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Reading Mathematical Texts as a Problem-Solving 
Activity: The Case of the Principle of Mathematical 
Induction 

Ioannis Papadopoulos*1 and Paraskevi Kyriakopoulou2

• Reading mathematical texts is closely related to the effort of the reader 
to understand its content; therefore, it is reasonable to consider such 
reading as a problem-solving activity. In this paper, the Principle of 
Mathematical Induction was given to secondary education students, 
and their effort to comprehend the text was examined in order to iden-
tify whether significant elements of problem solving are involved. The 
findings give evidence that while negotiating the content of the text, the 
students went through Polya’s four phases of problem solving. Moreover, 
this approach of reading the Principle of Mathematical Induction in the 
sense of a problem that must be solved seems a promising idea for the 
conceptual understanding of the notion of mathematical induction
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Branje matematičnih besedil kot dejavnost reševanja 
problemov: primer principa matematične indukcije

Ioannis Papadopoulos in Paraskevi Kyriakopoulou

• Branje matematičnih besedil je tesno povezano s prizadevanjem bralca, 
da razume njegovo vsebino, zato je smiselno takšno branje obravnava-
ti kot dejavnost reševanja problemov. V tem prispevku je obravnavan 
primer principa matematične indukcije, ki je bil posredovan v branje 
dijakom srednješolskega izobraževanja. S preučevanjem njihovega pri-
zadevanja po razumevanju besedila smo želeli ugotoviti, ali ta dejavnost 
vsebuje ključne elemente reševanja problemov. Ugotovitve pokažejo, da 
so dijaki med razpravljanjem o vsebini besedila prešli skozi štiri faze 
reševanja problemov po Polyi. Poleg tega menimo, da je pristop branja 
korakov matematične indukcije na način reševanja problema obetaven 
za pridobitev konceptualnega razumevanja matematične indukcije.

 Ključne besede: matematična indukcija, branje matematičnega 
besedila, reševanje problemov, dijaki
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Introduction

Mamona-Downs and Downs (2005), considering the ‘identity’ of prob-
lem solving, raised a series of issues including, among others, the reading of 
mathematical texts and considered whether this could involve significant el-
ements of problem solving. More precisely, they acknowledge that ‘reading 
mathematical text often needs an effort from the reader to understand and as-
similate its content’ (p. 386), and this prompted the question of whether it is 
reasonable to consider such reading as a problem-solving activity. 

However, not all kinds of mathematical text can be appropriate. It seems 
that the kind that is the most suitable is proof. As Mamona-Downs and Downs 
(2005) explain, there are three aspects in examining a proof relevant to the is-
sue. The first concerns ‘the locating and examining of the implications occur-
ring in the argument’ (p. 397). The students can check whether the implications 
are logically sound and ensure that the necessary conditions are properly ac-
counted for. The second concerns the understanding of how the overall reason-
ing is structured. Finally, the third concerns the extracting of meaning from the 
exposition in the sense that ‘the reader creates concept images in order to relate 
the material to intuitively understood schemas’ (p. 397). 

Moreover, reading a proof seems difficult simply because of the style of 
exposition. The technical complexity in the use of notation, the leaping from 
one statement to another without justifying the leap, thus assuming too much, 
obscures much of the real argument that takes place in the proof. The readers 
must independently ‘retrieve’ their own version of how to interpret, evaluate 
and assimilate the material in front of them. A typical proof cannot be too de-
tailed and excessively broken up into little lemmas, because one can become 
lost in the details. Thus, reading proofs is not easy if the student attempts to 
read them like a novel, in a comfortable way with little concentration. 

This perspective opens a new area in the research agenda of problem 
solving; we are not aware of a study that examines this perspective. The few 
studies that exist in the relevant literature approach this issue from the authors’ 
point of view, focusing on how mathematical texts should be written to make 
their text as comprehensible as possible (Konior, 1993; Morgan, 1996). 

As mentioned above, reading mathematical text has been seen mainly 
from the authors’ point of view. Morgan (1996) acknowledges that the language 
used in a textbook does not transparently transmit the authors’ intentions; dif-
ferent readers may construct different meanings from the same text. This is in 
alignment with Freudenthal’s (1983) view that the way each one of us is thinking 
is not always possible to be transferred satisfactorily to other people, especially 
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if we differ in background and experiences.
As Konior (1993) mentions, reading such mathematical texts demands 

certain techniques that can be taught but are not given to the students together 
with the alphabet. He emphasises the importance of the authors structuring 
their text in a certain way to determine the process of its reading. This is re-
lated to the fact that mathematical texts are mainly conceived as ‘highly com-
pact, precise, complex, and containing technical vocabulary’ (Österholm & 
Bergqvist, 2013, p. 751), and it is not clear how, or even if, mathematical texts, 
in general, can be described in common linguistic terms. Mathematical reading 
involves both linguistic comprehension skills and knowledge of the ‘language 
of mathematics’ (Adams, 2003). Moreover, Österholm (2006) found that com-
prehending a mathematical text (concerning basic concepts of group theory) 
becomes even more difficult when the text includes symbols. In particular, he 
found that if the texts include symbols, they require a special type of skill for 
reading comprehension, while if the texts are written in natural language, they 
then merely need a more general reading ability.  

If, however, we are restricted to the mathematical texts of proofs, it seems 
that when students read and reflect on them, they tend to focus on the super-
ficial features of the proofs’ arguments, and their ability to determine whether 
these arguments are proven is very limited (Selden & Selden, 2003). A prooftext 
can be read in two different ways. One is to validate the proof, meaning to de-
termine whether or not it is valid (Selden & Selden, 1995). The other is reading 
for comprehension. In the latter case, the validity of the proof is assumed by 
virtue of its author or source, and the goal of the reader is to understand the 
proof, not to check its validity (Mejía-Ramos & Inglis, 2009). Furthermore, the 
students’ skills in reading comprehension, in general, are closely linked to their 
reading and understanding of mathematical texts. Vilenius‐Tuohimaa, Auno-
la, and Nurmi (2008), working with Grade 4 students (9–10 years old), found 
that their reading comprehension was strongly related to their performance in 
mathematical word problems.

For securing the validity of proof, the step-by-step presentation of 
the mathematical proof moving from hypothesis to conclusion is considered 
suitable. In the case, however, of comprehension and therefore mathematical 
communication, this linear way does not work. Instead, Leron (1983) proposes 
the ‘structural method’ whose basic idea is to divide the proof into levels pro-
ceeding from the top down. These levels can be considered short autonomous 
‘modules’, each embodying one major idea of the proof. In a very general (but 
precise) manner, the top level provides the main line of the proof. The next 
level proceeds to elaborate on these generalities of the top level. Proofs for 
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unsubstantiated statements, more details for general descriptions, and simi-
larly, are provided at this level. If a sub-procedure is somehow complicated, 
then a ‘top level’ description is given in this second level, and details are pushed 
further down to lower levels. The hierarchy continues similarly. Leron (1983) 
claims that this method could increase the comprehensibility of these ideas re-
taining at the same time their rigour. This process is often supported by what 
Raman (2003) calls a ‘heuristic idea’, which is an idea based on informal un-
derstanding, which gives a sense of understanding but not a conviction. It is 
more like a sense that something ought to be true. Another method, suggested 
by Grugnetti and Jaque (2005), is to ask students to look for a mistake in argu-
ments or to examine the validity of their peers’ evidence (see also Selden & 
Selden, 2003).

Mamona-Downs and Downs (2005) claim that reading a mathemati-
cal text can be a real problem-solving activity and that understanding a math-
ematical text can be just as challenging as developing a strategy for solving it. In 
this sense, this endeavour is connected to the theory of problem-solving (Polya, 
1957; Schoenfeld, 1985, 2013). A recent study in this spirit is by Papadopoulos 
and Iatridou (2010), who presented the Pick’s theorem in the form of an open 
problem to Grade 11 students and recorded the different ways the students ap-
proached this problem. The main feature of this approach is that the respon-
sibility of understanding the mathematical text is transferred to the students 
themselves and not to the teachers or the textbook authors, who by default are 
considered responsible for making mathematical reading as clear and easy as 
possible. 

This process of comprehending a mathematical text involves aspects of 
executive control, but, as Schoenfeld (1985a) indicates, the students’ metacog-
nitive skills, in general, are remarkably poor. The explanation is that standard 
instruction focuses on the mastery of facts and procedures and does not deal 
with metacognition. This is why Schoenfeld (1985) suggests some approaches 
that could be adapted to support students’ needs while reading a mathemati-
cal text (Mamona-Downs & Downs, 2005). Yang (2012), working with Grade 
9 students, found that good comprehenders tend to use more metacognitive 
reading strategies for planning and monitoring comprehension compared with 
moderate and poor comprehenders. In contrast, Weber et al. (2008), working 
with advanced undergraduate students, found that they use sophisticated com-
prehension-fostering and monitoring strategies in comprehending texts in the 
‘definition-theorem-proof ’ format.

In our study, the focus is on the students’ responsibility to be engaged in 
comprehending the given mathematical text. The text chosen for the purpose 
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of the study is negotiating the notion of Mathematical Induction, taken from a 
mathematics textbook that is no longer used in regular mathematics teaching 
and, therefore, is completely unknown for the students.

Mathematical induction and students’ difficulties with 
mathematical  induction

The Principle of Mathematical Induction (PMI) is usually (on the 
grounds of simplicity) expressed in the terms of the properties of natural num-
bers and with two options about the first number (since 0 and 1 are commonly 
used). Some authors, however, use a non-negative integer a0. 

The PMI can be stated as: If 1 has a property P, and if any n having the 
property P implies that n+1 also has the property P, then every n has the property 
P. In a more formal way, this can be expressed as: If P(1) and if for all n, P(n) 
implies P(n+1), then for all n, P(n). A typical proof by induction, therefore, must 
follow the steps below (Ernest, 1984):

Theorem: ∀n   N, P(n).
Proof: By mathematical induction.
Basis: Prove that P(1) is true.
Inductive hypothesis: Assume P(n) is true. 
Induction step: Prove that P(n+1) is true from the inductive hypothesis.
End of proof: Hence, from the PMI, P(n) is true for all natural numbers n.

The research shows that mathematical induction is a very difficult con-
cept for secondary education students to learn, as well as for undergraduate stu-
dents (Dubinsky, 1989). Induction presents specific cognitive obstacles (some of 
them will be presented below); therefore, students still fail with this given that 
the teaching methods do not pay attention to these difficulties. Bell (1920) very 
early expressed concerns about mathematical induction in secondary educa-
tion: ‘[…] mathematical induction has no place in elementary teaching” (p. 413). 
Baker (1996) examined thoroughly the difficulties students faced when dealing 
with mathematical induction and identified nine such difficulties. Among oth-
ers, he found that (i) students have difficulty with the mathematical content of 
induction, especially with being unable to operate with symbols, (ii) they rely 
exclusively on procedures lacking thus conceptual understanding, (iii) they are 
mainly reliant on examples to recognise that something is proven, and (iv) they 
exhibit poor metacognitive control abilities. To a certain extent, these can be 
attributed to the way the proof, in general, is negotiated in classrooms. In most 
textbooks, the relevant proof activities (not only for mathematical induction) 

∍
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begin with phrases such as: ‘show that ...’ or ‘prove that...’. The theorem is given, 
and the students have to accept its truth and to prove it. This approach leaves 
behind how the theorem emerged (Avital & Hansen, 1976; Papadopoulos & Iat-
ridou, 2010). Ernest (1984) relates these students’ difficulties to the fact that the 
solvers assume what they have to prove, and then they prove it. He also finds 
it reasonable that the students ‘wonder why this rather complex and seemingly 
arbitrary principle is adopted’ (p. 183). The consequence is that the students are 
able to deal with mathematical induction tasks and feel comfortable with them, 
but it is questionable whether they really learned induction and are able to pro-
vide a coherent explanation of the induction steps (Allen, 2001).

Despite all these difficulties that the students face with PMI, there are 
also some findings showing that in some cases students are able to identify the 
critical properties that justify why mathematical induction works (Palla et al., 
2012).

The fact is, however, that no matter the students’ difficulties, the sig-
nificance of mathematical induction cannot be ignored. NCTM (2000), in the 
section about reasoning and proof in Grades 9 through 12, acknowledges that 
‘students should learn that certain types of results are proved using the tech-
nique of mathematical induction’ (p. 345).

Therefore, in this context, our research questions are shaped as follows: 
1. Is it plausible to consider the reading of a mathematical text as a prob-

lem-solving activity? To what extent can elements of problem-solving be 
identified in the students’ work while they try to comprehend a math-
ematical text (in our case, the Theorem of the Principle of Mathematical 
Induction)?

2. Does this approach contribute and/or facilitate its conceptual 
understanding? 

Method

Sample of participants

The participants were 15 students from Grades 10, 11, and 12 (15 to 17 
years old) in a public school in northern Greece who participated voluntarily. 
The students worked in pairs or small groups. For the purposes of this work, we 
follow one group of five students of Grade 11 since their work provided us with 
a representative complete set of instances found across the whole sample. The 
students’ performance in mathematics was average and, according to the cur-
riculum, they should have developed some of the mathematics skills required 
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for learning mathematical induction, such as being (i) familiar with the rea-
soning and proof process, (ii) able to eliminate parentheses and reduce similar 
terms through the distributive property, (iii) able to use basic identities, and 
(iv) able to factorise polynomials.

Even though mathematical induction is included in the students’ text-
books, the Number Theory chapter that negotiates this topic has been excluded 
from teaching for the last five years. Therefore, the participants had fluency in 
the above-mentioned algebraic acts, but they were not familiar with proof by 
mathematical induction.

Presentation of the task

In the context of the present study, the mathematical text given to stu-
dents was the Principle of Mathematical Induction. It was an extract of an older 
textbook (Ntzioras, 1979) that was addressed to high school students (Figure 
1). Therefore, despite the content being completely unknown to them, it was 
written for students of their age and, therefore, it was considered proper to use 
it in our study. 

Figure 1
The PMI in the form given to the students 

Note. Adapted from Ntzioras, 1979.

Its translation is as follows: 

If P(n) is a mathematical statement in the set N of natural numbers, and:
(a) P(1) is true, and
(b) ∀k   N, P(k) => P(k+1), is also true,
Then the P(n) statement is also true        N

At the same time, the students were given an application of the theorem 
taken from the same textbook (Figure 2)

∍
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Figure 2
The application of the PMI given to the students 

Note. Adapted from Ntzioras, 1979.

Its translation is as follows:

Statement: Prove that 
 1 + 2 + 3 + ... + n =               ,               .   (1)
Proof: (a) if n = 1, then 1 =              , true.
 (b) Let us assume that (1) is true for n = k (k   N), that is
 1 + 2 + 3 + ... + k =              ,                          (2)
We will prove that (1) is true for n = k + 1, e.g.,
 1 + 2 + 3 + ... + k + (k + 1) =                      ,                  (3)
Indeed, if we add (k + 1) at both sides of (2) we take
 (1 + 2 + 3 + ... + k) + (k + 1) =              + (k + 1) =                     , 
which means that (3) is true.  
 (c) Conclusion: we proved P(1) is true (step a). We proved that if 
P(k) is true, then P(k+1) is also true (step b). Therefore, according to the 
PMI, (1) is true               . 

The participants were asked to read the two texts (Figures 1 and 2) and 
then answer the questions: 
• Do you understand the Theorem of Mathematical Induction? 
• Can you identify the series of steps in a proof by Mathematical Induction? 

n(n + 1)
2

k(k + 1)
2

k(k + 1)
2

(k + 1)(k + 2)
2

(k + 1)(k + 2)
2

1(1 + 1)
2
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• Are you able to explain why this series of steps constitute proof? 
• How do these steps convince you about the validity of the statement to be 

proved?

The specific choice ensured that the students would be involved in a com-
pletely unknown mathematical text but, given that it was addressed to high school 
students, the suitability of its wording and use of symbolism is also ensured. 

The students had almost one and a half hours to complete the task. They 
were asked to vocalise and discuss their thoughts with each other. The only 
interventions aimed to answer questions related to terminology and symbols 
in the text. 

Collecting and analysing data

The session was audio-recorded, and the students were constantly asked 
to ‘think aloud’. The students’ worksheets collected at the end of the session, 
combined with the transcribed protocols, constituted the data of this study. 
These data were examined and analysed in the context of qualitative content 
analysis (Mayring, 2014) at two different levels: first, detecting instances relat-
ed to Polya’s problem-solving steps (Getting familiar with the problem, Devise 
a plan, Carrying out the plan, Looking back); second, seeking evidence of the 
students’ conceptual understanding of mathematical induction. In the context 
of this study, by the conceptual understanding of mathematical induction, we 
mean (i) the students’ convincing explanation of why the steps of induction 
constitute evidence for the general truth of the statement, (ii) how these steps 
relate to each other, (iii) why the case of n = 1 is used as a first step, and (iv) why 
these series of steps constitute a proof. 

The data were initially examined independently by the two authors. The 
coding results were compared, codes were clarified, and some data were re-
coded until agreement. 

Results

In this section, the students’ interaction while reading the task will be 
presented. The presentation will be based on the use of certain extracts from 
the transcribed protocols. All the excerpts will be accompanied by an alphanu-
meric string on the left indicating the group (e.g., B), the number of the task 
(e.g., 2), and the lines of the protocol (e.g., 22–24). Students’ discussion and 
actions will be commented on.   
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The students initially spend some time individually to think about the 
task before starting any discussion. After that, their first effort was to connect 
this task with concepts already known to them, such as the concept of sequence:

[B2.22–24]: The application is about a sequence that increases by 1 each 
time. Is this theorem true for every sequence that increases by 1?
[B2.25–26]: I thought it was an arithmetic progression.

They verify the statement for different values of n:
[B2.29–33]: If we put n = 2…
[B2.34]: The statement is true for n = 3.

They understand that according to the theorem, a statement is true if 
the two conditions (a) and (b) of the theorem are satisfied (see above), and they 
describe the problem in their own words: 

[B2.41–43]: Any statement referring to natural numbers and satisfies these 
two conditions (a) and (b) is true for every natural number.

They match without difficulty the first step, P(1), of the theorem with the 
first step of its implementation, and they observe that the proof includes the 
generalisation element: 

[B2.67–68]: It starts with n = 1, which is a natural number to show that 
the statement is true for natural numbers in order to proceed then to the 
case of the statement being true for n = k. Actually, the aim is to generalise.

They understand the algorithmic part of the inductive step, and they 
suspect that the inductive step is somehow related to the generalisation of the 
statement:

[B2. 71–74]: ...Then it adds k + 1 on both sides… to show that we can take 
any natural number.

They understand that the second step of the proof serves the generality 
of the statement:

[B2.104]: I think that the 2nd step just generalises.

They wonder whether the information given in the statement of the task 
is unnecessary: 

[B2.107–109]: The third step seems useless.
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This part of their negotiation brings them quite close to the question of 
why the given content is a proof: 

[B2.113–114]: Because k + 1 is again a natural number. That is, from the 
moment we found that the statement is true for n=k that belongs to N, it 
means it will be true also for n = k + 1.

They start to notice that the idea of successive numbers might be a key 
element in the proof by mathematical induction: 

[B2.115–116]: Let us say... If we put k = 2… we could also put k = 3.
B2.117–118]: It is not actually two random numbers. n = k is a random 
number, and n = k + 1 is a bigger random number. Why was k + 1 chosen?

They regularly come back to the wording of the task and analyse more 
closely words and data:

[B2.121]: The step for n = k is not proof. It says, ‘assuming that the state-
ment is true for n = k’. 

This part of the induction makes them feel confused, and they spent 
time moving back and forth to understand the situation. In particular, they 
focus on the issue of successive numbers and on assuming what they have to 
prove before proving it. 

[B2.185–186]: 2 is a random number, n and k+1 are random too.
[B2.200–201]: It assumes that the statement is true for n = k... How is it 
possible to assume that? It is supposed that we want to prove it and we did 
not it yet.

They gradually realise that k and k+1 are not specific numbers. They can 
be any natural numbers, but they always remain successive.

[B2.211–213]: We cannot determine the size of this sequence. The numbers 
can be until 100, until 1000, and so on…
[B2. 230–231]: Also, they are random… k is random. And k + 1 is the next 
one...

However, they remain unable to describe fully why these steps are proof 
and re-match the theorem’s steps with the implementation steps. They mistak-
enly believe that the steps of the theorem are themselves the proof.  

[B2.254–255]: If we can show that it is possible to go from P(k) to P(k + 1) 
then I think this is enough to convince us.
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Therefore, at this point they think they have solved the problem:
[B2.269]: We cannot find any arithmetical mistakes in the process. There-
fore, the question has been answered.

They were satisfied with their thinking that if the statement has been 
verified for a known specific natural number and assuming it is true for a ran-
dom k, then it is not necessary to go further. 

The setting changes from the moment one of the members observed that 
both 1 and k are values that are assigned to n.

[B2.350]: Actually, when we say n = 1 or n = k, it is the same action. We 
have the variable n, and we substitute n with 1 or k.

Finally, they approach the essence of the theorem.
[B2.353–355, 359]: Oh, I think I understood. In the beginning, we show it is true 
for n = 1. Then we assume that it is true for n = k, and then we show that this 
will be true for every next number. So, it is true if we put 1 in the place of k. 
Then, it is true for its next number 2 and the same for the next 3 and so on… 

They end with an implicit reference to the general validity of the theo-
rem for all the natural numbers.

[B2.370]: We assumed it is true for a random number, and we proved it for 
its successor. So, the statement applies to all the natural numbers.
[B2.371–372]: Because it applies for n = 1 and ... it also applies to n = 1 + 1 
= 2. In the same way, it applies for n = 3 ...  
 
Discussion 

Before discussing the two research questions, it might be said that we do 
not intend to overgeneralise our findings. This study might better be considered 
as a case study that gives evidence for thinking on our research questions and sup-
port our better understanding of the situation. The next subsections try to shed 
light on these questions building upon the research findings presented above.

Reading a mathematical text as a problem-solving activity.

The analysis of the findings gave evidence on whether it is plausible to 
consider the reading of mathematical texts as a problem-solving activity (first 
research question) since Polya’s problem-solving steps can be easily detected in 
the students’ work, as presented in Figure 3. 
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Figure 3
Schematic representation of the problem-solving process of the group while 
reading the mathematical text

In ‘Getting familiar with the problem’, the students took the initiative 
to ensure they understand the problem correctly. Thus, they verified the state-
ment for different values of n (B2.29–33), they invested time to analyse the given 
(B2.67–68, 71–74, 75–78, 104) and examine whether the included information 
was sufficient, insufficient, or redundant (B2.107–109). 

Then they started wondering whether they had seen something familiar 
before, which is in accordance with Polya’s 2nd step of ‘Devising a plan’. They 
recalled sequences and arithmetic progression (B2.22–26). Polya, in this step, 
also invites the solvers to pose to themselves the question ‘Could you restate the 
problem’, an action taken by the students at B2.41–43. 

They turned towards looking for a key idea, which was used later to 
solve the problem (‘Carrying out the plan’). This idea was evolved around 
the questions: Why do we start with number 1? What is the role of the use of 
the consecutive numbers k and k + 1? (B2. 117–118). This leads to the solution 
(B2.353–355, 359).

Finally, actions that could be linked to Polya’s fourth step of prob-
lem-solving (Looking back) are the efforts made by the students to explain the 
generality of their arguments for all the natural numbers, starting from the 
smallest one and its successor (numbers 1 and 2) and then expanding this to the 
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numbers 2 and 3, and so on (B2.370–372).  
Therefore, it can be said that the students’ effort to deal with this task can 

be seen as a problem-solving process, and the students exhibited instances of all 
of Polya’s four steps, although in a non-linear way. There was a continuous in-
terplay between the ‘Getting familiar’ and ‘Devising a plan’ phases. However, it 
was ‘Getting familiar with the problem’ that dominated the students’ problem-
solving process. The group came back several times to this step after devising or 
carrying out a plan (see relevant arrows in Fig. 2). This was the reaction of the 
participants every time they did not know how to move on or when a plan did 
not seem promising.  

Reading mathematical texts and conceptual understanding. 

The second research question concerned whether this approach of read-
ing the particular mathematical text facilitated or contributed to the conceptual 
understanding of mathematical induction in the sense of whether the students 
have come to substantiate why the sequence of steps in the theorem of math-
ematical induction is a proof. 

It can be said that there was a certain path leading this group towards 
conceptual understanding. They made choices; these choices were negoti-
ated and revised, were abandoned or improved, and the participants gradu-
ally started exhibiting bits of understanding about the cognitively demanding 
mathematical induction. Based on the analysis of our collected data, we can 
distinguish five steps in the process of conceptualisation followed by the par-
ticipants in this study. 

Step One: The first step is connected with the design principle of the 
study to transfer responsibility from authors and/or teachers to students. This 
takes place through the experience of reading a mathematical text as a potential 
problem that has to be solved. In our case, the ‘problem’ we gave was an origi-
nal mathematical text, the Principle of Mathematical Induction. Its solution is 
multistep. The students had to identify the series of necessary steps and then 
explain why these steps constitute proof.

Step Two: The students considered the algorithmic part as the actual 
proof (B2.254–255). Baker (1996) characterises this as a ‘difficulty with proof by 
mathematical induction predicted in conceptual understanding’. 

Step Three: The students gradually started being aware that if the state-
ment is true for a random number then it is also true for its successor. This is 
a unique property of natural numbers. The set of all-natural numbers forms a 
(well-) ordered sequence. So, if the initial number (one) has a property and if 
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it is passed along the ordered sequence from any natural number to its succes-
sor, then the property will hold for all natural numbers since they all occur in 
the sequence (all of them can be generated from a single initial number, e.g., 
number one) (Ernest, 1984).

Step Four: The students realised that the concept of successive num-
bers was of critical importance. As Movshovitz-Hadar (1993) explains, this 
step, if completed successfully, makes it possible to deduce the truth of “For all  
n     N, P(n)” and presents it as an infinite chain of applications of the basic law 
of inference.

Step Five: The students became finally able to make the connection be-
tween the steps (Β2.353-372): Given the awareness of Step-3, if one starts with 
the smallest natural number 1 then the statement is true for its successor 2, and 
then for the next successor 3, and so on. This substantiates the validity of the 
statement for the whole set of natural numbers. 

It seems, therefore, that this series of steps worked as a scaffolding that 
initially facilitated students’ understanding of the process of proof by math-
ematical induction. At the same time, there was evidence that the students fi-
nally became able to appreciate why this process warrants the truth of the given 
statement.    

Conclusions

This paper has attempted to show that reading a mathematical text 
could be considered a problem-solving activity. Students are engaged in read-
ing mathematical texts with content completely unknown to them. This signals 
a shift. Traditionally, the teacher was responsible for the transmission of knowl-
edge and the clarification or explanation of concepts. Now, this responsibility 
is transferred to the students. The students’ effort to comprehend the math-
ematical meaning of the text became a problem that required a solution. In 
the students’ effort to solve this ‘problem’, it was feasible to identify all the four 
problem-solving steps of Polya with the step of ‘Getting familiar with the task’ 
to dominate the students’ work which confirms that reading of mathematical 
text might be considered as a problem-solving activity.  

Moreover, it seems that this approach contributed to the conceptual un-
derstanding of mathematical induction. According to the literature, students 
do not conceptually understand mathematical induction regardless of whether 
they are able to apply it and prove statements (Allen, 2001; Baker, 1996). This 
is why alternative methods of teaching proof beyond the traditional model 
have been suggested. In our study, however, we introduce the students to the 
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proof by mathematical induction as something that is progressively revealed to 
them. Therefore, our approach provides them with the mathematical text, and 
they are required to interpret it. We believe that the findings of this study gave 
evidence that this process leads to conceptual understanding. The participants 
were able to grasp the reason the steps of the theorem of mathematical induc-
tion constitute proof.

The difficulty to linguistically comprehend the text (Adams, 2003), espe-
cially when it includes symbols (Österholm, 2006), became obvious in the stu-
dents’ effort. In the end, however, we can say that this endeavour was successful, 
and this success seems to has its origin in the combination of three elements: (i) 
responsibility for understanding the mathematical content was transferred to 
students, (ii) proof had been selected as the most suitable kind of text, and (iii) 
the collaborative nature of the problem-solving process.

Given that this study might better be considered a case study, it is obvi-
ous that we cannot overgeneralise its results. However, they are promising for 
planning a future study since some questions arise. Is it possible to obtain simi-
lar results when the selected text is not relevant to proof? What is the role of 
the metacognitive skills the participants already possess? What is the role of the 
teacher? What aspects of social metacognitive control emerge while students 
attempt to cope with the task?   

References

Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 

786–795.

Allen, L. G. (2001). Teaching mathematical induction: An alternative approach. The Mathematics 

Teacher, 94(6), 500–504.

Avital, S., & Hansen, R. T. (1976). Mathematical induction in the classroom. Educational Studies in 

Mathematics, 7(4), 399–411.

Baker, J. D. (1996). Students’ difficulties with proof by mathematical reasoning. Paper presented at 

the Annual Meeting of the American Educational Research Association, New York. https://eric.

ed.gov/?id=ED396931

Bell, E. T. (1920). Discussion: On proofs by mathematical induction. The American Mathematical 

Monthly, 27(11), 413–415.

Dubinsky, E. (1989). Teaching of mathematical induction II. The Journal of Mathematical Behavior, 

8(3), 285–304.

Ernest, P. (1984). Mathematical induction: A pedagogical discussion. Educational Studies in 

Mathematics, 15(2), 173–189.

Freudenthal, H. (1983). The didactical phenomenology of mathematics structures. Reidel.



52 reading mathematical texts as a problem-solving activity

Grugnetti, L., & Jaquet, F. (2005). ‘Problem solving’, this is the problem! Paper presented at ICME 10, 

TSG 18. Denmark.

Konior, J. (1993). Research into the construction of mathematical texts. Educational Studies in 

Mathematics, 24(3), 251–256.

Leron, U. (1983). Structuring mathematical proofs. The American Mathematical Monthly, 90(3), 174–184.

Mamona-Downs, J., & Downs, M. (2005). The identity of problem solving. The Journal of 

Mathematical Behavior, 24(3–4), 385–401.

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software 

solution. Beltz.

Mejía-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics 

education research. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the 

ICMI Study 19 conference: Proof and proving in mathematics education (Vol. 2, pp. 88–93). National 

Taiwan Normal University.

Morgan, C. (1996). Language and assessment issues in mathematics education. In L. Puig & A. 

Gutiérrez (Eds.) Proceedings of PME 20 (Vol. 4, pp. 19–26). 

Movshovitz-Hadar, N. (1993). Mathematical induction: A focus on the conceptual framework. School 

Science and Mathematics, 9(3), 408–417.

National Council for Teachers of Mathematics. (2000). Principles and standards for school 

mathematics. National Council for Teachers of Mathematics.

Ntzioras, I. (1979). Mathematics: Algebra for grade 11 (in Greek). School Textbooks Publishing 

Organization. 

Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational 

Studies in Mathematics, 63(3), 325–346.

Österholm, M., & Bergqvist, E. (2013). What is so special about mathematical texts? Analyses of 

common claims in research literature and of properties of textbooks. ZDM, 45(5), 751–763.

Palla, M., Potari, D., & Spyrou, P. (2012). Secondary school students’ understanding of mathematical 

induction: Structural characteristics and the process of proof construction. International Journal of 

Science and Mathematics Education, 10(5), 1023–1045.

Papadopoulos, I., & Iatridou, M. (2010). Systematic approaches to experimentation: The case of Pick’s 

Theorem. The Journal of Mathematical Behaviour, 29(4), 207–217.

Polya, G. (1957). How to solve it (2nd ed.). Princeton University Press.

Raman, M. (2003). Key ideas: What are they and how can they help us understanding how people 

view proof? Educational Studies in Mathematics, 52(3), 319–325.

Schoenfeld, A. H. (1985). Mathematical Problem Solving. Academic Press.

Schoenfeld, A. H. (1985a). Metacognitive and epistemological issues in mathematical understanding. 

In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research 

perspectives (pp. 361–380). Lawrence Erlbaum.

Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics 

Enthusiast, 10(1&2), 9–34.



c e p s  Journal | Vol.12 | No1 | Year 2022 53

Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell 

whether an argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4–36.

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies 

in Mathematics, 29(2), 123–151.

Vilenius‐Tuohimaa, P. M., Aunola, K., & Nurmi, J. E. (2008). The association between mathematical 

word problems and reading comprehension. Educational Psychology, 28(4), 409–426.

Weber, K., Brophy, A., & Lin, K. (2008). Learning advanced mathematical concepts by reading text. 

Paper presented at the 11th Conference on Research in Undergraduate Mathematics Education. San 

Diego, CA. http://sigmaa.maa.org/rume/crume2008/Proceedings/Weber%20LONG.pdf 

Yang, K. L. (2012). Structures of cognitive and metacognitive reading strategy use for reading 

comprehension of geometry proof. Educational Studies in Mathematics, 80(3), 307–326.

Biographical note

Ioannis Papadopoulos, PhD, is an associate professor of Mathemat-
ics Education at the Faculty of Elementary Education at Aristotle University 
of Thessaloniki, Greece. His research interests include mathematical problem 
solving and problem posing and the use of digital technology in mathematics 
teaching and learning.

Paraskevi Kyriakopoulou is a secondary-education mathematics 
teacher. She holds a BSc in Mathematics and an MSc in Theoretical Mathemat-
ics and an MSc in Didactics of Mathematics (Aristotle University of Thessa-
loniki, Greece). She has taught mathematics in secondary education for 13 years 
and is interested in theory and practice of Mathematics teaching and practice in 
reading and understanding of mathematical texts.


