
94

HYBRID FUNCTIONAL VERIFICATION OF A USB HOST
CONTROLLER

Primož Puhar1, Andrej Žemva2

1LEA, d.o.o., Lesce, Slovenia
2University of Ljubljana, Faculty of Electrical Engineering, Slovenia

Key words: functional verification, SystemC, TLM, ABV, SCV, simulation, USB

Abstract: With everyday growing demands, complexity of electronic devices has been constantly increasing. Functional verification has become the
major bottleneck in the design and verification flow. In order to respond to modern demands, new devices are made of standard pre-verified reusable IP
blocks created by using abstract TLM. The paper proposes a three-step design and verification flow based on a reusable test bench. It enables a short
design time for a fast-simulating functionally-verified TL model, to be used in early SW development, and a functionally-verified RTL model, ready for HW
implementation. The approach is demonstrated on a USB host controller design.

Hibridno funkcionalno preverjanje USB gostitelj krmilnika

Kjučne besede: funkcionalno preverjanje, SystemC, TLM, ABV, SCV, simulacija, USB

Izvleček: Zaradi vsak dan večjih zahtev postajajo elektronske naprave vse bolj kompleksne. Funkcionalno preverjanje je zato postalo najožje grlo v
postopku načrtovanja in verifikacije le-teh. Da bi se prilagodili modernim zahtevam, moramo nove naprave sestavljati iz standardnih pred-preverjenih IP
blokov, ki smo jih ustvarili s pomočjo abstraktnega TLM. Članek predlaga tristopenjski postopek za načrtovanje in preverjanje, ki temelji na večkratno
uporabnem testu. Postopek omogoča načrtovanje hitrega funkcionalno preverjenega TL modela, uporabnega za zgodnji začetek načrtovanja programske
opreme. Dodatno omogoča načrtovanje funkcionalno preverjenega RTL modela, pripravljenega za implementacijo. Pristop je prikazan na primeru USB
gostitelj krmilnika.

1 Introduction

Though electronic devices, such as smartphones, multi-
media players and others, already combine a lot of differ-
ent functions, the market incessantly demands new func-
tionalities like new audio and video decoders, new acces-
sibility features and support for new interfaces. In future,
functionality of any single device shall have to be improved,
meaning that its complexity will be drastically increased. A
higher level of complexity requires more effort in a device
design and verification. Considering also the extreme time-
to-market pressures, there is no doubt that new advanced
solutions shall have to be provided.

Functions of electronic devices can be assured either by
software (SW) or hardware (HW) components or a combi-
nation of both. Though there have been new verification
techniques developed, simulation is still the most used
approach to functional verification. By using slow-simulat-
ing Register Transfer Level (RTL) HW models verification
times have increased to the level when they now take up to
70% of the device design time and cost /1 – 3/.

In order to respond to the constantly growing new de-
mands, several approaches have been proposed. By us-
ing standard, already verified building blocks in new de-
signs, the verification time can be considerably reduced.
This applies to both the HW and SW blocks. Another ap-
proach to reducing the device design time is the Transac-
tion Level (TL) Modeling (TLM) /1/. It can be used for HW/
SW modeling, co-design and co-verification. Compared

to the HW model described at the RTL, TLM uses abstract
communication with approximate timing thus enabling faster
simulation and verification /4/. Another reason to use TLM
is availability of the executable models early in the devel-
opment cycle. They confirm the expected functionality and
can be used for design space exploration and early SW
design.

Though the TL models can be easily debugged due to their
abstractness, the Assertion-Based Verification (ABV) is
added to the Simulation-Based Verification (SBV) to allow
for faster and easier debugging. The use of assertions helps
pinpointing the bug in the design more than SBV itself.

The focus of the proposed Design and Verification Flow
(DVF) is on the HW-supported functionality. It captures all
the above improvements, i.e. TLM, SBV and ABV for new
Intellectual Property (IP) block design.

There have been several design and verification approach-
es proposed in literature. Vaumorin et al. /5/ favourise the
design flow from a specification through SystemC and RTL
to the FPGA implementation. Verification takes place at
several stages while RTL design described in the HW De-
scription Language (HDL) is verified by using co-simula-
tion with RTL described in SystemC. No assertions are
used.

Wei et al. /2/ describe the design and verification scheme
for IEEE 802.15.3 MAC and Carbognani et al. /6/ for ARM
AMBA. Both groups of authors present their model in TLM

UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 38(2008)2, Ljubljana

95

and RTL with support for the reusable test bench; none
uses ABV.

Habibi et al. /7/ propose a verification approach with the
SystemC model translated to the AsmL language. Only
ABV is used. Assertions are described with the PSL lan-
guage.

Our focus in this paper will be on a hybrid DVF of an IP block.
Our approach was verified on a Universal Serial Bus (USB)
host controller design constructed according to /11/.

2 Design and verification flow

In this section, we present a three-step DVF (Fig. 2). It
starts with a non-formal specification in a written or verbal
form of the model behavior and operating conditions. The
model behavior specification is used for model descrip-
tion and test-bench construction and the operating condi-
tion specification is used for the functional-coverage met-
ric (FCM) definition.

In the first step, the Verification Environment (VE) is con-
structed enabling efficient Test-Bench (TB) generation to
cover the FCM. Therefore, the first FCM is defined ac-
cording to the model operating conditions. The impact of
well-defined operating conditions on the verification quali-
ty and time consumed by it is considerable. If some oper-
ating conditions are not captured by the specification, the
model is not verified for them. If operating conditions are
set wider than necessary, VE performs verification for the
non-existent conditions and unnecessarily wastes time for
that (Fig. 1).

Fig. 1: Model operating conditions space

In the same step, the TB that satisfies the defined FCM is
constructed. TB is responsible for generating test vectors
that are later applied to the model inputs.

In the following step, the model is translated from the non-
formal specification to an executable specification. It is then
placed into VE as a Device Under Verification (DUV). DUV

and VE are described using TLM which can be employed
on many abstraction levels. TLM with an approximate tim-
ing (also known as “Programmer’s View with Timing” - PVT)
was selected for DVF. TLM is therefore approximate-timed
and uses abstract transactions for communication. Due to
its abstractness, TLM enables a shorter development time
and faster simulation.

Fig. 2: Design and verification flow

After DUV is placed into VE, the TB composed in the pre-
vious step is applied. TL DUV is corrected until it positively
passes the test bench.

At the end of the second step, a functionally-verified HW
model is available for design-space exploration and early
SW development. The TB responses are used as a refer-
ence for RTL refinement (golden model).

In order to implement HW with standard tools, the DUV
model has to be refined to RTL. This is achieved in the
third step. The RTL model is cycle-timed and uses four-
state signal logic (‘0’, 1’, Z’ or ‘X’) for communication. In
order to reuse TB and the VE on the RTL model, an inter-
face referred to as transactor has to be developed. The
transactor adapts the RTL model to the TL environment by
translating abstract communication to signal-level commu-
nication and provides synchronization. The DUV RTL mod-
el is confirmed OK when it positively passes TB.

After using the proposed DVF, the functionally verified RTL
model is ready for implementation with standard tools.

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host Controller Informacije MIDEM 38(2008)2, str. 94-102

96

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host ControllerInformacije MIDEM 38(2008)2, str. 94-102

2.1 Functional verification
In the next chapters, each step will be explained in detail.
The first we shall deal with will be the FCM definition step.

The functional coverage definitions are extracted from the
operating conditions specification. FCM states which func-
tions have been exercised. When there are several variables
in a function, the problem becomes more complex. The ques-
tion is whether to test each function with any possible combi-
nation of variables or to group the variable values first? An
exhaustive verification procedure is much time consuming and
therefore expensive. Our solution is to reduce the function
coverage space and speed-up the verification process. This
allows us to detect the major errors in the design and to re-
duce the verification time by a few decades, though some of
the minor errors might be left undetected. Under the current
time-to-market pressures, manufacturers find it hard to per-
form exhaustive verification (Fig. 3).

Fig. 3: Verification space

To make it clearer, let’s assume the function F(A,B) varia-
bles, where A and B can be assigned any value from 0 to
31. The value range is linearly divided into four testing rang-
es (bags) defined as (0, 7), (8, 15), (16, 23) and (24, 31).
Two examples are shown in Fig. 4. If the function parameter
is tested within a certain bag, the bag is said to have a hit.

Ranges and numbers of bags of each variable may vary.
The number of bags per variable defines the variable reso-
lution. When all the defined bags have at least the prede-
fined number of hits, a full functional coverage is being
achieved /9/.

Fig. 4: Function bags

The variable resolutions and the minimum number of hits
for a full functional coverage define the verification effec-
tiveness (Fig. 5). When more exhaustive verification is re-
quired, higher resolution is selected and more combina-
tions of test vectors are run. On the other hand, when fast
and consequently less exhaustive verification is required,
lower resolution is selected and fewer combinations of test
vectors are run.

Fig. 5: Parameter selection graph

Since modern devices consist mostly of programmable
logic, bug-fixes can be issued in case of missed bugs dur-
ing first verification.

Verification of DUV runs at TL. The VE in Fig. 6 consists of
a test controller, simulator, monitor, evaluator, master (DUV)
and multiple slaves when required. Verification runs as fol-
lows. The stimulator sends a request to DUV. DUV proc-
esses the given request by sending new requests to the
slave. After the slave returns response, DUV returns it to
the stimulator (Fig. 7). The monitor monitors the stimulator
and DUV transactions and forwards them to the evaluator.
The evaluator checks correctness of these requests and
measures the verification coverage. The test controller
controls the environment according to the TB /4/.

Fig. 6: Verification environment

Test vectors are generated by using the SystemC Verifica-
tion (SCV) library which enables Constrained Randomiza-
tion (CR). It shortens the verification time when the pro-

97

posed FCM needs to be used /10/. CR makes it possible
to limit test vector generation to a certain range and also to
define inter-variable dependencies.

DVF verification consists of SBV and ABV. SBV is respon-
sible for FCM definition, TB construction and storage of
DUV requests. It is up to the designer to detect bugs in
these requests. ABV is on the other hand responsible for
assertion definition which enables automatic bug detec-
tion.

Since test vector generation is random, the number of test
vectors for full functional coverage (test vector set size)
varies. Different test vector sets lead to a full functional
coverage. Test vector sets can be combined in the distri-
bution graph.

2.2 TLM & SystemC
SystemC is a C++ library which enables HW modeling.
Since it originates from the SW world and supports the
HW description, it represents the basis for HW/SW co-
design and co-verification.

Similar to other HW developing languages, SystemC also
supports architectural design. Modules can be described
and connected via input and output ports. The base for
the module description is class SC_MODULE. This class
consists of several ports, processes and other modules.

SystemC enables separate modeling for computation and
communication. Computation is modeled by processes
described using either SC_THREAD or SC_METHOD. The
computer thread-like processes are described using

SC_THREAD. They run all the time and can only be de-
layed. The RTL-like processes are described using
SC_METHOD and are executed only on a trigger event.
The trigger events like clock signal are listed in the sensi-
tivity list.

Communication is modeled by channels connected be-
tween two ports. The data transmitted over the channels
can be very simple like a Boolean value or complex like a
second video sample /1, 7/.

Separate modeling of computation and communication is
the basis for TLM. The only process running inside the TL
model is described using SC_THREAD. From this proc-
ess, supporting functions are called. The process is used
for communication to the VE, while the supporting func-
tions describe functionality and transact with slaves.

Fig. 8: TLM block scheme

TLM uses request - response transactions for communi-
cation between modules. Transactions are abstract data
types described by using the custom C++ class. Commu-
nication runs as follows. An initiator (master) sends a re-
quest to a target and the target (slave) returns the response
(Fig. 8).

The process time can be measured in real time (seconds)
or in clock cycles. The more the types used in modeling
are abstract, the less time is required to simulate the de-
sign.

As any other C++ class, the TL model too, is instantiated
as an object on the top level and connected to a slave.

2.3 RTL refinement
The RTL model can be described using SystemC or stand-
ard HDL (VHDL, Verilog).

The SystemC RTL model is refined from the TL model as
shown in Fig. 10. Since the architecture has already been
defined at TL, the RTL refinement requires less effort than
the RTL design from the start. During refinement, support-
ing functions are extracted and modeled as SC_METHOD
processes. In contrast to the TL model, where transac-
tions are used for communication, the RTL model commu-
nicates by 4-level signal buses. When describing the RTL
model, each register or the finite-state machine (FSM) has
to be described using its own SC_METHOD process.

The RTL model in HDL is identical to the RTL model in
SystemC. There are few differences though; when the
SystemC model is simulated using any standard compiler,
a mixed-language environment is required for HDL model
simulation within the SystemC VE (Aldec Riviera, Matlab).

Fig. 7: Transaction-time diagram

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host Controller Informacije MIDEM 38(2008)2, str. 94-102

98

Fig. 10: TL to RTL refinement

In order to connect the less abstract cycle-accurate RTL
model to the TL TB, a transactor should be constructed
(Fig. 9). The transactor is a process, modeled as an
SC_THREAD, originally used as the process in the TL
model (Fig. 10). Its duty is to translate requests from the
VE into the signal level, signals into requests for a slave,
responses from the slave into the signal level, and finally
signals into responses for the VE.

3 Universal Serial Bus

USB is a serial-bus standard to interface devices. Some of
its features are: fast data transfer, plug&play capabilities
and providing power to low-power devices. It is intended
to help retire all legacy varieties of serial and parallel ports.
USB connects computer peripherals such as mouse de-
vices, keyboards, PDAs, scanners, digital cameras, print-
ers, personal media players, and flash drives. For many of
those devices USB has become the standard connection
method. USB was originally designed for personal com-
puters, but it has become commonplace on other devices
such as PDAs and video game consoles. In 2004, there
were about 1 billion USB devices in the world.

USB specification 1.1 was released in 1996. It includes
“low-speed” and “full-speed” data rates. A new specifica-
tion 2.0 was released in 2000 with some additional fea-
tures. Among them is the “high-speed” data transfer.

3.1 USB host controller
The USB system has a star topology with a host in the cent-
er. The host connects up to 127 functions (devices), with
the hub acting as a host for the next level (Fig. 11). Up to
five levels are supported. There are several types of devic-
es: hub, human-interface device, mass-storage device,
printer, audio, video devices and others. The USB system

has a master-slave organization where the master initiates
the communication to which the slave can respond.

Fig. 11: USB system topography

In the startup operation the host first performs the enu-
meration of the connected devices and assigns address-
es. It then reads the device properties like the device type
and number of endpoints. Thereupon, it is ready to trans-
fer the data to or from the devices.

The means to transfer the data are the device endpoints.
To enable communication, the host controller creates vir-
tual pipes to these endpoints.

3.2 USB host controller layers
The USB host controller consists of several layers of func-
tionality. They can be implemented either in SW or HW or
in a combination of both.

The layers of the USB host controller can be presented in
many different ways. We will define layers as shown in Fig.
12. The first layer takes care of the USB electrical part like
serialization and new device detection. The second layer
composes the packet where the data is added the syn-
chronization field (Sync) and “end of packet” (EOP). The
third layer generates the packet data and makes the cyclic
redundancy check (CRC) when required. The fourth layer
provides different types of transfers. The fifth layer is the
functionality layer for connection to the endpoints. The sixth
and upper layers are application layers.

When some data from a certain function is needed for an
application, a pipe is established. The Pipe layer then calls
a specific transfer type, the Packet layer prepares the data
required for the operation and adds CRC. The packet is
completed with Sync and EOP in the Frame layer. The Base
layer serializes the complete data and sends it to the slaves.

3.3 USB host controller model
Our model doesn’t include all the features described in
the specification, but only certain features from the USB

Fig. 9: RTL modeling with transactor

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host ControllerInformacije MIDEM 38(2008)2, str. 94-102

99

specification 1.1. The model was developed with intention
to show how only some selected features of certain layers
can be modeled. It allows for an easy upgrading with other
features and includes parts of the Packet and Transfer lay-
ers (L3 and L4) given in Chapter 8 (“Protocol Layer”) of the
specification /12/.

First, let’s take a look at the common USB packet fields,
i.e. the Sync field, Packet ID (PID) field, address (ADDR)
field, endpoint (ENDP) field, data (DATA) field, CRC field
and EOP field. The Sync field is responsible for synchroni-
zation, the PID field identifies the packet, the ADDR field
indicates the device the packet is designated for, the ENDP
field specifies the device endpoint, the DATA field contains
the data, the CRC field detects errors and the EOP field
defines the end of the packet.

The Packet layer distinguishes between the Token, Data
and Handshake packets (Fig. 13). There are some other
packet types defined in the USB specification which are
beyond the frame of this paper. Each packet type has a
different structure. The Token packet consists of the Sync,
PID, ADDR, ENDP, CRC and EOP fields, the Data packet
of the Sync, PID, DATA, CRC and EOP fields and the Hand-
shake packet of the Sync, PID and EOP fields. Since the
Sync and EOP fields occupy every packet, we extracted
their assembly from the Packet to a separate Frame layer
and will not model them.

Two types of CRC are required for the USB packet. The
first is the CRC5 type and is used for CRC calculation of
the Token packet. The second one is the standard CRC16
type and is used in CRC calculation of the Data packet.
CRC will not be calculated by our model. The abstract
model will specify only the CRC type.

As already mentioned above, PID is used to identify the
packet. It first identifies whether the packet is of the To-
ken, Data or the Handshake type. It then distinguishes
between the SETUP, IN, OUT and the SOF Token packet
type, the DATA0, DATA1, DATA2 and the MDATA Data pack-
et type, and the ACK, NAK, STALL and the NYET Hand-
shake packet type. PID occupies eight bits of each pack-
et. PID will be modeled on the abstract level with the PID
type only. The reader can find out more on CRC calcula-
tion and PID in /11/.

The Transfer layer distinguishes between the four data-flow
types: Control, Bulk, Interrupt and Isochronous transfer.
The Control transfer is used for properties and status rec-
ognition, the Bulk transfer for large data, the Interrupt trans-
fer for interrupts, and the Isochronous transfer for audio
and video stream.

Fig. 14: USB Bulk transfers

Each of the data-flow types has a defined data flow. Since
we only modeled the Bulk transfer, we will focus on this
data-flow type alone. Bulk transfer can be the IN (read) or
OUT (write) transfer. The IN Bulk transfer starts with the
host issuing the IN Token packet. The addressed function
responds with the Data packet containing the data from
the target endpoint. In this case, the host responds with
the ACK Handshake packet. In case the addressed func-
tion is busy, it responds with the STALL or NAK Handshake
packet. The OUT Bulk transfer starts with the host issuing
the OUT Token packet and a following Data packet. The
function responds with the ACK Handshake packet on a
successful reception and with the STALL or NAK one on
an unsuccessful reception (Fig. 14). To enable better pres-
entation, our model will only support the DATA0 and the
DATA1 Data packet type and the ACK Handshake type. As
said above, further functionality can be added later.

3.4 USB function model
The USB function model combines 128 functions with 16
endpoints each. In order to verify the complete specter of
functions, the function model responds to all addresses
and all endpoints.

3.5 Verification flow
During DVF, the stimulator is used to generate test vectors
which model requests from a higher (Pipe) layer. They con-

Fig. 12: USB host controller layers
Fig. 13: USB packets and fields

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host Controller Informacije MIDEM 38(2008)2, str. 94-102

100

sist of variables fAddr, fData, fLength, fEndPoint, fDirection
and fDataSlot (Fig. 15). The fAddr variable targets the 7-bit
ADDR packet field and varies from 0 to 127. The fEndPoint
variable targets the 4-bit ENDP packet field and varies from
0 to 15. The fData variable targets the DATA field whose size
can at the “full-speed” USB Bulk transfer vary from 0 to 1023
bytes of data. The fData variable is modeled with 1024 bytes
of data while the actual size of the transmitted data is de-
fined with fLength. The fDirection and the fDataSlot varia-
bles can hold values 0 or 1. For the first variable, value 0
specifies the IN transfer and value 1 the OUT transfer. For
the second variable, value 0 specifies the use of the DATA0
transfer and value 1 the use of the DATA1 transfer.

Fig. 15: Test vector model

In chapter 3.1, we showed that FCM can have different
variable resolutions and different amounts of the required
hits per bag for a full functional coverage. We stated that
the verification time depends upon the selection of these
parameters. Therefore, we ran four different combinations
of these two parameters. We selected two different varia-
ble resolutions and ran them with a minimum of 100 and
200 hits per bag. The different resolutions are presented
in Table 1. The different FCMs are labeled FCM1A (1 for
100 hits, A for resolution A), FCM2A, FCM1B and FCM2B.

Each of the four defined FCMs has many different test vec-
tor sets that lead to a full functional coverage. From these
test vector sets, the average test vector set size can be
calculated. Also, distribution of the test vector set sizes for
each FCM can be presented.

Table 1: Resolutions of variables

Fig. 16: Abstract packet model

The USB host and USB function communicate via the ab-
stract packet. The packet fields are modeled using the fol-
lowing variables: pMask, pPID, pAddr, pData, pEndP and
pCRC and pLength (Fig. 16). The pMask variable masks
the presence of the major five variables and the pLength
variable defines the actual size of the pData variable. The
abstract packets are stored to a file and represent a gold-
en reference of SBV. Due to the large amount of the over-
all data, the data is modeled using only its length (pLength).
The complete data (pData) is verified using ABV.

For ABV, five assertions were implemented in the VE. The
assertion monitor checks for correct packet contents, se-
quence of packets, Address, Data, Slot & Length and Di-
rection & Destination. Assertions are checked on the pack-
et sent from the host and are logged for further analysis.
Assertions that have not been met report an error.

3.6 Results
Using the proposed methodology, the design of the USB
host controller models was efficient. We spent 16 hours
for the VE description, 30 hours for the TL model descrip-
tion and 12 hours for the RTL model refinement.

The minimum amount of test vectors for full functional cov-
erage (minimum test vector set size) can be calculated by
multiplication of the required number of hits per bag and
the maximum number of bags per variable of a defined
FCM. The numbers are 800 for FCM1A, 1600 for FCM1B
and FCM2A and 3200 for FCM2B. After exercising 1000
random test vector sets, we calculated the average test
vector set sizes. The results are presented in Table 2. We

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host ControllerInformacije MIDEM 38(2008)2, str. 94-102

101

also compared deviations of the average test vector set
sizes from the minimum test vector set sizes in percents.

Table 2: Average test vector set sizes

Distribution for FCM1A is shown in Fig. 17. The values were
grouped for better presentation. The step for the x axis is
2% of the minimum test vector set size; for FCM1A the
number is 16. The y axis shows the number of test vectors
within the group. As seen from this particular case, there
were 129 out of 1000 test vector set sizes between 896
and 911 (labeled “904”).

To have results from different FCMs better analyzed, we
normalized the results to the minimum test vector set size.
The normalized results are shown in Fig. 18. From these
results and those from Table 2, FCMs with resolution A
converge faster than FCMs with resolution B. Also, FCMs
with the required 200 hits per bag converge faster than
FCMs with the required 100 hits per bag. We can con-
clude that FCM2A finishes faster than FCM1B, although it
might miss more bugs than the latter. For better interpreta-
tion of these results, a more in-depth study would be need-
ed since they depend upon SCV CR.

Fig. 17: FCM1A distribution chart

By using DVF, we created fast-simulating TL and RTL mod-
els of the USB host controller with the described features.
The RTL models are described by using SystemC and
VHDL. Table 3 shows that the TL model in average simu-
lates six times faster than the RTL models. Since the de-
sign used in our verification was simple, the absolute time
difference is small. If we added all the features from the
USB specification 2.0, the verification times would be much
longer and the difference would be more obvious.

Table 3: Average verification times of FCM1A

Compared to /13/, the USB host controller shows several
differences. Its verification converges much faster than that
of /13/. The reason for it can be found in the inter-inde-
pendent variables of the USB host controller, while those
of /13/ are inter-dependent. This is a great challenge for
SCV CR. Another difference is in the scope of the design
verified by using SBV compared to the share verified by
using ABV. The USB host controller design is a good ex-
ample showing how both SBV and ABV can be efficiently
used for verification, whereas using ABV for verification of
/13/ is needless.

For simulation purposes, we used a computer with the In-
tel Pentium M 740 processor running at 1730 MHz with 1
GB of memory. The wall time was used for time measure-
ment.

4 Conclusion and future work

In this paper we propose a hybrid three-step design and
verification flow. We prove correctness of our approach
on a simplified USB host controller. Further functionality
can be added and verified at any time. It can be realized by
either SW or HW or a combination of both. For instance,
the Transfer layer was implemented in SW, and the Packet
layer in HW. For realization in SW, the RTL refinement is
not required.

One of the reasons to adopt the proposed approach is to
shorten the design time for the verified TL model, which in
our case study was 30 hours. Another 16 hours were re-
quired for the VE and another 12 hours for the RTL refine-
ment.

Fig. 18: Normalized distribution chart

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host Controller Informacije MIDEM 38(2008)2, str. 94-102

102

We showed the free choice of FCM at the expense of pos-
sible missed bugs. Also, ABV was very helpful at pinpoint-
ing the bugs by means of which the design took us less
time.

The use of the proposed DVF requires no special tools. TL
and SystemC RTL models description and simulation are
made only by a free C++ compiler. Since no SystemC im-
plementation tool is currently available, the VHDL RTL
model in combination with mixed-language simulators is
also required.

In our case study we show that the TL model simulates six
times faster than the RTL model. The simulation speed
becomes more relevant at more complex models that take
more time to simulate.

Future work will focus on improving the proposed cover-
age metric and convergence towards full coverage. The
USB host controller model will be added further function-
ality in order to explore the described FCMs with more
complex models. Other nonlinear FCMs will be studied so
as to optimize the verification.

5 References

/1/ S. Swan, “SystemC Transaction Level Models and RTL Verifica-
tion”, 43rd ACM/IEEE Design Automation Conference, pp. 90-
92, 2006.

/2/ Y. Wei, H. Guanghui, X. Ningyi, Z. Zucheng, “SystemC Transac-
tion Level Modeling and Verification of IEEE 802.15.3 MAC”,
International Conference on Communications, Circuits and Sys-
tems Proceedings, pp. 2554-2558, 2006.

/3/ S. Tasiran, K. Keutzer, “Coverage metrics for functional valida-
tion of hardware designs”, IEEE Design & Test of Computers,
vol. 18, no. 4, pp. 36-45, 2001.

/4/ F. Ghenassia, “Transaction Level Modeling with SystemC”,
Springer, 2005.

/5/ E. Vaumorin, T. Romanteau, “From Behavioral to RTL Design
Flow in SystemC”, electronic f ile available at https://
www.systemc.org/, 2004.

/6/ F. Carbognani, C. K. Lennard, C. N. Ip, et al, “Qualifying preci-
sion of abstract SystemC models using the SystemC Verification
Standard”, Design, Automation and Test in Europe Conference
and Exhibition, pp. 88-94, 2003.

/7/ A. Habibi, S. Tahar, “Design and Verification of SystemC Trans-
action-Level Models”, Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, vol. 14, no. 1, pp. 57 - 68, 2005.

/8/ T. Grotker, S. Liao, G. Martin, S. Swan, “System Design with
SystemC”, Kluwer Academic Publishers, 2002.

/9/ R. Siegmund, U. Hensel, A. Herrholz, et al, “A Functional Cover-
age Prototype for SystemC-based Verification of Chipset De-
signs”, 9th European SystemC Users Group Meeting, electron-
ic file available at http://www-ti.informatik.uni-tuebingen.de/
~systemc/, 2004.

/10/ Members of the SystemC Verification Working Group, “SystemC
Verification Standard Specification”, electronic file available at
https://www.systemc.org/, 2003.

/11/ USB Specification 2.0, electronic file available at http://
www.usb.org/developers/ docs/, 2000.

/12/ C. Peacock, “USB in a Nutshell”, electronic file available at http:/
/www.beyondlogic.org/ usbnutshell/usb-in-a-nutshell.pdf,
2002.

/13/ P. Puhar, A. Žemva, “Simulation-based functional verification of
a video processing IP block”, 43th MIDEM Conference Proceed-
ings, pp. 171-176, 2007.

Primož Puhar, B.Sc.
LEA d.o.o.

Finžgarjeva 1A, 4248 Lesce
primoz.puhar@lea.si

Prof. Dr. Andrej Žemva,
University of Ljubljana

Faculty of Electrical Engineering,
Tržaška 25, 1000 Ljubljana, Slovenia

Prispelo (Arrived): 04.02.08 Sprejeto (Accepted): 28.5.08

P. Puhar, A. Žemva:
Hybrid Functional Verification of a USB Host ControllerInformacije MIDEM 38(2008)2, str. 94-102

