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The influence of haptic support algorithm 
dynamics on the efficacy of motor learning
Vpliv dinamike algoritmov haptične podpore 
na učinkovitost motoričnega učenja

Matjaž Zadravec, Zlatko Matjačić

Abstract
Background: Repetitive task training, delivered 
either by a therapist or haptic robot is the core of 
modern rehabilitation of movement. In the cur-
rent rehabilitation, robotics-based movement 
training the level of haptic support assisting the 
movement is rather stationary and may remain 
the same for periods of days. The aim of this 
paper was to investigate the influence of haptic 
support algorithms (HSA) dynamics on the out-
come of motor learning.

Methods: Twenty-seven neurologically intact 
participants, divided into three groups support-
ed by dynamically different HSA, played a rather 
demanding two degrees of freedom motor task 
(virtual reality based table football) to learn wrist 
movements with their inferior arm. The evalua-
tion before training without robotic support was 
followed by the training session and concluded 
with evaluation after training without robotic 
support.

Results: The results showed significant improve-
ment in all three groups, but the statistical anal-
ysis reveals the difference within groups. The 
selection of the HSA that is appropriate for the 
given motor task had a significant influence on 
the level of acquired motor skills after the train-
ing period.

Conclusions: The results of this study suggest 
that for every motor task or equivalently for ev-
ery motor ability of a particular subject such a 
HSA scheme exists and should be implemented 
that maximizes training effects in a limited num-
ber of training attempts.

Izvleček
Izhodišča: Sodobna rehabilitacija temelji na in-
tenzivnih treningih gibanja, ki jih podpira bo-
disi haptični robot bodisi fizioterapevt, ki sledi 
predpisanim protokolom. Številne raziskave so 

pokazale, da vadba enostavnih in ponavljajočih 
se funkcionalno usmerjenih nalog učinkovito 
zmanjša motorično prizadetost roke, medtem ko 
na izboljšanje funkcij roke nima pomembnega 
vpliva. Vzrok je urjenje v nespremenljivih pogo-
jih in predvidljivo delovanje haptične naprave. 
Študije plastičnosti možganov nakazujejo, da bi 
bilo potrebno za uspešno učenje funkcionalnih 
dejavnosti v vadbo vključiti določeno mero nad-
zorovane variabilnosti, ki bi spodbujala razvoj 
ustreznih motoričnih vzorcev. To pa zahteva 
merjenje trenutnih zmožnosti uporabnika in 
prilagajanje ravni haptične podpore rehabili-
tacijskih robotov. S študijo smo želeli raziskati 
vpliv dinamično različnih algoritmov haptične 
podpore (angl. haptic support algorithms, HSA) 
na učinkovitost motoričnega učenja, pri katerem 
raven haptične podpore postopno zmanjšujemo 
glede na napredek v motoričnih sposobnostih.

Metode: Sedemindvajset zdravih oseb smo raz-
delili v tri skupine z različnimi shemami HSA. 
Za učenje gibov roke smo uporabljali simulacijo 
ročnega nogometa, pri katerem oseba z nedo-
minantno roko in s pomočjo haptične naprave 
upravlja virtualnega nogometaša. Protokol je 
zajemal vrednotenje pred treningom in brez 
haptične pomoči, trening gibanja s pomočjo 
haptične naprave in z izbrano shemo HSA ter 
vrednotenje po treningu.

Rezultati: Rezultati kažejo na bistveno motorič-
no izboljšanje v vseh treh skupinah, vendar pa 
statistična analiza kaže, da med skupinami ob-
stajajo razlike. Izbira sheme HSA, ki je primerna 
za dano nalogo, pomembno vpliva na izboljšanje 
motoričnih sposobnosti po obdobju treninga.

Zaključki: Študija je pokazala, da je za vsako 
motorično nalogo oz. za vsako motorično spo-
sobnost posameznika potrebno uporabiti takšno 
shemo HSA, ki v omejenem številu poskusov 
maksimizira učinek treninga.
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Figure 1: The UHD-
robot allows 2-DOF 
movements in the tak: 
wrist flexion/extesion and 
pronation/supination.

training,3-8 which are attached to the limbs 
of patients and assist them to complete 
movements, are used to accelerate the recov-
ery after stroke. Some of them are using stiff 
controllers, which move the extremity along 
the desired trajectory without active partici-
pation from the patient. This kind of training 
does not take into account a key signal that 
drives human motor learning – a kinematic 
error, and has a limited therapeutic effect. In 
order to allow some kinematic error, most 
of the devices use impedance control, mean-
ing that the robots apply forces, which are 
proportional to the error between desired 
and current position. Thus, robots keep the 
extremity near the desired trajectory with a 
predefined fixed level of assistive force and 
allow some interaction with the patient. 
The amount of assistive force could vary 
between patients with different impairment 
levels, and also within each individual due 
to recovery progress. In the current rehabili-
tation robotics based movement training the 
level of haptic support assisting the move-
ment is rather stationary and may remain 
the same for periods of days. Furthermore, 
constant level of applied force would pro-
gressively depress voluntary control instead 
of promoting it.

Studies in human motor learning9-16 
have shown that humans learn novel mo-
tor tasks in a way where after each repeti-
tion the motor commands are modified ac-
cording to the results of a previous attempt. 
In such a learning scheme it is crucial that 
the modifications made to the previous mo-
tor command set are such that converge in 
an improved performance. Inspired by the 
motor learning of novel tasks in neurologi-
cally intact humans, similar variable or as-
sist-as-needed haptic support schemes were 
developed also for rehabilitation robotics 
supported reaching-movement training in 
post-stroke individuals.9-11 The common 
feature of these control schemes is the varia-
tion of haptic support delivered by a reha-
bilitation robot after each attempt, where the 
level of robotic support is increased propor-
tionally by the kinematic error between the 
desired and reached target and decreased 
proportionally by a suitable “forgetting-fac-
tor” which prevents a human from surren-

Introduction
In the European Union an estimated 1.1 

million new stroke events occur every year 
and currently 6 million subjects that have 
survived stroke live in these countries. In 
the future, the number of new stroke events 
will increase to 1.5 million per year in 2025 
due to demographic changes. Mostly in the 
elderly population the neurological injury 
is a leading cause of permanent disability. 
The primary cause of neurological injury is 
stroke, where first time strokes result in an 
acute sensorimotor hemiparesis of the con-
tralateral upper and/or lower limbs.1 The 
vast majority of stroke survivors suffer a loss 
of control of the arm and hand or have re-
duced manual dexterity. They are unable to 
perform everyday tasks and when they try 
to perform arm or wrist movements, the 
trajectories are abnormal. The traditional 
way of motor re-learning is physical therapy, 
which enhances functional recovery after 
stroke, but it is labor-intensive and increas-
ingly expensive due to a growing number of 
patients or rather scarce resource of physio-
therapists.2 The therapy centers are forced to 
treat patients within a short period of treat-
ment time. Therefore, it is imperative to find 
solutions for effective therapy. The rehabili-
tation robotic devices for upper extremity 
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Figure 2: Block diagram 
of the experiment. The 
subjects perform the task 
with UHD’s handle bar. 
UHD is supervised by 
the HSa control, which 
changes the robot’s 
stiffness level k.

tween the three dynamically different HSA 
schemes.

Methods
Experimental setup

The experimental evaluation was car-
ried out by means of Universal Haptic Drive 
(UHD) rehabilitation robot . The UHD has 2 
actuated DOFs and is impedance controlled, 
which implies that the actuators are used as 
force (torque) sources. This innovative reha-
bilitation robot enables training of reaching 
movement as well as wrist movement by a 
single device.9 The UHD communicates 
with MATLAB and Simulink environment 
via xPC target (Mathworks Inc), where the 
dynamic of virtual scene, reference trajec-
tories, and haptic robot control were calcu-
lated and supervised. The most important 
feature of our experiment, implemented in a 
control architecture, was the haptic support 
algorithm (HSA). The maximum angle of 
the UHD-robot for wrist training is 30° for 
flexion and extension movements from the 
horizontal position of the hand and 30° for 
pronation and supination movements from 
the horizontal handle position as shown in 
Figure 1. Subjects sat on a chair with their 
torso and arm restrained by means of suit-
able holders, and grasped the UHD’s handle 
with their inferior arm. The position of the 
seat was also adjusted in such a way that the 
forearm was positioned horizontally (Fig-
ure 2). Approximatelly 1 m in front of the 

dering the task completion completely on the 
robot. Some studies also include the internal 
models of the impairment on which they 
formulate the assist-as-needed principle as 
an optimization process, meaning that the 
robotic movement trainer must minimize 
a cost function that is the weighted sum of 
robot force and patient movement error.11-16 
However, the dynamics of motor recovery 
in a post-stroke population due to brain 
plasticity is much slower as compared to the 
neurologically intact individuals’ capabili-
ties to learn a new motor task. Therefore, the 
rehabilitation robotics control schemes that 
implement changes in robotic support after 
each movement attempt may be simply too 
fast regardless of the size of kinematic error 
and forgetting-factor gains used.

The aim of this paper was to investigate 
the influence of haptic support algorithm 
(HSA) dynamics on the outcome of learning 
of a rather demanding two-degrees-of-free-
dom motor task in three different groups of 
neurologically intact individuals that have 
not differed in their motor performance of 
this particular motor task before training. 
All three groups were subjected to the same 
number of training attempts and have dif-
fered in the dynamics of HSA implemented 
in the rehabilitation robot that provided 
haptic support during motor task execu-
tion. Our hypothesis was that the results of 
learned motor performance, as measured 
by kinematic error achieved at the end of 
training period, will significantly differ be-
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Figure 3: evaluation 
statistics of goals (yellow 
lines) and missed shots 
(dotted black lines). The 
hit points for upper and 
lower shots are clearly 
visible. The performance 
was calculated on the 
basis of deviation from 
the center of goal.

Subjects

Twenty-seven neurological intact adult 
subjects (19 males, 8 females) participated in 
the research. The subjects ranged in age from 
19 to 35 years (25.4 ± 3.3), three of them were 
left-handed and the others right-handed. All 
subjects performed or saw the measurement 
for the first time. They trained their wrist 
movements of the inferior arm by the assis-
tance of robotic support. At the beginning 
of each experimental trial, one of three HSA 
was randomly chosen for each subject, in a 
way to form three groups of 9 subjects with 
different HSA specified as Group 1, Group 2 
and Group 5.

Protocol

The experiment consisted of four parts: 
preliminary session, evaluation before train-
ing, training session and evaluation after 
training. In the preliminary session the sub-
ject got familiar with the UHD-robot and 
task, and tried approximately 10 shots on 
goal. Following the preliminary session, the 
evaluation before training consisted of 20 
shots on goal (10 upper and 10 lower shots), 
with ball direction alternating between up-
per and lower direction. UHD-robot was 
operated in zero impedance mode, mean-
ing that the robot did not apply any support 
forces. Also, the reference player was turned 
off, so there was no visual information about 
desired trajectories. The third and the most 
important part for motor learning was the 
training session. It consisted of 100 shot at-
tempts on goal, with ball direction (up or 
down – Figure 2) being randomly chosen 
in such a way that at the end of the training 
session exactly 50 upper and 50 lower shot 
attempts were completed. During training, 
certain level of robotic support was provid-
ed to the subject as determined by one of the 
three dynamically different HSA (Table 1) 
and the reference player, who indicated the 
desired movements, was enabled. The train-
ing session was followed by evaluation after 
training, where the protocol was identical 
to the evaluation before training. The whole 
measurement lasted approximately 30 min-
utes per each subject.

subjects, a 22” LCD computer screen was 
placed for displaying the virtual reality envi-
ronment. To create a dynamic environment, 
the haptic robot was programmed to apply 
the force field around the desired position, 
which was proportional to the position er-
ror.

Task

The task for wrist training was a table 
football game in virtual environment. A ver-
tically moving virtual player was associated 
with haptic arm, whereas the reference play-
er was indicating the reference trajectories 
to hit the ball into the goal. The goal width 
represented the 20 % of whole outline and 
was always fixed for every subject. Vertical 
position of the game player was managed by 
subjects’ wrist flexion and extension move-
ments, while rotation around the vertical 
axis was managed by forearm pronation and 
supination movement. The aim of the game 
was to learn specific movements that result 
in scoring as many goals as possible. In each 
attempt the ball came randomly from one 
of two possible predetermined directions 
as shown in Figure 2, always with the same 
velocity profile. Thus, we distinguished the 
upper and lower shots, with separate and 
independent robot support level. To add a 
score the subjects had to move the robotic 
arm with the proper combination of vertical 
and horizontal velocity components to put 
the ball into the goal.
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Figure 4: The curves 
of individual robotic 
assistance during 
training (left graphs), 
the average of curves of 
robotic assistance with 
corresponding standard 
deviation (middle graphs) 
and the evaluation 
before/after training 
(right graphs) for group 
1 with HSa that changes 
the level of haptic 
support after each shot – 
Table 1a).

level of robot’s impedance. It varied accord-
ing to one of the three HSA as described in 
Table 1 and was related to the robotic sup-
port input parameter u as

The first HSA (Group 1) changed the lev-
el of haptic support after each shot attempt. 
Therefore the level of support increased in 
the case of a missed shot, and decreased in 
the case of a goal – Table 1a). Second HSA 
(Group 2) changed the level of haptic sup-
port after two consecutive shot attempts. 
The level of support increased if both shots 
were missed, remained fixed if one goal was 
scored, and decreased if both goals were 
scored – Table 1b). The third HSA (Group 5) 
changed the level of haptic support after five 

Haptic support algorithms (HSA)

Three interdependent modules, shown in 
Figure 2, are important for the control archi-
tecture: robotic support, performance and 
HSA control. Robotic support provides the 
appropriate force field around the desired 
trajectory. It is controlled by an input param-
eter u, which is transmitted to the control 
units of the actuators (motors). Since the ro-
bot has two actuators, one for vertical player 
movements and one for player rotation, the 
input parameter u has two components, 
which are proportional to position error. 
The position error was calculated separately 
for x (horizontal – player rotation) and y 
(vertical – player translation) position. Be-
sides visual guidance (reference player), the 
HSA parameters varied depending on the 
subject’s performance, i.e. depending on the 
goal score. Here we defined support gain K 
through which we determined appropriate 

Table 1: The HSa changes the level of haptic support after a) each shot (group 1), b) two consecutive 
shots (group 2) and c) five consecutive shots (group 5). according to the subject’s performance the 
support level increases, remains at the same level, or decreases.

a) 1 shot attempt b) 2 shot attempts c) 5 shot attempts

goals support goals support goals support

0 a 0 a 0 a

1 b 1 = 1 a

2 b 2 =

3 =

4 b

5 b

(1)
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Figure 5: The curves 
of individual robotic 
assistance during 
training (left graphs), 
the average of curves of 
robotic assistance with 
corresponding standard 
deviation (middle graphs) 
and evaluation before/
after training (right 
graphs) for group 2 with 
HSa that changes the 
level of haptic support 
after two consecutive 
shots – Table 1b).

we also recorded the robotic support (i.e. 
support gain K in percent of maximum ro-
bot’s stiffness).

Statistical analysis
Individual performances of both evalu-

ation sessions (before and after training) 
were recorded and reported as the AE ± SD. 
Upper and lower shot errors were measured 
and calculated independently. In each group 
of participants we calculated the average of 
all individual performances (e.g. average de-
viations from the center of goal) with cor-
responding SD. One-way ANOVA analysis 
was used to compare the crucial aspects of 
the experiment. A p value less than 0.05 was 
used to define statistical significance.

Results
Figure 4, Figure 5 and Figure 6 show the 

results of all three groups, where left graphs 
show individual robotic support curves 
during upper and lower shots training ses-
sion, middle graphs show the group aver-
age of support curves with corresponding 
standard deviation, while right graphs show 

consecutive shot attempts, namely the level 
of support decreased in the case of four or 
five goals, remained fixed in the case of two 
or three goals, and increased if the subject 
scored one goal at the most – Table 1c). Ac-
cording to these HSA the robotic support 
step was 5 % and represented the change in 
robot’s stiffness which ranged between zero 
impedance mode and its maximum value 
(stiffness 20 Nm/rad). The 5 % step was 
arbitrarily chosen on the basis of prelimi-
nary experiments. The initial value of the 
robot’s stiffness (i.e. training session begin-
ning) was set to 50 % of its maximum value 
(K0 = 0.5 Kmax).

Performance evaluation

Two performance measures were ana-
lyzed to assess subjects’ task performance: 
average error – AE (Equation 2) and stan-
dard deviation – SD (Equation 3) for upper 
and lower shots separately, before and after 
training. Error was defined as an absolute 
distance from the goal center xi, when the 
ball has reached the outline. One example is 
shown in Figure 3, where hit points for up-
per and lower shots are clearly visible. The 
yellow lines represent the goals and dotted 
black lines represent missed shots. Average 
error was given in percent of maximum dis-
tance from the goal center, which was deter-
mined when the ball did not reach the out-
line (Figure 3 shows two such cases in upper 
shots). In this case, and in the case if player 
did not even touch the ball, the 100 % error 
was recorded. During the training session 

(2)

(3)
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Figure 6: The curves 
of individual robotic 
assistance during 
training (left graphs), 
the average of curves 
of robotic assistance 
with corresponding 
standard deviation 
(middle graphs), and 
evaluation before/after 
training (right graphs) 
for group 5 with HSa 
that changes the level of 
haptic support after five 
consecutive shots – Table 
1c).

than 20 % of robotic support level. In upper 
shots training, the support curve of subject 
7 decreased, but in the case of lower shots 
at the beginning of training it increased to 
90 % and then monotonically decreased to 
the level of 40 % by the end of training (bot-
tom left graph in Figure 5). Subjects, whose 
support curve reached the highest level of 
Group 2 at the end of training, were 3 (70 % 
in upper shots training) and 6 (80 % in low-
er shots training). Focusing on the training 
evaluations, all subjects have shown a suc-
cessful motor learning progress. The only 
exception was subject 7, whose evaluations 
remained at approximately the same level 
(top right graph in Figure 5), but he had the 
lowest average error in the evaluation before 
training. Subjects 1, 4, 8 and 9 were the most 
outstanding, because they improved signifi-
cantly.

The results for Group 5 are shown in 
Figure 6. Robotic support curves ranged 
between 15 % and 80 % and did not vary as 
much as in the first or the second group. 
The support curve of subject 7 increased 
monotonically during upper shots training 
and at the end of training it reached 80 %. 
On the other hand, subjects 5 and 9 (upper 
shots training) and subjects 2, 5 and 8 (lower 
shots training) had monotonically decreas-
ing robotic support curves, but they did not 
drop below 15 %. If we look at the training 
evaluations, all subjects without exception 
have improved. The interesting case was 
subject 1 with the best improvement, but 
his support curve varied only in range from 
50 % to 65 %. The opposite example was 

the individual performance before and after 
training session.

The results for Group 1 are shown in Fig-
ure 4. While it is clearly evident that there 
are many different and high varying support 
curves, all subjects, except subject 3 (upper 
shots evaluation) improved their motor per-
formance. In the case of upper shots, subject 
4 showed effective training, subjects 3, 5 and 
7 showed a poor learning progress, while 
their support curves gradually increased 
and remained at high level by the end of 
training. At the beginning of the training 
session, subject 6 showed very poor per-
formance, but eventually he learned those 
specific movements and his support curve 
decreased rapidly. The opposite example of 
successful learning was subject 5 in the case 
of lower shots. Subject 8 also showed poor 
learning in the case of lower shots, but in the 
case of upper shots he showed mostly good 
performance. Subjects 1, 7 and 9 showed 
good learning progress during lower shots 
training. All other subjects’ learning curves 
were highly varied. The level of assistive ro-
botic support ranged between 0 % and 100 % 
robot’s stiffness.

The results for Group 2 are shown in 
Figure 5. Support curves varied consider-
ably less than in Group 1 and they did not 
reach saturation. Most of the support curves 
varied in range between 0 % and 60 % of 
the robot’s maximum stiffness. Subjects 5, 8 
and 9 showed best performance in the case 
of both shots training. Their support curves 
decreased almost monotonically and at the 
end of training session they remained at less 
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Figure 7: The training 
effect for all three 
groups, where each 
group contains the 
average of its subjects’ 
evaluations. left two 
graphs represent 
the performance of 
upper and lower shots 
separately, while right 
graph represents 
the performance of 
combined shots.

significant difference between Group 1 and 
Group 2 (p = 0.006), and near-statistically 
significant difference (p = 0.063) between 
Group 1 and Group 5. On the other hand, 
there were no statistically significant differ-
ences between Group 2 and Group 5 (one-
way ANOVA, p = 0.416) – Table 5.

Discussion
In this study we investigated the influ-

ence of three dynamically different HSA 
schemes on the outcome of learning of a 
rather demanding two-degrees-of-freedom 
motor task in three comparable groups of 
neurologically intact individuals. The de-
termined support gain that dynamically 
changed on the basis of goal score stayed 
on the same level for every 1, 2 or 5 shot at-
tempts, and then the decision was made by 
the controller either to decrease, increase or 
remain at the same level for the next 1, 2 or 
5 shot attempt(s). On the basis of our pre-
liminary experiments, we arbitrary chose 
to adapt the haptic support in steps of 5 %. 
This value was experimentally found not to 
be too small or too large. Too small support 
step might have similar effect as the third 
HSA, while too large step could lead to high 
oscillations (similar to the first HSA), where 
subject would feel a large marked difference 
of support change. This would also affect 
the learning curve. The step should be ap-
propriate, so that the haptic support could 
be able to reach robot’s stiffness limits in 
small number of shot attempts of the train-
ing session. While the task difficulty was 
exactly the same for all three groups the re-
sults show that the selection of the HSA that 
is appropriate for the given motor task has 
significant influence on the level of acquired 
motor skills after the training period. The 
results have demonstrated that in the group 
of subjects that learned the given motor task 
best (Group 2) the mean curve of haptic sup-
port exhibited monotonically falling charac-
teristics, while in Group 1 the average haptic 
support curve remained approximately on a 
constant level. Group 5 that has shown bet-
ter performance that Group 1 and slightly 
inferior performance as compared to Group 
2 has also shown monotonically falling char-

subject 8 with a significant improvement in 
lower shots training evaluations, where his 
support curve gradually decreased, but he 
reached only 30 % of robotic support.

All the individual evaluations before and 
after training were averaged within each of 
three groups. The upper shots average er-
ror was calculated separately from the lower 
shots as shown on the left graph of Figure 
7. Statistical comparison between the up-
per and lower shots before training session 
(one-way ANOVA) did not reveal any sta-
tistically significant differences – Table 2. 
Therefore, we combined these shots and cal-
culated the group average error (right graph 
in Figure 7) with corresponding standard 
deviation. Furthermore, one-way ANOVA 
analysis showed that evaluations before 
training session were not significantly differ-
ent (p = 0.266) between all groups, but there 

was a significant difference between groups 
after training session (p = 0.022) – Table 3. 
All three groups improved significantly ac-
cording to comparison between before and 
after training evaluation with p less than 
0.01 (one-way ANOVA). The improvement 
in Group 1 was 27.2 %, while Group 2 (with 
38.4 %) and Group 5 (with 37.8 %) showed 
significantly better improvements – Table 4. 
Most importantly, we have also done a com-
parison between each of two groups after 
training evaluation. There was a statistically 

Table 2: Statistical comparison between upper and 
lower shots before training session

comparison Before Training

Upper/lower Shots p = 0.629
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also revealed that there was no significant 
difference between participants’ perfor-
mances of all three groups before training, 
while there was a significant difference after 
training. One group was able to learn fast-
er than the other, but according to signifi-
cant improvements, almost all participants 
learned those specific movements in order 
to achieve as many goals as possible. There 
can be several other aspects, which also en-
sure successful training, such as visual guid-
ance and score. Visual guidance (reference 
player) was useful to carry out the current 
movement, but nevertheless all three groups 
had the same protocol rules. Another aspect 
is more psychological in nature. During the 
experiment, every participant could see his 
score and the accuracy of goals achieved. 
For some participants it was a bit stressful 
whether they could achieve any goals or not. 
This was not necessarily a negative factor, 
even more, it promoted a challenge.

Our results suggest that for every motor 
task or, equivalently, for every motor ability 
of a particular subject such a HSA scheme 
must be implemented that maximizes train-
ing effects in a limited number of training 
attempts. This has great implications for 
movement training in post-stroke individu-
als that have very different movement abili-
ties as well as recovery potential. These two 
features of each individual may be system-
atically explored through observation of the 
average haptic support curve characteristics 
that result as a consequence of utilization of 
a particular HSA scheme in a selected num-
ber of training attempts. In this way, an op-
timal HSA scheme may be experimentally 
determined.

Conclusions
The results of this study provide a 

new insights on performance-based HSA 
schemes for optimal motor learning to par-
ticular training dynamics. It indicates an 
importance of factor “when to change” the 
robotic support and not only “to what ex-
tent to change”. We assume that each indi-
vidual has their own way of learning and the 
motor training algorithms should monitor 
their current abilities. Furthermore, based 

acteristic of average haptic support curve. 
According to the results of this study, which 
show a significant improvement in task-
specific motor learning of all three groups 
on average, we can conclude that the HSA 
implemented in Group 1 is not as appropri-
ate as the other two, because it does not al-
low the individual to explore the training 
task at the current level of support, which 
in our opinion is one of the crucial aspects 
of motor learning. It turned out that chang-
ing the support level after each shot attempt 
leads to learning fluctuation, but by chang-
ing the support level after more than five 
shot attempts the training effect to motor 
learning is slower. This can be seen through 
the support curves and the differences be-
tween both evaluations. The support curves 
in the second and third group did not vary 
as much as in the first group, where support 
curves were oscillatory. Furthermore, a de-
creasing support curve with an increasing 
number of task repetitions is very likely a 
good and important indicator of effective 
motor learning. Based on these arguments 
and the results of statistical analysis, we can 
also conclude that the first HSA – Group 1 
has not been tuned with the participants of 
the first group in general. Statistical analysis 

Table 5: Statistical comparison among groups 
after training session

comparison Differences

group 1 / group 2 p = 0.006

group 1 / group 5 p = 0.063

group 2 / group 5 p = 0.416

Table 3: Statistical comparison between all groups during evaluation before 
and after training

comparison Before Training after Training

all groups p = 0.267 p = 0.022

Table 4: Statistical comparison of before versus after training evaluations 
within groups with the corresponding training improvements

comparison group 1 group 2 group 5

Before/after Training p < 0.01 p < 0.01 p < 0.01

Improvement 27.2 % 38.4 % 37.8 %
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on the results of this study, we could de-
velop the adaptive haptic support algorithm, 
that would adjust the algorithm dynamics 
according to current support curve. This 
means that if current support curve be-
comes too oscillatory, the time of changing 
haptic support should be increased, and vice 
versa. Although, the experiment was limited 
to the healthy population with a short pe-
riod of treatment time (one training session 
for each subject), certain main outcomes 
should be considered and incorporated in 
further research of dynamic algorithms for 
stroke patients to provide the appropriate 
robotic support during movement training.
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