ACTA ENTOMOLOGICA SLOVENICA PRIRODOSLOVNI MUZEJ SLOVENIJE SLOVENSKO ENTOMOLOØKO DRUØTVO ØTEFANA MICHIELIJA LJUBLJANA, DECEMBER 2017 Vol. 25, øt./No. 2 ISSN 1318-1998 CODEN: AESLFM Vsebina / Contents A. KAPLA, A. VREZEC: Favna jamskih hroščev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti in favnistična izoliranost Cave beetle fauna (Coleoptera) of Mt. Krim (Dinaric Alps, Central Slovenia): history of research and faunistic isolation............................... 123 G. SELJAK: Nove tujerodne rastlinojede žuželke v favni Slovenije New alien phytophagous insect species to the fauna of Slovenia............ 141 D. A. DMITRIEV: Unavailability of the genus group name Mezammira (Hemiptera: Cicadidae) Nerazpoložljivost imena rodovne skupine Mezammira (Hemiptera: Cicadidae)............................................................................. 159 Ž. PREDOVNIK: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria Steklokrilec Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) na obali severozahodne Istre..................................................... 165 M. MOUSAVI, S. ARAMIDEH, N. MAROUFPOOR: Chemical composition, toxicity and side effects of three essential oils on Brevicoryne brassicae (L.) (Hemiptera: Aphididae) adults under laboratory conditions Kemijska sestava, toksičnost in stranski učinki treh eteričnih olj na odrasle mokaste kapusove uši (Brevicoryne brassicae (L.)) (Hemiptera: Aphididae) v laboratorijskih razmerah................................. 177 K.O. ADEMOLU, O.A. JODA, A.A. OSIPITAN: Responses of somatic tissues of developmental stages of variegated grasshopper, Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) to starvation Odziv telesnih tkiv razvojnih stopenj kobilice Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) na stradanje.......................................191 NOVE KNJIGE An Introduction to the Wildlife of Cyprus, D. J. Sparrow in E. John (ur.)........... 199 2 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt./No. 2 PRIRODOSLOVNI MUZEJ SLOVENIJE SLOVENSKO ENTOMOLOØKO DRUØTVO ØTEFANA MICHIELIJA ACTA ENTOMOLOGICA SLOVENICA Revija Slovenskega entomoloøkega druøtva Øtefana Michielija in Prirodoslovnega muzeja Slovenije Izhaja dvakrat letno / Issued twice a year ISSN 1318-1998 CODEN: AESLFM UDC (UDK) 595.7(051) © Acta entomologica slovenica Izdajatelja / Publishers Slovensko entomoloøko druøtvo Prirodoslovni muzej Slovenije Øtefana Michielija Preøernova 20, p.p. 290 ZRC SAZU, Novi trg 5 SI-1001 Ljubljana SI-1000 Ljubljana Uredniøki odbor / Editorial Board dr. Martin Baehr (München), dr. Boæidar Drovenik (Ljubljana), dr. Werner Holzinger (Graz), prof. dr. Mladen Kuœiniå (Zagreb), prof. dr. Joæe Maœek (Ljubljana), dr. Carlo Morandini (Udine), dr. Ignac Sivec (Ljubljana), prof. dr. Stanislav Trdan, dr. Tomi Trilar (Ljubljana), dr. Rudi Verovnik (Ljubljana), Æarko Vrezec (tehn. urednik/Techn. Editor) Urednik / Editor dr. Andrej Gogala Prirodoslovni muzej Slovenije Preøernova 20, p.p. 290, SI-1001 Ljubljana, Slovenia E-mail: agogala@pms-lj.si letnik/Vol. 25, øt./No. 2, 2017 Tisk / Printed by: Trajanus, d.o.o., Kranj Ljubljana, december 2017 http://www.pms-lj.si/si/o-nas/arhiv-publikacij/acta-entomologica-slovenica Povzeto v / To be abstracted in: The Zoological Record, CAB Abstracts Revijo dobivajo œlani Slovenskega entomoloøkega druøtva Øtefana Michielija (œlanarina 20 EUR) Cena posamezne øtevilke je 8,50 EUR Zamenjava je zaæeljena / Exchanges appreciated Publikacija je natisnjena s pomoœjo Javne agencije za raziskovalno dejavnost R Slovenije. Uredniøko delo podpira Ministrstvo za kulturo R Slovenije. Vsebina / Contents A. KAPLA, A. VREZEC: Favna jamskih hroščev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti in favnistična izoliranost Cave beetle fauna (Coleoptera) of Mt. Krim (Dinaric Alps, Central Slovenia): history of research and faunistic isolation................................ 123 G. SELJAK: Nove tujerodne rastlinojede žuželke v favni Slovenije New alien phytophagous insect species to the fauna of Slovenia............. 141 D. A. DMITRIEV: Unavailability of the genus group name Mezammira (Hemiptera: Cicadidae) Nerazpoložljivost imena rodovne skupine Mezammira (Hemiptera: Cicadidae).............................................................................. 159 Ž. PREDOVNIK: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria Steklokrilec Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) na obali severozahodne Istre...................................................... 165 M. MOUSAVI, S. ARAMIDEH, N. MAROUFPOOR: Chemical composition, toxicity and side effects of three essential oils on Brevicoryne brassicae (L.) (Hemiptera: Aphididae) adults under laboratory conditions Kemijska sestava, toksičnost in stranski učinki treh eteričnih olj na odrasle mokaste kapusove uši (Brevicoryne brassicae (L.)) (Hemiptera: Aphididae) v laboratorijskih razmerah.................................. 177 K.O. ADEMOLU, O.A. JODA, A.A. OSIPITAN: Responses of somatic tissues of developmental stages of variegated grasshopper, Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) to starvation Odziv telesnih tkiv razvojnih stopenj kobilice Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) na stradanje........................................191 NOVE KNJIGE An Introduction to the Wildlife of Cyprus, D. J. Sparrow in E. John (ur.)............ 199 Navodila avtorjem Acta entomologica slovenica je glasilo Slovenskega entomoloøkega druøtva Øtefana Michielija in Prirodoslovnega muzeja Slovenije. Objavlja izvirna znanstvena dela, pregledne œlanke in ocene knjig s podroœja entomologije. Œlanki lahko obravnavajo favnistiko, sistematiko, ekologijo, etologijo, fiziologijo ali zoogeografijo æuæelk. Pisani naj bodo v slovenskem ali angleøkem jeziku, z obveznim angleøkim in slovenskim izvleœkom. Œlanki so strokovno recenzirani. Letno izideta dve øtevilki. Avtorje prosimo, da se pri oblikovanju œlankov zgledujejo po zadnji øtevilki revije. Œe je le mogoœe, svoj tekst poøljite po elektronski poøti ali oddajte na digitalnem nosilcu. Izpis œlanka na papirju naj ima dvojne presledke med vrsticami, da je moæno popravljanje. Risbe naj bodo kontrastne, pri debelini œrt pa upoøtevajte tudi morebitno pomanjøanje na format revije. Slike naj bodo v izvirnih datotekah, œe jih oddajate v elektronski obliki. Citirana literatura naj se navede na koncu œlanka in naj bo razvrøœena po abecedi glede na priimke avtorjev. Avtorji œlankov dobijo brezplaœno 20 posebnih odtisov in œlanek v elektronski obliki. Instructions to authors Acta entomologica slovenica is the Journal of the Slovenian Entomological Society Øtefan Michieli and the Slovene Museum of Natural History. It publishes original scientific works, overview articles, and book reviews in the field of Entomology. Articles may deal with faunistics, systematics, ecology, etology, physiology, or zoogeography of insects. They may be written in Slovene or English, with abstracts in English and Slovene (the editors will ensure translations into Slovene). All articles are reviewed. Two issues are published a year. We ask all authors to model the layout of their manuscripts on a previous issue of the Journal. If possible, send the text by e-mail or on a digital carrier, as well as on paper with double spacing between lines. Drawings must have high contrast. Please, consider that all line widths may be reduced during layout of the issue. Pictures should be in their original files if prepared in digital form. References should be listed at the end of the article in the alphabetical order of the authors’ names. 20 reprints and electronic version will be sent to the Authors free of charge. FAVNA JAMSKIH HROŠČEV (COLEOPTERA) KRIMA (DINARIDI, OSREDNJA SLOVENIJA): ZGODOVINA RAZISKANOSTI IN FAVNISTIČNA IZOLIRANOST Andrej KAPLA, Al VREZEC Nacionalni inštitut za biologijo, Večna pot 111, SI-1000 Ljubljana, Slovenija, e-mail: andrej.kapla@nib.si, al.vrezec@nib.si Izvleček - Zaradi bližine Ljubljane so bile jame na Krimu, še posebej pa jama Velika Pasica (kat. št. 75), že od sredine 19. stoletja deležne raziskav jamskih hroščev, ki jih je začel Ferdinand Schmidt. Jama Velika Pasica je klasično nahajališče kar petim jamskim taksonom hroščev od skupno desetih vrst, ki poseljujejo območje Krima. Podzemlje Krimskega hribovja s Krimom in Mokrcem je, kot kaže jamska favna hroščev, dokaj izolirano glede na okoliško hribovje. Dlakavi brezokec (Anophthalmus hirtus) je stenendemična vrsta območja, prav tako še nadaljnja dva taksona, Anopht- halmus schmidti motschulskyi in Typhlotrechus bilimeki hacqueti. V članku so pred- stavljene vse znane vrste jamskih hroščev, ki so bile najdene na območju Krima: Laemostenus schreibersi, Typhlotrechus bilimeki hacqueti, Anophthalmus hirtus, Anophthalmus schmidti motschulskyi, Anophthalmus scopolii, Aphaobius milleri, Bathyscia montana, Bathysciola sylvestris, Bythoxenus subterraneus in Troglorhynchus anophthalmus. Primer visoke stenendemičnosti jamske favne hroščev Krima kaže na potrebo po regionalni prioritizaciji za potrebe ohranjanja evropske in globalne biodi- verzitete. KLJUČNE BESEDE: Dinaridi, podzemeljska favna, Carabidae, Leiodidae, Staphylinidae, Curculionidae, kras, endemizem Abstract – CAVE BEETLE FAUNA (COLEOPTERA) OF MT. KRIM (DINARIC ALPS, CENTRAL SLOVENIA): HISTORY OF RESEARCH AND FAUNISTIC ISOLATION Cave beetle studies in caves of Mt. Krim, and in the cave Velika Pasica especially, were carried on since mid 19th century, starting with Ferdinand Schmidt, due to close proximity of the Ljubljana city. The cave Velika Pasica is locus typicus for five cave 123 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 123–140 beetle taxa. Altogether ten cave beetle species are known to inhabit the area of Mt. Krim. According to cave beetle fauna, it seems that the area of Mts. Krim and Mokrec represents quite isolated subterranean environment with one endemic species Anopht- halmus hirtus and further two endemic beetle taxa Anophthalmus schmidti motschulskyi and Typhlotrechus bilimeki hacqueti. In the paper all known cave beetle species that were found in the area of Mt. Krim are presented: Laemostenus schreibersi, Typhlo- trechus bilimeki hacqueti, Anophthalmus hirtus, Anophthalmus schmidti motschulskyi, Anophthalmus scopolii, Aphaobius milleri, Bathyscia montana, Bathysciola sylvestris, Bythoxenus subterraneus and Troglorhynchus anophthalmus. High level of stenoen- demism of subterranean beetle fauna of Mt. Krim calls for urgent regional prioritization for biodiversity conservation at European and global level. KEY WORDS: Dinarids, subterranean fauna, Carabidae, Leiodidae, Staphylinidae, Cur- culionidae, karst, endemism Uvod Pestrost favne jamskih hroščev (Coleoptera) v Sloveniji je ena največjih na svetu (Culver s sod., 2006). V jamah z večjim številom prednjačita predvsem dve družini hroščev, krešiči (Carabidae) in zemljarji (Leiodidae), ostale družine, kot so kratkokrilci (Staphylinidae) in rilčkarji (Curculionidae), pa so vsaj pri nas zastopane le z manjšim številom vrst (Novak, 2005). Čeprav je ekologija jamskih hroščev slabo poznana, gre vsaj pri jamskih krešičih za dokaj dolgožive vrste, ki živijo v razmeroma majhnih po- pulacijah (Rusdea, 1999). Pretrtost karbonatne kamnine, ki se poleg večjih jamskih prostorov in razpok, razveja še v sistem manjših razpokic in prostorčkov, daje prav- zaprav jamskim hroščem nesluteno velik tridimenzionalni življenjski prostor (Giachino & Vailati 2006). Ta je precej večji kot površinski, ki ima v primerjavi s podzemljem neprimerno manjše prostorske razsežnosti. Kljub temu pa troglobionte prav ta prostor omejuje. Na spremenljive ekološke razmere zunanjega okolja so troglobionti preob- čutljivi oziroma so na jamsko okolje povsem morfološko in fiziološko prilagojeni (Simčič s sod. 2005). Kjer pa ta podzemeljska okolja preseka kaka geološka prelomnica ali rečna dolina, je to za troglobionte prevelika fizična ovira, da bi jo zmogli preiti. Tako ostanejo vrste ujete na posameznih kameninskih otokih, zaradi česar je tekla speciacija ali nastajanje novih vrst na relativno majhnem, a izjemno razgibanem pod- zemlju Slovenije toliko hitreje kot drugod. Nič presenetljivega torej, da se je Slovenija izkazala za vročo točko Evrope glede na število podzemeljskih vrst hroščev, med ka- terimi so še zlasti vrstno pestri podzemeljski krešiči (Zagmajster s sod., 2008). V prispevku obravnavava pestrost favne jamskih hroščev na primeru Krimskega hribovja pri Ljubljani. Ta velika gozdnata in zakrasela gora, ki se pne nad južnim ro- bom Ljubljanskega barja, je bila zaradi bližine Ljubljane doslej deležna nekaj več biološke raziskovalne pozornosti. Podrobneje je bila na gori obdelana favna deževnikov (Lumbricidae; Hribar, 1997), ceponožnih rakov (Copepoda; Brancelj, 2002), strig (Lithobiomorpha; Kos, 1988), hroščev (Coleoptera; Furlan, 1988, Pirnat, 2001), ptic (Aves; Vrezec, 2000) in sesalcev (Mammalia; Kryštufek, 1980, 1982). Navkljub šte- Acta entomologica slovenica, 25 (2), 2017 124 vilnim krimskim jamam, so bile raziskave jamskega sveta na Krimu večinoma usmer- jene v jamo Velika Pasica (ali Velika Pasjica) pri Gornjem Igu, iz katere je bilo opisano veliko novih vrst za znanost. V zadnjem času smo bili priča zlasti odkritju izjemne biotske pestrosti favne ceponožnih rakov; kar 12 vrst je bilo do danes najdenih v tej jami (Brancelj, 2002), med njimi tudi vrsta Morariopsis dumonti, za katero je ta jama edino do sedaj znano nahajališče (Brancelj, 2000). Da bi podrobneje raziskali ekološke značilnosti tega izjemnega jamskega okolja v Veliki Pasici že od leta 2006 potekajo intenzivne biološke in hidrografske raziskave, dostop v jamo pa je danes omejen (Brancelj in Vrezec, 2006; Wei Liu in Brancelj, 2014; Wei Liu s sod., 2014). Odkrivanja in raziskave jamskih hroščev imajo na Krimu že precej starejšo zgodovino. V prispevku podajava zgodovinski pregled raziskovanj krimske favne jamskih hroščev ter njeno pestrost. Opis območja Krim je del Velike notranjske planote, ki se deli na štiri skupine: Rakitniško planoto s Krimskim hribovjem (SZ), Vidovsko planoto, Bloke in Potočansko višavje (JV). Območje Krimskega hribovja, Vidovske planote in Blok predstavlja enoten karbonatni blok, sestavljen v glavnem iz mezozojskih kamenin. Krim je planotasta gora, katere višinski razpon sega od 290 m (rob Ljubljanskega barja) do 1107 m (vrh Krima), večji del planote pa se razteza na nadmorski višini med 800 in 850 m, kar je posledica učinka pliocenskega uravnavanja (slika 1). Kljub temu so se ohranili nekateri višji vrhovi. Na območju Krima je najvišji vrh Krim (1107 m), višji vrhovi so še Ma- linovec (1106 m), Kamenica (1050 m) in Koren (1005 m). Vrh Krima je iz jurskega apnenca in dolomita (Miler in Pavšič, 2008). Območje Krima je del dinarskega krasa s številnimi jamami. Gotovo sta najbolj znani Velika (kat. št. 75) in Mala Pasica (kat. št. 76) pri Gornjem Igu. Na Krimu je sicer po zadnji verziji Katastra jam Slovenije iz leta 2013 poznanih 88 jam; od tega 44 brezen, 22 jam z brezni, 17 vodoravnih jam in 5 bruhalnikov oziroma ponorov, vključno s Podpeškim jezerom (kat. št. 7303). Če primerjamo enako veliko površino Krima z Ljubljanskim vrhom, je na Krimu relativno malo jam (Staut in Čekada, 2006). Vzrok temu je verjetno večja prisotnost dolomita (Miler in Pavšič, 2008). Površinski vodotoki so z močno erozijo ustvarili tesne, globoko vrezane obrobne doline in debri, ki so ena od poglavitnih značilnosti Velike notranjske planote. Na obeh straneh Krima sta dve takšni, do 500 m globoko vrezani dolini: Iški Vintgar na vzhodni in Borovniška dolina na zahodni strani. Iški Vintgar, ki ga je izdolbla reka Iška, ločuje Krim od Mačkovca z Mokrcem (1059 m). Borovniška dolina z Borovni- škim Peklom, ki jo je izdolbla reka Borovniščica, pa loči Krim od Pokojiške planote z Ljubljanskim vrhom (819 m). Na severu Krim obroblja južni rob Ljubljanskega barja, na jugu prehaja prek Rakitniške planote v Vidovsko in Bloško planoto. Na za- hodu Krima je še ena dolina, ki jo je izdolbla reka Prušnica. Krimsko hribovje je malo poseljeno območje, saj spada med ene največjih sklenjenih gozdnih kompleksov v Sloveniji (Melik, 1959). A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 125 Povprečna letna temperatura zraka na Krimu se giblje med 8 in 10oC (Fridl s sod., 1998). Povprečno pade v letu 2000 do 3000 mm padavin. Po podatkih za Ljubljano pade največ padavin v poletnih mesecih (prek 400 mm), ko je tudi največ deževnih dni (prek 30 dni). Najmanj padavin pade pozimi (okoli 250 mm), medtem ko število deževnih oziroma snežnih dni (okoli 25 dni) pozimi sovpada z jesenjo, ko pade prek 350 mm padavin. Spomladi je število deževnih dni podobno poletnim mesecem (okoli 30 dni), vendar pade manj padavin (okoli 300 mm) (Furlan, 1988; Fridl s sod., 1998). Na Krimu prevladujejo predvsem severne oziroma osojne ekspozicije, kar je verjetno posledica bolj strmega severnega in bolj položnega južnega pobočja. Večji del Krima pokriva gozd, povečini mešana gozdna združba dinarskega bukovega gozda z jelko (Omphalodo-Fagetum s. lat.). Jase oziroma negozdne čistine ne presegajo 22 %. Ne- gozdne površine so manjše in razdrobljene, večje pa so v okolici naselij (slika 1). Po naravnogeografski regionalizaciji Slovenije spada območje Krima v dinarski svet in sicer v območje Krimskega hribovja in Menišije (Fridl s sod., 1998) in v di- narsko fitogeografsko regijo (Martinčič in Sušnik, 1984), glede na zoogeografsko razdelitev Slovenije pa v kraško (dinarsko) regijo oziroma v kraško-predpanonsko podregijo (Mršić, 1997) oziroma alpsko-dinarsko regijo (Sket s sod., 2003). Zgodovina raziskav jamske favne hroščev na Krimu Raziskave jamskih hroščev so se v svetu pričele šele z letom 1832, ko je Ferdinand Schmidt opisal prvega jamskega hrošča drobnovratnika (Leptodirus hochenwartii) Acta entomologica slovenica, 25 (2), 2017 126 Slika 1: Obravnavano območje Krima z dvema reliefnima presekoma (se- ver-jug, vzhod-zahod). Svetlo sivo je označen gozd, temno sivo naselja, belo pa negozdne, veči- noma travniške površine (risba: Milijan Šiško). iz Postojnske jame (Polak, 2005). Schmidt je svoje pionirsko delo na področju razi- skav jamskih hroščev osnoval tudi na raziskavah jamske favne Krima. Sredi 19. sto- letja je namreč kot prvi entomolog obiskal jamo Veliko Pasico, iz katere je bilo po njegovi zaslugi opisanih kar pet taksonov jamskih hroščev. Leta 1853 je Jakob Sturm po Schmidtovih primerkih iz Velike Pasice opisal dva krešiča, vrsto Anopht- halmus hirtus in podvrsto Typhlotrechus bilimeki hacqueti, leta 1855 je sam Schmidt opisal še kapljičarja Aphaobius milleri in leta 1860 krešiča podvrste Anophthalmus schmidti motschulskyi. V letu 1859 pa je po Schmidtovih primerkih dobila svoje mesto v svetovni znanosti še pselafida Bythoxenus subbterraneus, ki jo je opisal Viktor Ivanovič Motschulsky (Motschulsky 1859, Schmidt 1855 & 1860, Sturm 1853). Jama Velika Pasica je ostala s stališča favne jamskih hroščev vse do danes najbolj obiskana in raziskana jama na Krimu (slika 2). Več kot polovica vseh zbranih poda- tkov o jamskih hroščih na Krimu je bila zbranih v Veliki Pasici (tabela 1). V manjši meri so bile koleopteroloških raziskav deležne še nekatere druge krimske jame (za- pisana je navedba prvega koleopterološkega obiska): Mala Pasica (kat. št. 76; Nikolaj Hoffmann leta 1858; Hoffman 1858), Benkotova jama (kat. št. 325; Gustav Joseph leta 1871), Ledenica pri Planinci (kat. št. 77; Gustav Joseph leta 1881), Kevderc pri Planinci (kat. št. 525; Jožef Staudacher leta 1917), Golobinka pri Borovnici (kat. št. 753; Jožef Staudacher leta 1918) in Brezno v Lipovcah (kat. št. 524; Danilo Cej in Žarko Vrezec leta 1995). Najbolj intenzivne so bile raziskave v prvi polovici 20. stoletja (slika 3), ko je zlasti Veliko Pasico obiskala vrsta takrat uglednih raziskovalcev hroščev in speleobiologov, denimo Alfonz Gspan, Roman Kenk, Ljudevit Kuščer, Giuseppe Müller, Egon Pretner, Albin Seliškar in Jožef Staudacher. Kasneje so bile raziskave manj intenzivne. V pregledu krešičev (Carabidae) Krima je Irena Furlan (1988) zabeležila tri vrste jamskih krešičev, Typhlotrechus bilimeki hacqueti, Anopht- halmus hirtus in A. schmidti motschulskyi. Pomemben prispevek k poznavanju krim- ske jamske koleopterofavne je bila tudi raziskava edafskih oziroma talnih vrst hroščev, ki je potrdila tudi prisotnost nekaterih sicer v jamah na Krimu izjemno redkih vrst; med njimi za območje novo vrsto brezokca Anophthalmus scopolii (Pirnat 2001). Od 88 jam na Krimu jih je bilo s stališča favne hroščev raziskanih zgolj sedem, oziroma le 8%. Dobro raziskane, z več kot 10 zbranimi podatki, so le Velika Pasica (kat. št. 75), Kevderc pri Planinci (kat. št. 525), Ledenica pri Planinci (kat. št. 77) in Benkotova jama (kat. št. 325), ki so tudi najlažje dostopne jame. Kljub bogati zgodovini raziskav in bližini prestolnice, ostaja podzemlje Krima relativno slabo raziskano. Temu verjetno botruje dejstvo, da je večina večjih in globljih jam brezen, katerih so se raziskovalci v preteklosti izogibali, kar pa z moderno vrvno tehniko ni več ovira. Smiselno bi bilo torej zapolniti vrzeli v poznavanju podzemne entomofavne, še posebej na območju ene od zibelk speleobiologije, na Krimu. Žal pa so tako Velika Pasica kot nekatere ostale krimske jame pritegnile v preteklosti tudi pozornost različnih zbiralcev, katerih delovanje na Krimu ni dokumentirano, primerki pa so razpršeni po privatnih in javnih zooloških zbirkah po Evropi. A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 127 Acta entomologica slovenica, 25 (2), 2017 128 Kat. št. Ime jame Delež znanih podatkov o hroščih [%] 75 Velika Pasica 60,1 525 Kevderc pri Planinci 9,8 77 Ledenica pri Planinci 9,0 325 Benkotova jama 7,5 76 Mala Pasica 6,0 753 Golobinka pri Borovnici 5,3 Krim - izven jame 1,5 524 Brezno v Lipovcah 0,8 Tabela 1: Pregled deleža do sedaj zbranih podatkov o jamskih hroščih na Krimu po jamah (n=133 podatkov). Slika 2: Jama Velika Pasica (kat. št. 75) je najbolj raziskana jama s stališča favne hroščev na Krimu in predstavlja klasično nahajališče kar petim taksonom jamskih hroščev (foto: Al Vrezec). Pregled vrst jamskih hroščev Krima Trenutno je s Krima znanih deset vrst hroščev, ki se redno pojavljajo v jamah ozi- roma imajo izražene troglomorfne značilnosti. V jamah na Krimu živijo vrste iz štirih družin hroščev: krešičev (Carabidae), zemljarjev (Leiodidae), kratkokrilcev (Staphy- linidae) in rilčkarjev (Curculionidae). Med njimi o krešiču vrste Lemostenus schreibersi na Krimu poročamo prvič. Krešiči (Carabidae) Laemostenus schreibersi (Küster, 1846) Krešič Laemostenus schreibersi je največja vrsta krešiča (slika 4), ki ga najdemo v jamah Slovenije. Opisan je bil po primerkih iz Postojnske jame (Casale, 1988). Gre za troglofilno vrsto, kar se kaže z delno pigmentiranostjo in majhnimi, ne popolno zakrnelimi očmi. Poseljuje zlasti vhodne dele jam, v primerjavi z drugimi jamskimi krešiči ga pogosto najdemo v zelo visokem številu (Vrezec in Kapla, 2010). Zlasti v organsko bogatih jamah je zelo številčen, kjer pleni druge manjše hrošče in nevreten- čarje (Casale, 1988). Vrsta je tudi relativno dolgoživa, saj je bil najstarejši do sedaj znani ujeti primerek star najmanj osem let (Rusdea, 1999). Krešič L. schreibersi je razširjen od Hrvaške in Italije prek Slovenije do Avstrije in ni vezan samo na kras. A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 129 Slika 3: Ocena intenzivnosti raziskav jamske favne hroščev oziroma koleoptero- loških obiskov jam na Krimu glede na zbrane podatke o jamskih hroščih. Acta entomologica slovenica, 25 (2), 2017 130 Slika 4: 1 – Laemostenus schreibersi, 2 – Typhlotrechus bilimeki hacqueti, 3 – dlakavi brezokec (Anophthalmus hirtus), 4 – Anophthalmus schmidti motschulskyi, 5 – Scopolijev brezokec (Anophthalmus scopolii) (foto: Andrej Kapla). Med drugim ga najdemo v zakloniščih in rudniških rovih na Pohorju ter Kozjaku. Navkljub njegovi siceršnji številčnosti in razširjenosti, pa je, kot kažejo zbrani podatki, na Krimu presenetljivo redek in maloštevilen. Po doslej zbranih podatkih smo ga na Krimu prvič našli šele leta 2001 in sicer samo v jami Kevderc pri Planinci (kat. št. 525; slika 5). Typhlotrechus bilimeki hacqueti (Sturm, 1853) Typhlotrechus bilimeki hacqueti (slika 4) je robustna vrsta, brez oči, z debelejšim hitinskim tegumentom. Živi pod kamni in v vlažni stelji na vhodnih delih jam, kjer je več organskega materiala, proti notranjosti jam pa se njegova številčnost zmanjšuje. A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 131 Slika 5: Razširjenost jamskih vrst krešičev (Carabidae) na Krimu glede na do sedaj zbrane podatke kaže na dokaj skromno entomološko raziskanost velike večine krimskih jam. Sive točke so jame brez podatkov (risba: Andrej Kapla). Prvič je na Krimu vrsto našel Ferdinand Schmidt v jami Velika Pasica. Vrsta poseljuje Dinaride od Slovenije do Bosne (Drovenik in Peks, 1999), podvrsta T. b. hacqueti pa je endemit Krima in Mokreca (Jeannel, 1928). Na Krimu je to dokaj razširjena vrsta (slika 5). Anophthalmus hirtus (Sturm, 1853) Dlakavi brezokec (Anophthalmus hirtus) je visoko specializirana, troglobiontska vrsta, popolnoma prilagojena na življenje v podzemlju. Ima podaljšano in sploščeno telo, dolge noge in tipalke, dolge čutilne dlake ali trihobotrije ter popolnoma zakrnele oči (slika 4). Vrsto je v jami Velika Pasica prvič našel Ferdinand Schmidt, po čigar primerkih je bil dlakavi brezokec tudi opisan. Dlakavi brezokec je endemit Krima in Mokreca, kjer je znan le iz nekaj jam (75 - Velika Pasica, 76 - Mala pasica, 77 - Le- denica pri Planinci, 325 - Benkotova jama, 353 - Brezno na Skedenici, 358 - Jama pri Riži, 525 - Kevderc pri Planinci, 753 - Golobinka pri Borovnici) (Daffner, 1996; slika 5). Anophthalmus schmidti motschulskyi (Schmidt 1860) Tudi podvrsta Schmidtovega brezokca Anophthalmus schmidti motschulskyi (slika 4) je bila opisana po primerkih, ki jih je zbral Ferdinand Schmidt v Veliki Pasici. Vrsta je bila najprej najdena v Predjamskem sistemu (kat. št. 734) pri Postojni, od koder je bila leta 1844 tudi opisana kot prva vrsta rodu brezokcev (Anophthalmus) (Jeannel, 1928; Daffner, 1998). Schmidtov brezokec je z večimi podvrstami razširjen od Trnovskega gozda in Polhograjskih dolomitov na severu, do Učke in Gorskega kotarja na jugu (Drovenik in Peks, 1999). Na Krimu in Mo- krecu živi endemična podvrsta A. s. motschulskyi, ki je poimenovana po ruskem entomologu Viktorju I. Motschulskyu, kateri je deloval tudi na ozemlju Slovenije (Schmidt, 1860). Do sedaj je bila ta vrsta najdena v štirih jamah na severu in vzhodu Krima (75 - Velika Pasica, 76 - Mala pasica, 77 - Ledenica pri Planinci, 525 - Kevderc pri Planinci) (slika 5). Anophthalmus scopolii scopolii Sturm, 1850 Scopolijev brezokec (Anophthalmus scopolii) je majhna vrsta rodu brezokcev (slika 4), ki sicer ne živi v jamah, temveč pod kamni in v plitvih podzemnih prostorih. Vrsta je razširjena v severnih Dinaridih od okolice Tolmina do Gorskega kotarja (Drovenik in Peks, 1999). Med brezokci velja za primitivno vrsto, torej je zelo podoben sorodni- kom, ki niso prilagojeni na življenje v podzemlju. Od njih se razlikuje le po pomanjkanju pigmenta in zakrnelih očeh. Vrsta je bila opisana z Nanosa (Jeannel, 1928). Na Krimu je Scopolijev brezokec zelo redka vrsta, ki je bila najdena le dvakrat na površini pod kamni in do sedaj nikoli v jamah (Pirnat, 2001, J. Broder, ustno; slika 5). Zemljarji (Leiodidae) Aphaobius milleri (Schmidt 1855) Millerjev kapljičar (Aphaobius milleri) (slika 6) je v Sloveniji geografsko najbolj razširjena vrsta iz tega vrstno bogatega rodu (Bognolo in Vailanti, 2010). Ostale Acta entomologica slovenica, 25 (2), 2017 132 vrste tega rodu so razširjene pretežno v alpski in predalpski regiji. Poseljuje območje zahodno od Ljubljane proti jugu do severnih predelov Hrvaške (Istra, Gorski Kotar, Žumberačka gora). Navadno ga najdemo v jamah in breznih, včasih tudi v plitvem podzemnem prostoru. Vrsto je opisal Ferdinand Schmidt leta 1855 po primerkih iz Velike Pasice (Schmidt, 1855). V jamah se lahko pojavlja v večjem številu, zlasti v bližini kakih trupel ali živalskih iztrebkov (Bognolo in Vailanti, 2010). Na Krimu gre za razširjeno in v jamah številčno vrsto (slika 7). Bathyscia montana Schiødte, 1848 Bathyscia montana je zelo majhna vrsta zemljarja, ki živi v gozdni stelji in plitvem podzemnem okolju. Velika je manj kot 2 mm, slabo pigmentirana in z zakrnelimi očmi. V jamah živi pretežno na vhodnih delih, pa tudi globje, sploh po obilnejšem deževju, kamor jih spere voda (M. Bognolo, ustno). Na Krimu je bila do sedaj najdena le v dveh jamah (slika 7). A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 133 Slika 6: 1 – slepi rilčkar (Troglorhynchus anophthalmus), 2 – Millerjev kapljičar (Aphaobius milleri) (foto: Andrej Kapla). Bathysciola sylvestris (Motschulsky, 1856) Podobna je predhodni vrsti s podobno izraženimi troglomorfnimi značilnostmi. Gre za pretežno edafsko vrsto, ki živi v gozdni stelji, vendar se pojavlja tudi na vhodnih delih jam. Na Krimu je redka, saj je bila po do sedaj zbranih podatkih najdena le enkrat in sicer jo je leta 1934 pod kamni izven jame našel Egon Pretner (slika 7). Kratkokrilci (Staphylinidae) Bythoxenus subterraneus Motschulsky, 1859 Pselafid Bythoxenus subbterraneus je majhna in zelo redka vrsta hrošča iz družine kratkokrilcev (Staphylinidae: Pselaphinae). Poznanih je le nekaj primerkov iz jam na Acta entomologica slovenica, 25 (2), 2017 134 Slika 7: Razširjenost ostalih vrst jamskih hroščev na Krimu. Sive točke so jame brez podatkov (risba: Andrej Kapla). Gorenjskem in osrednje Slovenije (Broder, 1977). Njena ekologija in način življenja sta nepoznana. Vrsta je bila opisana leta 1859 po primerkih iz Velike Pasice na Krimu (Motschulsky, 1859), ki predstavlja tudi njeno edino znano lokaliteto na obravnavanem območju (slika 7). Rilčkarji (Curculionidae) Troglorhynchus anophthalmus (Schmidt 1854) Slepi rilčkar (Troglorhynchus anophthalmus) ne sodi med troglobionte (slika 6), temveč je prilagojen na življenje v zemlji, kjer živi na koreninah dreves. Včasih ko- renine predrejo strop jame, kjer v šopih rastejo dalje in tako nudijo življenjski prostor tudi edafskim oziroma zemeljskim vrstam. Ta poseben življenjskih prostor izkorišča tudi slepi rilčkar, ki je sicer razširjen po celotnem slovenskem krasu, vendar se nikjer ne pojavlja v velikem številu (Hlaváč, 2011). Po trenutno zbranih podatkih na Krimu ni zelo razširjen (slika 7). Izoliranost jamske favne hroščev na Krimu Čeprav Krim geografsko sodi v enoten sklop Velike notranjske planote oziroma območja Krimskega hribovja in Menišije, ki mu poleg Krima pripadata še Mokrec in Ljubljanski vrh z Menišijo, je ta opredelitev s stališča favne jamskih hroščev manj ja- sna. Celotno območje Krimskega hribovja in Menišije sestavlja dolomit z vmesnimi laminami in lečami apnenca (Fridl s sod., 1998), vendar globoke rečne doline bistveno prispevajo k izolaciji podzemlja posameznih delov območja. Za oris izoliranosti krimskega podzemlja si vzemimo dve vrsti troglobiontskih hroščev, drobnovratnika (Leptodirus hochenwartii) in dlakavega brezokca (Anophthalmus hirtus). Drobno- vratnik je precej široko razširjena vrsta po severnem dinarskem krasu v Sloveniji in na Hrvaškem (Vrezec s sod., 2011). Dlakavi brezokec pa je stenendemit z zelo ozko razširjenostjo, omejeno zgolj na Krim in bližnji Mokrec (Daffner, 1996). Primerjava vzorca razširjenosti obeh vrst kaže na neko skladnost, ki se odraža v izoliranosti krimsko-mokrškega masiva od okoliških kraških masivov (slika 8). Drobnovratnika najdemo povsod v okolici Krima, na zahodni Pokojiški planoti in južneje ter vzhodno na Dolenjskem podolju. Stik med populacijama je šibek, saj je ravno tu kot kaže ločnica med dvema podvrstama, nominotipsko L. h. hochenwartii na zahodu in L. h. schmidti na vzhodu (Vrezec s sod., 2007). Obratno pa dlakavi brezokec poseljuje le vmesni del Krimskega hribovja, ki ga tvorita Krim in Mokrec, kjer drobnovratnika ni. Sosednje masive sicer poseljujejo druge dlakavemu brezokcu sorodne vrste, na primer: Anophthalmus pubescens na zahodu (Pokojiška planota), A. driolii na jugu (vznožje Blok ob Cerkniškem jezeru) in A. kertecsi na vzhodu (Suha krajina) (Bognolo & Etonti 1996, Daffner 1996). S stališča favne jamskih hroščev je kot kaže območje Krimskega hribovja od okolice izoliran masiv, ki ga na severu jasno omejuje Lju- bljansko barje, na zahodu reka Borovniščica, na vzhodu reka Želimeljščica, na jugu pa sistem vodotokov, ki prehaja v zelo vodnato Bloško planoto s pretežno dolomitno podlago. Zanimivo pri tem je, da reka Iška z globoko vrezano dolino Iškega Vintgarja ne predstavlja večje ovire za jamske hrošče, saj sta favni Krima in Mokrca dokaj A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 135 podobni. Poleg dlakavega brezokca namreč območji poseljujeta še dva stenendemična taksona jamskih hroščev, ki jima po trenutnih dognanjih pripisujemo status podvrst (Daffner, 1996 in 1998): Anophthalmus schmidti motschulskyi in Typhlotrechus bili- meki hacqueti. Primer krimske jamske favne hroščev nam kaže pomen nekaterih območij v Slo- veniji, ki zaradi stenendemičnih taksonov dajejo Sloveniji globalno odgovornost pri ohranjanju biodiverzitete. Trenutno so napori za ohranjanje evropske in slovenske biodiverzitete osredotočeni na ohranjanje in varstvo na evropskem nivoju izbranih varstveno pomembnih vrst, ki jih opredeljuje Habitatna Direktiva (Direktiva Sveta 92/43/EC), med katerimi je kar nekaj vrst hroščev (Vrezec s sod. 2011). Čeprav daje ta pristop dober varstveni in upravljavski okvir na evropskem nivoju, pa lahko na re- gionalnem ali lokalnem nivoju zgreši nekatere vrste, katerih globalno preživetje je odvisno od lokalnih upravljavskih odločitev. Prostorsko izključevanje drobnovratnika, Acta entomologica slovenica, 25 (2), 2017 136 Slika 8: Trenutno poznana razširjenost drobnovratnika (Leptodirus hochenwartii) in dlakavega brezokca (Anophthalmus hirtus) na območju Krimskega hribovja in Menišije z bližnjo okolico z označeno hidrografsko mrežo (risba: Andrej Kapla). evropske varstveno pomembne vrste, in nekaterih stenendemitov v Krimskem hribovju je le en od takih primerov. Čeprav so slovenski endemiti praviloma brez izjeme zava- rovane vrste (Ur. list RS 2004), pa v praksi varstvenih ukrepov niso deležni. Poleg evropskih varstvenih prioritet, ki določajo omrežje Natura 2000, so zato nujne tudi regionalne prioritete varstva in upravljanja z območji, s katerimi bo docela mogoče ohraniti evropsko biodiverziteto (Dolman s sod. 2012), katere endemiti so seveda ključni del. Jamske stenendemične vrste imajo tako za ohranjanje slovenske biodi- verzitete ključen pomen. Zahvala Zahvaljujemo se Slavku Polaku za prepis podatkov iz beležnic Egona Pretnerja in druge nasvete. Zahvala gre tudi Jožetu Broderju in Marcu Bognolu za koristne infor- macije in komentarje. Milijan Šiško je pripravil karto o reliefnih značilnostih Krima. Del podatkov smo pridobili v okviru nacionalnega monitoringa hroščev med letoma 2006 in 2009, ki ga je financiralo Ministrstvo za okolje in prostor in v okviru razisko- valnega programa št. P1-0255, ki ga financira Javna agencija za raziskovalno dejavnost Republike Slovenije. Del idej o regionalni prioritizaciji vrst za namene ohranjanja biodiverzitete pa smo pridobili v okviru projekta BID-REX (Interreg Europe PGI01505). Literatura Bognolo, M. in Etonti, M., 1996: Anophthalmus driolii sp. nov. di Slovenia (Co- leoptera: Carabidae, Trechinae). Boll. Mus. civ. St. nat. Venezia 46: 179-186. Bognolo, M. in Vailanti, D., 2010: Revision of the Genus Aphaobius Abeille de Perrin, 1878 (Coleoptera, Cholevidae, Leptodirinae). Scopolia 68: 1-75. Brancelj, A., 2000: Morariopsis dumonti n. sp. (Crustacea: Copepoda: Harpacticoida) - a new species from an unsaturated karstic zone in Slovenia. Hydrobiologia 436: 73-80. Brancelj, A., 2002: Microdistribution and high diversity of Copepoda (Crustacea) in a small cave in central Slovenia. Hydrobiologia 477: 59-72. Brancelj, A. in Vrezec, A., 2006: Jama Velika pasica na Gornjem Igu - primer pod- zemnega laboratorija. Mostiščar 12(10): 18-20. Broder, J., 1977: Bythoxenus subterraneus Motschulsky, 1859 (Coleoptera, Pselap- hidae) ponovno najden v Sloveniji leta 1975. Naše jame 19: 59-61. Casale, A., 1988: Revisione degli Sphodrina (Coleoptera, Carabidae, Sphodrini) (Monografie 5). Museo Regionale di Scienze Naturali, Torino. Culver, D.C., Deharveng, L., Bedos, A., Lewis, J.J., Madden, M., Reddell, J.R., Sket, B., Trontelj, P. in White, D., 2006: The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29: 120-128. Daffner, H., 1996: Revision der Anophthalmus - Arten und -Rassen mit lang und dicht behaarter Koerperoberseite. Mitteilungen der Entomologischen Gesellschaft 86: 33 - 78. A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 137 Daffner, H., 1998: Die Arten und Rassen der Anophthalmus schmidti und mariae Gruppe (Coleoptera: Carabidae: Trechinae). Acta entomologica slovenica 6(2): 99-128. Direktiva Sveta 92/43/EC (Direktiva o ohranjanju naravnih habitatov ter prosto ži- večih živalskih in rastlinskih vrst) Dolman P.M., Panter C.J., Mossman H.L., 2012: The biodiversity audit approach challenges regional priorities and identifies a mismatch in conservation. Journal of Applied Ecology 49: 986–997. Drovenik, B. in Peks, H., 1999: Catalogus faunae, Carabiden der Balkanländer, Co- leoptera, Carabidae. Coleoptera, Sonderheft 1: 1-123. Fridl, J., Kladnik, D. in Perko, D. (ur.), 1998: Geografski atlas Slovenije: država v prostoru in času. DZS, Ljubljana, 360 str. Furlan, I., 1988: Primerjalne raziskave zoocenoz karabidov (Carabidae, Coleoptera) v različnih variantah rastlinske združbe Abieti-Fagetum dinaricum. Diplomsko delo, Biotehniška fakulteta, Univerza v Ljubljani, Ljubljana, 43 str. Giachino P.M., Vailati D., 2006: The subterranean environment. Hypogean life, concepts and collecting techniques. WBA Handbooks, 3, Verona. Hlaváč, P., 2011: Endogean and cavernicolous Coleoptera of the Balkans. 11. Revision of the subgenus Troglorhynchus Reitter of the genus Otiorhynchus Germar (Co- leoptera: Curculionidae). Natura Croatica 20: 189-200. Hoffman, N., 1858: Ueber die Fauna einiger Höhlen in Unterkrain. L. c., 117-118. Hribar, B., 1997: Favnistične in cenotske raziskave deževnikov (Lumbricidae) na območju Krima. Diplomsko delo, Biotehniška fakulteta, Univerza v Ljubljani, Ljubljana, 54 str. Jeannel, R., 1928: Monographie des Trechinae - Teil 3 - l'Abeille Journal d'Entomolgie 35: 1-808. Kos, I., 1988: Prispevek k poznavanju favne skupine Lithobiomorpha (Chilopoda) v Sloveniji. Biološki vestnik 36(2): 13-24. Kryštufek, B., 1980: Nekaj o prehrani sov na Ljubljanskem barju.  Acrocephalus 1(6): 91-92. Kryštufek, B., 1982: Sesalci (Mammalia) Ljubljanskega barja. Biološki vestnik 30(2): 33-56. Martinčič, A. in Sušnik, F., 1984: Mala flora Slovenije: praprotnice in semenke. Državna založba Slovenije, Ljubljana, 793 str. Melik, A., 1959: Posavska Slovenija. Slovenska matica, Ljubljana, 595 str. Miler, M., Pavšič, J., 2008: Triassic and Jurassic beds in Krim Mountain area (Slo- venia). Geologija 51 (1): 87-99. Ljubljana Mršić, N., 1997: Biotska raznovrstnost v Sloveniji: Slovenija - "vroča točka" Evrope = Biotic diversity in Slovenia : Slovenia - the "hot spot" of Europe. Ministrstvo za okolje in prostor, Uprava RS za varstvo narave, Ljubljana, 129 str. Motschulsky, V., 1859: Études Entomologiques 8. Imprimerie de la Société de Lité- rature Finnoise, Helsingfors. Acta entomologica slovenica, 25 (2), 2017 138 Novak, T., 2005: Terrestrial fauna from cavities in Northern and Central Slovenia, and a review of systematically ecologically investigated cavities. Acta carsologica 34(1): 169-210. Pirnat, A., 2001: Ekologija edafskih vrst hroščev družin Pselaphidae in Scydmaenidae v dinarsko jelovo-bukovem gozdu (Omphalodo-fagetum s. l.) na Krimu. Magi- strsko delo. Biotehniška fakulteta, Univerza v Ljubljani, Ljubljana. Polak, S., 2005: Importance of discovery of the first cave beetle Leptodirus hochen- wartii Schmidt, 1832. Centenario del descubrimiento de Typhlociriolana mora- guesi en Coves del Drac. XIII Jornadas cientificas de la SEDECK, Mallorca, 10 – 12 spetember 2004. ENDINS, 28: 71-80. Rusdea, E., 1999: Adult longevity – one factor stabilizing the abundance of a cave- dwelling population of Laemostenus schreibersi (Coleoptera, Carabidae) – results of a long-term investigation over 13 years. str. 67. V: Holcer D. & Šašić M. (eds.): Abstracts of the 14th International Symposium of Biospeleology. Croatian Biospeleological Society, Makarska. Schmidt, F., 1855: Beschreibung zweier neuer Hölentiere, eines Käfers und einer Schnecke. Verhandlungen des Zoologisch-Botanischen Vereins in Wien, 5: 3-4. Schmidt, F., 1860: Drei Neue Hölenkäfer aus Krain. Verh. Zool. Bot. Gesellschaft 10: 669-672. Simčič, T., Lukančič, S., Brancelj, A., 2005: Comparative study of electron transport system activity and oxygen consumption of amphipods from caves and surface habitats. Freshwater Biology 50: 494-501. ISSN 0046-5070. Sket, B., Gogala, M. in Kuštor, V., 2003: Živalstvo Slovenije. Tehniška založba Slovenije, Ljubljana, 664 str. Staut, M. in Čekada, M., 2006: Porazdelitev gostote jam v Sloveniji, Naše jame 46: 37-42. Sturm, 1853: Deutschlands Insecten. Gedruckt auf Kosten des Verfassers, Nürnberg 22: 93. Ur. list RS 2004: Uredba o zavarovanih prosto živečih živalskih vrstah (Uradni list RS, št. 46/04, 109/04, 84/05, 115/07, 32/08 – odl. US, 96/08, 36/09, 102/11, 15/14 in 64/16) Vrezec, A., 2000: Vpliv nekaterih ekoloških dejavnikov na razširjenost izbranih vrst sov (Strigidae) na Krimu. Diplomsko delo. Biotehniška fakulteta, Univerza v Ljubljani, Ljubljana, 94 str. Vrezec, A., Polak, S., Kapla, A., Pirnat, A. in Šalamun, A., 2007: Monitoring po- pulacij izbranih ciljnih vrst hroščev – Carabus variolosus, Leptodirus hochen- wartii, Lucanus cervus, Morinus funereus in Rosalia alpina. Nacionalni inštitut za biologijo, Ljubljana. Vrezec, A. in Kapla, A., 2010: The influence of aboveground invasions on the di- versity and distribution patterns of subterranean carabids (Carabidae). str. 161. In: Moškrič A. & Trontelj P. (ur.): ICSB 2010, Abstract book / 20th Internationa Conference on Subterranean Biology, Postojna, Slovenia, 29 August – 3 Sep- tember 2010. – Organizing Committee, Postojna. A. Kapla, A. Vrezec: Favna jamskih hroøœev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti 139 Vrezec, A., Pirnat, A., Kapla, A., Polak, S., Vernik, M., Brelih, S., & Drovenik, B., 2011: Pregled statusa in raziskanosti hroščev (Coleoptera) evropskega var- stvenega pomena v Sloveniji s predlogom slovenskega poimenovanja. Acta en- tomologica slovenica 19(2): 81-138. Wei Liu, A. in Brancelj, A., 2014: Hydrochemical response of cave drip water to snowmelt water, a case study from Velika Pasica Cave, Central Slovenia. Acta carsologica 43 (1): 65-74, doi: 10.3986/ac.v43i1.613. Wei Liu, A., Brancelj, A. in Brenčič, M., 2014: The hydrochemical response of cave drip waters to different rain patterns (a case study from Velika Pasica cave, central Slovenia). Carpatian journal of earth and enviroinmental sciences 9 (1): 189-197. Zagmajster, M., Culver, D. C. in Sket, B., 2008: Species richness patterns of obligate subterranean beetles (Insecta: Coleoptera) in a global biodiversity hot- spot-effect of scale and sampling intensity. Divers. distrib. 14(1): 95-105.  Received / Prejeto: 31. 1. 2017 Acta entomologica slovenica, 25 (2), 2017 140 NOVE TUJERODNE RASTLINOJEDE ŽUŽELKE V FAVNI SLOVENIJE Gabrijel SELJAK Kmetijsko gozdarski zavod Nova Gorica, Pri hrastu 18, 5000 Nova Gorica e-mail: gabrijel.seljak@gmail.com Izvleček - Objavljene so najdbe petih tujerodnih rastlinojedih žuželk, ki so nove za favno Slovenije: Prociphilus (Meliarhizophagus) fraxinifolii (Riley 1879) [Hemiptera: Aphididae], Cacopsylla fulguralis (Kuwayama 1908) [Hemiptera: Psyllidae], Epitrix hirtipennis (Melsheimer 1847) [Coleoptera: Chrysomelidae], Euxesta notata (Wie- demann 1830) in E. pechumani Curran 1938 [Diptera: Ulidiidae]. Pri vsaki vrsti so na kratko obravnavane diagnostične značilnosti, bionomija, prehranjevalne značilnosti, razširjenost ter potencialne gospodarske in okoljske grožnje. Vse nove vrste so tudi fotografsko dokumentirane. Napravljen je ključ za določanje vrst tujerodnega rodu Euxesta, ki se pojavljajo v Evropi. KLJUČNE BESEDE: tujerodne žuželke, Slovenija, razširjenost Abstract - NEW ALIEN PHYTOPHAGOUS INSECT SPECIES TO THE FAUNA OF SLOVENIA Five alien insects new to the fauna of Slovenia are recorded: Prociphilus (Meliar- hizophagus) fraxinifolii (Riley 1879) [Hemiptera: Aphididae], Cacopsylla fulguralis (Kuwayama 1908) [Hemiptera: Psyllidae], Epitrix hirtipennis (Melsheimer 1847) [Coleoptera: Chrysomelidae], Euxesta notata (Wiedemann 1830) and E. pechumani Curran 1938 [Diptera: Ulidiidae]. Diagnostic characteristics, bionomics, trophic fea- tures, distribution and potential economic as well as environmental threats of each species are briefly discussed. Each species is also photographically documented. A key for the identification of the alien Euxesta-species occurring in Europe is pro- vided. KEY WORDS: alien insects, Slovenia, distribution 141 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 141–158 Uvod Pred nedavnim je bil objavljen celovit pregled tujerodnih rastlinojedih žuželk in pršic, ki so bile ugotovljene v Sloveniji in so v večini primerov tudi že ustaljene (SE- LJAK, 2013). Seveda je bilo odkrivanje novih tujerodnih vrst pri nas pričakovano, zlasti tistih, ki se že pojavljajo v sosednjih državah in pokrajinah. Njihovo odkrivanje pri nas je potem bolj kot ne stvar časa, klimatske in okoljske ustreznosti za njihovo naselitev in ustalitev, prisotnosti in pogostnosti prehranskih substratov (gostiteljev) ter včasih tudi strokovnih zmožnosti za njihovo prepoznavanje. Ni znano, da bi se zgodil prvinski vnos kake žuželčje vrste ali tujerodnega organizma nasploh iz tretjih držav neposredno v Slovenijo. Ti so se k nam bodisi razširili iz sosednjih držav in pokrajin ali pa smo jih z blagom nenamerno vnesli iz drugih evropskih držav. Kljub temu dejstvu je bilo v zadnjem obdobju nekaj tujerodnih vrst novih za Evropo najprej odkritih prav v Sloveniji, po tem ko so se k nam priselile iz sosednjih držav. Taki pri- meri so: Euaresta aequalis (Loew 1862) (SELJAK, 2013), Hishimonus hamatus (SELJAK, 2013) in Aponychus corpuzae (SELJAK, 2015). Nepojasnjen ostaja le izvor listne za- vrtalke Ophiomyia kwansonis Sasakawa 1961, ki je bila v Evropi doslej najdena le v Sloveniji in bi lahko bila vnesena neposredno, najverjetneje iz ZDA s sadikami ma- slenice (Hemerocallis spp.) (JURC in sod., 2012). V tem prispevku je predstavljenih nadaljnjih pet tujerodnih rastlinojedih žuželk, katerih pojavljanje v Sloveniji doslej ni bilo znano ali vsaj ne objavljeno. Material in metode dela Večino novih tujerodnih vrst je odkril pisec tega članka sam, pogosto povsem na- ključno. Nekaj vrst je bilo odkritih tudi med vzorci, ki so jih v laboratorij Kmetijsko gozdarskega zavoda v Novi Gorici (KGZNG) v določitev poslale javne službe za varstvo rastlin v okviru državnega sistematičnega spremljanja tujerodne plodove vinske mušice (Drosophila suzukii (Matsumura, 1931). Primerki obravnavanih vrst so shranjeni v zbirki žuželk KGZNG ali v piščevi zasebni zbirki. Pri vrstah, pri katerih je za določitev potrebna mikroskopska preiskava, so bili napravljeni trajni mikroskopski preparati vloženi v "Canada balsam". Vse vrste so tudi fotografsko do- kumentirane. Ugotovitve Prociphilus (Meliarhizophagus) fraxinifolii (Riley 1879) [Hemiptera, Sternorr- hyncha: Aphididae] Obravnavani material: Ljubljana - Šentvid (VM50), 28. 06. 2015; Nova Gorica (UL99), 10. 06. 2016, v obeh primerih na pensilvanskem jesenu (Fraxinus pennsyl- vanica Marsh.) 28. junija 2015 so v parku v Prušnikovi ulici v Šentvidu v Ljubljani pritegnili mojo pozornost močno skodrani vrhnji listi okrasnega jesena (slika 1). Vedel sem, da pri velikem jesenu (Fraxinus excelsior L.) takšno kodranje listov povzročata dve Acta entomologica slovenica, 25 (2), 2017 142 vrsti listnih uši iz rodu Prociphilus: P. fraxini (Fabricius 1777) in P. bumeliae (Schrank 1801). Obe je mogoče zanesljivo ločiti le z mikroskopsko preiskavo prepariranih pri- merkov, zato sem vzel vzorec za laboratorijsko preiskavo. Ta je pokazala, da pravza- prav ne gre ne za eno in ne za drugo od prej omenjenih domorodnih vrst, pač pa za tujerodno vrsto Prociphilus (Meliarhizophagus) fraxinifolii (Riley 1879), ki na ozemlju Slovenije doslej še ni bila omenjena. Uš P. fraxinifolii izvira iz Severne Amerike, kjer je splošno razširjena od Mehike prek ZDA do Kanade (BLACKMAN & EASTOP, 1994). V Evropi so jo najprej odkrili na Madžarskem (REMAUDIÈRE & RIPKA, 2003), kmalu za tem pa so o njenem pojavljanju poročali še iz Srbije, Bolgarije, Velike Britanije in Španije (PETROVIĆ-OBRADOVIĆ & al., 2007; COEUR D'ACIER & al., 2010; BAKER & MARTIN, 2011; HIDALGO & DURANTE, 2012). Uš P. fraxinifolii je enodomna (monoecična) in holociklična vrsta in živi na listih in koreninah različnih vrst ameriških jesenov, kot so: F. americana, F. latifolia, F. nigra, F. pennsylvanica, F. quadrangulata, F. uhdei, F. velutina (BLACKMAN & EA- STOP, 1994). Nasprotno pa sta obe sorodni evropski vrsti - P. fraxini in P. bumeliae dvodomni (heterecični), pri čemer je njun glavni gostitelj veliki jesen in pomožni jelka (Abies spp.). Na slednjem se uši zadržujejo na koreninah (HEIE, 1980). V skodranih listih pensilvanskega jesena so bile v obeh obravnavanih primerih nekrilate in krilate uši. Krilati osebki (slika 3) so razmeroma majhni (1,4 - 2,8 mm), G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 143 Slika 1: P. fraxinifolii - napadeni listi pensilvanskega jesena Fig. 1: P. fraxinifolii - infested leaves of Fraxinus pennsylvanica Acta entomologica slovenica, 25 (2), 2017 144 Slika 2: P. fraxinifolii - nekrilata samica Fig. 2: P. fraxinifolii - an apterous fe- male Slika 3: P. fraxinifolii - krilata samica Fig. 3: P. fraxinifolii - an alate female znatno manjši kot so krilati osebki obeh evropskih vrst P. fraxini in P. bumeliae (3,3- 5,5 mm) (BLACKMAN & EASTOP, 1994). Dolžina telesa (brez dolžine kril) osebkov iz obravnavanih dveh vzorcev je bila med 1,8 in 2,0 mm. Osebki nekrilate oblike so ne- koliko večji in so merili med 2,1 in 2,5 mm. Vse razvojne stopnje uši, zlasti ličinke in nekrilati odrasli osebki izločajo obilne voskaste nitke iz posebnih žlez (slika 2). Na hrbtu zadka so te posebno številne in tudi večje. Najbolj zanesljiv morfološki znak za ločevanje vrste P. fraxinifolii od obeh evropskih vrst je poleg manjše velikosti nav- zočnost sekundarnih čutnih jamic (rhinaria) v spodnjem delu 6. člena tipalk. Teh je od 1 do 5 in so nepravilnih oblik, medtem ko so čutne jamice na 3. členu ozke in po- dolgovate in potekajo prečno na os člena (BLACKMAN & EASTOP, 1994) (slika 4). Pri obeh evropskih vrstah je 6. člen tipalk brez čutnih jamic. Do sedaj ni poročil, da bi uš P. fraxinifolii povzročala kakšno večjo gospodarsko škodo. Močan napad lahko nekoliko skazi videz okrasnih jesenov v urbanem okolju. Nekaj več težav bi lahko povzročala le drevesničarjem pri vzgoji sadik ameriških okrasnih jesenov, a jih je s sistemičnimi insekticidi razmeroma enostavno zatreti, le pravočasno jih je treba odkriti, še preden je škoda napravljena. Cacopsylla fulguralis (Kuwayama 1908) [Hemiptera, Sternorrhyncha: Psyllidae] - oljčična bolšica Obravnavani material: Nova Gorica - 100 m (UL99), 16. 4. 2015 (12 ♀♀, 13 ♂♂); Kromberk (UL99), 19. 4. 2015 (24 ♀♀, 20 ♂♂), 26. 02. 2016 (6 ♀♀, 3 ♂♂) in 10. 03. 2017 (2 ♂♂ in 2 ♀♀); vse na okrasni oljčici (Elaeagnus x ebbingei). Bolšica C. fulguralis pripada vzhodno palearktični zoogeografski favni in je izvorno razširjena na ozemljih Kitajske, Koreje, Japonske, Tajvana, Filipinov in Ru- skega Daljnega vzhoda (OUVRARD, 2015). Po letu 2000, ko je bila najprej zaznana v Franciji (COCQEMPOT & GERMAIN, 2000), se je najbrž z gostiteljskimi rastlinami hitro razširila po večjem delu Evrope z nekoliko milejšo klimo. O njeni prisotnosti poročajo G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 145 Slika 4: P. fraxinifolii - še- sti člen tipalk z drugotnimi ču- tnimi jamicami (rhinaria - pu- ščici) Fig. 4: P. fraxinifolii - the sixth antennal segment with secondary rhinaria (arrows) iz Združenega kraljestva (MALUMPHY & HALSTEAD, 2002), Nizozemske (STIGTER, 2002), Belgije (BAUGNEE, 2003), Švice (BURCKHARDT & MÜHLETHALER, 2003), Hrva- ške (ŠIMALA & MASTEN, 2003), Italije (SÜSS & SAVOLDELLI, 2003) in Španije (COC- QENPOT, 2008). Je oligofagna vrsta na različnih, toda ne vseh vrstah oljčic (Elaeagnus spp.). V Evropi se večinoma pojavlja na okrasni oljčici (Elaeagnus x ebbingei), sicer pa so njeni gostitelji še E. commutata, E. cuprea, E. glabra, E. macrophylla, E. old- hamii in E. pungens (OUVRARD, 2017). Oljčično bolšico ni težko prepoznati po značilnem rjavem vzorcu na sprednjih krilih (slika 5), zelo dolgih tipalkah, katerih dolžina za več kot dvakrat presega širino glave ter po tem, da je vezana na rastline iz rodu Elaeagnus - oljčice. Odrasle bolšice se prehranjujejo na enoletnih poganjkih in listih. Samice odlagajo jajčeca posamično ali po več v skupinah na spodnjo stran mladih listov (slika 7). Ličinke in nimfe se ve- činoma zadržujejo v skupinah ali posamič na spodnji strani listov. Nimfe 4. in 5. raz- vojne stopnje se deloma preseljujejo tudi na druge dele poganjkov, zlasti v listne paz- duhe. Vse razvojne stopnje ličink izločajo obilne voskaste izločke (slika 6). Poznavanje bionomije te vrste je še precej pomanjkljivo. Po nekaterih navedbah naj bi v eni rastni dobi razvila več rodov; enega do dva spomladi, na kar naj bi prešla v poletno diapavzo in nato nadaljevala razvoj jeseni (FERRE & DENIS, 2011). Na Goriškem je v letih 2015 in 2016 razvila le en spomladanski rod v aprilu in maju. Čez poletje in tudi jeseni je na gostiteljskih rastlinah nisem našel. V februarju in marcu 2017 sem najprej Acta entomologica slovenica, 25 (2), 2017 146 Slika 5: C. fulguralis - imago Fig. 5: C. fulguralis – adult G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 147 Slika 6: C. fulguralis - nimfe 5. razvojne stopnje Fig. 6: C. fulguralis - 5th instar nymphs Slika 7: C. fulguralis - jajčece Fig. 7: C. fulguralis – egg v Kromberku nato pa tudi v Poreču na Hrvaškem našel različne razvojne stopnje olj- čične bolšice od ličink 2. razvojne stopnje naprej do odraslih osebkov, kar kaže na to, da prezimujejo preimaginalne razvojne oblike. V letu 2016 sem na lokaliteti v Krom- berku prve odrasle osebke našel že v zadnji dekadi februarja, v letu 2017 pa v začetku marca. Nova vrsta je precej neopazna in na prostem ne povzroča opaznejših poškodb na gostiteljskih rastlinah. Najbolj so opazni obilni voskasti izločki in medena rosa, ki jo izločajo ličinke. Med naravnimi regulatorji populacije smo našli stenice iz družine Anthocoridae (slika 8) Epitrix hirtipennis (Melsheimer 1847) [Coleoptera, Chrysomelidae: Alticinae] - tobakov bolhač Obravnavani material: Bertoki (VL04), 29. 7. 2015; Lucija (UL94), 29. 7. 2015. Favna bolhačev je v Sloveniji razmeroma dobro raziskana. V celovitem pregledu bolhačev slovenskega ozemlja so obravnavane tudi tri vrste iz roda Epitrix: E. atropae Foudras, 1860, E. pubescens (Koch, 1803) in E. intermedia Foudras, 1860 (BRELIH & sod., 2003). Med njimi pa ni tujerodne vrste E. hirtipennis. Poleti 2015 sem pri teren- skem zdravstvenem pregledu vrtnin v Slovenski Istri naletel na precej očitne poškodbe, značilne za bolhače, na jajčevcih (Solanum melongena) in v manjši meri tudi na pa- radižniku (Lycopersicon esculentum). Odvzeti vzorci bolhačev na zgoraj navedenih Acta entomologica slovenica, 25 (2), 2017 148 Slika 8 : Ličinka plenilske stenice med nimfami oljčične bolšice Fig. 8: A predaceous bug larva among nymphs of C. fulguralis lokacijah so razkrili, da gre za vrsto, ki jo italijansko strokovno slovstvo že od sredine osemdesetih let prejšnjega stoletja navaja kot škodljivca razhudnikov, zlasti tobaka in jajčevca (POLLINI, 1998) Tobakov bolhač je nearktična vrsta razširjena od Kolumbije prek Srednje Amerike, Mehike, ZDA do Kanade. Pogosta je zlasti na območjih pridelovanja tobaka in ga obravnavajo kot pomembnega škodljivca tobaka in nekaterih drugih razhudnikov. V Evropi so ga prvič opazili leta 1983 v provinci Benevento v deželi Campania v Italiji, ko je začel povzročati veliko težav pri gojenju tobaka (SANNINO & sod. 1984). Od tam se je postopno širil na sosednje dežele v Italiji in tudi zunaj nje. O njegovem po- javljanju poročajo iz Grčije (LYCOURESSIS, 1991), Turčije (DÖBERL, 1994), Makedonije (KRSTESKA & sod., 2009), Bolgarije (TRENCHEV & TOMOV, 2000), Sirije (GRUEV & DÖBERL, 2005) ter južne Rusije (ORLOVA-BIENKOWSKAYA, 2014). Povsod ga omenjajo predvsem kot resnega škodljivca na njivah s tobakom. Tobakov bolhač je zelo majhen hrošček, ki meri v dolžino le 1,5 - 2,0 mm. Telo in pokrovke so v celoti rdečkasto rumene do rdečkasto rjave; takšne so tudi tipalke, le zadnji členi so lahko na vrhu nekoliko zatemnjeni; pokrovke so v sredini in ob osred- njem šivu pogosto temneje rdečkasto rjave (slika 10). Ovratnik je ščetinast le na ro- bovih, sicer gol, svetleč in gosto vdrto točkast, prečna bazalna ugreznina je slabotna. Pokrovke v celoti pokrivajo zadek; na vsaki je po 11 podolžnih redi ugreznjenih točk in 12 redi svetlih štrlečih ščetin. Tobakovega bolhača prepoznamo predvsem po rde- čkasto rumeni barvi vseh delov telesa, medtem ko so vse domače vrste v celoti ali vsaj deloma črno ali temno rjavo obarvane. Nekoliko so mu lahko podobni le svetlejši osebki vrste E. atropae, ki pa ima črno do temno rjavo vsaj glavo, ovratnik in osrednji del kril. Dodatni razlikovalni znak je oblika spermateke samic. Ta je pri vrsti E. hir- tipennis značilne hruškaste oblike, pri vrsti E atropae pa je mehasta. Ličinka je razpotegnjeno valjasta, odrasla meri 3,5 - 4,2 mm, rumenkasta do uma- zano bela (SANNIO & sod., 1986) Tako v ZDA kot tudi Srednji Italiji razvije 3 rodove na leto. Prezimujejo odrasli osebki pod rastlinskimi ostanki na tleh. V aprilu začnejo dopolnilno prehranjevanje na mladih rastlinicah. Oplojene samice odlagajo posamezna jajčeca ali v manjših skupinah v tla v bližini gostiteljskih rastlin. Ličinke se prehranjujejo na drobnih ko- reninicah gostiteljskih rastlin, a s tem večinoma ne povzročajo opazne škode. Ličinke se po dveh levitvah prenehajo prehranjevati, se zalezejo nekoliko globlje v tla, kjer si napravijo posteljico, zaključijo tretjo razvojno stopnjo in se zabubijo. Drugi rod razvije v drugi polovici junija in v juliju ter tretjega v avgustu in septembru. Ko nastopi jesenski hlad, se odrasli osebki zavlečejo pod rastlinske ostanke na tleh, kjer prezimijo (SANNINO in sod. 1984; SANINNO in sod., 1986, POLLINI, 1998). Nabor gostiteljskih rastlin tobakovega bolhača je razmeroma širok, a ima najraje različne gojene in divje razhudnike. Tako v Ameriki kot tudi v Evropi ga navajajo kot zelo pomembnega škodljivca tobaka, paradižnika in jajčevca, nekoliko manj krompirja, paprike in fižola. Poleg teh so med gostiteljskimi rastlinami še: pasje zelišče (Solanum nigrum), navadni kristavec (Datura stramonium), repa (Brassica rapa), volčje jabolko (Physalis spp.) in še nekatere druge (SANNINO, 1986). Poškodbe povzročajo predvsem odrasli osebki pri dopolnilnem prehranjevanju na listih, na G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 149 Acta entomologica slovenica, 25 (2), 2017 150 Slika 9: Epitrix hirtipennis - poškodbe na listu jajčevca Fig. 9: Epitrix hirtipennis - injuries on an eggplant leaf Slika 10: E. hirtipennis - imago (n.v. 1,5-2,0 mm) Fig. 10: E. hirtipennis - adult (size 1.5-2.0 mm) katerih povzročajo majhne izjedine premera 1 - 2 mm (slika 9). Škodljiv je zlasti prvi rod spomladi na sejancih in mladih rastlinah, ko je listov še razmeroma malo. V tej razvojni stopnji gojenih gostiteljskih rastlin je načrtno zatiranje pogosto nujno, zlasti pri tobaku. Pri slednjem je navadno treba preprečevati tudi poškodbe na razvitih listih prek poletja. V Sloveniji bi vrsta utegnila povzročati težave predvsem v Slovenski Istri in morda tudi na Goriškem, zlasti spomladi pri vzgoji sadik in pri mladih rastlinah paradižnika in jajčevca na vrtovih in njivah. Euxesta notata (Wiedemann 1830) [Diptera, Ulidiidae] Obravnavani material: Gradno (UL89), 3. 7. 2015; Miren (UL98), 31. 8. 2016; Vogrsko (VL08), 24. 6. 2015; Ljubljana - Bežigrad (VM60), 14. 8. 2015 (leg. Š. Mo- dic); Valburga (VM51), 26. 8. 2015 (leg. J. Razinger) in E. pechumani Curran 1938 [Diptera, Ulidiidae] Obravnavani material: Ljubljana - Bežigrad (VM60), 28. 5. 2015, 3. 7. 2015 in 5. 8. 2015 (leg. J. Razinger) Rod muh Euxesta Loew, 1868 je povsem ameriškega porekla. Še posebno vrstno pester je ta rod v tropskih območjih Srednje in Južne Amerike. Dve vrsti tega rodu sta tudi v evropski favni, a sta bili obe že v prejšnjem stoletju zaneseni iz Severne Amerike. To sta vrsti E. pechumani Curran 1938 in E. stigmatias Loew 1873. Vrsta E. pechumani je bila dejansko prej najdena v Evropi kot v Ameriki, a je bila napačno določena kot E. nitidiventris Loew 1873 (BEZZI, 1921). Šele precej pozneje je bila ta vrsta opisana pod zdaj veljavnim imenom na podlagi vzgojenih primerkov iz New Yorka (CURRAN, 1938). Pozneje sta bili v palearktični regiji opisani še dve vrsti iz rodu Euxesta, E. stackelbergi Krivosheina et Krivosheina iz Turkmenistana in E. freyi Krivosheina et Krivosheina z Azorskih otokov (KRIVOSHEINA & KRIVOSHEINA, 1997), a se je izkazalo, da so njune razlikovalne značilnosti znotraj meja morfološke variabilnosti vrste E. pechumani in sta zato pozneje obe imeni poniknili na raven si- nonimov te vrste (KAMENEVA, 2000). Ličinke te vrste živijo pod skorjo brestov (Ulmus spp.) (CURRAN, 1938). V Evropi je že splošno razširjena v številnih državah (GREVE & KAMENEVA, 2017). Vrsta E. stigmatias je bila v Evropi doslej najdena samo v Bolgariji. V Ameriki, od koder izvira, je znana pod imenom "Cornsilk fly" - muha koruznih laskov. Njene ličinke povzročajo občasno občutne poškodbe pri koruzi (NUESSLY & CAPINERA, 2001). V okviru sistematičnega nadzora plodove vinske mušice (Drosophila suzukii [Mat- sumura 1931]) v Sloveniji med letoma 2011 in 2016 se je na prehranske pasti sadnega ali vinskega kisa ali mešanice kisa in vina poleg plodove vinske mušice ujelo tudi ve- liko drugih vrst muh, med drugimi tudi vrste iz rodu Euxesta. Najdba vrste E. pechu- mani je bila glede na njeno razširjenost v srednji Evropi pričakovana (GREVE & KA- MENEVA, 2017). Toda vsi osebki, čeprav zelo podobni, vendarle že po barvi zadnjih členov zadka in po obliki oviskapta niso bili enaki, in očitno je postalo, da gre za neko drugo vrsto. To je potrdila tudi disekcija genitalnega segmenta samcev, ki so si sicer barvno vsaj na prvi pogled nerazločljivo podobni. Po dostopnih ključih za dolo- čanje vrst rodu Euxesta ter opisov posameznih vrst (CURRAN, 1935; KRIVOSHEINA & G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 151 KRIVOSHEINA, 1997) so raziskovani primerki povsem ustrezali le vrsti E. notata (Wie- demann 1830) (slika 12). Pojavljanje te vrste v Evropi je bilo prvič omenjeno šele pred kratkim v Franciji (SKUHRAVÁ & sod., 2010). Tudi na nekaterih spletnih forumih se že nekaj časa pojavljajo odlične fotografije in video posnetki te vrste iz Italije in Nemčije (Diptera.info, 2013; Wikimedia Commons, 2015), a potrditvenih objav za Evropo nisem našel. E. notata je v Ameriki znana pod imenom "Spotted root fly". Prehranjevala naj bi se z razpadajočimi ostanki čebule in drugih rastlinskih ostankov (ORMSBY & POTTINGER, 2009). V prej omenjenih spletnih forumih so kot prehranski substrati navedeni pasji in tudi človeški iztrebki. Ker so vrste iz rodu Euxesta nove za favno Slovenije, dodajam poenostavljen di- hotomni ključ, ki naj služi kot pomoč pri razlikovanju v Evropo zanesenih vrst. Za določitev rodu se uporabi ključ v delu STEYSKAL (1993). 1 Krila s štirimi temno rjavimi prečnimi progami (za zdaj potrjena samo v Bolga- riji!)..................................................................................................... E. stigmatias 1* Krila prozorna z dvema rjavima pegama; apikalna (trikotne oblike) in sredinska na vrhu subkostalnega polja (slika 11 in 12 - puščica) .........................................2 2 Zadek se končuje s široko sploščeno leglico (oviscapt); ta je na prehodu v zadek razločno zažeta (slika 11 in 12). Samice ..............................................................3 2* Zadek na koncu zaobljen, enobarvno črn z zelenkastim ali modrikastim kovin- skim odsevom. Samci ........................................................................................... 4 3 Prehod med zadkom in leglico živo rumeno obarvan (tergiti 5 in 6 ter osnova le- glice); sredinska rjava pega na krilih sega navznoter največ do druge radialne žile (R2+3) (slika 12 - puščica)...................................................................E. notata 3* Zadek enobarvno črn z zelenkastim ali modrikastim kovinskim odsevom; sre- dinska rjava pega na krilih sega vsaj do tretje radialne žile (R4+5), redkeje čez njo...................................................................................................... E. pechumani 4 Sredinska rjava pega na krilih sega navznoter največ do druge radialne žile (R2+3) (slika 12 - puščica); paritvene klešče (surstylus) na vrhu priostrene (slika 14). ........................................................................................................... E. notata 4* Sredinska rjava pega na krilih sega vsaj do tretje radialne žile (R4+5), redkeje celo do mediane žile (M); paritvene klešče (surstylus) na vrhu odsekano zao- bljene (slika 13)................................................................................. E. pechumani Zaključki Za vseh pet zgoraj obravnavanih vrst velja, da je to le prva dokumentirana zabeležka njihovega pojavljanja v Sloveniji. Vse so bile najdene bolj ali manj naključno, zato je njihova stvarna razširjenost neznana in zagotovo širša kot je zabeležena v tem prikazu (slika 15). Pri večini obravnavanih vrst ni pričakovati, da bi lahko povzročale opaz- nejše gospodarske in okoljske težave, če jih presojamo po sedanjem poznavanju nji- hove bionomije in razvojne dinamike pri nas. Resnejši škodljivec bi utegnil postati le tobakov bolhač (Epitrix hirtipennis) pri pridelavi paradižnika in jajčevca, zlasti v zgodnji razvojni fazi in pri vzgoji sadik, ko so rastline še malo olistane. Acta entomologica slovenica, 25 (2), 2017 152 G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 153 Slika 11: E. pechumani - samica (puščica - sredinska pega) Fig. 11: E. pechumani - female (arrow - median spot) Slika 12: E. notata - samica (puščica - sredinska pega) Fig. 12: E. notata - female (arrow - median spot) Acta entomologica slovenica, 25 (2), 2017 154 Slika 13: E. pechumani - sam- čeve paritvene klešče (surstylus) - desni krak Fig. 13: E. pechumani - male's right surstylus Slika 14: E. notata - samčeve paritvene klešče (surstylus) - desni krak Fig. 14: E. notata - male's right surstylus Literatura Baugnée J.-Y., 2003: Sur la présence en Belgique du Cicadellidae Kyboasca maligna (Walsh, 1862) et du Psyllidae Cacopsylla fulguralis (Kuwayama, 1907) (He- miptera Homoptera). Bulletin de la Société royale belge d’Entomologie 139: 72- 73. Blackman R.L. & Eastop V.F., 1994: Aphids on the World’s Trees. CAB Interna- tional, Wallingford, 987 str. Baker E. A. & Martin J. H., 2011: Prociphilus fraxinifolii (Hemiptera: Aphididae), a species new to Britain. British Journal of Entomology and Natural History, 24(4): 221-223. Bezzi M., 1921: Un dittero nordamericano del gen. Euxesta stabilito in Italia. Bollettino del Laboratorio di Zoologia generale e agraria della R. Scuola superiore d’Agri- coltura in Portici, 15: 223-225. Brelih S., Döberl M., Drovenik B. & Pirnat A., 2003: Gradivo za favno hroščev (Coleoptera) Slovenije; Polyphaga: Chrysomeloidea (=Phytophaga): Chrysome- lidae: Alticinae. Scopolia 50: 279 str. Burckhardt D. & Mühlethaler R., 2003: Exotische Elemente des Schweizer Blattf- lohfauna (Hemiptera, Psylloidea) mit einer Liste weiterer potentieller Arten. Mitteilungen der Entomologischen Gesellschaft Basel 53(4): 98-110. G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 155 Slika 15: Dokumentirani pojavi petih novih tujerodnih vrst žuželk v Sloveniji Fig. 15: Documented occurrences of the five new alien insects in Slovenia Cocquempot C., 2008: Un nouveau psylle sur pittospore du Japon en France. PHM- Revue horticole 498: 33-36. Cocqempot C. & Germain J.F., 2000: Un nouveau ravageur de l'Eleagnus x ebbingei en France: Cacopsylla fulguralis. PHM-Revue Horticole, 416 (7-8): 32-34. Coeur d’Acier A., Hidalgo N.P & Petrović-Obradović O., 2010: Aphids (Hemip- tera, Aphididae). Chapter 9.2. In Alien Terrestrial Arthropods of Europe (Eds: Roques A, Kenis M, Lees D, Lo´pez-Vaamonde C, Rabitsch W,Rasplus J-Y & Roy D). BioRisk 4: 435-474. Curran C.H., 1935: New American Diptera. American Museum Novitates, 812: 1- 24. Curran C.H., 1938: New American Diptera. American Museum Novitates, 975: 1-7. Döberl M., 1994: Bemerkenswerte Alticinenfunde aus Westeuropa (Col., Chryso- melidae). - Entomologische Nachrichten und Berichte 38: 179-182. Ferre A. & Denis A., 2011: Elements de biologie du psylle de l’elaeagnus Cacopsylla fulguralis (Kuwayama) (Hemipetera : Psyllidae). AFPP – Neuvième conférence internationale sur les ravageurs en agriculture Montpellier, 26. - 27. oktober 2011. Greve L. & Kameneva E. P., 2017: Fauna europaea: Ulidiidae. In Beuk P. & Pape T. Fauna europaea: Brachycera. Fauna Europaea version 2.6 - 29 April 2013. Gruev B. & Döberl M., 2005: General distribution of the flea beetles in the Palaearctic Subregion (Coleoptera, Chrysomelidae: Alticinae). Supplement. Pensoft, Sofija: 239 str. Heie O.E., 1980: The Aphidoidea (Hemiptera) of Fennoscandia and Denmark, Volume 1. General Part. The Families Mindaridae, Hormaphididae, Thelaxidae, Anoe- ciidae, and Pemphigidae. 236 str. Hidalgo N.P. & Durante M. P. M., 2012: First record of Prociphilus (Meliarhizop- hagus) fraxinifolii (Riley)[Hemiptera: Aphididae] in the Iberian Peninsula. Bul- letin OEPP/EPPO 42 (1), 142-145 Jurc M., Černý M., Jurc D., 2012: Prvi nalaz stranog štetnika Ophiomyia kwansonis (Diptera: Agromyzidae) u Europi i njegovo fitosanitarno značenje. http://www.su- mari.hr/sumlist/pdf/201205010.pdf . Ogled: 12.01.2017. Kameneva E.P., 2000: New Synonyms of Euxesta pechumani (Diptera, Ulidiidae). Vestnik zoologii 34 (4-5): 16. Krivosheina M.G. & Krivosheina N.P., 1997: New data on Palaearctic species of the genus Euxesta with description of Euxesta frey sp. n. Zoologičeskij žurnal, 76 (10): 1179-1184. Krsteska V., Dimeska V. & Stojanoski P., 2009: Epitrix hirtipennis Melsh in tabacco. Abstracts of 2009 Coresta Joint Meeting of the Agronomy and Phyto- pathology Study, Rovinj, 15. avgust 2009. Lycouressis, D.P., 1991: Epitrix hirtipennis, a new pest of tabacco in Greece, with notes ot its morphology, bioecology and control. Entomologica Hellenica 9: 81- 85. Acta entomologica slovenica, 25 (2), 2017 156 Malunphy C.P. & Halstead A.J., 2003: Cacopsylla fulguralis (Kumayama), an Asian jumping plant louse (Hemiptera: Psyllidae), causing damage to Eleagnus in Britain. British Journal of Entomology and Natural History, 16, 2, 89-93. Nuessly G.S. & Capinera J.L., 2001: Cornsilk Fly (suggested common name), Eu- xesta stigmatias Loew (Insecta: Diptera: Otitidae). University of Florida, IFAS Extension; EENY-224: 1-8. http://edis.ifas.ufl.edu/pdffiles/IN/IN38100.pdf . Ogled: 31.01.2017 Orlova-Bienkowskaja M. J., 2014: First record of the tobacco flea beetle Epitrix hirtipennis Melsheimer [Coleoptera: Chrysomelidae: Alticinae] in Russia. Bulletin OEPP/EPPO 44 (1): 44-46. Ormsby M. & Pottinger B., 2009: Import Risk Analysis: Onion (Allium cepa Lilia- ceae) Fresh Bulbs for Consumption from China. Ministry of Agriculture and Forestry, New Zealand. file:///C:/Users/PC/Downloads/draft-ira-onions-from- china%20(1).pdf . Ogled: 22.01.2017. Ouvrard D., 2017: Psyl'list - The World Psylloidea Database. http://www.hemip- tera-databases.com/psyllist ogled 22. januarja 2017. Petrović-Obradović O., Tomanović Ž., Poljaković-Pajnik L. & Vučetić A., 2007: An invasive species of aphid, Prociphilus fraxinifolii (Hemiptera, Aphididae, Eriosomatinae), found in Serbia. Archives of Biological Sciences, Belgrade, 59 (1): 9P-10P. Pollini A., 1998: Manuale di entomologia applicata. Edagricole - Edizioni agricole: 1360 str. Remaudiere G. & Ripka G., 2003: Arrivee en Europe (Budapest, Hongrie) du pu- ceron des frenes americains, Prociphilus (Meliarhizophagus) fraxinifolii (He- miptera, Aphididae, Eriosomatinae, Pemphigini). Revue française d'Entomologie (N.S.), 2003,25 (3):152. Sannino L., Balbiani A. & Espinosa B., 1984: Un nuovo fitofago devasta il tabacco nel beneventano: Epitrix hirtipennis Melsh. (Coleoptera, Chrysomelidae). L’In- formatore Agrario 40 (29): 55–57 Sannino L., Balbiani A. & Espinosa B., 1986: Epitrix hirtipennis (Melsh.) su col- tivazioni di tabacco nel Sannio. Biologia e danni. L’Informatore Agrario 42 (11): 121–126. Seljak G., 2013: Dinamika vnosa tujerodnih fitofagnih žuželk in pršic v Slovenijo. Acta Entomologica Slovenica, 21 (2): 85-122. Seljak G., 2013: Hishimonus hamatus Kuoh (Hemiptera: Cicadellidae): a new alien leafhopper in Europe. Acta Entomologica Slovenica, 21 (2): 123-130. Seljak G., 2013: The burr-seed fly, Euaresta aequalis (Loew) (Diptera: Tephritidae), newly recorded in Europe, with new observations on its biology. Studia diptero- logica 20 (1): 31-38. Seljak G., 2015: The bamboo spider mite Aponychus corpuzae Rimando (Acari: Te- tranychidae); first record in the West-Palaearctic. Bulletin OEPP/EPPO 45 (2), 199–204. Skuhravá M., Martinez M. & Roques A., 2010: Diptera. BioRisk 4 (2): 553–602. G. Seljak: Nove tujerodne rastlinojede æuæelke v favni Slovenije 157 Steyskal G.C., 1993: Otitidae. In McAlpine J.F.: Manual of Nearctic Diptera, Vol. 2: 799-808. Otava, Kanada. Stigter H., 2002: Annual Report 2001, Diagnostic Centre, Plant Protection Service, Wageningen: 135 pp. Süss L. & Savoldelli S., 2003: Rinvenimento di Cacopsylla fulguralis (Kuwayama) (Homoptera Psyllidae) in Italia. Bollettino di Zoologia Agraria e di Bachicoltura, Serie II, 35(1): 95-98. Trenchev G. & Tomov R., 2000: Tabacco flea beetle Epitrix hirtipennis (Melsheimer) (Coleoptera, Chrysomelidae), a new serious pest on tabacco in Bulgaria. Yearbook for Plant Protection, Skopje, 11: 61-64. Prejeto / Received: 22. 3. 2017 Acta entomologica slovenica, 25 (2), 2017 158 UNAVAILABILITY OF THE GENUS GROUP NAME MEZAMMIRA (HEMIPTERA: CICADIDAE) Dmitry A. DMITRIEV Illinois Natural History Survey, 1816 S. Oak str., Champaign, IL 61820, USA e-mail: arboridia@gmail.com Abstract – The genus name Mezammira, attributed to Fieber 1876, was recently proposed to classify several Palaearctic cicada species by Gogala, Puissant & Trilar (2017). The availability of the genus name Mezammira is discussed. Fol- lowing the rules of the International Code of Zoological Nomenclature, Mezammira cannot be used as an available name. The genus name Oligoglena Horváth, 1912 status revised is proposed as a substitute name. The following new combinations are recognized: Oligoglena carayoni (Boulard, 1982) comb.nov., Oligoglena filoti (Gogala & Trilar, 2017) comb.nov., Oligoglena flaveola (Brullé, 1833) comb.nov., Oligoglena goumenissa (Gogala, Drosopoulos & Trilar, 2012) comb.nov., Oli- goglena iphigenia (Emeljanov, 1996) comb.nov., Oligoglena parvula (Fieber, 1876) comb.nov., Oligoglena popovi (Emeljanov, 1996) comb.nov., Oligoglena sakisi (Gogala & Trilar, 2017) comb.nov., Oligoglena sibilatrix (Horváth, 1901) comb.nov., Oligoglena tibialis (Panzer, 1798), Oligoglena turcica (Schedl, 2001) comb.nov. KEY WORDS: Mezammira, Cicadivetta, Oligoglena, Heptaglena, cicadas, taxonomy, nomenclature, availability. Izvleček – NERAZPOLOŽLJIVOST IMENA RODOVNE SKUPINE MEZAMMIRA (HEMIPTERA: CICADIDAE) Rodovno ime Mezammira, pripisano Fiebru 1876, so Gogala, Puissant in Trilar (2017) nedavno predlagali za uvrstitev več palearktičnih vrst škržadov. Razpoložljivost rodovnega imena Mezammira je predmet razprave. Po pravilih Mednarodnega pravil- nika zoološke nomenklature ime Mezammira ne more biti uporabljeno kot razpoložljivo ime. Za nadomestno ime je predlagano rodovno ime Oligoglena Horváth, 1912 z revidiranim statusom. Pripoznane so naslednje nove kombinacije: Oligoglena 159 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 159–164 carayoni (Boulard, 1982) comb.nov., Oligoglena filoti (Gogala & Trilar, 2017) comb.nov., Oligoglena flaveola (Brullé, 1833) comb.nov., Oligoglena goumenissa (Gogala, Drosopoulos & Trilar, 2012) comb.nov., Oligoglena iphigenia (Emeljanov, 1996) comb.nov., Oligoglena parvula (Fieber, 1876) comb.nov., Oligoglena popovi (Emeljanov, 1996) comb.nov., Oligoglena sakisi (Gogala & Trilar, 2017) comb.nov., Oligoglena sibilatrix (Horváth, 1901) comb.nov., Oligoglena tibialis (Panzer, 1798), Oligoglena turcica (Schedl, 2001) comb.nov. KLJUČNE BESEDE: Mezammira, Cicadivetta, Oligoglena, Heptaglena, škržadi, tak- sonomija, nomenklatura, razpoložljivost. Introduction Working on the 3i World Auchenorrhyncha Database (Dmitriev, 2003 online), helped to recover several inconsistencies in the Auchenorrhyncha nomenclature (e.g. Dmitriev & Dietrich, 2006, Zahniser, McKamey & Dmitriev, 2012, Dmitriev & McKamey, 2013). Many more are still to be resolved. This paper is dedicated to the genus group name Mezammira which was recently used as a valid genus name for several Palaearctic species of singing cicadas. The name Mezammira was first introduced by Amyot (1847: page 157) for a new species of cicada from Greece. This publication of Amyot was placed on the Official Index of Rejected and Invalid Works in Zoological Nomenclature (ICZN, 2006: Opinion 2165). Gogala, Puissant & Trilar (2017) proposed a resurrection of the genus name Mezammira with a new authorship attributed to Fieber (1876) and placed 11 species, including two new species, into this genus. The authors stated that Fieber (1876) was the first who used Mezammira Amyot as a synonym of Cicadetta Kolenati, 1857 and established an association of this name with Cicadetta flaveola (Brullé, 1833), which could be considered as a type species designation for Mezammira, and thus making it an available name. The authors referred to the International Code of Zoological Nomenclature (ICZN, 1999) Articles 11.6.1, which applies to a name published as a junior synonym and treated before 1961 as an available name and either adopted as the name of a taxon or treated as a senior homonym, it is made available thereby but dates from its first publication as a synonym. For the authorship of this name ICZN Article 50.7 was used: if a scientific name was first published in the synonymy of an available name and became available before 1961 through the provisions of Article 11.6, its author is the person who published it as a synonym, even if some other originator is cited, and is not the person who subsequently adopted it as a valid name. Results Unfortunately, Mezammira Fieber, 1876 cannot be adopted as neither valid nor available name for several reasons: Acta entomologica slovenica, 25 (2), 2017 160 1). According to ICZN Article 11.6.1, to became available, the name first published as a synonym should be treated before 1961 as an available name and adopted as the name of a taxon. “Adopted as the name of a taxon” means that the name should be used as a valid name, and it should be used as valid in a work published before 1961 (see an Example to ICZN Article 11.6.1). The second option provided by ICZN Article 11.6.1 states that the name could be treated as a senior homonym before 1961. Both options are not applicable to Mezammira which was never used as a valid name before the paper of Gogala, Puissant & Trilar (2017), it is not also a senior homonym for another genus group name in Zoology (Nomenclator Zoologicus, 2004 online). The authors state that the name was placed in Nomen- clator Zoologicus by Neave (1940), but according to ICZN Articles 11.5.2 and 23.9.6, a simple listing of the name in a nomenclator must not be taken into account in determining usage of the name. 2). According to ICZN Article 23.3, the synonymy could only be applied to taxa within one nomenclatural group, the family group, genus group or species group. This means, that a genus group name could not be treated as a synonym of a species group name. Fieber (1876) placed Mezammira in the list of synonyms (usages) of Cicadetta flaveola (Brullé, 1833) on page 121 and not in the list of synonyms of Cicadetta, which could be found on the page 60. This is congruent with a modern practice of placing previously used temporary names in the list of synonyms (e.g. “Cicadetta sp. A”, listed as a synonym of a valid species). This act does not establish a synonymy in a strict ICZN (1999) sense. 3). ICZN Article 11.6 states that a name which when first published in an available work was treated as a junior synonym of a name then used as valid is not thereby made available. ICZN Article 11.6.1 provides an exception from this rule. The publication of Amyot (1847) is not an available publication, so the next available publication could potentially fix the availability of the name, if all other ICZN (1999) requirements are fulfilled. The first available paper which cites Mezammira is the paper by Walker (1850), and not Fieber (1876). Walker established a new species name Cicada Mezammira, which was proposed as valid name for Mezam- mira Amyot. Cicada mezammira Walker, 1850 (the initial letter of species name corrected to a lower-case according to the ICZN Article 32.5.2.5) should be con- sidered as an available name with the availability requirements fulfilled by a ref- erence to Amyot’s publication (ICZN Article 13.1.2). The name Cicada mezammira Walker, 1850 was never used as a valid name by subsequent authors. A new revised classification of the genus is proposed in accordance with ICZN Article 23.3.5: if a name in use for a taxon is found to be unavailable or invalid it must be replaced by the next oldest available name from among its synonyms. Gogala, Puissant & Trilar (2017) indicated that if Mezammira cannot be used as an available name, the genus name Oligoglena Horváth, 1912 would take precedence. They also established a new synonymy with the genus name Cicadivetta Boulard, 1982. D. A. Dmitriev: Unavailability of the genus group name Mezammira (Hemiptera: Cicadidae) 161 Family Cicadidae Latreille, 1802 Subfamily Cicadettinae Buckton, 1889 Tribe Cicadettini Buckton, 1889 Oligoglena Horváth, 1912 status revised = Heptaglena Horváth, 1911: 607 (type species: Heptaglena libanotica Horváth, 1911: 607, homonym of Heptaglena Schmarda, 1850: 12, type species: Heptaglena digitata Schmarda, 1850: 12, Rotifera) Oligoglena Horváth, 1912: 606 replacement name for Heptaglena (type species Heptaglena libanotica Horváth, 1911: 607) =Cicadivetta Boulard 1982: 50 syn.nov. (type species: Tettigonia tibialis Panzer, 1798: 5) = Mezammira Gogala, Puissant & Trilar, 2017: 9 nomen nudum Included species Oligoglena carayoni (Boulard, 1982: 103) (orig. gen. Tettigetta) comb.nov. Oligoglena filoti (Gogala & Trilar in Gogala, Puissant & Trilar, 2017: 23) (orig. gen. Mezammira) comb.nov. Oligoglena flaveola (Brullé, 1833: 112) (orig. gen. Tibicen) comb.nov. = Cicada mezammira Walker, 1850: 229 syn.nov. Oligoglena goumenissa (Gogala, Drosopoulos & Trilar, 2012: 7) (orig. gen. Ci- cadivetta) comb.nov. Oligoglena iphigenia (Emeljanov, 1996: 1899) (orig. gen. Cicadetta) comb.nov. Oligoglena parvula (Fieber, 1876: 97) (orig. gen. Cicadetta) comb.nov. Oligoglena popovi (Emeljanov, 1996: 1897) (orig. gen. Cicadetta) comb.nov. Oligoglena sakisi (Gogala & Trilar in Gogala, Puissant & Trilar, 2017: 28) (orig. gen. Mezammira) comb.nov. Oligoglena sibilatrix (Horváth, 1901: 483) (orig. gen. Cicadetta) comb.nov. Oligoglena tibialis (Panzer, 1798: 5) (orig. gen. Tettigonia) comb.nov. Oligoglena turcica (Schedl, 2001: 1287) (orig. gen. Tettigetta) comb.nov. Conclusions The genus group name Mezammira, as it was proposed by Gogala, Puissant & Trilar (2017) and used as an original genus for two new species and as a genus name in several new combinations should be treated as nomen nudum. It fulfils all the formal requirement for an available name, except for the provisions of ICZN Article 16.1: to be available, every new name published after 1999 must be explicitly indicated as intentionally new. The genus group name Mezammira could be described as a new genus group name in the future. Mezammira Amyot, 1847 and Mezammira Gogala, Puissant & Acta entomologica slovenica, 25 (2), 2017 162 Trilar, 2017 both are unavailable names and as such, they do not compete for priority or homonymy with any other existing or future name in zoology (ICZN Article 23.1). Acknowledgements I am thankful to Allen F. Sanborn (Barry University, FL, USA) for his help and contribution in the assembly of the 3i World Auchennorhyncha Database. The work was partially supported by NSF grants: DBI 14-58285 and DEB 16-39601. References Amyot, C.J.B. 1847. Rhynchotes. Ordre deuxième Homoptères. Homoptera. Latr. Entomologie française. Rhynchotes. Méthode mononymique. Annales de la So- ciété Entomologique de France. Paris. (Ser. 2). 5: 143-238. Boulard, M. 1982. Taxa nouveaux pour la faune des cigales de France (Hom.). Bulletin de la Société Entomologique de France. 87: 49–50. Brullé, G.A. 1832. Homoptères. Expédition scientifique de Morée: Section des Sci- ences Physiques, tome III. I re Partie Zoologie Deuxième Section des Animaux Articulés. T. 3., pt. 1. Zoologie par M. Brullé. F. G. Levrault, overall work pub- lished 1832 Buckton, G.B. 1890. Monograph of the British Cicadae, or Tettigiidae, illustrated by more than four hundred coloured drawings. Macmillan. London. 1 (IV): I-vi, xlix-lxxviii, 97-133. pl. C, xxxi-xxxviii. Dmitriev, D.A. 2003. online. 3i World Auchenorrhyncha Database. Web site: http://dmitriev.speciesfile.org/ (Accessed on June 22, 2017) Dmitriev, D.A., Dietrich, C.H. 2006. Nomenclatural changes and notes in the tribe Erythroneurini (Homoptera: Cicadellidae: Typhlocybinae). Zootaxa. 1120: 35– 39. Dmitriev, D.A., McKamey, S.H. 2013. Nomenclatural changes in Cicadellidae: Ty- phlocybinae and Delphacidae (Homoptera). ZooKeys. 277: 109–113. (doi:10.3897/zookeys:277.4273). Emeljanov, A.F. 1996. Two new Cicadidae species similar to Cicadetta tibialis (Ho- moptera, Cicadidae). Zoologicheskiy Zhurnal. 75: 1897–1900. (In Russian, trans- lated into English in Entomological Review (Washington). 76: 1054–1057.) Fieber, F.X. 1876. Les Cicadines d'Europe d'après les originaux et les publications les plus récentes. Deuxième partie: Descriptions des espèces. Traduit de l'allemand par Ferd. Reiber (sic). Revue et Magasin de Zoologie pure et appliquée. Strassburg. (Sér. 3). 3: 11-268. Gogala, M., Drosopoulos, S., Trilar, T. 2012. Cicadivetta goumenissa, a new cicada species from Peloponesos, Greece (Hemiptera: Cicadidae). Acta Entomologica Slovenica. 20(1): 5-16. Gogala, M., Puissant, S., Trilar, T. 2017. Revision and resurrection of the genus name Mezammira Fieber, 1876 (Hemiptera: Cicadidae) with special focus on its D. A. Dmitriev: Unavailability of the genus group name Mezammira (Hemiptera: Cicadidae) 163 species from Greece and the description of two new species. Acta Entomologica Slovenica. 25(1): 5-64. Horváth, G. 1901. Hémiptères du voyage de M. Martinez Escalera dans l'Asie- Mineure. Természetrajzi Füzetek. Budapest. 24: 469-485. Horváth, G. 1911. Hemiptera nova vel minus cognita e regione palaearctica. II. An- nales Historico-Naturales Musei Nationalis Hungarici. Budapest. 9: 573-610. Horváth, G. 1912. Miscellanea Hemipterologica. X. Cicadidarum genera palaearctica. Annales Historico-Naturales Musei Nationalis Hungarici. Budapest. 10: 602- 606. ICZN, 1999. International Code of Zoological Nomenclature. Fourth Edition adopted by the International Union of Biological Sciences. London: The International Trust for Zoologial Nomenclature. XXIX + 306 p. ICZN, 2006. Opinion 2165 (Case 3327) Amyot, Méthode mononymique (1845-1847): correction to Opinion 686. Bulletin of Zoological Nomenclature. 63(4): 284- 285. Kolenati, F.A. 1857. "Homoptera Latreille. Leach. Gulaerostria Zetterstedt." in Meletemata Entomologica. Mémoires de la Société Impériale des amis des sci- ences naturelles. Moscou. 30: 399-429. Latreille, P.A. 1802. Famille troisième. Cicadaires; Cicadariae. Histoire naturelle, générale et particulière des Crustacés et des Insectes: ouvrage faisant suite aux oeuvres de Leclerc de Buffon, et partie du cours complet d'histoire naturelle rédigé par C.S. Sonnini, membre de plusieurs Sociétés savantes. F. Dufart. Paris. 3: i-xii, 256-263. Neave, S.A. 1940. Nomenclator Zoologicus. A list of the names of genera and sub- genera in zoology from the tenth editions of Linnaeus 1758 to the end of 1935. The Zoological Society of London. 3: i–ii, 1–1065. Nomenclator Zoologicus 2004 online. Nomenclator Zoologicus. Volume 1-10. A list of the names of the genera and subgenera in zoology from the tenth edition of Linnaeus 1758 to the end of 2004. Web site: http://ubio.org/NomenclatorZo- ologicus/ (accessed on June 22, 2017) Panzer, G.W.F. 1798. Tettigonia tibialis. Faunae Insectorum Germanicae initia: oder Deutschlands Insectem. 59: 5. Schedl, W. 2001. Eine neue Singzikaden aus der Türkei, Tettigetta turcica nov. spec.(Cicadoidea: Tibicinidae). Linzer Biologische Beitrage. 33: 1287–1290. Schmarda, L.K. 1850. Neue Formen von Infusorien. Denkschriften der Kaiserlichen Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Klasse. 1(2): 1-14. Walker, F. 1850. List of the specimens of homopterous insects in the collection of the British Museum. Order of Trustees. London. 1: 1-260. pl. 1-2. Zahniser, J.N., McKamey, S.H., Dmitriev, D.A. 2012. Nomenclatural changes and notes in the Deltocephalinae (Hemiptera: Cicadellidae). Pan-Pacific Entomologist. 88(3): 356-364. Received / Prejeto: 27. 6. 2017 Acta entomologica slovenica, 25 (2), 2017 164 SYNANTHEDON THERYI LE CERF, 1916 (LEPIDOPTERA: SESIIDAE) ON THE COAST OF NORTHWESTERN ISTRIA Željko PREDOVNIK Polzela, Ob železnici 82, 3313 Polzela, Slovenija, e-mail: predovnik1@gmail.com Abstract – New faunistic data on the distribution of the clearwing moth species Sy- nanthedon theryi Le Cerf, 1916 are given. The species was first recorded in Slovenia by M. Kastelic on 6.9.2015 in Škocjanski zatok. Between 18 June and 26 August 2017, altogether one hundred and twenty-eight males were trapped in pheromone traps at all research locations in the Slovenian coastal area. Some exuvia, larvae and cocoons were also collected. S. theryi is an allochthonous species and is new to the fauna of Slovenia. It has also been found on the Italian side of the border. Its discovery, distribution and biology are described. KEY WORDS: Sesiidae, Synanthedon theryi, Slovenia, Istria. Izvleček – STEKLOKRILEC SYNANTHEDON THERYI LE CERF, 1916 (LEPI- DOPTERA: SESIIDAE) NA OBALI SEVEROZAHODNE ISTRE Podane so nove favnistične informacije o razširjenosti steklokrilca vrste Synant- hedon theryi Le Cerf, 1916. V Sloveniji je vrsto prvič zabeležil M. Kastelic 6. 9. 2015 v Škocjanskem zatoku. Med 18. junijem in 26. avgustom 2017 je bilo ujetih skupno sto osemindvajset samcev v feromonske pasti na skoraj vseh krajih raziskovanja na slovenskem obalnem področju. Zbranih je bilo tudi nekaj eksuvijev, ličink in ko- konov. S. theryi je alohtona vrsta in je novost za favno Slovenije. Najdena je bila tudi na italijanski strani meje. Podan je opis njenega odkritja, razširjenost in biologija. KLJUČNE BESEDE: Sesiidae, Synanthedon theryi, Slovenija, Istra. Introduction During recent research of the Sesiidae fauna of Slovenia, S. theryi was collected as the 18th confirmed species of the genus Synanthedon in this country (own data). It 165 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 165–176 is not listed in the check list of Slovenian Microlepidoptera (Lesar & Govedič, 2010). It is morphologically most similar to Synanthedon vespiformis (Linnaeus, 1761), one of the widely distributed species in the country (author’s unpubl. data). S. theryi have so far had a Western Mediterranean distribution, limited to stands of its host plant, various species of tamarisk (Tamarix spp.). Until recently, it was known from restricted areas of Algeria, Morocco, Portugal, from the Balearic Islands and from Spain (Laštůvka & Laštůvka, 2001), where it is probably widespread (Laštůvka & Laštůvka, 2014). Recent discoveries have shown its prevalence in Atlantic and Mediterranean regions of France and in Corsica (Lepinet.fr, 2016, online). In Italy, S. theryi was not listed by Bertaccini & Fiumi (2002). However, M. Mossenta (2016, online) found one specimen in 2015 near Palmanova in the Friuli-Venezia Giulia region (Lepiforum, 2016, online; D. Bartsch, e-mail communication), not far from the sites of the new finds mentioned in this publication. According to D. Bartsch, S. theryi and its host plant may have been introduced into northern Italy together with imported garden Tamarix plants. In the same year Miroslav Kastelic (Animalia, 2016, online) found and photographed the first known specimen of this species in the natural reserve of Škocjanski zatok in the Slovenian coastal area. Further research has shown that the species is relatively common in this part of the Adriatic coast and recent finds of the species in Muggia near Trieste confirm its presence in northern Italy. It seems that S. theryi had spread its area of distribution from the west to the southeast, towards the Dalmatian coast. Abbreviations: m a.s.l: meters above sea level, pher. trap: pheromone trap, pher. old api: pheromone old apiformis, ♂: male. Methods Two methods of the work were used to explore the fauna in the field. One was the traditional method of searching for old exit holes, remains of cocoons, exuviae and feeding traces of larvae under the bark of the trunks and in branches of trees and bushes of Tamarix sp. (Tamaricaceae). The second was the method of attracting males to the most suitable synthetic pheromones, which were placed directly in the field and in pheromone traps. In addition to certain other factors, the success of directly placed pheromones strongly depends on the relevant weather conditions in the field, which were sometimes too windy during the time of the research. Special emphasis was given to working with pheromone traps as the most effective way for fauna research, which enables more comprehensive detection and research of local populations, their phenology and population dynamics. Pheromone traps were baited with pheromones originally developed for Sesia apiformis (Clerck, 1759), in this article under the name old apiformis and produced by Plant Research International (PRI) in Wageningen, The Netherlands. Pühringer & Ryrholm (2000) highly recom- mended old apiformis pheromones containing Z3,Z13-18:OH as the sole component for S. theryi. Each pheromone was placed singly in transparent plastic delta glue traps (RAG-Trap), which had an exchangeable bottom coated with the sticky material Acta entomologica slovenica, 25 (2), 2017 166 poliizobutilen, and in funnel plastic traps (UNI-Trap) with poison (TUS). Traps were hung at selected localities with common Tamarix sp. trees and bushes, sometimes on single trees, on various ruderal sites, and were fixed to tree branches at heights of 1.5 m to 3 m above the ground. One to seven traps were placed at each locality, with a distance of 2-25 meters between each. Specimens trapped in delta traps were later soaked in clean gasoline and prepared. Captured and reared specimens were identified by analysis of their external morphological characters. Representative specimens have been deposited in the private collection of the author. The nomenclature used is according to Laštůvka & Laštůvka (2001). Biology and Phenology There is not much reported about S. theryi in the literature. The host plants of oli- gophagous larvae are various Tamarix species (Tamaricaceae). According to Jogan (2001), T. gallica L. and T. dalmatica Baum. grow in the Slovenian coastal area. Lar- vae, often several of them together, live one year in the trunks and branches, especially in damaged places. Their presence is sometimes observable externally from traces of excrement in the bark. During its one-year development, the larva forms a short, broad and flat tunnel between the bark and the wood, where it pupates in a cocoon of saw-dust and silk beneath the bark. The flight season of adults occurs from May to Æ. Predovnik: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria 167 Fig. 1: Male resting on the trunk of Tamarix sp. Koprsko primorje, near Ankaran, 23.7.2017. September (De Freina, 1997; Špatenka et al., 1999; Laštůvka et al., 2000; Laštůvka & Laštůvka, 2001, 2014; Lepinet.fr, 2016, online). According to Pühringer & Ryrholm (2000), males respond to pheromones between 11.00 to 16.00 h. Results in the Slovenian coastal area confirmed the high efficiency of the pheromone old apiformis for S. theryi. Males were caught in the traps between 9.45 am to 13.30 pm, on free hanging pheromones, between 11.40-12.57 h. The species was present throughout the whole research period, from 18.6. until 26.8.2017; and taking into account the first find on 6.9.2015, up to early September. Judging by the number of trapped males, the peak of activity was determined as being between late July and early August. Results and Discussion The investigated coastal area lies in the most northwestern part of the Istrian peninsula in the gulf of Trieste/Trst, in the northeast Adriatic Sea. The most important criterion in selecting research sites was the presence of Tamarisk (Tamarix spp.). The investigated area was divided into four research sites. Three of them, Koprsko primorje, Strunjan and Sečovlje saltpans, cover the Slovenian coast in its entire length. The fourth was on the Italian side of the state border, in Muggia bay. A total of twenty traps of both types baited with old api pheromone lures were Acta entomologica slovenica, 25 (2), 2017 168 Fig. 2: Micro-habitat of the species on the beach. Muggia/Milje, San Rocco, 23.7.2017. Æ. Predovnik: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria 169 Fig. 3: Males of S. theryi in a delta pheromone trap RAG. Muggia/Milje, San Rocco, 23.7.2017. Fig. 4: Micro-habitat of the species in Sečovlje saltpans, 10.8.2017. hung across the entire research area. Traps were examined differently, during the same day on examination and after one to nine days (mostly early in the afternoon), between 18.6. and 26.8.2017. Some exuviae, old cocoons and larvae were also found. 1. Koprsko primorje. The first research site was the largest and, at the same time, the most explored area in the two and a half months of research. It covered a four-kilometer wide part of the coastal flat in the hinterland of the port city of Koper, comprising the territory along the channel of the Rižana river near Ankaran over Bo- nifika, with the northernmost and southern edge of the natural reserve of Škocjanski zatok on the periphery of Sermin. In the periods between 18.6. and 5.8. and 15.- 26.8.2017, a variable number up to a maximum of twenty traps of both types together were hung at a maximum of ten selected locations with groups or single trees of Tamarix spp., such as various ruderal sites along the roads, near the edges of a swamp, fields and parking lots, on construction sites and landfills. On 10.7. some of the traps were moved to the next trap locations along the coast. Trapped male specimens were recorded at seven locations, with a distance of four kilometers between the two most distant locations. In a number of cases, numerous males of the clearwing species Bembecia ichneumoniformis ([Denis & Schiffermüller], 1775), less of Pyropteron chrysidiformis (Esper, 1782), and in one case S. vespiformis were trapped together with males of S. theryi in the same pheromone traps, baited with pheromone old api. Other clearwing species that we found in the same area were S. apiformis, Paranthrene tabaniformis (Rottemburg, 1775), Synanthedon formicae- formis (Esper, [1783]), S. melliniformis (Laspeyres, 1801), S. myopaeformis (Borkhausen, 1789), Bembecia pavicevici Toševski, 1989 and B. uroceriformis (Treitschke, 1834). Acta entomologica slovenica, 25 (2), 2017 170 Fig. 5: Male of S. theryi in funnel pheromone trap UNI. Koprsko primorje, near Ankaran, 10.7.2017. 2. Strunjan. The next research site covered the edges of Strunjan lagoon Stjuža, and saltpans in Strunjan landscape park. Five pheromone traps of both types were hung at three selected locations on the coast in the time between 10. 7. and 5.8.2017. 3. Sečovlje. This is by far the southernmost research site of S. theryi, separated by a distance of 31 km from the most northerly site of finds in Muggia/Milje. It covered the edge of the Sečovlje saltpans (Lera) in Sečovlje landscape park in Piran bay, not far from the border with Croatia. Seven pheromone traps of both types were hung in the time from 10.7.-5.8.2017, at two selected locations along a bike path and the marshy edges of the salt pans with groups of Tamarix sp. Æ. Predovnik: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria 171 Fig. 6: This-year’s exuviae with a cocoon under the open bark of Tamarix sp. 20.8.2017. 4. Muggia/Milje, Friuli-Venezia Giulia, Italy. The last research site was situated on the Italian side of the state border, in Muggia bay, near the port city of Trieste/Trst. The town of Muggia/Milje is the most northwestern and, at the same time, the only Istrian town on the Italian side of state border. Four pheromone traps of the RAG type were hung in the time between 10.7. and 5.8.2017 at two selected locations. The first location was located directly on the beach, next to the port of San Rocco, the other next to a shopping center in the town. Finds: SLO: Koprsko primorje, Ankaran, along the channel of the Rižana river, near a parking place, 45°34’05.7”N 13°45’008”E, 0.8 m a.s.l., 5.-10.7., 1♂, 13.7., 13.15- Acta entomologica slovenica, 25 (2), 2017 172 Fig. 7: Strongly attacked Tamarix sp. Exit holes are marked with yellow arrows, open larval chambers (with the remains of cocoons) with red arrows. Škocjanski zatok -Stanjolski zaliv, 20.8.2017. 13.43 h, 1♂, 13.-15.7., 1♂, 15.7., 12.10-12.32 h, 1♂, 15.-22.7., 9♂, 23.7., 12.40-13 h, 1♂ and five old larvae traces with rests of cocoons on a site of a branch with a di- ameter of 60 mm, 23.-29.7., 3♂, 29.7., 7.30-14.05 h, 2♂, 29.7.-5.8., 6♂, 5.8., 8.30-12 h, 1♂, all in pher. trap UNI, pher. old api, 15.8.2017, 3♂, pher. old api, 12.48-12.57 h. SLO: Koprsko primorje, Ankaran, along the channel of the Rižana river, near fields, 45°34’01.7”N 13°45’41.6”E, 0.2 m a.s.l., 14.5., fresh feeding trace of larvae, opened by birds; 25.6., 9.44 h, 1♂, 30.6.-5.7., 1♂, 5.-10.7., 1♂, 10.-13.7. 2017, 1♂, 15.-20.8. 2017, 1♂, all in pher. trap UNI, pher. old api. SLO: Koprsko primorje, Ankaran, Sermin, truck stop by the river Rižana, 45°33’27.9”N 13°45’29.2”E, 0 m a.s.l, 5.-10.7.2017, 1♂, pher. trap UNI, pher. old api. SLO: Koprsko primorje, Bertoki, Sermin, under the viaduct Bonifica, 45°33’18.9”N 13°45’17.4”E, 1.4 m a.s.l., 18.-25.6., 1♂, 30.6.-5.7., 1♂, 5.-10.7., 1♂, 10.-13. 7.2017, 1♂, all in pher. trap RAG, pher. old api. Æ. Predovnik: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria 173 Fig. 8: Micro-habitat of the species near Ankaran, 10.7.2017. SLO: Koprsko primorje, Bertoki, Sermin, near railway station Luka Koper, 45°33’12.4”N 13°45’26.9”E, 0 m a.s.l, 5.-10.7., 2♂, 13.-15.7., 1♂, 23.-29.7., 11♂, 29.7-5.8., 13 ♂, all in trap UNI, pher. old api, 15.8.2017, 1♂, pher. old api, 11.43 h. SLO: Koprsko primorje, Bertoki, Škocjanski zatok, northern edge of the swamp, 45°33’11.2”N 13°45’20.2”E, 0.4 m a.s.l., 18.-25.6., 1♂, 5.-10.7., 5♂, 10.-13.7., 3♂, 13.-15.7., 3♂, 15.-22.7., 3♂, 23.-29.7., 4♂, 29.7-5.8., 14 ♂, 15.8., empty cocoon under the bark, 2♂, 11-13.30 h, 15.-20.8., 5♂, 20.-26.8.2017, 4♂, all in pher. trap UNI, pher. old api. SLO: Koprsko primorje, Koper, Škocjanski zatok - Stanjolski zaliv, southern edge of the swamp, 45°33’11.2”N 13°45’20.2”E, 2 m a.s.l., 10.-13.7., 4♂: 2♂, pher. trap UNI, pher. old api, and 2♂, pher. trap RAG, pher. old api, 13.-15.7., 1♂, pher. trap UNI , pher. old api, 15.-23.7., 2♂: 1♂, pher. trap UNI, pher. old api, and 1♂, pher. trap RAG, pher. old api, 23.-29.7., 3♂, 29.7.-5.8., 2♂, all in pher. trap UNI, pher. old api, 15.8., more old exit holes, 5 exuviae and 3 larvae, 26.8.2017, old exit hole and one exuviae, all under the bark of Tamarix sp. SLO: Strunjan-Stjuža, edge of the lagoon, parking, 45°31’55.8”N 13°36’17.5”E, 1 m a.s.l., 15.-23.7. 2017, 1♂, pher. trap RAG, pher. old api. SLO: Strunjan-Stjuža, edge of the saltpans, near road, 45°31’49.5”N 13°36’25.7”N, 23.-29.7. 2017, 1♂, pher. trap UNI, pher. old api Acta entomologica slovenica, 25 (2), 2017 174 Fig. 9: Map of finds. SLO: Sečovlje, saltpans (Lera) 45°28’48.2”N 13°37’14.1”E, 0 m a.s.l., 13.-15.7., 1♂, 15.-23.7., 1♂, 29.7.-5.8. 2017, 1♂, all in pher. trap UNI, pher. old api. ITA: Friuli-Venezia Giulia, Muggia/Milje, San Rocco, beach near Porto, 45°36’28.5”N 13°45’24.6”E, 1.5 m a.s.l., 15.-23.7., 3♂, 23.-29.7., 1♂, 29.7.-5.8.2017, 4♂, all in pher. trap RAG, pher. old api. Results in the field of the research show the general presence of S. theryi at almost any site with tamarisk and it appears to be present exclusively in places with Tamarix sp. Where both types of pheromone trap were set in the same location, significantly more males were caught in the UNI pheromone traps. There was a decline in the number of trapped specimens in traps from the north towards the south. Comparing the number of trapped specimens at the four locations in Koprsko primorje between 10.7. and 5.8. a total of 91 specimens were found in only four available traps, while in Strunjan only two specimens (in five traps) and in the most southern research site in Sečovlje saltpans only three specimens (in seven traps) were caught. This evidently smaller number of trapped males, despite suitable habitats with a number of host plants in Sečovlje and Strunjan, is probably related to the spread of the species towards the south-east. However, the larger number of trapped male specimens on the Slovenian coast indicates the probable frequency of S. theryi in unexplored areas with tamarisk, in the interior of the Primorska region, as well as in the north of the Apennine peninsula in Italy. According to Villar et al. (2012) T. dalmatica grows as an endemic on the Balkan peninsula and on parts of the Apennine peninsula, so it is also possibly prevalent along the Adriatic coast on the Croatian side. Acknowledgment I would like to thank Daniel Bartsch for his useful information about S. theryi, as well as Stanislav Gomboc and Tomaž Seliškar for permission to use their software for processing the faunistic data. References Animalia: obtained 20.6.2016 from http://www1.pms-lj.si/animalia/galerija.php?load =2380. Bertaccini, E., Fiumi, G., 2002: Bombici e Sfingi d’Italia (Lepidoptera: Sesioidea) 4: 181 pp., 8 pl. Lepiforum: obtained 23.2.2016 from http://www.lepiforum.de/1_forum.pl?md=read; id=142850. Freina, J. J. de, 1997: Die Bombyces und Sphinges der Westpalaearktis (Insecta, Lepidoptera) 4. Sesioidea: Sesiidae.– 431 pp 31 pls, 27 pls. München Jogan, N., (ed.), 2001: Gradivo za Atlas flore Slovenije. Center za kartografiranje favne in flore, Miklavž na Dravskem polju. Laštůvka, Z., Laštůvka, A., 2001: The Sesiidae of Europe. Apollo Books, Stenstrup. 9 colour stills, 245 S. Æ. Predovnik: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria 175 Laštůvka, Z., Laštůvka, A., 2014: Sesiidae of the Iberian Peninsula, new records and distributional analysis (Insecta: Lepidoptera).– SHILAP Revista de Lepi- dopterología, 42(168): 559-580. Laštůvka, Z., Bläsius, R., Bartsch, D., Bettag, E., Blum, E., Laštůvka, A., Lin- genhöle A., Petersen, M., Riefenstahl H. & Spatenka, K., 2000: Zur Kenntnis der Glasflügler Spaniens (Lepidoptera: Sesiidae).– SHILAP Revista de Lepidop- terología, 28(110): 227-237. Lesar, T., Govedič, M., 2010: Check list of Slovenian Microlepidoptera.– Natura Sloveniae, 12(1): 35-125. Lepinet.fr: obtained 20.6.2016 from https://www.lepinet.fr/especes/nation/lep/? e=p&id=17205. Pühringer, F., Ryrholm, N., 2000: Pheromonanflug europäischer Glasflügler (Le- pidoptera, Sesiidae).– Mitteilungen der Entomologischen Arbeitsgemeinschaft Salzkammergut, 3: 65-72. Špatenka, K., Gorbunov, O., Laštůvka, Z., Toševski, I & Arita, Y., 1999: Hand- book of Palaearctic Macrolepidoptera, Volume 1, Sesiidae- 569 pp pls, 489 colour stills. Gem publishing company, Wallingford, – England. Villar J. L., Alonso M. Á., Juan A. & Crespo M. B., 2012: Does Tamarix dalmatica (Tamaricaceae) occur in Spain? Anales del Jardín Botánico de Madrid, 69(2): 253-258. Received / Prejeto: 6. 10. 2017 Acta entomologica slovenica, 25 (2), 2017 176 CHEMICAL COMPOSITION, TOXICITY AND SIDE EFFECTS OF THREE ESSENTIAL OILS ON BREVICORYNE BRASSICAE (L.) (HEMIPTERA: APHIDIDAE) ADULTS UNDER LABORATORY CONDITIONS Mahdieh MOUSAVI 1, Shahram ARAMIDEH1 and Nariman MAROUFPOOR*2 1- Department of Plant Protection, Faculty of Agriculture Science, Urmia University, Urmia, Iran. 2- Young Researchers and Elite Club, Boukan Branch, Islamic Azad University, Boukan, Iran. * Corresponding author, e-mail: nmaroufpoor@yahoo.com Abstract - The insecticidal effects of essential oils namely Eucalyptus camaldulensis, Azadirachta indica and Thuja occidentalis has been studied on Brevicoryne brassicae adults as fumigants by determining LC50 and LT50 values. LC50 value of Eucalyptus, Azadirachtin and Northern White Cedar fruit essential oils on cabbage aphid adults were 15.12, 38.79 and 56.02 ml / liter of air, respectively. The LT50 value of the three essential oils on cabbage aphid adults were 10.57, 11.90 and 13.86 hours, respectively. Regression analysis showed a significant relationship between log-concentrations and probit of mortality of T. occidentalis, E. camaldulensis and A. indica essential oils with R2 (0.9995), (0.9779) and (0.9835), respectively. In essential oils of Euca- lyptus, Azadirachtin and Northern White Cedar fruit 18, 35 and 22 components were identified by GC-MS analysis. According to the insecticidal properties of the essential oils on the cabbage aphid, the use of these oils as a safe pesticide is recommended. KEY WORDS: Cabbage aphid, Eucalyptus, Azadirachta, Thuja, Insecticidal effect Izvleček – KEMIJSKA SESTAVA, TOKSIČNOST IN STRANSKI UČINKI TREH ETERIČNIH OLJ NA ODRASLE MOKASTE KAPUSOVE UŠI (BREVICORYNE BRASSICAE (L.)) (HEMIPTERA: APHIDIDAE) V LABORATORIJSKIH RAZ- MERAH 177 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 177–190 Insekticidne učinke eteričnih olj vrst Eucalyptus camaldulensis, Azadirachta indica in Thuja occidentalis smo preizkušali na odraslih mokastih kapusovih ušeh (Brevico- ryne brassicae) kot fumigante z določevanjem vrednosti LC50 in LT50. Vrednosti LC50 eteričnih olj evkalipta, azadirahtina in plodov ameriškega kleka na mokastih kapusovih ušeh so bile 15,12, 38,79 in 56,02 ml / liter zraka. Vrednosti LT50 treh ete- ričnih olj na odraslih mokastih kapusovih ušeh so bile 10,57, 11,90 in 13,86 ur. Re- gresijska analiza je pokazala pomembno povezavo med koncentracijo eteričnih olj vrst T. occidentalis (0,9995), E. camaldulensis (0,9779) in A. indica (0,9835) in smrtnostjo. V eteričnih oljih evkalipta, azadirahtina in plodov ameriškega kleka smo z analizo GC-MS določili 18, 35 in 22 sestavin. Glede na insekticidne lastnosti eteričnih olj na mokaste kapusove uši priporočamo uporabo teh olj kot varnih pesti- cidov. KLJUČNE BESEDE: mokasta kapusova uš, Eucalyptus, Azadirachta, Thuja, insekticidni učinek Introduction Cabbage aphid, B. brassicae is one of the most important cabbage pests in Iran especially in the central areas and many other parts of the world that causes conside- rable damage to the product (Khanjani, 2005; Rivnay, 2013). This aphid has a high reproductive potential and increases its population quickly; resulting in direct damage with the formation of large colonies, feeding on plant sap and causing complexity and deformity of the leaves. On the other hand, with the transfer of plant pathogenic viruses, it can lead to indirect damage (Ellis et al., 2000; Schliephake et al., 2000). Chemical control is an effective and widely used method in pest control (Pavela, 2009). These compounds have adverse effects such as environmental pollution, toxicity to non-target organisms; causing resistance in pests and leaving left overs (Ogendo et al., 2003). Development of alternative strategies for avoiding pesticides to manage phytosanitary problems is an important need mostly for agricultural activity and tendency worldwide is a growing to organic productions (Willer et al., 2010; Marques-Francovig et al., 2014). These problems prompted the researchers to look for alternative and environment-friendly control methods to control the pests (Ta- pondjou et al., 2005; Laznik et al., 2010; Gombač and Trdan, 2014). The good candi- dates for the substitution of chemical pesticides are essential oils that many studies and patents for their use have been published in recent years (Isman, 2000; Chiasson et al., 2001). Active ingredients derived from plant extracts and essential oils have fumigation effects on pests (Maciel et al., 2010). The essential oils extracted from aromatic plants, due to the intense aroma and low toxicity for mammals, lack of a si- gnificant adverse impact on the environment and acceptance among the general public, are considered very useful compounds for pest control (Isman, 2000). Currently, more than 3000 essences have been identified, of which 300 essential oils and some of their compounds have become commercially important in the pharmaceutical, agricultural, food, health and cosmetics and perfume industries (Bakkali et al., 2008). Acta entomologica slovenica, 25 (2), 2017 178 Plant essences have repellent (Ogendo et al., 2008), insecticide (Papachristos and Stamopoulos, 2002), fungicide (Kotan et al., 2008), antibacterial (Matasyoh et al., 2007), antivirus properties (Schuhmacher et al., 2003), deter oviposition, stop deve- lopment (Papachristos and Stamopoulos, 2002) and have anti-nutritional properties (García et al., 2007). There have been many studies in this area, for example, the lethal effect of plant essential oils Artemisia indica (Adr. Juss) against the cabbage aphid, B. brassicae have been studied (Pavela, 2005). In another experiment, Ebrahimi et al. (2013) showed that essential oil of azadirachtin (Azadirachta indica Adr. Juss.), eucalyptus (Eucalyptus camaldulensis Dehnh.) and laurel (Laurus nobilis L.) has si- gnificant lethal effect on cotton aphid; in which azadirachtin and eucalyptus had more of a lethal effect compared with laurel. Since ancient times, the natives of Ame- rica have used different parts of northern white cedar such as leaves, fruit and bark of the shrub as drug and pesticides and reports of their use have been presented as books or articles during the investigation of researchers over the years (Moussa Kéïta et al., 2001). Considering the advantages of using compounds of natural origin to control plant pests, the insecticidal effect of three essences of eucalyptus, azadirachtin and northern white cedar fruit on cabbage aphid was investigated. Materials and methods Extraction and analysis of essential oil Fruits of northern white cedar T. occidentalis were collected from existing trees in the Entomology area of Plant Protection Department of Agriculture Faculty of Urmia University (latitude 37.53°N, 45.08°E and 1320 m above sea level) in the spring of 2014. To prepare the essential oil, fresh fruits were crushed and 100 g of it was extracted mixed with 700 ml of distilled water at a temperature of 100°C using Clevenger apparatus in 90 minutes. Obtained essences were dehydrated with Rota Evaporator-Buchi (R-3000) to a dark brown color and refrigerated in 2 ml glass con- tainers with aluminum covers till use. Used Eucalyptus E. camaldulensis and Azadi- rachtin A. indica essential oils in the tests were purchased and analyzed by Barij Esans pharmaceutical company, Kashan. Insect rearing The cabbage aphid rearing was started with aphids collected from gardens planted with cabbage in Urmia University. It was reared on red cabbage plant, in 27 ± 2°C and 65 ± 5% RH under a 16:8 (L:D) photoperiod. Cabbage plants and colony of the aphids were maintained in a greenhouse. Determination of the 50% Lethal Concentration (LC50) Different concentrations of the essential oils were poured on filter paper in three replications based on Kéita et al. (2001) method and placed on the inside of the 305 ml glass container lids, each containing 20 adult insects with food (red cabbage leaves). Also, in order to prevent direct contact between insects and the essential oil, M. Mousavi, S. Aramideh, N. Maroufpoor: Chemical composition, toxicity and side effects of three essential oils 179 a net was placed between the lid and container. Container lids were tightened using special tapes (parafilm). In the tests, counting was done after 24 hours. Insects that did not show any movement when nearing the brush were considered dead. Distilled water was used in the control treatment. Determining the 50% lethal time (LT50) An experiment was designed to determine the median effective time to kill 50% of adults (LT50 values) at different concentration of T. occidentalis, E. camaldulensis and A. indica essential oils. The mortality was assessed by direct observation of the insects in 5 times including 2, 7, 12, 18 and 24 hour to obtain the desired LT50. Time- mortality data for each experiment were analyzed with time as the explanatory variable to derive estimated hours for 50% adult mortality. Data analysis To determine the LC50 from six concentrations (five concentrations and control) after 24 hours of essential oil administration and control mortality correction according to Abbott (1925) formula and to determine the LT50, an oil concentration at various time points (2, 7, 12, 18 and 24 hours) was used and analyzed statistically with Probit program at SPSS (V. 20) software. All tests were conducted by fumigation method. In order to draw the graph and its regression lines, we used the SigmaPlot (V. 12.3) software. The dendrogram similarity scales that are produced by the SPSS (V. 20) software range from zero (most similarity) to 25 (least similarity). The method used was ward’s (Ward, 1963). Cluster validity index called Silhouette index is applied to validate the result by MATLAB Software (Rousseeuw, 1987). Results According to the gas chromatography (GC/MS) analysis of essential oils, it was determined that E. camaldulensis essential oil is composed of 18 compounds, the most important of which are 1,8-cineole (39.91%), Para-cymene (13.98%) and gamma- terpinen (12.25%) (Table 2). A. indica essential oil is composed of 35 compounds, the most important ones are Azadirachtin (26.55%), Palmitic acid (18.87) and Dea- cetylazadirachtinol (17.22%) (Table 1). T. occidentalis essential oil is composed of 22 compounds and their most important ones are α-thujene (47.68%) and Fenchone (15.13%) (Table 2). Regression analysis showed a significant relationship between log-concentrations of E. camaldulensis and A. indica and T. occidentalis essential oils and probit of mortality with R2 (0.9779, 0.9835 and 0.9995), respectively (Fig. 1). The results sho- wed that the essential oils of eucalyptus, azadirachtin and northern white cedar fruit, controlled adult cabbage aphids well for 24 hours and the used concentration of these essential oils on insects in this test are very low. LC50 values of the essential oils were equal to 15.12, 38.79 and 56.02 ml per liter of air, respectively (Table 3). The results obtained from the bioassay test of used LC50 concentration of eucalyptus, azadirachtin Acta entomologica slovenica, 25 (2), 2017 180 and northern white cedar fruit essential oils at 3, 6, 12, 18 and 24 hours showed that eucalyptus oil at a concentration of 15.12 ml per liter of air at 10.57 hours, azadirachtin oil at a concentration of 38.79 ml per liter of air at 11.90 hours and northern white cedar fruit oil at the concentration of 56.02 ml per liter of air at 13.86 hours caused the death of 50% of adult cabbage aphids (Table 4). Component analysis and hierarchical cluster In order to study the likeness and relationship between essential oils (EO) compo- sition of the previously reported samples and our studied oils, hierarchical cluster analysis (HCA) and component analysis were carried out based on similar components M. Mousavi, S. Aramideh, N. Maroufpoor: Chemical composition, toxicity and side effects of three essential oils 181 No. Compound Retention Index Percentage No. Compound Retention Index Percentage 1 α-Cadinol 780 3.12 19 2,3-Butanedithiol 910 0.094 2 β-Pinene 902 2.11 20 Germacrene B 680 3.63 3 Anthracene 1311 0.093 21 α-Cadinene 788 0.18 4 Ethyl butyrate 2165 0.17 22 Azadirachtin 730 26.55 5 dl-limonene 1059 0.211 23 Sabinene 842 0.147 6 Eugenol 651 10.92 24 Isobutyl stearate 764 0.209 7 Phytol 621 10.84 25 α–Terpineol 1386 0.22 8 b-Caryophyllene 1455 0.113 26 Thiophene, 2-methoxy 878 0.078 9 Palmatic acid 1978 18.87 27 Deacetylazadirachtinol 561 17.22 10 Spathulenol 1572 0.172 28 Limonene 1521 0.188 11 Verdiflorol 1991 0.162 29 Lauric acid 1186 0.302 12 1-Octadecanol 1381 0.077 30 Valencene 1772 0.170 13 Carvone 796 0.231 31 α-Methyl-1,4-benzenedimethanol 926 0.096 14 Methyl stearate 1422 0.151 32 Aristolene 1561 0.201 15 β-Germacrene 1621 0.088 33 Cadalene 1569 0.108 16 Ethyl linoleate 2108 0.105 34 Ethyl palmitate 1822 0.076 17 1,2,4- Trithiolane, 3,5-diethyl 1359 0.11 35 Other Compounds - 2.608 18 Pentacosane 652 0.38 Table 1. Chemical composition of A. indica essential oil by gas chromatography (GS/MS). of reported EO in the papers. Due to lack of enough similar compounds for A. indica, generating dendrogram was infeasible for it. The dendrogram for the HCA results using Ward´s clustering algorithm for E. camaldulensis is shown in Figure 2. Accor- ding to the Silhouette index the best clustering for E. camaldulensis is five clusters (Table 5). In the first group (Cluster I), represented by six samples, α-pinene and ter- pinen-4-0l were the main components (Pappas and Sheppard-Hanger, 2000; Chalchat Acta entomologica slovenica, 25 (2), 2017 182 T. occidentalis E. camaldulensis No. Compound RetentionIndex Percentage No. Compound Retention Index Percentage 1 α-pinene 1004 3.14 1 α-pinene 945.35 7.45 2 4-terpineol 1548 2.03 2 α-thujene 934.88 1.3 3 α-terpinene 1149 0.30 3 Trans-Geraniol 1260.66 0.28 4 Linalool 1506 0.17 4 Valencene 1474.60 2.11 5 Camphene 1041 3.38 5 α-copaene-8-ol 1620 4.80 6 α-terpineol 1642 0.45 6 β-pinene 989.92 0.70 7 Limonene 1167 1.97 7 β-Myrcene 994.19 1.32 8 β-thujone 1387 8.51 8 Viridiflorol 1628.82 5.12 9 bornyl acetate 1526 2.74 9 α-Ionone 1365 0.90 10 Sabinene 1094 4.19 10 α-Terpinene 1027.68 0.25 11 p-cymene 1231 1.44 11 1,8-cineole 1050.83 39.91 12 Fenchone 1345 15.13 12 a-phellandrene 1015.29 1.22 13 1,8-Cineole 1450 2.06 13 terpinen-4-o1 1196.04 3.59 14 α-fenchene 1034 1.90 14 alloAromadendrene 1497.35 0.72 15 α-thujone 1373 47.68 15 α-terpineol 1207.11 2.17 16 Myrcene 1139 1.12 16 p-cymene 1039.67 13.98 17 Thymol 2110 0.27 17 γ-terpinene 1071.90 12.25 18 γ-terpinene 1210 1.11 18 Other Compounds - 1.93 19 Borneol 1644 0.39 20 β-pinene 1079 0.21 21 α-terpinylacetate 1640 1.43 22 Terpinolene 1246 0.18 Table 2. Chemical composition of T. occidentalis and E. camaldulensis essential oils by gas chromatography (GS/MS). et al., 2001; Verdeguer et al., 2009; Grbović et al., 2010; Khubeiz et al., 2016; Knezevic et al., 2016). Cluster II with one sample has α-pinene and p-Cymene as the major compounds (Cheng et al., 2009). Cluster III included two samples with high β- Pinene (Oyedeji et al., 2000; Coffi et al., 2012). Our studied EO formed an individual group from the previous reports, characterized by 1,8-cineole (Cluster IV). In Cluster V with one sample, 1,8-cineole was the main component (Faria et al., 2011). M. Mousavi, S. Aramideh, N. Maroufpoor: Chemical composition, toxicity and side effects of three essential oils 183 Fig 1. The relationship between log concentration of three essential oils and probit of percentage mortality after 24 hours. LC95(µL/L air) LC50(µL/L air) χ 2(df=3) Intercept(a)+5 Slope±SE Totalinsect Plant species 68.91 (51.88-105.24) 15.12 (12.89-17.52) 1.64 2.06 0.28±2.50 300 E. camaldulensis 138.97 (106.86-207.49) 38.79 (34.29-44.01) 1.24 0.28 0.34±2.97 300 A. indica 150.62 (122.98-203.98) 56.02 (50.88-61.94) 0.05 -1.69 0.42±3.83 300 T. occidentalis Table 3. Estimated values of LC50 and LC95 of E. camaldulensis, A. indica and T. occidentalis essential oils on adult cabbage aphid after 24 hours. The Fig. 3 dendrogram presents the results from T. occidentalis. The dendrogram was divided into three groups, according to the Silhouette index (Table 6). Our study with one sample was the first cluster in the dendrogram with α-thujone as the main component (Hosseinzadeh et al., 2014). Cluster II is divided into two groups (Cluster II 1-2). Cluster II-1 included the ones with high α-thujone and β-thujone (Akkol et al., 2015; Jasuja et al., 2015); while Cluster II-2 with one sample with α-thujone and sabinene as the major constituents (Lis et al., 2016). Cluster III with one sample had α-thujone and β-thujone as the main compounds (Szołyga et al., 2014). Acta entomologica slovenica, 25 (2), 2017 184 LT95(h) LT50(h) χ2(df=3) Intercept(a) Slope±SE Total insect Plant species 38.16 (20.84-471.56) 10.57 (5.89-18.24) 12.41 1.98 0.30±2.95 300 E. camaldulensis 40.60 (31.10-57.26) 11.90 (10.49-13.53) 7.35 1.68 0.32±3.09 300 A. indica 47.69 (36.76-70.29) 13.86 (12.22-15.86) 4.19 1.5 0.34±3.07 300 T. occidentalis Table 4. Estimated values of LT50 and LT95 of E. camaldulensis, A. indica and T. occidentalis essential oils on adult cabbage aphid. Cluster 2 3 5 Index 0.7029 0.7999 0.9105 Table 5. The result of average Silhouette index for E. camaldulensis. Fig 2. Dendrogram generated of cluster analysis from E. camaldulensis EOs based on the chemical compounds of the investigated sample (A) and those from the articles. Discussion Aphid control is typically done using three main categories of pesticides containing organophosphates, carbamates and pyrethroids. Long-term use of these pesticides has caused resistance in aphids and made their control difficult. Usage of essential oils to control aphids is essential due to increased reports of pest resistance to chemical pesticides and remainder of these toxins in products and environmental pollution (Sadeghi et al., 2009). The major components of T. occidentalis, E. camaldulensis and A. indica essential oils in our research were the same as in previous studies and differences between this analysis and other works can be related to the time and place of the plant harvested that might influence the chemical composition of the plant essential oil (Kurose and Yatagai, 2005; Tsiri et al., 2009; Ashraf et al., 2010; Alzogaray et al., 2011; Szołyga et al., 2014). In this study, the insecticidal properties of three essential oils of eucalyptus (E. ca- maldulensis), azadirachtin (A. indica) and northern white cedar fruits (T. occidentalis) have been studied on cabbage aphid. The results of this study show that these essential oils have a lethal effect on the tested pest and mortality rate increased with increasing concentration of oil. In recent years, extensive surveys have been carried out in order to verify the insecticidal properties of essential oils and their compounds on various pests and a number of them have had favorable effects. For example, Mareggiani et al. M. Mousavi, S. Aramideh, N. Maroufpoor: Chemical composition, toxicity and side effects of three essential oils 185 Cluster 2 3 4 Index 0.7029 0.7999 0.9105 Table 6. The result of average Silhouette index for T. occidentalis. Fig. 3. Dendrogram generated of cluster analysis from T. occidentalis EOs based on the chemical compounds of the investigated sample (A) and those from the articles. (2008) proved the high insecticidal activity of Eucalyptus globules essential oil against cotton aphid. In this regard, Ebrahimi et al. (2013) tested the plant essence of azadi- rachtin (A. indica), eucalyptus (E. camaldulensis) and laurel (L. nobilis) to control cotton aphid and concluded that azadirachtin and eucalyptus had more of a lethal effect than laurel. Also, Kraiss and Cullen (2008) studied the insecticide effect different formulations of essential oil of azadirachtin on bean aphid nymphs Aphis glycines Matsumura and came to the conclusion that the essence has had a high controlling effect on the pest. The findings of this study correspond with the results of the experi- ments done by Mareggiani et al. (2008), Ebrahimi et al. (2013) as well as Kraiss and Cullen (2008), stating that essential oils of eucalyptus and Azadirachtin show a signi- ficant lethal effect on aphids from the family Aphididae. In another experiment, con- trolling effect of azadirachtin and eucalyptus leaf powder on bean beetle was studied and the results showed that they have significant insecticidal and egg-killing effect (Javaid and Mpotokwane, 1997). Also Moussa Kéïta et al. (2001) proved the insecticidal effect of northern white cedar fruit essential oil with kaolin powder on the eggs and adults of bean beetle, Callosobruchus maculatus F. The results of these two studies are consistent with the results of this research on the toxicity of eucalyptus, azadirachtin and northern white cedar fruit on pests. In an experiment, Işık and Görür (2009) proved the effect of plant essential oils against the cabbage aphid (B. brassicae). Also, Pavela (2005) reported the lethal effect of Artemisia indica plant essential oil against the cabbage aphid (B. brassicae) and insecticidal activity of both laurel (L. nobilis) and eucalyptus (E. camaldulensis) essential oil on this pest (B. brassicae), respectively. Therefore, the obtained results by this research correspond with the findings of these researchers on insecticidal activity of essential oils such as eucalyptus on cabbage aphid. According to recent findings, various studies have been done on the insecticidal activity of essential oils on various species of aphids from the family Aphididae inclu- ding the insecticidal effect of 23 plant essential oils and their main compounds against adult turnip aphid (Lipaphis pseudobrassicae Davis) (Sampson et al., 2005), respiratory toxicity of 12 Mediterranean species essential oils against pea aphids (Acyrthosiphon pisum Harris) and green peach aphid (Myzus persicae Sulzer) (Digilio et al., 2008), in- tense insecticidal activity of a number of plant essences against foxglove aphid (Au- lacorthum solani Kalt.) (Gorski and Tomczak, 2010). The results of this study indicate the high insecticidal activity of these essential oils on adult cabbage aphid. Therefore, a place can be reserved for these essences in pest control programs for the effective control of pests as well as reducing the use of chemical insecticides. References Abbott, W., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265-267. Akkol, E.K., İlhan, M., Demirel, M.A., Keleş, H., Tümen, I., Süntar, İ., 2015. Thuja occidentalis L. and its active compound, α-thujone: Promising effects in the treatment Acta entomologica slovenica, 25 (2), 2017 186 of polycystic ovary syndrome without inducing osteoporosis. Journal of Ethnop- harmacology 168, 25-30. Alzogaray, R.A., Lucia, A., Zerba, E.N., Masuh, H.M., 2011. Insecticidal activity of essential oils from eleven Eucalyptus spp. and two hybrids: lethal and sublethal effects of their major components on Blattella germanica. Journal of Economic En- tomology 104, 595-600. Ashraf, M., Ali, Q., Anwar, F., Hussain, A.I., 2010. Composition of leaf essential oil of Eucalyptus camaldulensis. Asian Journal of Chemistry 22, 1779-1786. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M., 2008. Biological effects of es- sential oils–a review. Food and Chemical Toxicology 46, 446-475. Chalchat, J.C., Kundakovic, T., Gomnovic, M., 2001. Essential Oil from the Leaves of Eucalyptus camaldulensis Dehn., Myrtaceae from Jerusalem. Journal of Essential Oil Research 13, 105-107. Cheng, S.S., Huang, C.G., Chen, Y.J., Yu, J.J., Chen, W.J., Chang, S.T., 2009. Che- mical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresource Technology 100, 452-456. Chiasson, H., Bélanger, A., Bostanian, N., Vincent, C., Poliquin, A., 2001. Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. Journal of Economic Entomology 94, 167-171. Coffi, K., Soleymane, K., Harisolo, R., Balo, T.B., Claude, C.J., Pierre, C., Gilles, F., Antoine, A.C., 2012. Monoterpene hydrocarbons, major components of the dried leaves essential oils of five species of the genus Eucalyptus from Côte d’Ivoire. Na- tural Science 4, 106-111. Digilio, M.C., Mancini, E., Voto, E., De Feo, V., 2008. Insecticide activity of Mediter- ranean essential oils. Journal of Plant Interactions 3, 17-23. Ebrahimi, M., Safaralizade, M.H., Valizadegan, O., Amin, B.H.H., 2013. Efficacy of three plant essential oils, Azadirachta indica (Adr. Juss.), Eucalyptus camaldulensis (Dehn.) and Laurus nobilis (L.) on mortality cotton aphids, Aphis gossypii Glover (Hem: Aphididae). Archives of Phytopathology and Plant Protection 46, 1093-1101. Ellis, P.R., Kift, N.B., Pink, D.A.C., Jukes, P.L., Lynn, J., Tatchell, G.M., 2000. Va- riation in resistance to the cabbage aphid (Brevicoryne brassicae) between and within wild and cultivated Brassica species. Genetic Resources and Crop Evolution 47, 395-401. Faria, J., Lima, A., Mendes, M., Leiria, R., Geraldes, D., Figueiredo, A., Trindade, H., Pedro, L., Barroso, J., Sanches, J., 2011. Eucalyptus from Mata Experimental do Escaroupim (Portugal): evaluation of the essential oil composition from sixteen species. Acta Horticulturae 925, 61-66. García, M., Gonzalez-Coloma, A., Donadel, O.J., Ardanaz, C.E., Tonn, C.E., Sosa, M.E., 2007. Insecticidal effects of Flourensia oolepis Blake (Asteraceae) essential oil. Biochemical Systematics and Ecology 35, 181-187. Gombač, P., Trdan, S., 2014. The efficacy of intercropping with birdsfoot trefoil and summer savoury in reducing damage inflicted by onion thrips (Thrips tabaci, Thy- M. Mousavi, S. Aramideh, N. Maroufpoor: Chemical composition, toxicity and side effects of three essential oils 187 sanoptera, Thripidae) on four leek cultivars. Journal of Plant Diseases and Protection 121, 117-124. Gorski, R., Tomczak, M., 2010. Usefulness of natural essential oils in the control of foxglove aphid (Aulacorthum solani Kalt.) occurring on eggplant (Solanum melon- gena L.). Biochemical Engineering Journal 17, 345-349. Grbović, S., Orčić, D., Couladis, M., Jovin, E., Bugarin, D., Balog, K., Mimica- Dukić, N., 2010. Variation of essential oil composition of Eucalyptus camaldulensis (Myrtaceae) from the Montenegro coastline. Acta Periodica Technologica 41, 151- 158. Hosseinzadeh, J., Farazmand, H., Karimpour, Y., 2014. Insecticidal Effects of Thuja Occidentalis L. Essential Oil on Adults of Lasioderma Serricorne F. (Col.: Anobiidae) Under Laboratory Conditions. Iranian Journal of Medicinal and Aromatic Plants 30, 123-133. Işık, M., Görür, G., 2009. Aphidicidial activity of seven essential oils against the cabbage aphid, Brevicoryne brassicae L.(Hemiptera: Aphididae). Munis Entomology and Zoology 4, 424-431. Isman, M.B., 2000. Plant essential oils for pest and disease management. Crop Protection 19, 603-608. Jasuja, N.D., Sharma, S., Choudhary, J., Joshi, S.C., 2015. Essential Oil and Important Activities of Thuja orientalis and Thuja occidentalis. Journal of Essential Oil Bearing Plants 18, 931-949. Javaid, I., Mpotokwane, S., 1997. Evaluation of plant material for the control of Callos- obruchus maculatus (Fabricius) (Coleoptera: Bruchidae) in cowpea seeds. African Entomology 5, 357-359. Kéita, S.M., Vincent, C., Schmit, J.P., Arnason, J.T., Bélanger, A., 2001. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.)[Coleoptera: Bruc- hidae]. Journal of Stored Products Research 37, 339-349. Khanjani, M., 2005. Vegetable pests in Iran. Bu-Ali Sina University Publishing, Hamadan, Iran. Khubeiz, M.J., Mansour, G., Zahraa, B., 2016. Chemical Compositions and Antimi- crobial Activity of Leaves Eucalyptus camaldulensis Essential Oils from Four Syrian Samples. International Journal of Current Pharmaceutical Research 7, 251-257. Knezevic, P., Aleksic, V., Simin, N., Svircev, E., Petrovic, A., Mimica-Dukic, N., 2016. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their in- teractions with conventional antimicrobial agents against multi-drug resistant Aci- netobacter baumannii. Journal of Ethnopharmacology 178, 125-136. Kotan, R., Kordali, S., Cakir, A., Kesdek, M., Kaya, Y., Kilic, H., 2008. Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC. ex Benth. Biochemical Systematics and Ecology 36, 360-368. Kraiss, H., Cullen, E.M., 2008. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Ap- hididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae). Pest Ma- nagement Science 64, 660-668. Acta entomologica slovenica, 25 (2), 2017 188 Kurose, K., Yatagai, M., 2005. Components of the essential oils of Azadirachta indica A. Juss, Azadirachta siamensis Velton, and Azadirachta excelsa (Jack) Jacobs and their comparison. Journal of Wood Science 51, 185-188. Laznik, Ž., Tóth, T., Lakatos, T., Vidrih, M., Trdan, S., 2010. Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam. Journal of Plant Diseases and Protection 117, 129-135. Lis, A., Liszkiewicz, R., Krajewska, A., 2016. Comparison of chemical composition of the essential oils from different parts of Thuja occidentalis L.‘Brabant’and T. occi- dentalis L.‘Smaragd’. Herba Polonica Journal 62, 20-27. Maciel, M., Morais, S., Bevilaqua, C., Silva, R., Barros, R., Sousa, R., Sousa, L., Brito, E., Souza-Neto, M., 2010. Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet. Parasitol 167, 1-7. Mareggiani, G., Russo, S., Rocca, M., 2008. Eucalyptus globulus (Mirtaceae) essential oil: efficacy against Aphis gossypii (Hemiptera: Aphididae), an agricultural pest. Revista Latinoamericana de Química 36, 16-21. Marques-Francovig, C.R., Mikami, A.Y., Dutra, V., Carvalho, M.G., Picareli, B., Ventura, M.U., 2014. Organic fertilization and botanical insecticides to control two-spotted spider mite in strawberry. Ciência Rural 44, 1908-1914. Matasyoh, L.G., Matasyoh, J.C., Wachira, F.N., Kinyua, M.G., Muigai, A.W.T., Mukiama, T.K., 2007. Chemical composition and antimicrobial activity of the es- sential oil of Ocimum gratissimum L. growing in Eastern Kenya. African Journal of Biotechnology 6, 760-765. Moussa Kéïta, S., Vincent, C., Schmidt, J.-P., Thor Arnason, J., 2001. Insecticidal ef- fects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus [Coleoptera: Bruchidae]. Canadian Journal of Plant Science 81, 173-177. Ogendo, J., Belmain, S., Deng, A., Walker, D., 2003. Comparison of toxic and repellent effects of Lantana camara L. with Tephrosia vogelii Hook and a synthetic pesticide against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) in stored maize grain. International Journal of Insect Science 23, 127-135. Ogendo, J., Kostyukovsky, M., Ravid, U., Matasyoh, J., Deng, A., Omolo, E., Kariuki, S., Shaaya, E., 2008. Bioactivity of Ocimum gratissimum L. oil and two of its con- stituents against five insect pests attacking stored food products. Journal of Stored Products Research 44, 328-334. Oyedeji, A.O., Ekundayo, O., Olawore, O.N., Koenig, W.A., 2000. Essential oil com- position of two varieties of Eucalyptus camaldulensis Dehn. from Nigeria. Journal of Essential Oil Research 12, 102-104. Papachristos, D., Stamopoulos, D., 2002. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say)(Coleoptera: Bruc- hidae). Journal of Stored Products Research 38, 117-128. Pappas, R.S., Sheppard-Hanger, S., 2000. Essential oil of Eucalyptus camaldulensis Dehn. from south Florida: a high cryptone/low cineole eucalyptus. Journal of Essential Oil Research 12, 383-384. M. Mousavi, S. Aramideh, N. Maroufpoor: Chemical composition, toxicity and side effects of three essential oils 189 Pavela, R., 2005. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76, 691-696. Pavela, R., 2009. Larvicidal effects of some Euro-Asiatic plants against Culex quinque- fasciatus Say larvae (Diptera: Culicidae). Journal of Parasitology Research 105, 887-892. Rivnay, D., 2013. Field crop pests in the Near East. Springer Netherlands. Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53-65. Sadeghi, A., Van Damme, E.J., Smagghe, G., 2009. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. Insect Science 9, 1-8. Sampson, B.J., Tabanca, N., Kirimer, N.e., Demirci, B., Baser, K., Khan, I.A., Spiers, J.M., Wedge, D.E., 2005. Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Management Science 61, 1122-1128. Schliephake, E., Graichen, K., Rabenstein, F., 2000. Investigations on the vector tran- smission of the Beet mild yellowing virus (BMYV) and the Turnip yellows virus (TuYV). Journal of Plant Diseases and Protection 107, 81-87. Schuhmacher, A., Reichling, J., Schnitzler, P., 2003. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phyto- medicine 10, 504-510. Szołyga, B., Gniłka, R., Szczepanik, M., Szumny, A., 2014. Chemical composition and insecticidal activity of Thuja occidentalis and Tanacetum vulgare essential oils against larvae of the lesser mealworm, Alphitobius diaperinus. Entomologia Expe- rimentalis et Applicata 151, 1-10. Tapondjou, A., Adler, C., Fontem, D., Bouda, H., Reichmuth, C., 2005. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Products Research 41, 91-102. Tsiri, D., Graikou, K., Pobłocka Olech, L., Krauze-Baranowska, M., Spyropoulos, C., Chinou, I., 2009. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland antimicrobial activity. Molecules 14, 4707-4715. Verdeguer, M., Blázquez, M.A., Boira, H., 2009. Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology 37, 362-369. Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236-244. Willer, H., Yussefi, M., Sorensen, N., 2010. The world of organic agriculture: statistics and emerging trends 2008. International Federation of Organic Agriculture Move- ments (IFOAM) Bonn, Germany and Research Institute of Organic Agriculture (FiBL), Frick, Switzerland. Received / Prejeto: 8. 7. 2017 Acta entomologica slovenica, 25 (2), 2017 190 RESPONSES OF SOMATIC TISSUES OF DEVELOPMENTAL STAGES OF VARIEGATED GRASSHOPPER, ZONOCERUS VARIEGATUS (L.) (ORTHOPTERA: PYRGOMORPHIDAE) TO STARVATION K.O. ADEMOLU*1, O.A. JODA2 and A.A. OSIPITAN1 1-Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria 2- Department of Crop Production, Olabisi Onabanjo University, Ago-Iwoye, Nigeria *corresponding author: kennyademolu@yahoo.com Abstract - Nymphs and adult stage of Zonocerus variegatus respond to environmental stress differently. The response of somatic tissues to 96 hours starvation across the post embryonic developmental stages of Zonocerus was investigated in this study. The organic substances (lipids, glucose and protein) concentrations were measured by standard methods before and after starvation exercise in the somatic tissues (femoral muscles, fat body and haemolymph) and the difference calculated. The adult stage experienced highest weight loss of 0.22g from the initial weight, while the 1st instar stage had the least weight loss of 0.10g from the initial weight. Glucose was the most depleted haemolymph metabolite (0.50-3.40mg/dl) and the 1st instar stage lost the least amount of metabolites. In the fat body, the highest glucose concentration was lost by the adult stage (5.70mg/dl) while the least was loss by the 1st instar stage. Lipids were the most depleted metabolite in the femoral muscles and the adult stage similarly lost the highest concentration. Comparison of means showed this pattern of metabolites loss in the three somatic tissues: glucose>lipids>protein. Despite the highest loss in concentration of metabolites, the adult stage still fared better than other stages of development during starvation because of higher stored reserves. Early instar stages of Z. variegatus are thus less complicated and easier to control than the tough adult stage. KEY WORDS: somatic tissues, starvation, instar, adult stage, Zonocerus variegatus, metabolites 191 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 191–198 Izvleček – ODZIV TELESNIH TKIV RAZVOJNIH STOPENJ KOBILICE ZONO- CERUS VARIEGATUS (L.) (ORTHOPTERA: PYRGOMORPHIDAE) NA STRADANJE Ličinke in odrasla stopnja kobilice Zonocerus variegatus se različno odzivajo na okoljski stres. V tej raziskavi smo preučevali odziv telesnih tkiv postembrionalnih razvojnih stopenj kobilic na 96 ur stradanja. Koncentracije organskih snovi (lipidov, glukoze in proteinov) smo merili s standardnimi metodami pred in po stradanju v telesnih tkivih (stegenskih mišicah, maščobnem telesu in hemolimfi) in izračunali ra- zliko. Odrasla stopnja je doživela največjo izgubo teže, 0,22g, od začetne teže, prva stopnja ličinke pa z 0,10g najmanjšo izgubo teže od začetne. Glukoza je bila najbolj izčrpan hemolimfni metabolit (0,50 – 3,40 mg/dl) in ličinka prve stopnje je izgubila najmanj metabolitov. V maščobnem telesu se je koncentracija glukoze najbolj zman- jšala pri odrasli stopnji (5,70 mg/dl), najmanj pa pri ličinki prve stopnje. Lipidi so bili najbolj izčrpan metabolit v stegenskih mišicah in odrasla stopnja je podobno izgubila največ koncentracije. Skupna primerjava izgube metabolitov v treh telesnih tkivih je pokazala vzorec: glukoza>lipidi>proteini. Kljub največji izgubi koncentracije metabolitov je odrasla stopnja bolje kot druge razvojne stopnje preživela stradanje zaradi več shranjenih zalog. Zgodnje razvojne stopnje Z. variegatus zato nadziramo lažje in z manj zapleti kot zdržljivo odraslo stopnjo. KLJUČNE BESEDE: telesna tkiva, stradanje, razvojne stopnje, odrasla stopnja, Zonocerus variegatus, metaboliti Introduction In Nigeria, Zonocerus variegatus occurs in cultivated land with the nymphs and adult stage sharing same habitat which extends from rainforest zone to Guinea Sa- vannah in the north (Youdeowei, 1974). The life cycle consists of six nymphal stages and adult stage, which is the reproductive stage. Ademolu et al (2013) reported that all nymphal stages together lasted for 111.1 days while female and male adults lived for 127.9 and 101.2 days respectively. Hence, the total life cycle of Z. variegatus was between 210.8 and 237.5 days (Ademolu et al., 2013). Though living in the same habitat, the various developmental stages behave dif- ferently: 1st -3rd instars are gregarious in nature and prefer exclusively Chromolaena odorata while later instars and adult stage feed predominantly on Manihot esculenta and live dispersed (Toye, 1982). Similarly, an initial rise in the concentrations of tissue metabolites was observed during the 1st -5th nymphal stage of Z. variegatus which dropped at the 6th instar and rose again at the adult stage (Ademolu et al., 2007). Muse (2003) observed that starvation had significant influence on the longevity of the adult stage. Likewise, Idowu and Idowu (2001) reported that starvation reduced the volume of the repellent gland obtained from Z. variegatus. In Locusta migratoria, lipid reserves were mobilized from the fat body during starvation, resulting in increase in total haemolymph lipids and decrease in the fat body lipids (Jutsum et al., 1975). Acta entomologica slovenica, 25 (2), 2017 192 Similarly, in L. migratoria and fruit beetles (Paechnoda sinuata) glycogen stores are metabolized during the initial stage of starvation and later switch to lipid and protein metabolism happens when carbohydrates are exhausted (Hill and Goldswothy, 1970; Auerswald and Gade,2000). Starvation process reduced the colony forming unit (cfu) in the midgut, as well as the concentration of organic and inorganic substances in the haemolymph, fat body and femoral muscles of adult Zonocerus (Ademolu et al.,2011). Since the physiology of each stage of development differs, will their tissues respond differently to starvation exercise? This study attempts to examine the response of each developmental stage of Z. variegatus to the process of starvation. Materials and methods Insect samples Newly hatched 1st instar nymphs of Z.variegatus were collected from a known oviposition site on the campus of Federal University of Agriculture, Abeokuta (FU- NAAB), Nigeria. Being gregarious in behavior at this stage, hundreds were collected with the aid of sweep net and were transferred into wire cages (30x30x45 cm). On ar- rival at the insectary of Pure and Applied Zoology, FUNAAB, the insects were sepa- rated into seven cages each containing 60 individual insects and allowed to molt into its different developmental stages. The 2nd instar to the 6th instar stage individuals were maintained on leaves of M. esculenta (cassava) before molting into the next stage of development. Each developmental stage was starved for 96 hours (4 days) at 2nd day after emer- gence following methods adopted by Ademolu et al (2011). Data Collection (a) Body weight The body weight of the insects was taken both before and after the four days star- vation experiment using sensitive digitalized weighing balance (Mettler Toledo, AE, 240). (b) Tissue collection and preparation Three somatic tissues (haemolymph, fat body and femoral muscles) were harvested from Z. variegatus before and after the 96 hours starvation period. Haemolymph was collected following methods described by Ademolu et al (2011). A micro needle was inserted into the mid ventral axis of the thorax and the haemolymph coming out was collected into a calibrated syringe. The sample was centrifuged and the supernatant was kept in refrigerator for further analysis. The peripheral fat body was carefully picked and 0.5g of it was homogenized in 5mls of distilled water and the homogenate was used for analysis. Following the opening of the hind femora, the femoral muscles were removed by forceps into the petri dishes, dried to constant weight at 50oC in an oven at 12 hours K. O. Ademolu, O. A. Joda, A. A. Osipitan: Responses of somatic tissues of developmental stages of variegated grasshopper, 193 and from it, 0.5g was macerated in 0.05M KCl. The homogenate was centrifuged and supernatant obtained was kept in refrigerator until further usage. (c) Analysis of samples The protein, glucose and lipids of the samples were determined following the methods of Henry et al (1997), Baunmniger (1974) and Grant et al (1997) respec- tively. Statistical analysis All analyses were carried out in triplicates and the data were subjected to analysis of variance. Separation of significant means was done by Duncan Multiple Range Test. Results The influence of starvation on the body weight of developmental stages of Z. var- iegatus is shown in Table 1. The body weight of all developmental stages was sig- nificantly (p<0.05) affected by starvation. The weight loss was progressively increasing as the insect passed through the developmental stages with the adult stage having the highest weight loss. Table 2 shows the influence of starvation on the haemolymph metabolites of de- velopmental stages of Z. variegatus. There was a significant difference in the amount of glucose loss due to starvation by the different stages of development with the adult stage recording the highest glucose loss. Although no significant difference was recorded in the amount of protein and lipids loss to starvation by the developmental stages, adult stage had the highest numerical loss. Acta entomologica slovenica, 25 (2), 2017 194 Stages of development 1 st Instar 2nd Instar 3rd Instar 4th Instar 5th Instar 6th Instar Adult Average initial weight 0.10 c 0.12c 0.14c 0.18c 0.30b 0.50b 0.97a Average final weight 0.09 c 0.11c 0.12c 0.16c 0.25bc 0.45b 0.75a Average weight loss 0.01 c 0.01c 0.02c 0.02c 0.05b 0.05b 0.22a Table 1: Effects of 96 hours starvation on the body weight (g) of developmental stages of Zonocerus variegatus (L). Mean values in the same row having the same superscript are not significantly different (p>0.05). The loss of metabolites in the fat body of developmental stages of Z.variegatus after 96 hours starvation is shown in Table 3. There was progressive increase in the amount of metabolites loss as the insect passed through 1st instar stage to the adult stage (except lipids). The results also show that more of glucose and lipids were lost to starvation than protein. The loss of femoral muscle metabolites due to 96 hours starvation of developmental stages of Z.variegatus revealed differences in the amount of metabolites lost by each stage of development (Table 4). The adult stage recorded the highest glucose and lipids loss while the earlier instars had lowest loss. K. O. Ademolu, O. A. Joda, A. A. Osipitan: Responses of somatic tissues of developmental stages of variegated grasshopper, 195 Table 2: Haemolymph metabolites loss during 96 hours starvation of develop- mental stages of Zonocerus variegatus (mg/dl). Developmental Stages Glucose Protein Lipids 1st Instar 1.1b 0.3 1.2 2nd Instar 1.7b 0.2 1.4 3rd Instar 1.8b 0.4 1.3 4th instar 1.2b 0.4 1.1 5th Instar 3.4a 0.3 1.5 6th Instar 0.5c 0.4 0.7 Adult 3.2a 0.6 1.9 Mean values in the same column having the same superscript are not significantly different (p>0.05). Table 3: Fat body metabolites loss during 96 hours starvation of developmental stages of Zonocerus variegatus (mg/dl). Developmental Stages Glucose Protein Lipids 1st Instar 0.9c 0.5b 1.5b 2nd Instar 1.5c 0.4b 2.3b 3rd Instar 1.0c 0.8b 2.5b 4th instar 3.2b 2.7ab 2.1b 5th Instar 3.5b 2.1ab 8.1a 6th Instar 0.2c 2.0ab 1.7b Adult 5.7a 3.3a 2.1b Mean values in the same column having the same superscript are not significantly different (p>0.05). Discussion The body weight loss of Z. variegatus due to 96 hours starvation increased gradually from 1st instar to the adult stage. This reflects trend of energy depletion, that is, energy depletion was more in the later instars than the early instars. The food reserves as a result of food consumption by insects increased with nymphal growth owing to increased food requirement for growth and metabolic function, thus during starvation stress, such reserves are lost or depleted in high quantity (Omkar and Jones, 2003). Also, the active nature (dispersal) of the later instars and adult stage deplete their re- sources more compared to the early instars that are gregarious in habit and therefore conserve or less exhaust their resources (Toye,1982). Furthermore, the difference in the way the nymphal stages and adult responded to food deprivation might be related to their water balance, because adults are more susceptible to water loss than the nymphs. Somatic tissues of Z. variegatus lost significant quantity of their metabolites con- centration due to starvation. Similar observation was made by Perez-Mendoza et al. (1999) where starvation reduced the lipids content and body weight of Lesser grain borer, Rhyzopertha dominica. Similarly, Auerswald and Gade, (2000) reported that in P. sinuata, carbohydrates were first metabolized during the initial stage of starvation, then shift to lipids and proteins happened when carbohydrates were exhausted. How- ever, the fact that protein component of these tissues was also depleted possibly sug- gests that lipids and glucose metabolism were not sufficient to meet the requirement of the insect, resulting in the net reduction of protein concentration. Comparison of means revealed that less of protein and more of glucose and lipids were lost by the somatic tissues due to starvation. This is not unexpected as carbohy- drates and lipids are the predominant metabolites utilized during initial stage of star- vation (Hill and Goldworthy, 1970; Hainsworth, 1981). In an experiment using Oxya Acta entomologica slovenica, 25 (2), 2017 196 Table 4: Femoral muscles metabolites loss during 96 hours starvation of develop- mental stages of Zonocerus variegatus (mg/dl) Developmental Stages Glucose Protein Lipids 1st Instar 0.8 0.1 1.5c 2nd Instar 0.6 0.5 1.1c 3rd Instar 0.7 0.5 2.3c 4th instar 2.3 1.5 1.7c 5th Instar 0.9 2.2 1.5c 6th Instar 2.7 1.8 5.0c Adult 3.0 2.1 7.5a Mean values in the same column having the same superscript are not significantly different (p>0.05). japonica (Acrididae: Orthoptera), a significant decrease in the total haemolymph lipids and carbohydrates was observed when deprived of food for 96 hours (Lim and Lee, 1981). During starvation trials in two Drosophila species, rates of lipid and protein metabolism were similar, but carbohydrate metabolism was several fold higher (Marron et al., 2003). The fat body of Z. variegatus experienced higher metabolites loss due to starvation than other two somatic tissues examined. This might likely be due to the higher amount of metabolites present there and thus expectedly higher loss to starvation. Ademolu et al (2007) observed that fat body stores more protein and lipids than the haemolymph and femoral muscles during postembryonic development of Z. variegatus. Similarly, the fat body was reported to have stored more glycogen, fat, protein and other substances brought into it by the haemolymph (Hannerland and Shirk, 1995). References Ademolu, K.O., Idowu, A.B., Amusan, A.A.S. (2007) Chemical analysis of tissues of Zonocerus variegatus (L) (Orthoptera: Pyrgomorphidae) during post embryonic development in Abeokuta, South-Western, Nigeria. Nigeria Journal of Ento- mology 24: 27-34. Ademolu, K.O., Oguntayo, O.O., Idowu, A.B., Dedeke, G.A. (2010). Variations in tissues metabolites and gut microbial flora of adult male Zonocerus variegatus (L) (Orthoptera: Pyrgomorphidae ) during starvation. Biological and Environ- mental Sciences Journal for the Tropics (BEST) 8(1):188-193. Ademolu, K.O., Idowu, A.B., Oke, O.A. (2011). Impacts of reproductive activities on tissues of Zonocerus variegatus, grasshopper adults (Orthoptera pygomor- phidae). Florida Entomologist 94(4):993-997 Ademolu, K.O., Idowu, A.B., Oke, O.A. (2013), Life Cycle and Morphometric studies of variegated grasshopper Zonocerus variegatus (Linnaeus, 1758). Munis Entomology and Zoology 8 (1):375-381. Auerswald, L. and Gade, G. (2000). Metabolic changes in the African fruit beetle, Paechnoda sinuate, during starvation. Journal of Insect Physiology 46:343-351. Baumniger, R.M. (1974). Analytical Biochemistry. Oxford Press, London, Pp 83- 85 Grant, G.H. (1997). Fundamental of Clinical Chemistry WB Saunder Company, USA. Hainsworth, F.R. (1981). Animal Physiology: Adaptation in function. Addis-Wesley Publishing Company, Sydney, Australia. 667pp Hannerland, N.H. and Shirk, P.D. (1995). Regional and functional differentiation in the insect fat body. Annual Review of Entomology. 40:121-125. Henry, R.J., Canon D.C., Winkalman, J.W. (1997). Clinical Chemistry: Principle and Technique 2nd ed., Harper and Row Publishers, New York, Pp 54-56. Hill, L. and Goldsworthy, G.T. (1970). Growth, feeding activity and the utilization of reserves in larvae of locust. Journal of insect Physiology 14: 1085-1098. K. O. Ademolu, O. A. Joda, A. A. Osipitan: Responses of somatic tissues of developmental stages of variegated grasshopper, 197 Idowu, A.B. and Idowu, O.A. (2001). Effect of food plants on the volume of repellent secretion obtained in adult Zonocerus variegatus (L) (Orthoptera: Pygomorphi- dae). Rev.Biol.Trop 49:679-684. Justsum, A.R., Agerwu, A.C., Goldsworth, G.J. (1975). Starvation and haemolymph lipids in Locusta migratoria migratorioides (R&F). Accrida 4:47-56 Lim, S.J. and Lee, S.S. (1981). The effect of starvation on haemolymph metabolites, fat body and ovarian development in Oxya japonica (Acrididae: Orthoptera). Journal of Insect Physiology 27: 93-96. Marron, M.T., Markow, T.A., Kain, K.J., Gibbs, A.G. (2003). Effects of starvation and dessication on energy metabolism in desert and mesic Drosophila. Journal of Insect Physiology 49: 261-270. Muse, W.A. (2003). Effect of sex, Age Starvation and feeding ,Isolation and Crowding and Oviposition on Longevity of Zonocerus variegates (Orthoptera;Pygomor- phidae). J. of Bio Res and Biotech 1(2):11-20. Omkar, O. and Jones, B.E. (2003). Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalus Fabricius. Journal of Applied Entomology 128: 150-157. Perez-Mendoza, J., Dover, B.A., Hagstrum, D.W., Hopkins, T.L. (1999). Effect of crowding, food deprivation and diet on flight initiation and lipids reserves of Lesser grain borer, Rhyzopertha dominica. Extomologia experimentalis et ap- plicata. 91:317-326 Toye, S. A. (1982). Studies on the Biology of the Grasshopper pest Zonocerus varie- gatus (L) (Orthoptera Pyrgomorphidae) in Nigeria. Insect Sci. application. 3(1) 1 – 7. Youdeowei, A. (1974), Dissection of variegatus Grasshopper. Zonocerus variegatus. Oxford University Press, Ibadan, pp. 63 – 73. Received / Prejeto: 17. 8. 2017 Acta entomologica slovenica, 25 (2), 2017 198 NOVE KNJIGE An Introduction to the Wildlife of Cyprus, D. J. Sparrow in E. John (ur.). 870 str., Terra Cypria, Cyprus. 2017. ISBN 978-9963-601-45-5. Knjiga “An Introduction to the Wildlife of Cyprus” (Uvod v živi svet Cipra) širo- kopotezno pristopa k prikazu živalstva na otoku Ciper. Obsežen pregled živali in ne- katerih naravnih značilnosti Cipra bo pritegnil strokovno kot tudi širšo javnost. Stroki lahko knjiga služi kot pomemben osnovni dokument biotske raznolikosti otoške države, za nekatere skupine celo kot favnistični pregled, širša javnost pa si lahko ob kvalitetnem in obsežnem slikovnem materialu ter dobro napisanem besedilu ustvari splošno sliko o živalskem svetu, njegovi raznolikosti, kot tudi o posebnostih, značilnih za geografsko izolirano območje, kar od celine precej oddaljeni Ciper vsekakor je. 199 ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2017 Vol. 25, øt. 2: 199–200 Knjiga je razdeljena na 4 dele, znotraj katerih se zvrsti 30 poglavij. Prispevki 44 specialistov iz 12 držav, vključno z domačimi strokovnjaki, obsegajo 870 strani. Več kot 180 fotografov je prispevalo čez 1100 fotografij in skic. Obravnave živali Cipra se knjiga loteva celovito. V prvem delu predstavi geografske, klimatske in geološke značilnosti, ki prispevajo k raznolikosti habitatov tega mediteranskega otoka. V drugem delu knjige je na kratko opredeljena klasifikacija živih bitij in biogeografski izvor živali na Cipru. V tretjem, najobsežnejšem delu, so predstavljeni nevretenčarji. Začne se s poglavjem »Uvod v nevretenčarje«, vsako naslednje poglavje pa je posve- čeno svojemu razredu oz. redu nevretenčarjev. Četrti del je namenjen vretenčarjem in se prav tako začne z uvodnim poglavjem, nadaljuje pa s poglavji o ribah, dvoživkah, plazilcih, ptičih in sesalcih. Knjiga je opremljena s kratkim slovarjem ter kazalom angleških in latinskih imen živali. Predgovor sta prispevala Max Kasparek (Heidelberg) in Dr Artemis Yiordamli (Terra Cypria), spremno besedo pa urednika knjige, David J. Sparrow in Eddie John. V uvodnem delu knjige so predstavljeni avtorji prispevkov. Poglavja o živalskih skupinah vsebujejo, ob obsežnem slikovnem materialu, in- formacije o njihovi biologiji, habitatu, o predstavnikih, pri nekaterih poglavjih celo določevalne ključe. Poglavja imajo precej različen obseg, v vsakem primeru pa pred- stavljajo vsaj dober splošen uvod v posamezno živalsko skupino. Nekateri taksoni, npr. metulji in vešče, kačji pastirji, kobilice so predstavljeni zelo temeljito, lahko tudi na več kot 100 straneh, medtem ko so druge skupine, prav tako obsežne in raznolike, npr. hrošči, obdelane na zgolj dobrih 20 straneh. To je seveda povezano s privlačnostjo in raziskanostjo posamezne skupine na Cipru, kar pa knjigi daje še dodatno vrednost, saj opozarja na živalske skupine, ki bi jim bilo v bodoče potrebno nameniti več razi- skovalnega napora. Ciper je eden večjih otokov v Sredozemskem morju, kar je organizmom omogočalo ločeno evolucijo zaradi geografske ločenosti populacij. Posledice tega so visoka stopnja endemizma ter nenavadne prilagoditve organizmov in združb. Avtorji se zelo trudijo, da bi prikazali te posebnosti otoškega življenja in poudarili pomen endemnih vrst. Takšne knjige predstavljajo pomemben dokument za zavedanje prebivalcev in obiskovalcev Cipra, kakšne naravne vrednote jih obkrožajo in kaj je v bodoče potrebno varovati in zaščititi. Za vsakega naravoslovno usmerjenega obiskovalca otoka bo ta knjiga predstavljala odličen temelj za raziskovanje narave Cipra. Urednika v spremni besedi opozarjata, da je favna Cipra še vedno slabo raziskana. Izgleda pa, da je knjiga že v svojem nastajanju poskrbela za premike na tem področju. V poglavjih o mrežekrilcih, termitih in pajkovcih namreč že poročajo o odkrivanju za Ciper novih vrst. Pričakujem, da lahko ima tak dokument v bodoče še bolj stimu- lativen vpliv na nova odkritja in raziskovanje na Cipru. Knjiga je bila izdana pri založbi Terra Cypria (včasih The Cyprus Conservation Foundation), ki je bila ustanovljena leta 1992. Ukvarjajo se s z okoljskim izobraže- vanjem in izdajanjem publikacij povezanih z naravovarstvom. Predstavljena knjiga je do sedaj njihova prva publikacija, ki se celostno ukvarja z biodiverziteto Cipra. Jan Podlesnik Acta entomologica slovenica, 25 (2), 2017 200 ACTA ENTOMOLOGICA SLOVENICA PRIRODOSLOVNI MUZEJ SLOVENIJE SLOVENSKO ENTOMOLOØKO DRUØTVO ØTEFANA MICHIELIJA LJUBLJANA, DECEMBER 2017 Vol. 25, øt./No. 2 ISSN 1318-1998 CODEN: AESLFM Vsebina / Contents A. KAPLA, A. VREZEC: Favna jamskih hroščev (Coleoptera) Krima (Dinaridi, osrednja Slovenija): zgodovina raziskanosti in favnistična izoliranost Cave beetle fauna (Coleoptera) of Mt. Krim (Dinaric Alps, Central Slovenia): history of research and faunistic isolation............................... 123 G. SELJAK: Nove tujerodne rastlinojede žuželke v favni Slovenije New alien phytophagous insect species to the fauna of Slovenia............ 141 D. A. DMITRIEV: Unavailability of the genus group name Mezammira (Hemiptera: Cicadidae) Nerazpoložljivost imena rodovne skupine Mezammira (Hemiptera: Cicadidae)............................................................................. 159 Ž. PREDOVNIK: Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) on the coast of northwestern Istria Steklokrilec Synanthedon theryi Le Cerf, 1916 (Lepidoptera: Sesiidae) na obali severozahodne Istre..................................................... 165 M. MOUSAVI, S. ARAMIDEH, N. MAROUFPOOR: Chemical composition, toxicity and side effects of three essential oils on Brevicoryne brassicae (L.) (Hemiptera: Aphididae) adults under laboratory conditions Kemijska sestava, toksičnost in stranski učinki treh eteričnih olj na odrasle mokaste kapusove uši (Brevicoryne brassicae (L.)) (Hemiptera: Aphididae) v laboratorijskih razmerah................................. 177 K.O. ADEMOLU, O.A. JODA, A.A. OSIPITAN: Responses of somatic tissues of developmental stages of variegated grasshopper, Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) to starvation Odziv telesnih tkiv razvojnih stopenj kobilice Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) na stradanje.......................................191 NOVE KNJIGE An Introduction to the Wildlife of Cyprus, D. J. Sparrow in E. John (ur.)........... 199 2