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1. AIM AND RESEARCH QUESTION
This experiment aims to investigate how the pivot distance from the centre-of-mass 
influences the time period of oscillation in a compound pendulum at small angles. A 
stopwatch is used to obtain the time measurement. 
Research question: How does increasing the distance of the axis of rotation (1.3 cm,2.6 
cm, 3.9 cm, 5.2 cm, 6.5 cm) from the mass centre of a rigid body of length l of 14.0cm 
affect the time period of oscillation (s) as observed through time measurements of 10 
oscillations? 

2. INTRODUCTION
A while ago, while searching the internet, I stumbled upon an interesting video featuring the
mechanism of the first clock to have a compound pendulum integrated into its design, the so-
called “Clock 32” (“Brian Law's woodenclocks”). This clock’s mechanism relies on a simple
harmonic motion of a rigid body inside the clock, which drives the movement of the clock's
hand. By investigating if such a rigid body oscillates differently from an idealised point-like
one, I realised that laws of the simple harmonic oscillator can also be applied here. However,
the motion of the rigid body is also crucially influenced by its moment of inertia. As I wanted
to deepen my understanding of rigid body oscillations, I chose to investigate the nature of the
movement of compound pendulums.
3. BACKGROUND INFORMATION
3.1 THEORETICAL BACKGROUND
Pendulums are freely oscillating devices suspended from the axis of rotation - the pivot. For
point-like mass pendulums, the mass is concentrated at only one point. In such cases, the
equation of motion can be described in terms of angular displacement θ as

θ =𝜃0 sin
2𝜋
𝑇0

t  , (1) 

where t is time, 𝜃0 the amplitude of oscillations and T0 the time period. T0 can be derived as

𝑇0 = 2𝜋√
𝑙
𝑔  , (2) 

where l is the distance of the point-like mass pendulum from the pivot and g is the gravitational 
acceleration. However, most pendulums are compound pendulums, consisting of a rigid body 
(in this example, a rod), where the mass is distributed along the body’s whole length. In such 
cases, its moment of inertia I, the tendency of the object to resist the change, has to be 
considered, as it changes with the centre-of-mass distance from the pivot.  

In further analysis, a compound pendulum -the rod of mass m, length l and distance of centre-
of-mass from the pivot 𝑑 will be considered.  Firstly, to derive the period of oscillation of this 
rod its free-body diagram is drawn to represent the forces acting on the system (Figure 1). 
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Figure 1: A free body diagram of forces (digitally drawn) 

The gravitational force (𝐹𝑔 = 𝑚𝑔) acting on the rod is represented at the centre of the rod’s
mass, where d is the distance between the pivot P and the center-of-mass (note that the weight 
acts on every rod segment). 𝐹𝑔 can be decomposed into two components. The component acting
in the direction of the rod 𝐹𝑔∥ is balanced by the force of the pivot 𝐹𝑝. The component acting 
perpendicular to the rod 𝐹𝑔⊥ is not balanced, resulting in a torque τ, τ = 𝐹𝑔⊥𝑑 on the pivot.
Using the trigonometric sine functions, acknowledging that the torque acts in the opposite 
direction than the increasing of 𝜃, the total torque equals: 

𝜏 = −𝑚𝑔 ∙ 𝑑 𝑠𝑖𝑛 𝜃   . (3) 
According to the second Newton’s law, the restoring torque results in angular acceleration α  of 
the body (“Mujtaba”): 

𝜏 = 𝐼 ∙ 𝛼 , (4) 
where I is the moment of inertia. The two equations can be combined to obtain the relationship 
between 𝐼 and 𝑑: 

𝐼 ∙ α = −mg ∙ d sin 𝜃  . (5) 
Angular acceleration α is the second derivative of angular displacement 𝜃, α = 𝑑2𝜃

𝑑𝑡2 , thus 

𝐼 ∙
𝑑2𝜃
𝑑𝑡2 = −mg ∙ d sin 𝜃 . (6) 

This equation can be further rearranged to obtain: 
𝑑2𝜃
𝑑𝑡2 = 𝜃̈ = −

mg ∙ d 
𝐼 sin 𝜃. (7) 

For small angles 𝜃 (𝜃 ≪ 1), the sin 𝜃 can be replaced with 𝜃. 

𝜃̈ = −
mg ∙ d 

𝐼 𝜃. (8) 

In Equation (8), we recognise the equation for a simple harmonic motion, with solutions for 
equations of motions shown in Table 1, where we identify mg ∙d

𝐼
as  𝜔2, where 𝜔  is the angular

frequency. 

Table 1: Derivations of equation for simple harmonic motion oscilating with 𝜔 
Equation of motion for 𝜃 𝜃 =  𝜃0  sin 𝜔𝑡
Equation of motion for angular velocity 𝜃̇ = 𝜔 𝜃0  cos 𝜔𝑡
Equation of motion for angular acceleration 𝛼 𝜃̈ = −𝜔2𝜃0 sin 𝜔𝑡
Equation of motion in differential form 𝜃̈ = − 𝜔2𝜃
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𝜔 = √𝑚𝑔𝑑
𝐼  (9) 

 
A time period of such a compound pendulum can therefore be written as: 

𝑇 =
2𝜋
𝜔 = 2𝜋√

𝐼
𝑚𝑔𝑑 (10) 

In the next step, the moment of inertia of a rod has to be derived. Considering first a system of 
mass particles 𝑚𝑖, composing the rod , the moment of inertia can be calculated as: 

𝐼 = ∑ 𝑚𝑖 𝑟𝑖
2

𝑖
 , (11) 

where ri is the distance of each 𝑚𝑖 from the pivot ("Moment of inertia”). Generalising this for 
a continuous rigid body – the rod- we replace the summation with the integral over the rod: 

𝐼 = ∫ 𝑟2𝑑𝑚𝑟𝑜𝑑  (12)
Again, r is the distance of the element dm from the pivot. Next, the rod’s moment of inertia for 
pivot equals the center-of-mass (see Figure 2) is calculated. The linear mass density of such a 
rod is expressed as 𝑚

𝑙
. The coordinate system’s origin is chosen to coincide with the pivot.  

 
Figure 2: A rigid body with the rotation axis in the mass centre in the middle of the body 

 
In this case, the moment of inertia 𝐼 can be evaluated by integrating Equation 12 from - 𝑙

2
 to 𝑙

2
. 

𝐼 = ∫ 𝑟2𝑑𝑚
𝑙
2

−𝑙
2

 (13) 

We express the infinitesimal element dm as 
𝑑𝑚 = 𝑚

𝑙
𝑑𝑟. 

Inserting it into Equation 13, 𝐼 around the center-of-mass in terms of length l can be calculated:  
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𝐼𝐶𝑀 = ∫ 𝑟2 𝑚
𝑙 𝑑𝑟 =

𝑚
𝑙 (

𝑟3

3 ) |

𝑙
2

−
𝑙
2

=
𝑙
2

−𝑙
2

𝑚𝑙2

12
(14) 

 
For the pivot at a distance d from the center-of-mass, I can be calculated according to Equation 
12 with correct integration limits. The origin of coordinate can be transformed as: 

𝑥’ = 𝑥 + 𝑑. (15) 
 
The moment of inertia is written as: 

𝐼 = ∫ 𝑟2 𝑚
𝑙 𝑑𝑟 =

𝑚
𝑙 (

𝑟3

3 ) |

𝑙
2 + 𝑑

−
𝑙
2 + 𝑑

=
𝑙
2+𝑑

−𝑙
2+𝑑

 

=
𝑚
3𝑙 ((

𝑙
2 + 𝑑)

3

− (−
𝑙
2 + 𝑑)

3

) 

𝐼 =
𝑚𝑙2

12 + 𝑚𝑑2 (16) 

The first term is recognised as the moment of inertia around the center-of-mass from Equation 
14, so we can write I:  

𝐼 = 𝐼𝐶𝑀 + 𝑚𝑑2 (17) 
 
This expression has hereby been evaluated for a specific rod of length l; however, it holds for 
any rigid body and is known as Steiner’s theorem (“Steiner’s theorem”). 
 
3.2 THE VARIABLES 
 
Independent variable: Pivot to center-of-mass distance (1.3cm, 2.6cm, 3.9cm, 5.2cm, 6.5cm) 
Dependent variables: Time period (s) 
Controlled variables: 

Table 2: Controlled variables and explanations 
Controlled variable How is it controlled? Why is it controlled? 
Shape of the object  The same rigid body is used to 

obtain measurements 
Changes in shape of the object 
would lead to different moment 
of inertia, changing the time 
period 

Wind The experiment is conducted in 
a controlled closed environment 

Wind resistance could lead to 
disturbed measurements 

Using the same pivot Each time, the same pivot was 
used 

Changing the pivot could lead 
to different frictions between 
the object and the pivot, 
distrupting the measurements 

Starting amplitude Each time, the object was 
released from the same small 
angle 

At larger amplitudes, the system 
does not exhibit a simple 
harmonic motion 

 
3.3 HYPOTHESIS 
H1: The period of oscillation will first decrease, reaching a minimum at a certain distance  𝑑 <
𝑙 , and then increase. 
H2: At large pivot to center-of-mass distances, the time period of a compound pendulum will 
approach time period of a simple point-like mass pendulum. 
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Equation 10 and 16 are considered for the creation of a hypothesis. Firstly, it can be predicted 
that the moment of inertia increases with increasing distance of the pivot from the center-of-
mass, as the second term in its equation (𝑚𝑑2) increases. Secondly, the two equations are 
combined to obtain a time period T dependence on the distance of the pivot point. 

𝑇 =  2𝜋√
𝐼

𝑚𝑔𝑑 = 2𝜋√
𝑚𝑙2

12 + 𝑚𝑑2

𝑚𝑔𝑑   

𝑇 = 2𝜋√
𝑙
𝑔 √

𝑙
12𝑑 +

𝑑
𝑙  (18) 

In terms of a time period of a point-like mass pendulum (Equation 2), this can be written as  

𝑇(𝑑) = 𝑇0 √
𝑙

12𝑑 +
𝑑
𝑙  (19) 

If  𝑑 ≪ 𝑙 the term 𝑙
12𝑑

 becomes dominant, 𝑑
𝑙
  approaches 0, and the relationship simplifies to  

 𝑇 ∝ √ 𝑙
12𝑑

  , 

which goes to enormous values for tiny distances d.  
If  𝑑 ≫ 𝑙 , i.e., the pivot lies outside the rod, the second term prevails, and the first term becomes 
negligible. The behaviour in those two extremes suggests the existence of a minimum (turning 
point) in between. 
 
3.4 MATERIALS AND EQUIPMENT 

Table 3:Materials and equipment with precision of measurements 
Material / equipment Characteristics and precision of measurement 
Thin steel pole / 
Adhesive tape / 
Stopwatch ±0.01 s 
Geotriangle ±2° 
A uniform iron rod  
with 11 equally distributed holes 

𝑙 = 14 cm ± 0.1 cm, 𝑚 = 14 g ± 1 g 
distance between two holes = 1.3 cm ± 0.1 cm 

 
 3.5 METHODOLOGY 
The setup of the experiment is shown in Figure 3. The steel pole, acting as a pivot, is fixed to a 
table with adhesive tape. The iron rod is placed on the pivot, using different holes, displaced 
and left to oscillate from a small 𝜃. 
As the weight is equally distributed along the rod, its center-of-mass is determined as its middle, 
𝑑𝐶𝑀 = 𝑙

2
= 14.0 cm

2
= 7.0 cm. Since the holes are placed symmetrically relative to center-of-

mass, the experiment is conducted using the holes on one side of the center-of-mass. 
Due to friction in the pivot, the oscillations are damped, and the rod stopped after 5-15 
oscillations. To increase the precision of the measurements, the time of 5-10 oscillations is 
measured and then divided by the number of oscillations. 
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Figure 3: Experimental setup (photos from private archive) 

3.6 PROCEDURE 
All the steps relate to the iron rod. 
1. Measure the distance from each hole to its center-of-mass; 
2. Hang it on the most outer hole; 
3. Displace the rod for a small angle (𝜃 = 10°) using a geotriangle and release it to swing; 
4. Turn on the stopwatch and measure the time of 10 oscillations (5 in the case of the innermost 
hole); 
5. Repeat the measurements ten times; 
6. Repeat 2.-5. for all the holes until the center-of-mass is reached. 
3.6 SAFETY NOTES 

Table 4: Safety notes 
CONSIDERATION TYPE SIGNIFICANCE 
Environmental consideration To limit the production of waste, the 

experiment setup comprised of materials 
which were already in use beforehand and 
their function returned to their original one 
after the experiment has ended. Moreover, 
the adhesive tape (the only material for a 
single use) was recycled appropriately. 

Safety consideration The setup of the experiment had to be 
assembled independently. Because of the 
sharpness of the iron rod, the experiment had 
to be conducted with causion to avoid any 
injuries. 

Ethical considerations There were no ethical considerations, as the 
experiment did not involve any human or 
animal participants. 
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4. RESULTS 
4.1 QUALITATIVE OBSERVATIONS 
During the procedure, changes in the time period were qualitatively observed. The time period 
was maximal at the pivot hole closest to the center-of-mass, and decreased over the successive 
two measurements. Due to the short and similar duration of the last three measurements, their 
time periods could not be qualitatively distinguished. For the pivot furthest from the center-of-
mass at 𝑑 =  6.5 cm the rod stopped after five oscillations due to friction related damping. 
4.2 RAW DATA 
During the experiment, ten trials were conducted at five different distances from the center-of-
mass of the rod (Table 5). The trials aimed to determine the time period, and to minimise 
random error, therefore, the time for ten oscillations was recorded in all cases except for the 
distance d=1.3 cm, where the time for five measurements was obtained. 
 

Table 5: Distance of the axis of rotation from the mass centre (d) and time period 
d  (cm) 
±0.1cm 

Number of 
oscillations time (s) ±0.01s 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

1.3 5 3.74 3.69 3.62 3.63 3.76 3.79 3.53 3.54 3.75 3.51 
2.6 10 6.04 5.87 5.87 5.91 6.01 5.94 5.88 5.66 5.74 5.81 
3.9 10 5.65 5.73 5.46 5.58 5.43 5.49 5.68 5.58 5.66 5.64 
5.2 10 5.66 5.76 5.63 5.76 5.70 5.63 5.63 5.88 5.61 5.79 
6.5 10 5.89 6.06 5.89 6.01 5.80 6.10 6.00 5.79 6.06 6.14 

 
5. DATA PROCESSING 
First, the time period T was calculated by dividing each measured value by the number of 
oscillations. An example of calculation for 6.5 cm ± 0.1 cm, I for the first trial is shown below, 
and all the others can be seen in Table 6: 

𝑇 =
𝑇10

10 =
5.89𝑠

10 = 0.589𝑠 = 0.59𝑠 

 
Table 6: Time period for different axis distances 

d  (cm) 
±0.1cm time (s) ±0.01s 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

1.3 0.75 0.74 0.72 0.73 0.75 0.76 0.71 0.71 0.75 0.70 
2.6 0.60 0.59 0.59 0.59 0.60 0.59 0.59 0.57 0.57 0.58 
3.9 0.57 0.57 0.55 0.56 0.54 0.55 0.57 0.56 0.57 0.56 
5.2 0.57 0.58 0.56 0.58 0.57 0.56 0.56 0.59 0.56 0.58 
6.5 0.59 0.60 0.59 0.60 0.58 0.61 0.60 0.58 0.61 0.61 

 
The raw data can now be used and represented on a graph in Figure 4. 
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Figure 4: Raw data of the time period plotted on a graph. 

A large fluctuation between the trials for the same pivot to center-of-mass distance can be noted 
as a first observation, no outliers are however observed. The values on the graph are dispersed, 
indicating a random measurement error. The average values and their absolute and relative 
uncertainties are determined to quantify the dispersion of the measurements. A sample of 
calculation for axis distance 6.5 cm ± 0.1 cm is shown below, and the remaining results of the 
calculations are presented in Table 7.  

1. Calculating the average time period (𝑇𝑎𝑣𝑔): 

𝑇𝑎𝑣𝑔 =
∑ 𝑇𝑖

10
𝑖=1

10  

𝑇𝑎𝑣𝑔 =
0.59 𝑠 + 0.60 s + 0.59 s + ⋯ + 0.61 s

10
= 0.597 s = 0.60 s  

2. Calculating the absolute uncertainty of the time period (∆𝑇𝑎𝑣𝑔): 

∆𝑇𝑎𝑣𝑔 =
𝑚𝑎𝑥 − 𝑚𝑖𝑛

2 =
0.61 s − 0.58 s

2 = 0.018 s = 0.02 s 

3. Calculating the relative uncertainty: 

𝛿𝑇𝑎𝑣𝑔 =
∆𝑇𝑎𝑣𝑔

𝑇𝑎𝑣𝑔
∙ 100 =

0.018
0.597 = 3 % 

 
4. Precision of the measurement can be evaluated from the distance and oscillation time 

measurements. The largest evaluated relative errors are found at the smallest measured 
distance, where 0.1 cm/ 1.3 cm approximates less than 8 %, and at the shortest measured 
time period, where 0.01 s/0.56 s approximates less than 2 %. The combined 
measurement error is therefore the sum of both, approximating to less than 10 %. All 
measurement errors are shown in Table 7 and Figure 5 as horizontal lines. 
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Table 7: Pivot distance, average time, absolute and relative uncertainties 
 
 

𝑑 (𝑐𝑚) 
±0.1 

 
Equipment 
uncertainty 
(d) 

 
 

𝑇𝑎𝑣𝑔(𝑠) 
±0.01 

 
Equipment 
uncertainty 
(𝑇𝑎𝑣𝑔) 

 
 

∆𝑇𝑎𝑣𝑔 (𝑠) 
±0.01  

 
 

𝛿𝑇𝑎𝑣𝑔 (%) 
  

1.3 0.077 0.73 0.014 0.03 4% 
2.6 0.038 0.59 0.017 0.02 3% 
3.9 0.026 0.56 0.018 0.02 3% 
5.2 0.019 0.57 0.018 0.01 2% 
6.5 0.015 0.60 0.017 0.02 3% 

 
The average time period decreases with the pivot to center-of-mass distance for the first three 
and increases for the last two measurements, ranging between 0.73 s and 0.57 s. Absolute 
uncertainties are small, the biggest is seen at 𝑑 = 1.3 cm ± 0.1 cm, due to a smaller number of 
measured oscillations (5).  
 
In the next step the measured data points are fitted with a predicted function of Equation 18 
with varying length of the rod l and shown in Figure 5 (experimental - blue line). The calculated 
value with measured length of the rod is also displayed (calculated - red line) and exibits the 
same qualitative pattern. 

 
Figure 5: Best fit line of the time period: The best-fit line (blue) and the calculated time period 
(red) are shown. 
 
The experimental rod length 𝑙 = 13.54 cm ± 0.28 cm obtained from the blue fit line agrees 
well with the (measured) true length 𝑙 = 14.0𝑐𝑚 ± 0.1 cm, from which the red line (calculated 
values) is drawn. To quantify the deviation, the %Error of the parameter 𝑙  is calculated: 

%𝑒𝑟𝑟𝑜𝑟 = |
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑡𝑟𝑢𝑒

𝑡𝑟𝑢𝑒 | ∙ 100 (20) 

 

%𝑒𝑟𝑟𝑜𝑟 = |
13.5 − 14.0

14.0 | ∙ 100 

%𝑒𝑟𝑟𝑜𝑟 = 3.3% 
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Moreover, to quantify the difference between the measured and calculated (red line) values of 
time period, their %𝐸𝑟𝑟𝑜𝑟 is calculated. First the true values of time period are calculated using 
the Equation (18). The calculations are shown for axis distance 6.5 cm ± 0.1 cm, and remaining 
values are written in Table 8. 

1. Calculating the true value: 

𝑇 = 2𝜋√
0.140 m

9.81 m/s2  √
0.140 m

12 ∙ 0.065 m +
0.065 m
0.140 m = 0.6022 𝑠 = 0.60 𝑠  

2. Calculating the %Error using average value as “experimental”: 

%𝐸𝑟𝑟𝑜𝑟 = |
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑡𝑟𝑢𝑒

𝑡𝑟𝑢𝑒 | ∙ 100 

%𝐸𝑟𝑟𝑜𝑟 = |
0.597 − 0.602

0.602 | ∙ 100 = 0.8% 

 
Table 8: Experimental value, calculated value and %error 

 𝐴𝑥𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 (𝑐𝑚) 
±0.1𝑐𝑚 

 

𝑇𝑚𝑒𝑎𝑛 (𝑠) 

±0.1𝑠 

𝑇𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (𝑠) 

   

%𝐸𝑟𝑟𝑜𝑟 
  

1.3 0.73 0.75 2.1 
2.6 0.59 0.60 1.8 
3.9 0.56 0.57 2.0 
5.2 0.57 0.58 1.5 
6.5 0.60 0.60 0.8 

 
Comparing the experimental and calculated time period results, the predicted values (red line) 
are slightly higher than the measured ones (Table 8, Figure 5). The table indicates a small 
%error, ranging between 0.8% and 2.1%. Again, the highest deviation is observed for the 
smallest distance. 𝑑 = 1.3𝑐𝑚.  
 
In Figure 6, the measured data are shown alongside the predicted function for time period T(d), 
(Equation 18), marked with a blue line, and the predicted time of the point-like mass pendulum 
(Equation 2), marked with red line. As expected, the time period of a compound pendulum 
approaches the time period of a point-like mass pendulum for large distances d, where the rigid 
body can be treated as a point-like. The position of the minimum time period is indicated, as 
determined from Equation 18 by finding the distance d at which the first derivative with respect 
to d is 0.   
 

( 𝑙
12𝑑

+ 𝑑
𝑙
)′ = 0 ⟹ 𝑥 = 𝑑

𝑙
 

 

(
1

12𝑥 + 𝑥)′ = 0 

− 1
12𝑥2 + 1 = 0  ⟹ 𝑥 =  1

2√3
  ⟹ 𝑑 =  𝑙

2√3
 

Inserting for distance 𝑙 = 14.0 cm, the minimum point is found at distance: 

𝑑 =  
14

2√3
= 4.04 cm = 4.0 cm 

It can be observed that the calculated value agrees with the measured minimal values. 
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Figure 6: Period of oscillation for time period of a point mass and coupled pendulum in 
relationship with distance from the mass centre 
 
 
6. CONCLUSION 
This investigation evaluated how the increasing pivot to center-of-mass distance influences the 
time period of oscillation of the compound pendulum.  
 
At the start of this investigation, it has been derived using the Newton’s law and an expression 
for the moment of inertia for a rigid body-rod, that its oscillation time period depends on the 

length of the rod l and the pivot to center-of-mass distance d, proportionally to √ 𝑙2

12𝑑
+ 𝑑 (see 

Equation 19). The theoretically derived equation exhibits minumum as suggested in the first 
hypothesis. 
 
The conducted measurements also supported this hypothesis: they showed decrease in the 
oscillation period for the first three pivot to center-of-mass distances (1.3 cm, 2.6 cm, 3.9 cm) 
and after reaching a minimum at d = 4.0 cm the time period increased again (Figure 5).  
It was concluded that the measurements provided reasonably accurate predictions, since the 
combined equipment uncertainties were lower than 10%. When evaluating the precision of the 
measurements, the uncertainties ranged between 0.1 s and 0.3 s, and were most likely the result 
of a random error when stopping the stopwatch. The biggest uncertainty was denoted at the 
smallest axis distance, and emerged due to dispersion of the uncertainty over a smaller time (of 
only five oscillations). All uncertainties were small compared to the measured data which 
confirmed the precision and reliability of the results; unexpectedly since the method (relying 
on observations) isn’t usually considered as reliable. 
 
Lastly, it has also been established in support to the second hypothesis, that after reaching the 
minimum point, the function describing the relationship between the oscillation period and 
pivot to center-of-mass distance, approaches the function for a simple point-like mass pendulum 
(Figure 6). 
Moreover, the theoretical function of Equation 18 which was fitted to the results, allowed for 
the extraction of the parameter 𝑙, corresponding to the measured values. It was identified that 



 12 

the extracted length was 𝑙 = 13.5 cm ± 0.3 cm. When comparing it to the true value of the rod 
𝑑 = 14.0 cm ± 0.1 cm, a 3% error was calculated.  
This was also further confirmed by comparison of each measurement to its theoretical value 
using Equation 18. All the measurements showed deviations between 0.8% and 2.1% from the 
theoretically predicted value, and so all the results were deemed accurate. 
 
7. EVALUATION 
7.1 WEAKNESSES 
Distance range: The experiment was conducted at pivots positioned inside the rigid body-the 
rod. After the turning point, there was only one more distance at which the measurements were 
acquired. Therefore, results were insufficient as they mostly showed the behavior of the 
decreasing time period and not for the complete rigid body’s behaviour in the increasing time 
period range. 
Variations in the maximum positions of the oscillations: Recording the measurements based 
on a qualitative observations of when an oscillation has ended, introduced random errors. 
Oscillation count for distance d=1.3cm: For the smallest distance of the axis, only five 
oscillations were recorded. This led to an increased random error. The random fluctuations in 
timing measurements became more evident, as the oscillation time was shorter. 
Pivot friction: The friction between the axis and the rod could have affected the time period as 
the steel pole was not round but rectangular. This introduced random error, depending on how 
the pole was positioned. 
Rod imperfections: At the start of the experiment, it was predicted that the mass was uniformly 
distributed and the center-of-mass was determined. However, the rod is a homogeneous rod of 
length of 14 cm with eleven holes distributed alongside its length, and  the rod could have 
deviations in the mass distribution, leading to systematic errors. 
Oscillation damping: In this experiment, the oscillation damping was not considered in the 
calculations. Note that the derived formulas only apply to the undamped 
oscillations. Here, especially for the d=1.3cm, where the motion was terminated after five 
oscillations, damping significantly affected the time period and introduced a systematic error 
in the measurement. 
7.2 STRENGHTS 
Release angle: each time a measurement was made, the mass was released from the same small 
angle, which was ensured by measuring the angle of release. Since the derived equations only 
apply for small angles, the measurements were more accurate this way. 
Multiple measurements: The experiment comprised ten trials for each axis distance, which 
reduced the random errors and ensured reliability of the results. 
Measurement of multiple oscillations. The time of several oscillations was measured, and 
afterwards converted to the time period of one oscillation. This way the random error was 
reduced, as the uncertainty due to stopping variations dispersed over a larger time. 
7.3 IMPROVEMENTS 
If the experiment were conducted again, some changes would be imposed. Firstly, a different 
range would be chosen, to include distances after the turning point, which would show an 
increase in the time period. Next to reduce the damping, the friction in the pivot would be 
reduced by choosing a round pivot instead of a non-uniform rectangular one. Thirdly, a more 
precise equipment, not relying on the qualitative observations, could be used, to ensure even 
greater precision and accuracy.  
7.4 EXTENSION: 
An extension of this experiment could involve investigating how the different shapes of rigid 
bodies influence the time period. In this experiment, the rigid body was a rectangle; however, 
different shapes would have different moments of inertia, which would lead to different results. 
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Moreover, it could also be investigated how the time period changes for a body which is not 
homogeneous. 
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