IMFM

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS
JADRANSKA 19, 1000 LJUBLJANA, SLOVENIA

Preprint series
Vol. 49 (2011), 1160
ISSN 2232-2094

COMPUTING QUADRATIC ENTROPY
IN EVOLUTIONARY TREES

Drago Bokal Matt DeVos

Sandi Klavzar Aki Mimoto
Arne . Mooers

Ljubljana, September 16, 2011



Computing quadratic entropy

in evolutionary trees

Drago Bokal*

Faculty of Natural Sicences and Mathematics, University of Maribor,

Korogka cesta 160, SI-2000 Maribor, Slovenia

Matt DeVos

Department of Mathematics, Simon Fraser University,

8888 University Drive, Burnaby BC V5A 156, Canada

Sandi Klavzar
Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 19, 1000 Ljubljana, Slovenia
and
Faculty of Natural Sciences and Mathematics, University of Maribor,

Korogka 160, 2000 Maribor, Slovenia

Aki Mimoto! Arne @. Mooers?

Department of Biological Sciences, Simon Fraser University,

8888 University Drive, Burnaby BC V5A 1S6, Canada, .

ETEX-ed: September 16, 2011



Abstract

We note here that quadratic entropy, a measure of biological diversity introduced
by Rao, is a variant of the weighted Wiener index, a graph invariant intensively studied
in mathematical chemistry. This fact allows us to deduce some efficient algorithms for
computing the quadratic entropy in the case of given tip weights, which may be useful
for community biodiversity measures. Furthermore, on ultrametric phylogenetic trees,
the maximum of quadratic entropy is a measure of pairwise evolutionary distinctness in
conservation biology, introduced by Pavoine. We present an algorithm that maximizes
this quantity in linear time, offering a significant improvement over the currently used

quadratic programming approaches.

Keywords: evolutionary tree, phylogenetic tree, quadratic entropy, originality, distinct-

ness, Wiener index

1 Introduction

Phylogenetic trees are simply graphs depicting the inferred relationships among predefined
sets of leaves (which often correspond to species). This means that they are amenable to
analyses with graph theory [35]. If they are given a direction by identifying a root, we can
speak about evolutionary trees. Their structure models evolution, which has a direction from
past to present, and which is generally (but not exclusively, see [2]) diversifying such that
the simultaneous production of more than two descendent lineages from an ancestral lineage
is rare. Biologists often consider internal vertices to represent extinct ancestral lineages and

the edge lengths to represent the amount of evolution that occurred between the species
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corresponding to the endvertices. Evolutionary trees are most often inferred by fitting an
evolutionary process model to discrete data measured on the leaves in a maximum likelihood
or Bayesian framework [11]. Because evolutionary trees are representations of the evolution-
ary history of a set of contemporaneous leaves, they are often forced to be ultrametric, i.e.
all leaves are equidistant from the root. Such an evolutionary tree has a height h, the sum
of edge lengths on the path from the root to (any) leaf: edge lengths are then inferred to
represent the relative elapsed time between internal vertices.

Past mathematical research has considered tree inference, tree shape distribution and
accompanying generating models, as well as parameter estimation from inferred trees. So,
Semple and Steel [35] summarize how graph theory can contribute to the NP-complete prob-
lem of evolutionary tree inference: e.g. what the mathematical properties are for characters
that allow for the recovery of the underlying tree under different assumptions about their
evolution, and how subtrees can be combined to best preserve their information. Explo-
rations of evolutionary tree structure distributions have a long pedigree, with most attention
focussed on the Yule [41] and uniform [32] distributions of topologies [23, 36]. There has
also been related discussion on appropriate prior distributions (of tree topology and edge
lengths) for evolutionary tree inference [9, 40, 34|, and efficient algorithms listing all possible
evolutionary trees for a given set of species have been developed [33]. At the other end of
the evolutionary tree inference cycle, mathematically-inclined biologists have produced tools
for estimating evolutionary parameters (speciation and extinction rates) from inferred trees
(16, 24, 27].

Graph theory can also bear on practical biological conservation. If we assume that one
aspect of the leaves (species) humans would like to conserve is the unique information they
embody, and if we let the edge-weighted evolutionary trees represent the pattern of shared
and unique information, we can start to devise approaches that maximize this quantity
(called ‘evolutionary history’ or ‘phylogenetic diversity’) under constraints of final subset

size, budgets for conservation, costs of conservation, and the probabilities of species survival



[10, 14]. This has been termed the “Noah’s Ark Problem” [38]. A related metric is the
contribution of a leaf to future subsets on an evolutionary tree — these have been termed a
leaf’s ‘originality’ or ‘distinctness’ [12, 15, 17, 20, 25, 29, 31].

In this contribution, we explore one such measure, quadratic entropy, introduced by Rao
[28] and recently applied to evolutionary trees by Pavoine [25, 26]. These authors propose
computing the probability distribution x4 maximizing the quadratic entropy for general finite
metric spaces. In the evolutionary context, Pavoine [25] specifically suggests using p as an
importance score for species on a tree as a weight representing its expected pairwise contri-
bution of evolutionary originality. The method can be interpreted as finding an optimum
of a quadratic mathematical program, yielding an algorithm of complexity O(n?). It has
been implemented as a function [4] in the ADE package for analysis of environmental data
[1] within the statistical environment R [37]. However, one can use the specific structure of
evolutionary trees to develop a linear time algorithm for maximizing the quadratic entropy
in two depth-first traversals of the tree. Presenting this algorithm (implemented in R and
freely available from the first author, [3]) is the main goal of the present contribution. In
addiation, we make a few additional observations on computing the quadratic entropy and
its connections with the graph invariant Wiener index [6, 8, 18, 21}, widely known in mathe-
matical chemistry. This last connection also allows for an alternative and rapid (linear time)

algorithm of computing the quadratic entropy on evolutionary trees with known leaf weights.

2 Evolutionary trees and quadratic entropy

An evolutionary tree T = (T, r,w) consists of a tree T rooted at a vertex r € V(T') whose
edges have their length determined by a function w : E(T) — R*. Between any two pairs
of vertices u,v € V(T), there is a unique shortest path in 7', and by the distance d(u,v)
between u and v we denote the length of this path, i.e. the sum of the w-values of its edges.

In a rooted tree, every vertex v € V(7T') has a unique incident edge e, that lies on the shortest



path connecting v with . The component of T' — e, containing v is the subtree T, rooted at
v. Then, 7, = (T\,,v,w/g(r,)) is the corresponding evolutionary subtree. The endvertex of
e, distinct from v, is the parent of v, and all neighbors for which v is a parent are children of
v.

Each vertex in an evolutionary tree represents a species in the history of Earth. A leaf
vertex represents either a living species or an extinct species, and an internal vertex represents
the common ancestral species of those corresponding to the vertices in V(T;,). The length of
an edge uv represents the time elapsed between the species v, whose immediate ancestor is ,
branched into two or (rarely) more new species. Therefore the living species are represented
by the leaves at the largest distance h from r, called the height of 7. In our study we assume
that 7 contains no extinct leaf species, i.e. all the leaves of 7 are at distance h from r,
making 7 strictly ultrametric. The height corresponds to the age of the species represented
by r. Note that, in the case that the root r has degree one, we do not consider it as a leaf of
T.

Let p be a probability distribution on the leaves of 7 and let D denote the random vari-
able, representing the distance among two p-randomly selected leaves of 7 (with repetition).
Quadratic entropy E(D) is the expected value of this random variable [25, 26, 28]. We can
define it for any metric space X, in which case we are evaluating the expected distance be-
tween two randomly selected elements of X. Thus, if p is the vector of relative frequencies
of elements from X (in our case, species) and A is the corresponding distance matrix (in our

case, the matrix of distances in the evolutionary tree), then

E(D) = u" Ap.

Matrix multiplication from this formula yields a quadratic algorithm for computing E(D) for
given 1 and A. Further, finding p that maximizes E(D) for given A corresponds to finding
a maximum of a quadratic program in variable pu and can be done using standard methods

of convex programming. In the special case of evolutionary trees, we develop a significantly



more efficient algorithms for both tasks, which run in linear time.

3 Computing Quadratic Entropy

Suppose 7y = (11, r1,wy) and Ty = (Ty, 79, wy) are two evolutionary trees. The join of these
two trees is the tree 7 = 77 + 73, 7 = (T, r,w), where T is obtained from T} and T, by
identifying their roots r; and r, into a new root r, and the length function w of 7 is induced
by the functions w; and w,.

For a subtree 7' of T, let E(D|7") denote the expected value of D conditional to both
leaves being selected from 7" and let x(7") denote the sum of p(l) for all leaves [ in 77, i.e.

the probability that a random leaf of 7 is a leaf of 7’. The following proposition holds:

Proposition 1 Let T be a tree with probability distribution p on its leaves, and let T be the

join of two trees T; and Ty of the same height h. Then,
E(D) = E(D|T)u(Th)* + E(D|B)ilT2)* + 4hu(T1) u(T:).
Proof.

E(D) = Y uu)dll)

LeT

= > uOu@)d, )+ 3 pOu)dd 1) +

L'eTy LUeT
S ouu)dd, vy + Y pp)d(, 1)
leTi,l’eT, leTz,l’eTh

= E(D|T)u(Th)? + E(D|L)u(T)* +
4hy (D) Yl

leT; ey
= E(D|IT)u(Th)? + E(D|T)u(T5)? + 4huu(T:)u(To).

We have essentially used the fact that all the leaves are at distance h from r, thus the distance



between any [ € 7; and I’ € Ty is d(I,I") = d(l,r) + d(I',r) = 2h. O

Recursive application of Proposition 1 yields a linear algorithm that computes E(D) for
a given probability distribution p on the leaves of 7. It is presented as Algorithm 1. It

computes the values of E(D|7,) in one depth-first traversing of 7.

Algorithm 1 Computing quadratic entropy for a given probability distribution.
Procedure compute £(v,d)
Parameter v: vertex for which we are computing E(D|7,).
Parameter d: distance from v to the leaves of 7,.
1: if v is a leaf then
2. set e(v) = 0.
3:  let u(v) be the assigned probability P(l = v).
4: else
5. let ¢q,..., ¢ be the children of v.
6:  compute_£(cy,d — d(vey)).
7
8
9

set €(v) = e(cq).

set p(v) = pler)
fori=2totdo

10: compute £(¢;,d — d(ve;)).

11: set p(v) = p(v) + ple).

12: set p = p(c;)/p(v).

13: set e(v) = e(¢;)p? + e(v)(1 — p)* + 4dp(1 — p).
14:  end for

15: end if

For the proof of correctness in this and the following sections, we introduce some notation.
Let v € V(7T) be some vertex of 7, and let ¢y, ..., ¢ be its children. In this context, let 7;
be the tree, rooted at v, obtained recursively as 7; := 7., Uvcy and 7; = 7,1 + (7, U ve;)
for ¢ > 2, where 7., U vc; is the tree obtained from 7., by adding the edge c;v. Note that

E(D|7., Uvc;) and p(7Ze, Uwve;) are the same as E(D|7.,) and p(7.,), respectively.

Theorem 2 For v € V(7T), the value (v) computed by Algorithm 1 equals E(D|7,). In

particular, €(r) is the quadratic entropy of T for a given probability distribution .

Proof. In addition to the statement of the theorem, we claim that u(v) = P(l € 7). We

prove these claims by induction on the number of vertices in 7,,. If there are only two vertices



r = u and v, which is the leaf, then p(v) =1 (line 3), e(v) = 0 (line 2), p.(u) = 1 (line 8),
and £(u) = 0 (lines 6 and 7), which is correct.

Let there be at least three vertices in 7,. Correct results are computed for the children c¢;
of v; in lines 6 and 9 by induction. If there is only one child, then u(¢;) = pu(7,) by induction,
and lines 8 and 7 establish correctness of p(v) and (v).

If there are more children, then line 11 computes the probability ;(7;) and line 12 com-
putes P(I € 7., |l € T;) by conditional probabilities. Line 13 computes E(D|7;) by Proposition
1. Then e(v) = E(D|7,) and p(v) = u(7,) after the execution of the for loop, since 7; = 7,,.

The theorem follows. O

4 Quadratic Entropy Versus Weighted Wiener Index

In this section, we show that there is a close connection between the quadratic entropy
and one of the central concepts studied in chemical graph theory. Extending the methods
from this field of research we give an alternative algorithm (Corollary 4) for computing the
quadratic entropy of 7. This algorithm avoids computing the distances between the leaves.

In mathematical chemistry, numerous graph invariants are used to analyze and predict
physical and chemical properties of chemical compounds. When such invariants are computed
on chemical graphs they are traditionally called topological indices. Among topological in-
dices, the Wiener index is the oldest [39] and one of the most thoroughly studied indices, cf.
the surveys [6, 7]. Let G = (V(G), E(G)) be a connected graph. Then the Wiener index
W(G) of G is defined as the sum of the shortest path distances between all unordered pairs

of vertices:

W(G) = Z d(u,v) = % Z d(u,v) .
)

{u,v}CV(G) u,veV (G

This classical definition was extended in [18] to weighted graphs (G, f), where f : V(G) — R



is a vertex weighting function, in the following way:

WC. f) = %u%j(g) F) F(0)d(wv)
Note that in the definitions of the (weighted) Wiener index it is assumed that all the edges
have unit length, that is, the w-values on its edges are all 1.

In order to design a linear algorithm for computing the Wiener index of an important
class of chemical graphs—benzenoid systems—it was observed in [5] that the Wiener index of
a weighted tree can be computed in linear time. (This result in also implicit in [21].) We now
show that the approach can be extended to weighted trees with edges of arbitrary length.
The weighted Wiener index W (G, f) is defined as before, except that now d(u,v) is the sum
of the w-values on a shortest u, v-path.

Let (T, f) be a weighted tree and let uv be an edge of T. Then T — uv consists of

connected components, say 7" and 7%, where v € T* and v € T". Let f(T%) = > o ()

and f(T%) = > cpo ().
Proposition 3 Let (T, f) be a weighted tree with w-values on its edges. Then

W(T, f)= Y [T (T")w(u,v).

uwveE(T)

Proof. Let uv be an arbitrary edge of 7" and let z,y € V(T'). Then e lies on the u, v-path if
and only if one of z,y belongs to T" and the other to T". Suppose that this is the case and

let v =2,...,2; =u,zj41 =v,..., 7, =y be the z,y-path in T". Then

N

F) f @) = F@) @) S wlenzin)

=1

Hence the contribution of the edge uv to W(G, f) with respect to the unordered pair z,y is
f(z)f(y)w(u,v). Since this holds for all pairs of vertices from 7" and T, the result follows.

O



Corollary 4 Let (T, r,w) be an evolutionary tree with probability distribution p on its leaves.

Then

Proof. Define f: V(T) — R with

p(u);  wis aleaf of T
fu) =

0; otherwise .

Then note that E(D) = 2W (T, f) and apply Proposition 3. O

Special cases of vertex-weighted Wiener indices (and Wiener) polynomial were recently
treated in [19, 8], where the assigned weights are vertex degrees. The general case, in which
both vertices and edges are weighted, has been to the best of our knowledge treated earlier
only by Zmazek and Zerovnik [42]. They give a linear algorithm for cactus graphs, the graphs
whose blocks are cycles and edges. Hence their (rather involved) algorithm can be considered

as an extension of the algorithm that flows from Corollary 4.

5 Maximizing Quadratic Entropy

In this section, we present an algorithm that computes the maximum value of quadratic
entropy over all possible probability distributions on the leaves of 7, together with the
probability distribution g on the leaves of 7 that achieves the maximium value. In terms of
Wiener index, this problem finds the weighting function on the set of leaves of 7, such that
the resulting weighted Wiener index is maximum. This weighting is Pavoine’s originality
score [25] from conservation biology. To our knowledge, this problem has not been studied

earlier in the Wiener index framework.

Proposition 5 Let 77 and Ty be two trees of height h with probability distributions py, ps
and expected distances E(Dy), E(Dy). Further, let T = T, + Ty be their join. Then the

10



distribution i, defined with

2h—E(Dy) _

) mEeymogml) 5 LeT
uil) = 2h—E(D;

75Dy Eoghel) 5 L€T

mazximizes B(D) whenever py and ps mazimize BE(D;) and E(Ds).

Proof. First note that x(7) = 1 and that u(7;) is obtained by scaling p;, i = 1,2, therefore
E(D|T;) = E(D;). By u(71) + pu(73) = 1 and Proposition 1, we have

E(D) = E(D|T)u(T:)? + E(DIT)(1 — u(T:))* + 4hu(T) (1 — u(T5)).

This expression involves the constant h and three variables, u(77), E(D|7;) and E(D|73),
which are not independent. We optimize E(D) under the assumption of their independence,
which we justify later.

For fixed E(D|Ty), E(D|73), and variable p(77), E(D) is maximized in the apex of the

parabola, thus

2% -E(D[5)
M) = 35 "R(DIT,) - B(DIT)
implying
2h — E(D|T;
W(T) = o

= T —E(DT,) — B(D|T)
Using these values, we obtain the maximum

4h? — E(D|T1)E(D|Ts)

M) = 5 —R(Dm) - B(DID)

The partial derivative in variables E(D|7;) and E(D|7;) is everywhere nonnegative, thus
E(D) will be maximized when both E(D|7;) and E(D|73) will be largest. By assumption,

this is achieved if u restricted to 77 equals p; and p restricted to 75 equals ps.

11



The distribution p described by formula (5) satisfies all three conditions: p(77) and p(73)
have the desired value and p restricted to 7; is after normalization equal to u;, ¢ = 1,2. Since
the distribution p satisfies the optimality conditions for the optimum without dependence of

the three variables, it achieves the optimum in the restricted case and therefore maximizes

E(D). O

Algorithm 2 First pass for computing relative subtree probabilities.

Procedure maximize ¢(v,d)
Parameter v: vertex for which computation is done.
Parameter d: distance from v to the leaves of 7,.
1: set p,(v) = 1.
2: if v is a leaf then
set e(v) = 0.
4: else
5 let c1,..., ¢ be the children of v.
6: maximize e(cy,d — d(vey)).
7. set e(v) = e(cy).
8
9

@

for:=2tot do
maximize e(c;,d — d(ve;)).

10: set . (c;) = —4d_gj(::)(fl(v).
11: set e(v) = &) pr(ci)? + (V) (1 — pr(e))? + ddpy(e;) (1 — pr(c)).

12:  end for
130 setx=1— p.(c).
14: fori=1t¢—1 downto 1 do

15: set y =1 — p,(¢;).
16: set Mr(ci) = ﬂr(ci)x'
17: set x = xy.

18:  end for

19: end if

We use Propositions 1 and 5 recursively in Algorithm 4, which computes p in two passes
of depth-first traversing of 7. In the first pass, Algorithm 2, we compute £(v) = E(D|7,)
for every vertex v of 7 and pu,(v) = P(l € 7,|l € 7,), i.e. the probability for a leaf selected
from 7, to lie in 7, where u is the parent of v. In the second pass, Algorithm 3, we compute
absolute probabilities p(v) = u(7,) for a leaf to be selected in 7,,. A child of some vertex tree
is considered at most twice in Algorithm 2 and once in Algorithm 3, thus the algorithm is

linear in the number of vertices of the tree. The following Theorem establishes its correctness.

12



Algorithm 3 Second pass for computing absolute subtree probabilities.

Procedure compute_p(v,7)
Parameter v: the vertex for which the computation is done.
Parameter 7: the value u(7,) for u the parent of v.

1 set u(v) = p.(v)T.

2: for each child c of v do

3:  compute_u(c, u(v)).

4: end for

Algorithm 4 Recursive calls maximizing the quadratic entropy.

1: maximize ey, (r, h).
2: compute_gu(r,1).

Theorem 6 The probability distribution p computed by Algorithm 4 mazximizes the quadratic

entropy of the evolutionary tree T. The value £(r) stores the mazimum quadratic entropy.

Proof. First we prove by induction on the number of vertices in 7, that Algorithm 2
correctly computes e(v) = E(D|T,) and p,(v) =P(l € T,|l € 7,), u being the parent of v. If
there are only two vertices r = u and v, which is the leaf, then p,.(v) =1 (line 1), e(v) =0
(line 3), pr(u) =1 (line 1), and e(u) = e(v) = 0 (lines 6 and 7), which is correct.

Let there be at least three vertices in 7,,. By induction, each call in lines 6 and 9 computes
correct information for 7., where ¢; is some child of v. It is easy to see that the same values
apply to the non-root vertices in the tree 7., Uvc; rooted at v. If there is only one child, then
lines 1 and 7 assure correctness of p(v) and £(v).

If there are more children, then line 10 computes the correct value p,(¢;) relative to the
tree 7; by Proposition 5, and line 11 correctly computes E(D|7Z;) by Proposition 1. Thus
pr(ct) and e(v) are computed correctly in the first loop. For other children of v, at each join
evaluated in lines 10 and 11, we would by Proposition 5 need to update p.(c;), 1 < j <1, by
a factor of 1 — pu,(¢;), where the latter is the value computed in line 10. This is done in line
17: as the value y accumulates the updating factor, only one visit to each child is necessary

for update. The correctness of Algorithm 2 follows.

13



By conditional probabilities,
PleT,)=PleT,NleT,)=PlecT,)PlecTl|leT,).

Thus, p(v) = p(u)p-(v), which via line 1 of Algorithm 3 establishes correctness of Algorithm
3. We correctly set pu(r) = 1 in line 2 of Algorithm 4. Since p(v) = p(7,) for any leaf v of

T, we conclude the proof. O

6 Concluding remarks

We present several new insights into quadratic entropy of ultrametric evolutionary trees,
drawn from computational chemistry and graph theory. First, we propose a recursive decom-
position of evolutionary trees and derive a formula to express quadratic entropy of the whole
tree as a function of quadratic entropies of the subtrees in the decomposition (Proposition
1). Quadratic entropy for trees with such defined weights (e.g. abundances) can be used as a
community biodiversity index that incorporates evolutionary history and community struc-
ture [28]. We use Proposition 1 to design an efficient linear time algorithm (Algorithm 1) that
computes the quadratic entropy of such trees and can handle large communities (cf. [22]).
Second, we observe that quadratic entropy of an evolutionary tree is a variant of weighted
Wiener index, a general graph invariant widely used in mathematical chemistry. This link
may establish an exchange of ideas between the areas, as demonstrated by the statements
of Section 4, where we expose some theoretical properties of quadratic entropy — Wiener
index. Finally, maximizing the quadratic entropy offers a novel pairwise originality metric
[25] whose properties still remain relatively unexplored (but see [26]). We derive a linear
time algorithm for its maximization on ultrametric evolutionary trees, Algorithm 4, that

supersedes existing algorithms, and may help in exploration of this quantity.

14



References

1]

[10]

Analyses des Données Ecologiques: méthodes Exploratoires et Euclidiennes en sciences
de 'Environnement, Centre National De La Recherche Scientifique et Université Claude

Bernard Lyon 1, Lyon, 2007. http://pbil.univ-lyonl.fr/ADE-4.

M. Baroni, C. Semple, M. Steel, A framework for representing reticulate evolution, Ann.

Comb. 8 (2004), 391-408.
D. Bokal, code in preparation.

S. Champely, S. Pavoine, divemax: Maximal value of Rao’s diversity coeffi-
cient also called quadratic entropy. in: D. Chessel, A. B. Dufour, S. Dray,
The ade4 Package, Analysis of Environmental Data: Exploratory and Euclidean
methods in Environmental sciences, Université Claude Bernard Lyon 1, 2006.

http://microarrays.unife.it/CRAN/doc/packages/ade4.pdf.

V. Chepoi, S. Klavzar, The Wiener index and the Szeged index of benzenoid systems in
linear time, J. Chem. Inf. Comput. Sci. 37 (1997), 752-755.

A. A. Dobrynin, R. Entringer, . Gutman, Wiener index of trees: theory and applica-
tions, Acta Appl. Math. 66 (2001), 211-249.

A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal systems,
Acta Appl. Math. 72 (2002), 247-294.

T. Dosli¢, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Con-
temp. 1 (2008) 66-80.

A. W. F. Edwards, Estimation of branch points of a branching diffusions process (with
discussion), J. R. Stat. Soc. B 32 (1970), 155-174.

D. P. Faith, Conservation evaluation and phylogenetic diversity, Biological Conservation

61 (1992), 1-10.

15



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

J. Felsenstein, Inferring Phylogenies, Sinauer Associates, Sunderland, Massachusetts,

2004.

C.-J. Haake, A. Kashiwada, F. E. Su, The Shapley value of phylogenetic trees, IMW
Working Paper 363, (2005).

K. Hartmann, in preparation.

K. Hartmann, M. Steel, Maximising phylogenetic diversity in biodiversity conservation:

greedy solutions to the Noah’s Ark problem, Systematic Biology 55 (2006), 644-651.

K. Hartmann, M. Steel, Phylogenetic diversity: from combinatorics to ecology, in O. Gas-
cuel, M. Steel, eds., Reconstructing evolution: New mathematical and computational

approaches, Oxford University Press, Oxford, 2007.

J. Hey, Using phylogenetic trees to study speciation and extinction, Evolution 46 (1992),
627-640.

N. J. B. Isaac, S. T. Truvery, B. Colen, C. Waterman, J. E. M. Baillie, Mammals on the

edge: conservation priorities based on threat and phylogeny, PLoS One 2(3): ¢296.

S. Klavzar, I. Gutman, Wiener number of vertex-weighted graphs and a chemical appli-

cation, Discrete Appl. Math. 80 (1997), 73-81.

D. J. Klein, T. Dosli¢, D. Bonchev, Vertex-weightings for distance moments and thorny

graphs, Discrete Appl. Math. 155 (2007) 2294-2302.
R. M. May, Taxonomy as Destiny, Nature 347 (1990), 129-130.

B. Mohar, T. Pisanski, How to compute the Wiener index of a graph, J. Math. Chem.

2 (1988), 267-277.

M. Vellend, W. Cornwell, K. Magnuson-Ford, A. (). Mooers. Measuring phyloge-
netic biodiversity. In Biological diversity: frontiers in measurement and assessment.

(A. Magurran & B. McGill, eds.) Oxford University Press. In prep.

16



23]

[31]

A. . Mooers, L. J. Harmon, M. G. B.Blum, D. H. J. Wong, S. B. Heard, Some models
of phylogenetic tree shape, in O. Gascuel, M. Steel, eds., Reconstructing evolution: New

mathematical and computational advances, Oxford University Press, Oxford (2007),

149-170.

S. Nee, R. M. May, P. H. Harvey, The reconstructed evolutionary process, Philosophical

Transactions of the Royal Society Series B-Biological Sciences 344 (1994), 305-311.

S. Pavoine, S. Ollier, A. B. Dufour, Is the originality of a species measurable?, Ecology

Letters 8 (2005), 579-586.

S. Pavoine, S. Ollier, D. Pontier, Measuring diversity from dissimilarities with Rao’s
quadratic entropy: Are any dissimilarities suitable?, Theoretical Population Biology 67

(2005), 231-239.

D. L. Rabosky, Likelihood methods for detecting temporal shifts in diversification rates,
Evolution 60 (2006), 1152-1164.

C. R. Rao, Diversity and dissimilarity coefficients: a unified approach, Theoretical Pop-
ulation Biology 21 (1982), 24-43.

D. W. Redding, Incorporating Genetic Distinctness And Reserve Occupancy In A Con-
servation Priorisation Approach, Masters Thesis, University Of East Anglia, Norwich,

2003.

D. W. Redding, A. Mimoto, D. Bokal, K. Hartmann, M. DeVos, A. @. Mooers, The most
“original” species often capture more phylogenetic diversity than expected, J. Theor.

Biology 251 (2008), 606-615.

D. W. Redding, A. . Mooers, Incorporating evolutionary measures into conservation

prioritization, Conservation Biology 20 (2006), 1670-1678.

17



[32] D. E. Rosen, Vicariant patterns and historical explanation in biogeography, Systematic

Zoology 27 (1978), 159-188.

[33] C. Semple, Reconstructing minimal rooted trees, Discrete Appl. Math. 127 (2003), 489—
503.

[34] C. Semple, M. Steel, A supertree method for rooted trees, Discrete Appl. Math. 105

(2000), 147-158.
. vemple, M. Steel, Phylogenetics, Oxtor niversity Press, Oxtord, .
35] C. S le, M. Steel, Phyl ics, Oxford Uni ity P Oxford, 2003

[36] M. Steel, A. McKenzie, Properties of phylogenetic trees generated by Yule-type specia-

tion models, Mathematical Biosciences 170 (2001), 91-112.

[37] The R Project for Statistical Computing, Department of Statistics and Mathematics,
WU Wien, 2007. http://www.r-project.org/.

[38] M. L. Weitzman, The Noah’s Ark Problem, Econometrica 66 (1998), 1279-1298.

[39] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69
(1947), 17-20.

[40] Z. Yang, B. Rannala, Branch-length prior influences Bayesian posterior probability of

phylogeny, Systematic Biology 54 (2005), 455-470.

[41] G. U. Yule, A mathematical theory of evolution based on the conclusions of Dr
J. C. Willis, Philosophical Transactions of the Royal Society (London) Series B—

Biological Sciences 213 (1924), 21-87.

[42] B. Zmazek, J. Zerovnik, Computing the weighted Wiener and Szeged number on

weighted cactus graphs in linear time, Croat. Chem. Acta 76 (2003), 137-143.

18





