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Abstract. Given a bounded set Ψ of n× n non-negative matrices, let ρ(Ψ) and µ(Ψ)

denote the generalized spectral radius of Ψ and its max version, respectively. We show

that

µ(Ψ) = sup
t∈(0,∞)

(
n−1ρ(Ψ(t))

)1/t

,

where Ψ(t) denotes the Hadamard power of Ψ. We apply this result to give a new short

proof of a known fact that µ(Ψ) is continuous on the Hausdorff metric space (β,H) of

all nonempty compact collections of n× n non-negative matrices.
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1. Introduction

The algebraic system max algebra and its isomorphic versions provide an attractive

way of describing a class of non-linear problems appearing for instance in manufacturing

and transportation scheduling, information technology, discrete event-dynamic systems,

combinatorial optimisation, mathematical physics, DNA analysis, ... (see e.g. [8], [9], [1],

[37], [16], [2], [7], [3], [23], [24], [25], [32]). Max algebra’s usefulness arises from a fact that

these non-linear problems become linear when decribed in the max algebra language.

Following the notation from ([2], [11], [26], [27], [34], [28], [19]), the max algebra consists

of the set of non-negative numbers with sum a⊕ b = max{a, b} and the standard product

ab, where a, b ≥ 0. Let A = [aij] be a n × n non-negative matrix, i.e., aij ≥ 0 for all

i, j = 1, . . . , n. We may denote aij also by [A]ij. Let IRn×n be the set of all n × n real

matrices and IRn×n
+ the set of all n × n non-negative matrices. The operations between

matrices and vectors in the max algebra are defined by analogy with the usual linear

algebra. For instance, the product of A,B ∈ IRn×n
+ in the max algebra is denoted by

A ⊗ B, where [A ⊗ B]ij = maxk=1,...,n aikbkj. The notation A2
⊗ means A ⊗ A, and Ak

⊗
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2 ALJOŠA PEPERKO

denotes the k-th max power of A. If x = [xi] ∈ IRn is a non-negative vector, then the

notation A⊗ x means [A⊗ x]i = maxj=1,...,n aijxj. The usual associative and distributive

laws hold in this algebra. Note that the standard products are denoted by AB and Ax.

The weighted directed graph D(A) associated with A has a vertex set {1, 2, . . . , n} and

edges (i, j) from a vertex i to a vertex j with weight aij if and only if aij > 0. A path of

length k is a sequence of edges (i1, i2), (i2, i3), . . . , (ik, ik+1). A circuit of length k is a path

with ik+1 = i1, where i1, i2, . . . , ik are distinct. Associated with this circuit is the circuit

geometric mean known as (ai1i2ai2i3 . . . aiki1)
1/k. The maximum circuit geometric mean in

D(A) is denoted by µ(A). Note that circuits (i1, i1) of length 1 (loops) are included here

and that we also consider empty circuits, i.e., circuits that consist of only one vertex and

have length 0. For empty circuits, the associated circuit geometric mean is zero.

There are many different descriptions of the maximum circuit geometric mean µ(A)

(see e.g. [14], [15], [10], [22, p. 366], [3, p. 130], [11], [31], [29], [26], [34], [33], [18]). It

was proved in [15] that given A ∈ IRn×n
+

(1) µ(A) = lim
t→∞

ρ(A(t))1/t,

where A(t) = [at
ij] is a Hadamard (or also Schur) power of A and ρ the spectral radius.

Alternative and simplified proofs of (1) can be found in ([10], [22, p. 366], [3, p. 130],

[11], [34]). We also have

(2) µ(A) ≤ ρ(A) ≤ nµ(A)

(see e.g. [10], [22, p. 366], [26], [27], [34]).

It is known that µ(A) is the largest max eigenvalue of A. Moreover, if A is irreducible,

then µ(A) is the unique max eigenvalue and every max eigenvector is positive (see [2,

Theorem 2] and [26, Theorem 1]). We also have

(3) µ(A) = lim
k→∞
‖Ak
⊗‖1/k

for an arbitrary vector norm ‖ · ‖ on IRn×n (see [11, Lemma 4.1], [26], [27], [34]).

Given an irreducible non-negative matrix A, algorithms for computing µ(A) and the

max eigenvector x were established in [11], [12] and [13]. On the other hand, the infinite-

dimensional generalizations of µ can be found in [31], [29] and [33].

Let Σ be a bounded set of n× n complex matrices. For m ≥ 1, let

Σm = {A1A2 · · ·Am : Ai ∈ Σ}.

The generalized spectral radius of Σ is defined by

(4) ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

ρ(A)]1/m.

It was shown in [5] that ρ(Σ) is equal to the joint spectral radius of Σ, i.e.,

(5) ρ(Σ) = lim
m→∞

[ sup
A∈Σm

‖A‖]1/m,Pr
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ON THE CONTINUITY OF THE GENERALIZED SPECTRAL RADIUS IN MAX ALGEBRA 3

where ‖ · ‖ is any vector norm on Cn×n. This equality is called the Berger-Wang formula

or also the generalized spectral radius theorem. Since then many different type of proofs

of (5) were obtained (for references see e.g. [27]). The theory of the generalized spectral

radius ρ(Σ) has many important applications (see e.g. [5], [36], [4], [20], [35], [30] and the

references cited there). In particular, ρ(Σ) plays a central role in determining stability in

convergence properties of discrete and differential inclusions. In this theory the quantity

log ρ(Σ) is known as the maximal Lyapunov exponent (see e.g. [36]).

Let Ψ be a bounded set of n× n non-negative matrices. For m ≥ 1, let

Ψm
⊗ = {A1 ⊗ A2 ⊗ · · · ⊗ Am : Ai ∈ Ψ}.

The max algebra version of the generalized spectral radius µ(Ψ) of Ψ, defined by

(6) µ(Ψ) = lim sup
m→∞

[ sup
A∈Ψm

⊗

µ(A)]1/m,

has recently received increasing attention (see e.g. [1], [17], [6], [27], [34], [33], [28], [19]).

In [27] the max algebra version of the generalized spectral radius theorem was proved,

i.e., µ(Ψ) is equal to the max algebra version of the joint spectral radius η(Ψ) of Ψ, which

is defined by

(7) η(Ψ) = lim
m→∞

[ sup
A∈Ψm

⊗

‖A‖]1/m

for an arbitrary vector norm ‖ · ‖ on IRn×n. The quantity log µ(Ψ) measures the worst

case cycle time of certain discrete event systems and it is sometimes called the worst case

Lyapunov exponent (see e.g. [17], [6], [1] and the references cited there).

A short proof of the max algebra version of the generalized spectral radius theorem was

given in [34]. More precisely, it was shown that

(8) µ(Ψ) = lim
t→∞

ρ(Ψ(t))1/t = η(Ψ).

Here Ψ(t) denotes the Hadamard power of Ψ for t > 0, i.e.,

Ψ(t) = {A(t) : A ∈ Ψ},

which is also a bounded set of n× n non-negative matrices. Also, ρ(Ψ(t))1/t is decreasing

in t ∈ (0,∞) and

(9) µ(Ψ) = inf
t∈(0,∞)

ρ(Ψ(t))1/t

(see [34, Proposition 2.2]). The basic tool in [34] was the inequality

(10) µ(Ψ) ≤ ρ(Ψ) ≤ nµ(Ψ)

(see [34, Proposition 2.3] and [27, Theorem 3(ii)]), which generalizes (2).

Let K denote the collection of all compact nonempty sets Σ of n×n complex matrices.

The space K becomes a complete metric space if it is endowed with the usual HausdorffPr
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4 ALJOŠA PEPERKO

metric defined by

H(Σ,Γ) = max

{
max
A∈Σ

dist(A,Γ),max
B∈Γ

dist(B,Σ)

}
,

where dist(A,Γ) = infB∈Γ ‖A− B‖. Note that the choice of a vector norm ‖ · ‖ on Cn×n

is irrelevant, since they are all equivalent (see e.g. [21, p. 272]). The following result is

well known ([4], [20], [36, Lemma 3.5], [35]).

Theorem 1.1. The generalized spectral radius ρ(Σ) is continuous on (K, H).

This result was applied to wavelets in [20] (in the case Σ = {A,B}). In [36] and [35]

some additional results were proved.

Let (β,H) denote the closed metric subspace of (K, H) of all nonempty compact subsets

of n× n non-negative matrices. The central result of [28] was the following max algebra

version of Theorem 1.1.

Theorem 1.2. The max version of the generalized spectral radius µ(Ψ) is continuous on

(β,H).

The main goal of this paper is to give a short proof of Theorem 1.2 by using Theorem

1.1.

2. The main results

The following observation is the key to our proof.

Theorem 2.1. Let Ψ be a bounded set of n× n non-negative matrices. Then

(11) µ(Ψ) = sup
t∈(0,∞)

(
n−1ρ(Ψ(t))

)1/t
.

Proof. Let t > 0. It is easy to see that µ(Ψ(t)) = µ(Ψ)t (see e.g. the proof of [34, Theorem

2.4]). By (10) we have

n−1ρ(Ψ(t)) ≤ µ(Ψ(t)) = µ(Ψ)t.

Therefore it follows that

sup
t∈(0,∞)

(
n−1ρ(Ψ(t))

)1/t ≤ µ(Ψ).

On the other hand, we have by (8)

µ(Ψ) = lim
t→∞

ρ(Ψ(t))1/t = lim
t→∞

(
n−1ρ(Ψ(t))

)1/t ≤ sup
t∈(0,∞)

(
n−1ρ(Ψ(t))

)1/t
.

This completes the proof. �

Corollary 2.2. If A ∈ IRn×n
+ , then

µ(A) = sup
t∈(0,∞)

(
n−1ρ(A(t))

)1/t
.

Remark 2.3. In (11) (and (9)) it suffices to take the supremum (infimum) over all t ∈ IN.Pr
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ON THE CONTINUITY OF THE GENERALIZED SPECTRAL RADIUS IN MAX ALGEBRA 5

Let us recall that a function f from a metric space (X, d) into IR is lower semi-continuous

if and only if the sets {x ∈ X : f(x) > α} are open in (X, d) for all α ∈ IR. It is well known

that the supremum of a family of lower semi-continuous functions is lower semi-continuous.

A function f is upper semi-continuous if and only if −f is lower semi-continuous. Thus

the infimum of a family of upper semi-continuous functions is upper semi-continuous.

A function f is continuous if and only if it is both lower semi-continuous and upper

semi-continuous.

Now, in view of (9), (11) and Theorem 1.1 we only need the following two results for

the proof of Theorem 1.2.

Lemma 2.4. If Ψ ∈ β then Ψ(t) ∈ β for all t > 0.

Proof. Let t > 0, Ψ ∈ β, ε > 0 and ‖ · ‖∞ a vector norm on IRn×n defined by ‖A‖∞ =

maxi,j=1,...,n |aij|. Since Ψ(t) is obviously nonempty and bounded, we only need to show

that it is also a closed subset of IRn×n
+ . To prove this, let {An}n∈IN ⊂ Ψ such that

‖A(t)
n − B‖∞ → 0 as n→∞ for some B ∈ IRn×n

+ . If M = supA∈Ψ ‖A(t)‖∞, then it is easy

to see that ‖B‖∞ < M + 1. Since x 7→ x1/t is an uniformly continuous function from the

compact interval [0,M + 1] to [0, (M + 1)1/t], there exists δ > 0 such that |x − y| < δ

implies |x1/t − y1/t| < ε.

Let C = B(1/t) and thusB = C(t). Since there exists n0 ∈ IN such that ‖A(t)
n −C(t)‖∞ < δ

for all n ≥ n0, we also have ‖An − C‖∞ < ε for these n. Therefore ‖An − C‖∞ → 0 as

n → ∞. Since Ψ is a closed subset of IRn×n
+ , we have C ∈ Ψ and thus B ∈ Ψ(t), which

completes the proof. �

Lemma 2.5. Let t > 0. The map Ψ 7→ Ψ(t) is a homeomorphism from (β,H) onto

(β,H).

Proof. It suffices to prove that the map Ψ 7→ Ψ(t) is continuous on (β,H), since the rest

is obvious. To prove this, choose Ψ ∈ β and 0 < ε < 1. Let K(Ψ, ε) denote the open ball

in (β,H) with the center Ψ and the radius ε, i.e.,

K(Ψ, ε) = {Γ ∈ β : H(Ψ,Γ) < ε}.

If M = supA∈Ψ ‖A‖∞, then

sup
B∈Γ
‖B‖∞ ≤M + ε < M + 1

for all Γ ∈ K(Ψ, ε). Similarly as in the proof of Lemma 2.4 there exists δ1 > 0 such that

|x− y| < δ1 and x, y ∈ [0,M + 1] imply |xt − yt| < ε.

Let δ = min{ε, δ1}, Γ ∈ K(Ψ, δ), A ∈ Ψ and B ∈ Γ. Then there exist C ∈ Γ and

D ∈ Ψ such that ‖A−C‖∞ < δ and ‖B −D‖∞ < δ. Since aij, bij, cij, dij ∈ [0,M + 1] for

all i, j = 1, . . . , n, we have that ‖A(t) − C(t)‖∞ < ε and ‖B(t) −D(t)‖∞ < ε. This implies

H(Ψ(t),Γ(t)) < ε, which completes the proof. �Pr
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6 ALJOŠA PEPERKO

Having all the preliminaries prepared it is now easy to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.5 and Theorem 1.1 the function Ψ 7→ ρ(Ψ(t)) is

continuous on (β,H) for every t > 0. Therefore µ(Ψ) is upper semi-continuous on (β,H)

by (9) and it is lower semi-continuous on (β,H) by (11). This completes the proof. �
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Aškerčeva 6
SI-1000 Ljubljana, Slovenia
and
Institute of Mathematics, Physics and Mechanics
Jadranska 19
SI-1000 Ljubljana, Slovenia
e-mail : aljosa.peperko@fmf.uni-lj.si

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
12

6,
 A

u
gu

st
 1

3,
 2

01
0




