se toč ki P 1 in P 2 približujeta (na diagramu P 1 ' in P 2 ') in se v skrajnem primeru največ je mogoč e dosežene moč i sreč ata v toč ki P 0 , v kateri se krivulji hidravlič nih izgub in moč i le še dotakneta. V tem primeru je vsota hidravlič nih izgub enaka eni tretjini bruto padca. Č eprav pride v poštev samo dinamič no ravnovesje, ki ga predstavlja toč ka P 1 , pa v splošnem vedno obstaja tudi dinamič no ravnovesje okoli toč ke P 2 . V primeru, da sta si ti dve toč ki preblizu, lahko ob več jem padcu gladine v vodostanu vlogo novega dinamič nega ravnovesja prevzame prav toč ka P 2 , kar vodi v izpraznitev vodostana oz. v t.i. hidravlič ni kolaps. 4.3.2 OBRATOVANJE NA KONSTANTNI PRETOK A lower head demands a higher discharge, and the opposite, as seen from the power curve (I) on Figure 2. It intersects the resistance curve at the two points P 1 in P 2 . They represent possible combinations of discharge and pressure on the turbine in the state of dynamic equilibrium. With power magnifying, P 1 and P 2 come near each other (P 1 ' in P 2 ' on the diagram) to meet at the point P 0 in the case of necessity, when the power takes the peak value and both curves only touch each other. In that case, the hydraulic losses sum is equal to one third of a gross head. Although only the dynamic equilibrium which represents the point P 1 is relevant, in the general case, there always exists, as well, the dynamic equilibrium with the point P 2 . In case P 1 and P 2 are too close to each other, and if the water level in the surge tank drops too much, the point P 2 takes over the role of the new dynamic equilibrium, which can lead to the emptying of the surge tank, as called hydraulic collapse. 4.3.2 CONSTANT DISCHARGE OPERATION . 30 3 konst Q Q = = (8) Vzdrževanje konstantnega pretoka vsekakor zagotavlja stabilno obratovanje, saj premica (II) seka krivuljo hidravlič nih izgub samo v eni toč ki P 1 , v kateri se vzpostavi novo dinamič no ravnotežje. Zaradi oscilacij gladin v vodostanu oz. piezometričnih tlakov pod dušilko v prehodnem obdobju oscilira tudi moč . V praksi se takšno obratovanje ne izvaja; uporablja se ga zgolj kot preprostejši robni pogoj pri računih masnih oscilacij v vodostanih visokotlač nih hidroelektrarn. Ta pogoj je bil upoštevan pri določ itvi prvotnih vrednosti upora dušilke. 4.3.3 OBRATOVANJE NA KONSTANTNO ODPRTJE The constan discharge operation, anyway, assures stabile operation, because the line (II) intersects the resistance curve only at one point P 1 , which represents the new dynamic equilibrium. Owing to water level oscillations in the surge tank, as well as and piezometric pressure, oscillations under the throttle temporarily oscillate the power too. This way of operation is completely inconvenient in the praxis. It is usable only as the simplest boundary condition at mass oscillations calculation for high head hydro power plants. In the preliminary study this condition was considered. 4.3.3 CONSTANT WICKET GATES OPENING OPERATION H g A Q ik vodi ⋅ = 2 ln 3 (9) Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 68 kjer pomeni: A vodilnik efektivna velikost odprtja vodilnika (t.j. ob upoštevanju koeficienta pretoka, [m 2 ]. Obratovanje na konstantno odprtje je prav tako stabilno obratovanje, saj tudi v tem primeru krivulja (III) seka krivuljo hidravlič nih izgub v eni sami toč ki. Znač ilnost takšnega obratovanja je najhitrejša vzpostavitev novega dinamič nega ravnovesja, saj s padcem tlaka pade tudi pretok in obratno. Obratovanje na konstantno odprtje je preprosto, saj se že na zač etku nastavi položaj vodilnika na končno odprtje. Takšno obratovanje je nemenjeno elektrarnam, ki imajo manjši delež v sistemu proizvodnje električ ne energije, saj so oscilacije moč i tu največ je. 5. RAČ UN IN REZULTATI HIDRA VLIČ NE PRESOJE VODOSTANA HE PLA VE II 5.1 TEMELJNI PODATKI instalirani pretok Q inst : 105 m 3 /s, največ ja kota zgornje vode, upoštevana v hidravlič ni presoji: 1 06.00 m n.m. najmanjša kota zgornje vode: 104.00 m n.m., najmanjša kota spodnje vode: 77.58 m n.m. nominalni neto padec H nom : 18.23 m. nominalna moč N nom : 17.4 MW, največ ja moč N max : 20.5 MW 5.2 MANEVRI IN REGULACIJA Manever pomeni spremembo odprtja vodilnika in položaja lopatice gonilnika zaradi spremembe obremenitve. Na zač etku se izvaja po predvideni odvisnosti od časa, v nadaljevanju pa v odvisnosti od trenutnega padca na turbini oz. pogoja vzdrževanja (nove) konstantne moč i po enač bi, poenostavljeni z upoštevanim konstantnim izkoristkom agregata: where it means: A vodilnik effective wicket gates opening (with consideration of discharge coefficient), [m 2 ] The constant wicket gates opening operation is a stabile operation because the curve (III) intersects the resistance curve at only one point. Its main characteristic is that it is the fastest way to take up the new dynamic equilibrium; namely, when the water level falls, the discharge falls too, and, to the contrary, they rise together. The constant wicket gates opening operation is very simple because, just in the beginning, the wicket gates are setting up to the new position. This way of operation is usable for the power plant with a smaller share in the electric energy production, because power oscillations are the highest here. 5. CALCULATION AND RESULTS OF THE HYDRAULIC EV ALUATION OF THE HPP PLA VE II SURGE TANK 5.1 BASIC DATA rated discharge Q inst : 105 m 3 /s, maximum headwater level, considered in hydraulic evaluation: 106.00 m n.m. minimum headwater level: 104.00 m n.m., minimum tail water level: 77.58 m n.m. rated net height H nom : 18.23 m. rated power N nom : 17.4 MW, maximum power N max : 20.5 MW 5.2 MANOEUVRE AND REGULATION Manoeuvre means the wicket gates open and the runner blade position changes because of the load change. It is dependant on time, at the beginning, and then dependant on the momentary turbine head by the equation with an adopted constant unit efficiency: H c N Q ⋅ = 3 (10) Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 69 Pri tem se upošteva največ ja mogoč a nastavitev odprtja vodilnika A 100% : It takes into consideration the highest possibly wicket gate opening A 100% : nom inst H g Q A ⋅ = 2 % 1 00 (11) V konkretnem izrač unu je sicer za zač etna manevra odpiranja oz. zapiranja, ki sta odvisna samo od č asa, upoštevana naslednja dinamika: − linearno odpiranje vodilnika od 0 do 100 odstotkov v 35s − zapiranje vodilnika v dveh linearnih sekvencah od 100 do 30 odstotkov v 10.5s in od 30 do 0 odstotkov v 14.5s. 5.3 KRITERIJI ZA DOLOČ ITEV NAJVEČ JE IN NAJMANJŠE GLADINE V VODOSTANU Največ ja gladina v vodostanu je določ ena kot največ ja dosežena gladina za primer zaporednih manevrov odpiranja in zapiranja med 0 in 1 00 odstotki največ je moč i N max , z upoštevanjem najmanj 15-minutnega č akalnega č asa med zapiranjem in zač etkom vnovič nega odpiranja. Pri tem je upoštevana kota zgornje vode 106.00 m n.m., kota spodnje vode 77.58 m n.m. in koeficient hrapavosti 0.012. Kota gladine v vodostanu ne sme preseč i kote 11 3.0 m n.m., ki predstavlja najvišjo koto vodostanskega jaška, piezometrič na kota pod dušilko pa ne sme preseč i kote 11 8.0 m n.m. Najmanjša gladina v vodostanu je določ ena kot najnižja dosežena gladina za primer zaporednih manevrov odpiranja in zapiranja med 0 in 1 00 odstotki največ je moč i N max z upoštevanjem najmanj 15-minutnega č akalnega č asa med zapiranjem in zač etkom vnovič nega odpiranja. Pri tem je upoštevana kota zgornje vode 104.00 m n.m., kota spodnje vode 77.58 m n.m. in koeficient hrapavosti cevovodov 0.016. Kota gladine v vodostanu ne sme biti nižja od kote 93.1 m n.m., piezometrič na kota pod dušilko pa ne sme biti nižja od kote temena dovodnega tunela na priključ ku vodostana 87.2 m n.m. V primeru zaporednih manevrov je za začetek vsakega naslednjega manevra odloč ilen tisti trenutek, ki v naslednjem nihaju daje ekstremne vrednosti nivojev gladin. In the concrete calculation, the following starting manoeuvres dynamics were considered: − linear wicket gates opening from 0% to 100% in 35s − wicket gates closing in two linear sequences from 100% to 30% in 10.5s and 30% to 0% in 14.5s. 5.3 MAXIMUM AND MINIMUM WATER LEVEL CRITERIONS IN THE SURGE TANK The maximum water level in the surge tank is defined as the highest level in the case of a series of openings and closings between 0% and 100% maximal power N max , with at least 15 minutes consideration of waiting time between the closing and the start of the renewed opening. The head level water of 106.00 m a.s.l., tail water level water of 77.58 m a.s.l. and Manning’s resistance coefficient of 0.012 must be considered in its calculation. The water level must not exceed 113.0 m a.s.l., which represents the highest surge tank level, and the piezometric pressure level under the throttle must not exceed 118.0 m a.s.l. The minimum water level in the surge tank is defined as the lowest level in the case of a series of openings and closings between 0% and 100% maximal power N max, with at least 15 minutes consideration of waiting time between the closing and the start of the renewed opening. The head level water of 104.00 m a.s.l., tail water level water of 77.58 m a.s.l. and Manning’s resistance coefficient of 0.016 must be considered in its calculation. The water level must not be lower than 93.1 m a.s.l., and the piezometric pressure level under the throttle must not be lower than 87.2 m a.s.l., which represents the top of the pressure tunnel under the throttle. The starting time for each following manoeuvre is the moment which gives the peak value in the next surge. Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 70 5.4 REZULTATI Kljub temu, da naj bi se po vsebini iz toč ke 5.3 upošteval najmanj 1 5-minutni č akalni č as med zapiranjem in začetkom vnovič nega odpiranja, je izvedena hidravlič na presoja s strožjim kriterijem, in sicer kadarkoli se zač ne vnovič no odpiranje. Gre sicer za ekstremen in neobič ajen, vendar v praksi izvedljiv primer, ki ga mora biti elektrarna zaradi varnosti sposobna prenesti. Rezultat hidravlične presoje sta novi vrednosti upora dušilke, ki sta v skladu s pogoji iz toč ke 5.3. Njuni vrednosti sta: − pri vtekanju v vodostan r vtok : 0.00125 s 2 /m 5 − pri iztekanju iz vodostana r iztok : 0.00078 s 2 /m 5 . Rezultati hidravlič ne presoje so prikazani tudi v obliki diagramov oscilacij gladin (poudarjena krivulja) in piezometrič nih tlakov pod dušilko. 5.4.1 NAJVEČ JI DVIG IN PADEC GLADINE PRI NEUPOŠTEVANJU NAJMANJ 1 5-MINUTNEGA Č AKALNEGA Č ASA Dvig gladine tako v drugem nihaju kot v tretjem nihaju znaša 112.98 m n.m., piezometrič nega tlaka pa 11 6.22 m n.m. (v drugem nihaju) (slika 3). Največ ji padec gladine znaša v obeh nihajih 93.16 m n.m., piezometrič nega tlaka pa 92.25 m n.m. (slika 4) 5.4 RESULTS In spite of the criterion in sect. 5.3, which defines 15 minutes waiting time between the closing and the start of renewed opening, the hydraulic evaluation was carried out with rigorous criterion, which permits the starting time anytime. Actually, this is extreme and unusual, but within the praxis, a completely realisable case which the power plant must stand for the sake of safety. The results of the hydraulics evaluation are new values of the throttle damping characteristics. These are: − when water flows into the surge tank r vtok : 0.00125 s 2 /m 5 − when water flows out of the surge tank r iztok : 0.00078 s 2 /m 5 . The result of the hydraulic evaluation are also shown in the diagrams of the water level oscillations bold curve) and the piezometric pressure oscillations. 5.4.1 MAXIMAL WATER LEVEL RISE AND FALL WITHOUT 15 MINUTES WAITING TIME. The maximal water level rise, equal in the second and third surge, is 112.98 m a.s.l.; the piezometric pressure rise is 116.22 m a.s.l. (in the second surge) (Figure 3). The maximal water level fall is 93.16 m a.s.l., and the maximal piezometric pressure fall is 92.25 m a.s.l. (Figure 4), both in the second and third surges. 5.4.2 NAJVEČ JI DVIG IN PADEC GLADINE PRI UPOŠTEVANJU NAJMANJ 1 5 MINUTNEGA Č AKALNEGA Č ASA Največ ji dvig gladine znaša 11 2.95 m n.m., piezometrič nega tlaka pa 11 6.07 m n.m. (slika 5). Največ ji padec gladine znaša 93.60 m n.m., piezometrič nega tlaka pa 93.50 m n.m. (slika 6). 5.4.2 MAXIMAL WATER LEVEL RISE AND FALL WITH 15 MINUTES WAITING TIME The maximal water level rise is 112.95 m a.s.l., and the maximal piezometric pressure rise is 116.07 m a.s.l. (Figure 5). The maximal water level fall is 93.60 m n.m., and the maximal piezometric pressure fall is 93.50 m a.s.l. (Figure 6). Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 71 Slika 3. Maksimalni dvig gladine pri neupoštevanju najmanj 1 5 minutnega č akalnega č asa. Figure 3. Maximal water level rise without 15 minutes waiting time. Slika 4. Maksimalni padec gladine pri neupoštevanju najmanj 1 5 minutnega č akalnega č asa. Figure 4. Maximal water level fall without 15 minutes waiting time. 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 č as [ura:min] / time [hr:min] kota [m n.m.] / level [m s.l.] gladina / w ater level piezometrič ni tlak pod dušilko / piezometric pressure under the throttle 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 č as [ura:min] / time [hr:min] kota [m n.m.] / level [m s.l.] gladina / w ater level piezometrič ni tlak pod dušilko / piezometric pressure under the throttle Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 72 Slika 5. Maksimalni dvig gladine pri upoštevanju najmanj 1 5 minutnega č akalnega č asa. Figure 5. Maximal water level rise with 15 minutes waiting time. Slika 6. Maksimalni padec gladine pri upoštevanju najmanj 1 5 minutnega č akalnega č asa. Figure 6. Maximal water level fall with 15 minutes waiting time. 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 č as [ura:min] / time [hr:min] kota [m n.m.] / level [m s.l.] gladina / w ater level piezometrič ni tlak pod dušilko / piezometric pressure under the throttle 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 č as [ura:min] / time [hr:min] kota [m n.m.] / level [m s.l.] gladina / w ater level piezometrič ni tlak pod dušilko / piezometric pressure under the throttle Rodič , P.: Hidravlič na presoja vodostana HE Plave II - Hydraulic Evaluation of the HPP Plave II Surge Tank © Acta hydrotechnica 18/28 (2000), 61-73, Ljubljana 73 6. ZAKLJUČ EK S hidravlič no presojo sta bili določ eni novi vrednosti upora dušilke vodostana HE Plave II, ki sta za približno 1 0 odstotkov več ji od prvotnih. Vzrok temu je že jasno koncipiran sistem nove elektrarne in posledič no v rač unu upoštevan verodostojnejši desni robni pogoj – začetni manever v odvisnosti od č asa, obratovanje na moč, z upoštevanjem največ jega možnega odprtja vodilnika, ter upoštevano zaporedje manevrov odpiranja in zapiranja turbine. V predhodni študiji je bil rač un izveden z upoštevanjem obratovanja na konstantni pretok ter preprostega zaporedja samo enega zapiranja turbine na predhodno odpiranje in obratno. Rezultat hidravlič ne presoje pa je tudi ugotovitev, da upoštevanje 15-minutnega č akalnega č asa bistveno ne vpliva na varnost obratovanja elektrarne, saj je pri največ jem dvigu gladina v vodostanu nižja le za 3 cm, pri največ jem padcu pa višja za 34 cm. Dejstvo, da elektrarna lahko vstopi v pogon v kateremkoli trenutku, pa ji daje glede na možnost hitrega prilagajanja trenutni potrebi po električ ni energiji vsekakor več jo vrednost. 6. CONCLUSION New values of the HPP Plave II throttle damping characteristics were evaluated. They are approximately 10 % higher than the preliminary ones. The reason is the more defined concept of the new hydro power plant and the consecutive consideration of a reliable right boundary condition – starting manoeuvre dependant on time, constant power operation with the highest possible wicket gate opening and the sequence of opening and closing the turbine. In the preliminary study, the calculation was executed by considering the constant discharge operation and by the simple sequence opening after starting the closing, and, vice versa, closing after starting the opening. The result of the hydraulic evaluation is also to the fact, that the 15 minutes waiting time doesn’t essentially influence operational safety. The difference between the maximal water level rise with and withou the consideration of waiting time is only 3 cm, and the difference between the maximal fall is 34 cm. But starting to run anytime to assure the momentary need for electrical energy is an advantage which gives higher value to the hydro power plant. VIRI - REFERENCES Krzyk, M., (1994). Analiza nestacionarnih pojavov v dovodnih organih derivacijskih sistemov hidroelektrarn Doblar II in Plave II (Nonsteady phenomena analyse on the HPP Doblar II and HPP Plave II derivative systems), Ljubljana (in Slovenian). Krzyk, M., (1995). Dodatna analiza nestacionarnih pojavov v dovodnih organih derivacijskih sistemov hidroelektrarn Doblar II in Plave II (Additional nonsteady phenomena analyse on the HPP Doblar II and HPP Plave II derivative systems), Ljubljana (in Slovenian). Mosonyi, E., (1991). Water power development, Vol.2, High head power plants, Akadémiai Kiadó, Budapest, 1091 p. Rajar, R., (1980). Hidravlika nestalnega toka (Hydraulics of the nonsteady flow),University textbook, University of Ljubljana, Ljubljana, 279 p., (in Slovenian) Rodič , P., (2000). Hidravlič na presoja vodostana HE Plave II (Hydraulic evaluation of the HPP Plave II surge tank), Institute for Hydraulic Research, 25 p. (in Slovenian) Naslov avtorja - Author's Address Primož RODIČ Inštitut za hidravlič ne raziskave – Institute for Hydraulic Research Hajdrihova 28, SI – 1000 Ljubljana