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Abstract

The paper presents the possibility of modifying standard
adjustment algorithms: direct observations, indirect
observations, combined direct and indirect observations, and
indirect observations with constraints; residuals and
unknowns are estimated simultaneously by solving
appropriate systems of linear equations. Such a modification
of standard adjustment algorithms corresponds fo the use of
modern personal computers and pocket calculators, since
they support direct mairix algebra operations.
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1 INTRODUCTION

odern personal computers equipped with program systems for table
computations (Ingalsbe, 1988, BoZi¢, 1994, Husnjak, 1994, Crnko et al., 1995)
and pocket calculators (Sharp Corporation, 1986) enable direct matrix algebra
operations. As a result of this, the use of adjustment algorithms in geodetic practice
is nowadays more efficient than it used to be, since all modern adjustment algorithms
are theoretically defined with the use of mairix algebra, while computers enable their
practical use. Computational procedures are thus accelerated and simplified and the
possibility of errors occurenceis reduced. Professionals therefore do not need to
know more difficult procedures for the solving of geodetic tasks. Direct matrix
algebra operations also needs certain modifications to adjustment algorithms, which
can be further adopted to possibilities for the computers. The standard form vsed in
several publications (Wolf, 1968, Bjerhammat, 1973, Mikhail, Ackerman, 1976) is due
to tradition not best suited to these possibilities.

[ owadays the use of adjustment of indirect observations has advantages in the
solving of various geodetic tasks (Caspary, 1988), while one of the possible
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modifications is an algorithm which is used for simultaneous computation of
residuals and unknowns. In the standard algorithm for indirect observations these
quantities are determined gradually, beginning with unknowns (by solving normal
equations) and followed by residuals (by including unknowns into corresponding
observation equations, Feil, 1989). A modified algorithm for indirect observations is
presented in Hoepcke, 1980, but, if used in an appropriate way, it can also be used
for direct observations, simultaneous adjustment of direct and indirect observations
and the adjustment of indirect observations with constraints.

2 DIRECT OBSERVATIONS

functional model of direct observations is determined by a system of
observation equations (Feil, 1989):

v = e x-1, P
wil wil it onxl nxn’ (1)
where

n — number of observations

% — approximate value of unknown
e — unit vector

I — vector of reduced observations
v — vector of residuals

P - weight matrix.

Unique solution to this system is obtained with the use of the least squares principle:
v'P v = minimum (2)
which also determines normal equations:

(P e)x-eP1=0 (3)

From the use of the least squares principle comes out the basic control for the
checking of correctness of residuals:

eP v = 0 , (4)

By multiplying equation (1) with the weight matrix P from the left side and by
rearranging the equation, we obtain:

Pv-Pex+Pl=20 : (5)

Equations (4) and (5) determine the following system of linear equations

EIMEHNH! ©

in which the matrix of coefficients is a symmetrical matrix of formats (n + 1) x (n -1).
It should be emphasised that this matrix has the property of positive definiteness, but
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it is regular and can be inverted through classical inversion. By inverting this matrix,
the solution to the system of equations given in equation (6) is also determined:

T e
—X e? 0 0 9 qz2]] 0 |

In this manner, the residuals and the unknowns are estimated simultaneously. In
equation (7), submatrices and a subvector are defined by inversion:

a4, = ~(ePe) " = g, ®)
o T ©)
Q=P —eq ¢, (10)

where q,, is a cofactor of the unknown.

Since a theoretical form of the system of equations (6) is important for the practical
use of this algorithm, it must therefore be understood in an analogy with the
standard adjustment algorithm for direct observations, along with the system of
observation equations. A division of system (6) into submatrices and subvectors has
no effect on the efficiency of practical computation, since on a personal computer or
pocket calculator appropriate commands are used for inversion and multiplication. A
comparison of this algorithm with 2 standard adjustment algorithm for direct
.observations shows that instead of solving one normal equation, equation (3), a
system of (n+1) linear equations is solved, equation (6), for the determination of
unknown quantities (the corrections and the unknown). The task is not difficult,
since matrix algebra computational operations can be used directly.

‘he system of equations (6) and (7) also comprises the most general example of
I adjustment of direct observations, i.e. the adjustment of direct correlation
observations. If adjustment of independent observations of different accuracy and
direct independent observations of equal accuracy is performed, the algorithm is
simplified, which depends on the form of the appertaining weight matrix P.

3 INDIRECT OBSERVATIONS

he functional model of indirect observations is also determined by a system of
observation equations, but in contrast to direct observations it contains a greater
number of unknowns: ‘

v = A x-1, P, {11
nxl nxu uxl nxl nxn
where

u — number of unknowns
A — matrix of the cocfficient of observation equations.
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The procedure for defining the adjustment algorithm with a simultaneous estimation
of residuals and unknowns matches direct observations. From the use of the least
squares principle, the control for checking the correctness of residuals is:

APy = 0. (12)

By multiplying equation (11) with the weight matrix P from the left side and
rearranging the equation, we obtain:

Pv-PAx+ P1=0 ' (13)
Equations (12) and (13) determine a system of linear equations:

R MEAH S

the solution of which is:

{v} _ [ P PA} -1 {_pa‘ _ {QU Q,z]{—ﬂ} 15)
-x AP 0 0] [Qu Qnj| 0]

In this equation, the following submatrices are defined by inversion:

Q, = ~(APA) " = -Q ‘(16)
Q12 = AQX‘X’ (17)
Qu =P - AQXXA:' (18)

nxn

where Q,, is 2 matrix of the cofactor of unknowns.

Equations (10) and (18) also include the matrix of cofactors of adjusted observations
Q, i.e. in direct observations:

i

Q =eq_¢ (19)

nxn

and in indirect observations:

Q = AQ_ A" (20)

nxn

A comparison of this algorithm with the standard algorithm for adjustment of
indirect observations shows that instead of {u) normal equations, a system of (n +u)
linear equations is solved to estimate unknown quantities (residuals and unknowns).

20 , am
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4 COMBINED DIRECT AND INDIRECT OBSERVATIONS

1 the combined form of adjustment of direct and indirect observations, a
functional model is determined with error equations of direct observations:

vio= A x— 1, P (21)

nlxi npxuouxt ongxl onpxng
and observation equations of indirect observations:

“:/"?1 = A, x—~ 1L, B . \ (22)

n, X uxl w1 n, XNy

Unique solutions of the functional model is obtained with the use of the least squares
principle in accordance with equation (2):

vPv = v Pm + Vi Bv, = minimum, (23)
such thét the basic control for checking the correctness of residuals is:

APv = AP, » AlPv, = 6. (24)
Taking into account (21) and (22) and multiplying them with appertaining weight

matrices from the left side, and equation (24), a system of linear equations is
determined:

Pl ¢ P1A1 Y, Plgl 0 .
0 P, P,A v, |+ |P0] =10 (25)
]

AP, ALP, 0 ||-—x 0

By the solution of the coefficient of this system, a vector of unknown quantities is
determined, i.e. the vector of residuals of direct observations v,, vector of residuals -
of indirect observations v, and the vector of approximate values of unknowns x at the
same time:

-1

i P, 0 PA, -P Qu Qu Qu|-P
v, | = 1] P, P,A, =Pl =10y Qn Qu|-Pl (26)
—X A; Pl Alzpz @ @ Q31 Q3Z Qfﬁ @

In this equation, the following matrices are defined by inversion:

Qs = (AIPA, + APA) = -N7 = -Q,, @7
g33 = AQu | v 28)
Qz = P;' - AQuAf, (29)

NyXily

Geodetski vestnik 40 (1996) 1



Q; = AQx; (30)

nl}:u

Qn = “Al@mAé P (31}
nxng .

Qi = Pi' — A,Q,A], (32)

nyxny

where Q,, is the matrix of the cofactor of unknowns.

In this case, in contrast to the standard algorithm, a system of linear equations
(n, + n, + u) must be solved.

5 INDIRECT OBSERVATIONS WITH CONSTRAINTS

the combined form of indirect observations with constraints, the functional
model is determined with observation equations of indirect observations:

v=Azx-1, P (33)

d waw wxl o onxl axa

and with constraint equations:

B x+w=10, (34)

xu uxl rxl rxl

where:

r — number of constraints

@ — vector of misclosure

B - matrix of coefficients of constraint equations,

The basic check for the computation of residuals is determined with the use of the
least squares principle:

APy + Bk = 0, (35)
where k is the vector of the correlate. -

Equations (33) and (34) and equation (32) determine the system of linear equations
after their multiplication with the weight matrix P on the left side:

P PA O]v Pl 0
AP 0 Bl-x|+|0]|=|0 ' (36)
0 B 0k -@ o]

By the solution of this system, the vector of unknown quantities is determined, i.e.
the vector of corrections of indirect observations v, the vector of approximate values
of unknowns x and the vector of the correlate k, are determined simultaneously:
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—1

v P PA O -Pl Qu Qp Qu|—-H

-x|=|AP 0 B D |=1Q%y Qn Gl 0 (37)
k 6 B 0 @ Qs Qs Q4@

In this equation, matrices are defined by inversion:

Q, = BN"B)"'= Q,, . (39)
Q, = N'BQ,, (39)
5%22 =N'BQ, BN '-N'=-Q_, (40)
%3 = -AN"'BQ,, (41
Q, = AQ, B (42)
Q, = P7'~ AQ A, (43)

nxn

where N is the matrix of coefficients of normal equations of indirect observations:
N = A'PA (44)

and Q, is the matrix of the cofactor of unknowns. The number of linear equations
which must be solved increases from (u + 1) to (n + u + 1).

6 CONCLUSION

odern pocket calculators and personal computers considerably increase the
efficiency of the use of adjustment algorithms in solving different geodetic
tasks. Their efficiency is shown at the elementary level of use, above all in the
possibility of direct performance of matrix computational operations, s0 that there is
no discrepancy between the theoretical presentation of adjustment algorithms on one
hand and practical computations on the other. In comparison with classical algebra,
each matrix computational operation is more difficult and generally consists of a
series of elementary operations. By direct use of matrix operations integrated in the
computer/calculator, the computational procedure is accelerated and, simultaneously,
the possibility of appearance of computational errors is reduced.

‘he use of inversion, i.e. a command incorporated in the computer or calculator,
also solves one of the problems which had an influence on the development and
use of adjustment procedures, that is the solving of normal equations. In practice,
classical methods (or their partially modernised versions) are still present due to
tradition {Burmistrov, 1963, Cubrani¢, 1980, Klak 1982). As a result of direct
inversion of the matrix of the coefficient and the use of indeterminate methods in
their solution, these methods have become inefficient. The solving of a system of
linear equations, the extent of which exceeds the number of normal equations in
solving of the same geodetic task, is not difficult at all. This is also the conclusion of
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this paper, in which the adjustment algorithms for simultaneous calculation of
residuals and unknowns are based on the solving of a system of linear equations
which are increased with regard to the corresponding normal equations in the
standard algorithm by the number of observations. It must be emphasised that the
direct use of computational operations of matrix algebra in modern computers and
calculators also has an influence of increasing the efficiency of practical
computations, while the functional model or its coefficients are defined with regard
to the geodetic task. The functional model can be determined in the classical way or
by writing a special program in one of higher program languages (Rozi¢, 1992).

n comparison with standard algorithms, the presented adjustment algorithms with
simultaneous determination of residuals and unknowns mainly use the advantages
of direct matrix algebra operations. They are therefore appropriate for practical use
in solving all standard geodetic tasks in daily practice which are based on the use of
adjustment algorithms. The use of modern computers and calculators for the
previously described algorithms was very rare, but expert programs should be written
in higher program languages. On the other hand, the production, standardisation,
verification and licensing of such programs present a special problem which is not
discussed in this paper.

"t can be established on the basis of the above that the most basic computational
accessories of a modern geodetic professional in the use of adjustment algorithms
are pocket calculators with the possibility of performing matrix algebra
computational operations. Their use makes practical computations simpler and more
efficient without the knowledge of programming, with the use of the modification of
standard algorithms presented in this paper. Adjustment algorithms for conditional
observations (Hoepcke, 1980) can be modified in a similar way, as well adjustment
algorithms for conditional observations with unknowns.

Example:

‘omparison of practical computation in the use of a standard adjustment
algorithm and an adjustment algorithm with simuitanecus calculation of
corrections and unknowns in indirect observations (computation was performed on a
SHARP PC-1403 pocket calculator). The coordinates of points T}, T,, T; and T, are
given and the approximate coordinates of point T (x,= 117.00 m, y,= 145.00 m), the
position of which is unknown. On the basis of measured lengths s, (i=1, 2,..., 4), the
adjusted coordinates of point T must be determined (section of an arc). Thzs example
is from RoZi¢, 1993, exercise 3.1.12.

Measured lengths Coordinates of points

TT, = s; = 105.60 m, Ty = 54.80m, x; = 17294 m
TT, =5, = 107.60 m,  T,y,=23365m, x, = 177.55 m
TT; =83 = 109.30 m, Ty, y5 = 237.50 m, X, = 59.76m
TT, = s, = 103.10 m, Tyys= 5738m, X, = 6533 m
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Observation equations: v=Ax-I, P=E

A Ae -] g
-0.53 0.85 03211 054 0.86

-0.56 0831|139 |-0.24{] -1.63
0.53 -0.85-0321|-05211-0.85
051 0864 137)|-138|-0.01

A) Standard algorithm

WNormal equations: Nx-n = @
t

N Me ~m S
1.1308 0.0079111.13871-1.1210110.0178
0.0079 2.8692 1) 2.8771|-0.0849|12.7922

Solving of normal equations with Choleski’s algorithm:

¢ -(CY'n CON €Y's o
1.06340 0.007451 -1.05413 || 0.94038 0.95710 |1 0.95710
1.69385 || -0.04547 || -0.00414 0.59037]2.23462 1| 2.23462

pes

Q Qe X
0.88434 -0.00244 |0.88189 |10.991
—-0.00244  0.34854 11034610 || 0.027

Calculation of residuals: v = Ax-1

Ax -} v
-0.5007[ 0.54 0.039
~0581 || -0.24| |-0.826
0499 ||-052]  |-0.023
0.527|| -1.38 -0.853

B) Simultaneous calculation of residuals and unknowns

Defining the coefficients of systems of linear equations according to equation (14):

[ 1.00 -0.53  0.85] [ 0.547
1.00. - -056 -0.83 ~0.24
P A| 1.00 053 -085) [q] _|-0.52
[A @} - 100 051 086 {@} | -138
-053 -056 053 051 000 0.00 0.00
| 085 -083 -085 086 000 0.00] | 0.00],
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Solving of the system of equations according to equation (15):

<o [ el M
A0 - @21 sz —%
[ 050044 001840 049932 001844 046816 029749 [ 0.039 |
-0.01840 048329  0.01783 049906 -0.49676 -0.28643 ||-0.826

0.49932 0.01783 0.50092 0.01397 046742  -029767 ||-0.023
-0.01844 0.49906 0.01897 0.51535 0.44710 0.29898 ||-0.853

-0.46816  -0.49676 0.46742 044710  -0.88434 0.00244 1-0.991
| 0.29749  -0.28643  -0.29767 0.29898 0.00244  -0.34854 |{-0.027
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