
ELEKTROTEHNIŠKI VESTNIK 84(3): 76–84, 2017
ORIGINAL SCIENTIFIC PAPER

Development of a framework for dynamic creation of
web-interfaces to support data acquisition in clinical
settings

Aleš Smrdel†

Faculty of computer and information science, University of Ljubljana,
Večna pot 113 , 1000 Ljubljana, Slovenia

† E-mail: ales.smrdel@fri.uni-lj.si

Abstract. We present a new framework for dynamic creation of web-interfaces to acquire data and to manage
the acquired data. The requirements for the framework are such that it is suitable for acquiring the person-related
data and requires minimal programming skills to set it up and use. The developed framework is connected to
a relational database management system and reads the structure of the records from the database. According
to the structure of the records, the framework generates a web-interface consisting of several web-pages. The
structure of the records is also used to manage the data in the database. Positioning of the web-page elements is
achieved by using cascading style sheets. These features enable changes to the existing structure of the records
which are automatically reflected in the generated web-interface without the need to change the underlying code.
All the above features, in combination with the person-related data acquisition design, make this framework
unique, and enable changes to the structure of the records and use of the framework for different purposes
without the need for altering the programming code. We also present a case-study of using the framework.

Keywords: relational database, web-interface framework, dynamic creation of web-interface

Razvoj ogrodja za dinamično kreiranje spletnih
vmesnikov za podporo zbiranju podatkov v kliničnem

okolju

Predstavljamo novo ogrodje za dinamično kreiranje spletnih
vmesnikov za zbiranje in upravljanje s podatki. Zahteve pri
razvoju ogrodja so postavljene tako, da je ogrodje primerno za
zbiranje podatkov, povezanih z osebami, obenem pa zahteva
minimalno znanje programiranja za postavitev in uporabo.
Razvito ogrodje se poveže z relacijsko podatkovno bazo in pre-
bere strukturo zapisov iz podatkovne baze. Glede na strukturo
zapisov ogrodje kreira spletni vmesnik, ki sestoji iz nekaj splet-
nih strani. Struktura zapisov je uporabljena tudi pri upravljanju
podatkov v podatkovni bazi. Postavitev elementov spletnih
strani je dosežena z uporabo kaskadnih slogovnih predlog. Te
lastnosti omogočajo spremembe v obstoječi strukturi zapisov,
ki se avtomatsko odražajo v kreiranem spletnem vmesniku,
brez potrebe po spremembi osnovne kode. Zgornje lastnosti
v kombinaciji z zbiranjem podatkov, povezanih z osebami,
naredijo ta vmesnik tudi edinstven, obenem pa omogočajo
spremembe strukture zapisov in uporabo ogrodja za različne
namene, brez potrebe po spreminjanju programske kode. Pred-
stavljamo pa tudi študijo primera uporabe ogrodja.

Received 20 January 2017
Accepted 12 April 2017

1 INTRODUCTION

Recent years have witnessed an immense growth of the
Internet. The popularity of the Internet has also encour-
aged the trend of providing documents in electronic
form that can be accessed over a network [1]. This
has also made the data acquisition in different fields
much easier, although the structure of the data can be
very versatile for different fields. Quite often the data
to be acquired are connected to a person. One such
field, where the central entity is a person, is the clinical
environment, where large amounts of data are acquired
daily. The majority of the data are acquired as a part
of an every-day regular clinical practice either during
regular check-ups or during emergencies. Sometimes the
data acquisition is performed also in a scope of different
studies where the data can be much more specific to
satisfy the needs of a given study.

The data acquisition as a part of a regular clinical
practice is ordinarily performed with applications which
can perform different tasks, such as acquiring data, con-
necting to centralized Relational Database Management
System (RDBMS), storing data in a relational database,
and retrieving the stored data. These applications are
usually developed for a large number of users, e.g.
several hospitals or medical institutions, making these
applications hard and impractical to use for acquiring

DEVELOPMENT OF A FRAMEWORK FOR DYNAMIC CREATION OF WEB-INTERFACES 77

the data in a scope of a single specific study, which thus
has to be implemented in other ways. Quite often the
data are initially acquired in a paper form. These data
have to be transformed later into an electronic form in
order to perform data analysis. As an alternative, special
web-applications or web-interfaces capable of acquiring
and storing the data into the relational database can
be used. To produce different web-interfaces, general
frameworks such as TurboGears [2] or Ruby on Rails [3]
can be used. Such frameworks enable rapid development
of web-interfaces. Since these frameworks cover a wide
range of possible applications, they have to allow for
full configurability. The existing frameworks also require
changes to the programming code (for the interface
and for the controller) when changing the structure of
the records or when data validation is needed. As a
consequence, they require extensive programming skills,
which the person performing a specific study might
lack. Sometimes changes in the structure of the records
trigger extensive changes in the web-interface to which
the user has to adapt, thus minimal alterations to the
web-interface are desired. When using such general
frameworks to set up a web-interface, the person im-
plementing such web-interface usually has to define the
structure of the data and also has to write at least
some programming code to enable interaction with the
user and the database, and for data validation. On the
other hand, the web-based tools for the data acquisition,
which allow for a relatively easy set-up, might be used.
However, these web-based tools might, especially in
the case of a clinical environment, raise security issues
due to the sensitive nature of the data being acquired,
because the acquired data is stored in public remote
locations. Since the studies are often contained within
a given department, the storage and access to a public
remote location is not required. These considerations
suggest the development of a new framework, which
would allow for an easy set-up, would enable generating
web-interfaces, and could be accessed through a local
network. When developing the framework for a person-
oriented data acquisition, it becomes obvious that such
data have a similar structure: a person represents a
database entry with a unique identification (ID), for
whom data in several subcategories can be acquired.
In case of a clinical environment, the subcategories
can be different examinations, which can again have a
similar structure. The similarity of the person-oriented
data structures can then be used to develop a framework
applicable to different fields. The adjustment enables an
easy set-up while the framework does not require any
additional programming besides defining the structure of
the records, which might be quite similar even for dif-
ferent fields, thus enabling reuse of an existing structure.

In this paper we present a new framework for gen-
erating dynamic web-interfaces. The framework is de-

veloped as a tool for facilitating a move from acquiring
the data in a paper form to an electronic data acquisi-
tion. The framework exploits the similarity of the data
structures, which is usually present when acquiring data
pertaining to a person. This framework can be used
for different purposes, requires minimal alterations to
an existing structure of the records, while completely
avoiding the need for any changes in the underlying
code-base of a particular web-interface. This is possible
due to the ability of dynamically creating web-pages
and managing the acquired data using only the structure
of the records in the database. The web-page elements
(widgets) used for data acquisition and representation
are created according to the structure of the records
and are positioned using the cascading style sheet (CSS)
files. We also present a case study of using the developed
framework to dynamically create web-pages for acquir-
ing the data about pregnant women. The dynamically
created web-pages were developed in collaboration with
the University Medical Center Ljubljana, Department of
Obstetrics and Gynecology.

2 METHODS

At the beginning of the development of the framework
we laid down the following requirements:

1) capability of producing a web-interface comprised
of several web-pages;

2) easy to set-up and use also for the non-
programmers;

3) capability of adding data columns to (or removing
them) the structure of the records without the need
for altering the programming code, since the need
for additional data might arise during the use of
the web-interface.

The third requirement also imposed a restriction that
the framework should allow for a partial data entry,
i.e., some of the data could be missing. The framework
also should fully support create, read, update and delete
operations in the database. The above requirements
also imposed several constraints on the structure of the
records. The main table (relation) of the structure of the
records (the topmost table in the database) is given a
predefined name and an identification column (attribute),
which also has a predefined name. This constraint is
necessary in order for the framework to be able to access
the structure of the records without the need to change
the programming code. Several supporting tables with
the predefined names are also required. The supporting
tables and their structure are shown in Fig. 1. These
supporting tables are used to describe, among other
things, the data types and relations between the data
types and web-interface widgets. Due to the predefined
names and the supporting tables, a separate database in
the given RDBMS is created for each structure of the

78 SMRDEL

tabledesc

id INTEGER

description TEXT

name CHARACTER VARYING(32)

columndesc_typedesc

columndesc_id INTEGER

typedesc_id INTEGER

columndesc

id INTEGER

description TEXT

ordering INTEGER

name CHARACTER VARYING(32)

tabledesc_id INTEGER

typedesc

id INTEGER

type_name CHARACTER VARYING(32)

upper_limit INTEGER

lower_limit INTEGER

value_name TEXT

reg_match TEXT

table_corrs

id INTEGER

person_id TEXT

updater_name CHARACTER VARYING(16)

update_action CHARACTER VARYING(24)

updated_table CHARACTER VARYING(32)

updated_�eld CHARACTER VARYING(32)

table_row_id CHARACTER VARYING(8)

old_value CHARACTER VARYING(32)

new_value CHARACTER VARYING(32)

tabledesc_id_exists

Figure 1. Structure of the supporting tables required by the framework.

records and thus for each web-interface.
We developed a framework using the Python program-

ming language [4]. This language was selected because
of its versatility and numerous modules, which can be
used to implement some of the required functionalities.
We used the CherryPy module [5] as the basis for the
framework. The CherryPy is a Python-based framework
offering basic HTTP functionality, and allowing web-
applications to be developed in the same manner as the
desktop applications. We also used an SQLObject object
relational mapping (ORM) library [2] as an underlying
basis for the connectivity to the RDBMS and interaction
with the databases.

2.1 The supporting tables and the structure of the
records

The supporting tables are created (or updated) auto-
matically at the time of creation (or modification) of
the structure of the records. The supporting tables allow
interpretation of the structure of the records, selection
of widgets according to the column type, display of the
data from the database, and also logging of the data
modifications. The required supporting tables are (refer
also to Fig. 1):

• tabledesc: containing a list and the description
of all tables which constitute the structure of the
records (the supporting tables do not constitute the
structure of the records and are not included in this
table);

• columndesc: containing a description for each col-
umn in every table (the columns in the supporting
tables do not constitute the structure of the records
and are not included in this table) and information
to which table this column belongs;

• typedesc: containing the type of each column in
every table (the columns in the supporting tables
do not constitute the structure of the records and
are not included in this table);

• columndesc typedesc: containing the data about
the relationships between the table columns and

data types described in the tables columndesc and
typedesc; and

• table corrs: containing the data about all changes
made to the entries in the database.

The step of defining the structure of the data cannot be
avoided. This step can be performed in different ways
and requires some programming skills. We tried to sim-
plify this step as much as possible. Instead of defining
the structure of the records using the Structured Query
Language (SQL) queries, we used an additional layer.
This layer helps in masking the SQL query syntax and
also enables an additional data validation with optional
constraints. The layer is constituted from classes written
in Python. Each table in the database is represented using
a Python class, which describes the table structure. Each
class is composed of variables referencing objects of
different types. Each object represents a table column
of a given type. To define a column type, we used
extended SQLObject classes. The classes were extended
with additional properties enabling an automatic data
validation. We implemented only classes for those types
which are necessary for the framework: 1) Int; 2) Float;
3) String; 4) Date; 5) DateTime; 6) Enum; 7) Bool; 8)
ForeignKey; and 9) MultipleJoin. The first seven classes
represent column types used for storing the data, while
the last two classes specify the relationships between
the tables. Using these extended classes, additional con-
straints (properties) can be specified for each column of
a given data type if desired, e.g., the upper limit for a
value. The use of the constraints for a given column
enables an automatic validation of the entered data,
without the need to write the validation code. Using the
defined classes, the framework creates the structure of
the records in the database. When creating the structure
of the data, the supporting tables are also created. The
structure of the records should also be normalized in
order to avoid a possible update, deletion and insertion
anomalies, which might arise from the user input [6],
but this step is left to the user.

DEVELOPMENT OF A FRAMEWORK FOR DYNAMIC CREATION OF WEB-INTERFACES 79

2.2 The structure of the framework
The developed framework consists of several classes.
• The most important is the class responsible for

manipulating the structure of the records. This class
provides an access to the structure of the records
and the supporting tables in the database. The
information obtained through this class is used to
construct the web-interface. It also enables creating
and deleting the tables constituting the structure
of the records. This class is also responsible for
modifying the existing tables of the structure of the
records by adding or deleting columns in a given
table and also for modifying the supporting tables.

• The classes defining the data types, which are
derived by extending the SQLObject classes, en-
able data validation with added constraints. These
classes are also responsible for generating the nec-
essary meta data and are required for creating tables
and table columns.

• The connectivity class is responsible for communi-
cation between the user and the database. This class
enables accepting and processing the user requests,
retrieving and updating the data, and generating
new entries in the database.

The flowchart depicting the interaction of the frame-
work with the user and the database is shown in Fig.
2, while Table 1 shows transitions from a given web-
page to a resulting web-page according to the user input,
together with a possible operation performed on the
database. Upon the user request, the framework presents
the user with a web-page, which is initially the page
for entering the person ID. The user then performs an
action which can vary according to the given web-page.
The action can be either the request for a particular page
(either for the web-page with the buttons to substructures
or for a web-page containing the selected substructure),
submission of the data, or cancellation of editing a
selected record. The action is sent together with the
relevant data to the framework, where it is processed.
The framework then performs an interaction either with
the user (if a new data entry has to be created, or if
the users has the choice of updating either an existing
record or a new one, or deleting an existing record),
or the database (creating a record, retrieving the data,
writing the data, or deleting a record). To interact with
the database, the framework forms an SQL query and
sends it to the database. The database performs the SQL
query (which can be one of the create, read, update or
delete operations) and returns the result. The framework
processes the result, generates a web-page and sends
it to the user. The web-pages showing the existing
subsections and for editing the selected subsection are
generated dynamically according to the structure of the
records, thus all changes made to the structure of the
records are automatically reflected in the generated web-

pages.
The type of each displayed widget in the web-page

is determined by mapping the relations between the
column types of the structure of the records and the
HTML elements. The framework uses the text field
widgets (“input” element of the type “text”) for the
Int, Float and String column types. To present the Date
and DateTime column types, it uses compound widgets
constructed from drop-down menus (“select” element
containing several “option” elements) to present years,
months and days; and also for hours and minutes for the
DateTime column type. To present the Enum column
type, it uses the radio button group widget (“input”
element of the type “radio” for each possibility) while
for the Bool column type the framework uses the check
box widget (“input” element of the type “check”). The
ForeignKey column type is used to cross-reference the
tables and is not displayed. The MultipleJoin column
type is handled in two ways, depending on the level in
which it appears in the structure of the records. If this
column type appears in the topmost table, the description
is displayed in a form of a button, which a user can
click to access the appropriate part of the structure of the
records, otherwise the substructure to which this column
points is displayed as a part of the web-page where the
description is displayed as a section heading.

The desired placement of the displayed widgets is
achieved using the CSS files. For the appropriate po-
sitioning, each widget has to be uniquely identified and
has to be identified in the same way for each record,
given the structure of the records. From the available
possibilities we selected the attribute class. The value of
this attribute for the widget representing a given column
is constructed from the names of the tables leading from
the topmost table to the given column and its name. In
this way we ensure that the value of the attribute class
for a given widget is unique, consistent and the same
for different data entries, since the names of the tables
and the columns do not change for different records.

3 CASE STUDY

The following case study shows the use of the frame-
work to create the web-interface for acquisition of
data about pregnant women. The web-interface was
developed in the scope of the effort to establish a
database containing data about pregnant women. The
database is intended as a support to the medical staff
during pregnancy, with an additional aim of helping
to predict an impending premature labor and to help
manage pregnancies which could result in a premature
labor. Early prediction of a premature labor is of utmost
importance since it is one of the leading causes of
morbidity and mortality in infants [7]–[9]. Previous
studies [10]–[12] identified numerous risk factors which
elevate the possibility of a premature labor: e.g. diabetes,

80 SMRDEL

Select

record

Existing

record

New record

Reco
rd

 d

oesn
't

 e
xist

Cancel
editing

Read

record ID

R
e
c
o
rd

 e
x
is

ts

D
el

et
e

re
co

rd

Dele
te

 fa
ile

d

Delete

successful
Delete successful

Modify another

record

C
re

a
te

re
c
o
rd

M
o
d
if
y

re
c
o
rd

Existing

subsections

Edit subsection

Se
le
ct

ed
 s
ub

se
ct

io
n

Su
bs

ec
ti
on

 d
at

a

Update failed Update failed

Confir
m

update
 fa

ilu
re

Update

successful

U
pdate

successful

M
odify

 s
am

e

re
co

rd

M
o
d
if
y
 a

n
o
th

e
r

re
c
o
rd

C
a
n
c
e
l

a
c
ti

o
n

Read record

Update record

Delete record

Create record Record

created

Rollback

R
o
ll
b
a
c
k

p
e
rf

o
rm

e
d

Delete failed

Confir
m

dele
te

 fa
ilu

re

Figure 2. Flowchart depicting the interaction of the framework with the user and with the RDBMS. The ovals represent web-pages
presented to the user, the rectangles represent requests (SQL queries) performed by the RDBMS, while the arrows represent the
user input processed by the framework (from the ovals), or the result of the interaction with the RDBMS (from the rectangles).
The shaded oval indicates the starting point of the interaction or the entry page.

Table 1. Transitions between the consecutive web-pages of the interface together with the actual user input and the operations
on the records in the database (DB).

Initial web-page User input DB operation Resulting web-page

Select record Enter record ID Read record Existing record
New record

Existing record
Modify record / Existing subsection

Delete record Delete record Delete successful
Delete failed

New record Cancel action / Select record
Create record Create record Edit subsection

Delete successful Select record / Select record
Delete failed Confirm failure / Existing record
Existing subsection Selected subsection / Edit subsection

Edit subsection Subsection data Update record Update successful
Update failed

Update successful Modify same record Read record Existing subsection
Modify another record / Select record

Update failed Confirm update failure Rollback Edit subsection

conization, hypertension, smoking, uterine abnormali-
ties. A database containing the data of pregnant women,
containing relevant risk factors for a premature labor, can
help in predicting and postponing an impending prema-
ture labor, since it can be used to regularly update the
information about pregnancies. Each pregnant woman
can thus be monitored continuously, the data can be
entered into the database promptly, and screening for
pregnancies with an elevated risk of a premature labor
can be carried out more thoroughly.

At the beginning we determined the structure of the
records which, is defined as a collection of the data to
be acquired. The physicians specified the relevant data

to be acquired as a collection of the previously identified
risk factors [10], and other data which they felt could
also help in predicting a premature labor. When setting
up the database and the web-interface, it was ensured
that the personal data-protection law is respected and
only an authorized personnel can access the data stored
in the database. The data to be acquired were divided
into several sections according to an established protocol
for monitoring pregnancy, which assumes several visits
of a pregnant woman to the clinic, including birth
giving. The first section contains the general data about
examinations, e.g., examination dates, the second, third
and fourth sections contain the specific data for each of

DEVELOPMENT OF A FRAMEWORK FOR DYNAMIC CREATION OF WEB-INTERFACES 81

the three planned examinations, while the fifth section
contains the data about the birth. Each of these sections
is represented with a table in the structure of the records
and can contain additional subtables.

The structure of the records could be generated in
the database in different ways. This is the only step
in setting-up a web-interface that requires some pro-
gramming knowledge. We simplified it by using an
abstraction layer. In order to specify a table in the
database, a class in Python is used. The topmost class
for our case study web-interface written in Python is
shown below:
class Person(MetaDB.Table):

personID=MetaDB.String(desc=’Person ID’,
unique=True,order=1)

basicInfo=MetaDB.MultipleJoin(’BasicInfo’,
desc=’Exam data’,order=2)

firstExam=MetaDB.MultipleJoin(’FirstExam’,
desc=’1st exam’,order=3)

secondExam=MetaDB.MultipleJoin(’SecondExam’,
desc=’2nd exam’,order=4)

thirdExam=MetaDB.MultipleJoin(’ThirdExam’,
desc=’3rdexam’, order=5)

birth=MetaDB.MultipleJoin(’Birth’,desc=’Birth’, order=6)
The name of the class represents the name of the table
in the database. The objects for which the variables
(properties) represent either the table columns or the
tables in the database are of a given type (extended
SQLObject type). In the definition of the relational type,
e.g. MultipleJoin, the first parameter represents the name
of the table in the database to which this column relates
and is equal to the name of the Python class which
describes the table in the database. The names of the
tables are obtained from the Python class names by
transforming them into a lower case and appending
an underscore before each new non-leading word, e.g.,
BasicInfo is converted into basic info. Parameter desc
contains a description of the column and is used to
display either the column value or a substructure of
the structure of the records. Parameter unique identifies
whether the column values should be unique for different
records, while order determines the order of the data
processing. The following excerpt from the case-study
class defining the birth table (the last line of the above
example defines the reference to this table) shows the
data column definition for the Apgar score after the first
minute:

scoreApgar1=MetaDB.Int(desc=’after 1. minute’,order=2,
default=None, upperLimit=10,lowerLimit=0)

The above example also illustrates the possibility of
defining the default value of a column, which can be
used to automatically fill the record when desired, and
the constraints for the upper and lower limits for the
column value. According to the specified constraints, an
automatic data validation is performed when submitting

the data. Fig. 3 shows the structure of the records created
for the task of acquiring the information about pregnant
women and is comprised of 36 tables. For the above
case study defining class Person, table person exists in
the database to which several subtables are related (ba-
sic info, first exam, second exam, third exam and
birth).

Figs. 4 and 5 show two web-pages generated with
this framework as a part of the web-interface. Initially,
the user logs in to access the web-interface. Then, the
user enters the ID of a person. If a record does not
exist, the framework generates a web-page offering the
user a possibility of creating a new record or aborting
the action. If the record either already exists or was
just created, the user can select a substructure of the
structure of the records as shown in Fig. 4 (refer also to
the example of defining class Person and to Fig. 3, tables
related to table person). Each substructure is represented
with a button containing a description obtained from the
database (created using the example class Person). When
a substructure is selected, the framework displays all the
data in the substructure as another web-page.

Fig. 5 shows the upper part of the web-page repre-
senting the section containing the birth data, accessed
using the bottom button in Fig. 4. The user enters the
missing data and updates the existing data. The frame-
work allows part of the data to be missing and can be
entered during subsequent visits. Upon the submission,
the data are validated. If the validation fails, the web-
page describing the error and the cause of the error
is shown to the user. The user returns to the previous
page to correct the data and repeats the submission. If
the validation succeeds, all the changes are stored into
the database, and the user either continues updating the
current record or returns to the first page.

During the development we tested the usability of
the framework and the web-interface generated by the
framework using this case-study. The testing was per-
formed by the users, for whom the framework was devel-
oped. The users quickly learned to use the web-interface.
The testing of the framework revealed a low efficiency,
as there was too much information presented on a
single web-page. The users commented that the web-
interface was over cluttered, therefore the information
was hard to find. This made the generated web-pages
difficult to use. To address this problem, we imposed
additional restriction to the structure of the records. The
topmost table contains only an identification column
and references to tables, where each table contains the
related data, e.g., the data about a given examination.
The architecture of the framework is then altered in such
a way that instead of displaying the entire structure of
the records, the framework displays these references to
tables as buttons (refer to Fig. 4). These buttons then
allow an access to the desired part of the structure of the

82 SMRDEL

cmpl_pregn

ant_th_admin

col_disch

col_disch_gin

subjective

skin_thick1

score_apgar

del_complic

gestation_age

antib_adm

vag_bris

�rst_emg_meas

second_emg_meas

birth_info

antib_th

basic_info

consistency_disch

birth

second_exam

gineco_exam

feel_question2

antibiot

abortion_count

signs_discharge

delivery_method

cervix_len

�rst_exam

direct_an

feel_question1

risk_model

newborn

bact_sanford

skin_thick2

person

third_exam

antib_th_del

first_exam_id_exists

cmpl_pregn_id_exists

direct_an_id_exists

cmpl_pregn_id_exists

birth_info_id_exists
direct_an_id_exists

cmpl_pregn_id_exists

person_id_exists
person_id_exists

birth_id_exists

second_exam_id_exists

birth_id_exists

direct_an_id_exists

gineco_exam_id_exists

gineco_exam_id_exists

birth_info_id_exists

birth_info_id_exists

first_exam_id_exists

first_exam_id_exists

first_exam_id_exists

second_exam_id_exists

person_id_exists

birth_info_id_exists

first_exam_id_exists

birth_info_id_exists

first_exam_id_exists

birth_info_id_exists

third_exam_id_exists

person_id_exists

gineco_exam_id_exists

first_emg_meas_id_exists

second_emg_meas_id_exists

direct_an_id_exists

person_id_exists

first_exam_id_exists

Figure 3. Structure of the records for the web-interface developed for data acquisition about pregnant women. Shown are the
tables (names of the tables are included within the boxes) of the structure of the records. The arrows between the boxes represent
relations between the two connected tables (the text over the line indicates the foreign key) in the structure of the records where
the direction indicates the path from a subtable to the table

Figure 4. Page for displaying and selecting part of the structure of the records for updating.

records. Each part of the structure of the records is then
presented as a web-page. The complete web-interface
can then be displayed as a set of several logically
separated web-pages, where the data are easier to access.
The users also did not report making many errors, which
can easily be undone by reediting the affected record.

4 DISCUSSION

The developed framework allows creating web-
interfaces without the need for writing or altering the
programming code. This feature is possible due to the
unique architecture of the framework, which enables an
automatic creation of the web-interface according to the

structure of the records in the database, and not through
the hard-coding of the interface. The framework can
access RDBMS and dynamically create the web-pages
constituting a web-interface using the structure of the
records in the database. The changes in the structure
of the records (and the supporting tables) automatically
cause the changes in the generated web-interface.

The initial aim of the project was to develop a web-
interface capable of adding, modifying and deleting data
in the database. Later we decided to develop a general
framework capable of manipulating the person-oriented
data stored in the RDBMS, which would require a
minimal or no programming intervention when setting
up a new web-interface or altering the existing one.

DEVELOPMENT OF A FRAMEWORK FOR DYNAMIC CREATION OF WEB-INTERFACES 83

Figure 5. The upper part of the page for displaying and updating the section containing the birth data.

By dynamically creating the web-interfaces according
to the structure of the records, we managed to elimi-
nate almost all of the programming required by other
frameworks. Defining the structure of the records still
requires defining the tables and relations. This step
cannot be avoided since the structure of the data to
be acquired has to be specified. We minimized the
complexity of defining the data structures using SQL
through an abstraction layer. This layer is implemented
with classes written in Python and hides most of the
underlying complexity. It also allows, using the extended
data types, an additional data validation, for which no
additional programming code is required. Due to the
similarities in the data collected for different studies,
the classes used for creating the structure of the records
can often be reused with only minimal adjustments. The
framework dynamically creates a web-interface and uses
the CSS files for positioning, which can be defined using
one of the available visual editors. Thus, there is no need
for any changes to the framework even if the structure of
the records changes. Only the appropriate CSS files need
to be changed or rebuilt. The benefit of this approach is
that it transfers the task of creating a new web-interface
or modifying an existing web-page when creating or
changing the structure of the records to a much easier
task of creating or modifying the CSS file. This makes
the developed framework suitable for the use also for
users with no extensive programming knowledge.

At least some of the developed functionalities, e.g.
ORM or automatically generated web-interfaces, provide

also other frameworks. But the developed framework
combines the functionalities in such a way that it offers
several advantages over other frameworks. The unique
feature of creating a web-interface on the basis of the
structure of the records without the need to specify the
desired relation to object mapping, makes this frame-
work easy for setting up and allows for changes in the
data structure without the need for adding or changing
the code responsible for data management or web-page
generation. The specific person-oriented structure of
the records makes it suitable for the use in different
fields, where such data structures are quite common.
The structure of the framework and also the extended
data types also allow for setting up of a new web-
interface without writing any programming code. This
approach also facilitates an easy integration of different
relational databases. The drawbacks of this approach
are restrictions in grouping the data, and the predefined
names of the topmost table, supporting tables, and
identification column. The grouping of the data into
several sections presents an additional level, which the
user has to access, but offers, as a trade-off, a more
structured data display.

During the development of the framework, the users,
for whom this framework was primarily intended, ac-
tively participated by providing the feedback when using
the framework and the created web-interface. This led to
the framework, and consecutively to the web-interfaces,
that is created according to their needs and wishes,
helping immensely in facilitating the acceptance of this

84 SMRDEL

framework and positive user responses. The framework
was developed and put in the use to acquire the data in
the scope of the study at the University Medical Center
Ljubljana, Department of Obstetrics and Gynecology.
The main contribution of the developed framework is
its ability to assist in electronic data acquisition in
different fields. The changes in the user performance
when acquiring the data using this framework stem
mainly from avoiding the need to transform the data
acquired in a paper form into an electronic format, and
also from data validation, which provides an immediate
correction of erroneous data.

ACKNOWLEDGMENTS

This work was financed by the Slovenian Research
Agency (ARRS) which provided a research project P3-
0124 - Metabolic and inborn factors of reproductive
health, birth, II

REFERENCES

[1] L. C. Chivers. Electronic document supply: experience at the
British Library. Interlending & Document Supply. vol. 28, pp.
27-37, 2000.

[2] M. Ramm, K. Dangoor, G. Sayfan. Rapid Web applications with
TurboGears: using Python to create Ajax-powerd sites. Upper
Saddle River, NJ: Prentice Hall cop, 2007.

[3] S. Ruby, D. Thomas, D. Heinemeier Hanson. Agile Web Devel-
opment with Rails 4. Pragmatic Bookshelf, 2013.

[4] M. Lutz. Programming Python (3rd ed). Sebastopol, CA:
O’Reilly Media, 2006.

[5] S. Hellegourach. CherryPy essentials: rapid Python web appli-
cation development. Birmingham: Packt Publishing, 2007.

[6] E. Sciore. Database design and implementation. Hoboken, NJ:
John Wiley & Sons, Inc, 2008.

[7] M. McLean,W. A. W. Walters, R. Smith. Prediction and early
diagnosis of preterm labor: a critical review. Obstetrical &
Gynecological Survey. vol. 48, pp. 209-225, 2003.

[8] W. M. Callaghan, M. F. MacDorman, S. A. Rasmussen, et al.
The contribution of preterm birth to infant mortality rates in the
United States. Pediatrics. vol. 118, pp. 1566-1573, 2006.

[9] D. J. Murphy. Epidemiology and environmental factors in
preterm labour. Best Practice & Research Clinical Obstetrics &
Gynaecology. vol. 21, pp. 773-789, 2007.

[10] I. Verdenik. Multilayer prediction model for preterm deliv-
ery.PhD Thesis. University of Ljubljana, Medical faculty, Ljubl-
jana, 2002.

[11] J. D. Iams. Prediction and early detection of preterm labor.
Obstetrics & Gynecolgy. vol. 101, pp. 402-412, 2003.

[12] S. T. Meekai, Z. Alfirovic,V. C. F. Heath, S. Cicero, et al.
Cervical cerclage for prevention of preterm delivery in women
with short cervix: randomised controlled trial. Lancet. vol 363,
pp. 1849-1853, 2004.

Aleš Smrdel received his M.Sc. and Ph.D. degrees in computer and
information science from the University of Ljubljana in 2000, and
2004, respectively. He is assistant professor at the Faculty of Computer
and Information Science at the same university. His main interests
are web technologies, web development, user interfaces, and human-
computer interaction.

