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1. Introduction

Humans have been fascinated by the universe surrounding us for thousands of years. In ancient 

cultures, space was often viewed as a realm of heaven, with celestial objects frequently linked to 

gods, spirits, and myths. Throughout history, significant astronomical advancements have been 

achieved by some of the pioneers of astronomy, establishing the foundation for humanity to 

explore far beyond our planet [1]. The first theory proposing the existence of black holes—dense 

bodies from which even light cannot escape due to their strong gravity—was presented in the 

18th century by the astronomer John Michell [2]. It was subsequently refined by Einstein’s theory 

of general relativity, which predicted that any sufficiently compact mass could distort space and 

time to form a black hole. The theory also predicted the event horizon as the spherical outer 

boundary of a black hole where the gravitational influence of the black hole becomes so great 

that not even light is fast enough to escape it. [3] 

As an astronomy enthusiast, I have pondered from a young age whether the exploration of black 

holes could be conducted from a closer perspective and whether humans could ever venture into 

one. As a child, my mother often said that such actions would be impossible, as humans would 

be “ripped apart” instantly. Eventually, I learned that this phenomenon is linked to the effects of 

gravitation.  

In general, two contributions influence this process. Firstly, each object, suspended and secured 

by a hook extends under its weight, stretching until the gravitational force is balanced by the 

opposing force of the hook. This leads to the elongation of an object, which may have a temporary 

or permanent effect. The second contribution, however, arises from differences in the strength of 

the gravitational field throughout the body. According to Newton’s law of gravitation 𝐹 = 𝐺𝑀𝑚
𝑟2

[4], the gravitational field exerted by a body with mass M on an object of mass m decreases with 

the square of the distance 𝑟 from the body's centre, where 𝐺 is gravitational constant. An object 

positioned vertically in a gravitational field, therefore, experiences varying forces at both ends of 
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the object as the distances from the mass generating the field differ. This impacts the extent of 

elongation, which, owing to decreasing 𝑟, is more pronounced on the lower side of the object (see 

a sketch in Fig. 1). The difference in the stretching of each part of the object reduces the effect of 

elongation due to the object's weight. In black holes, the gravitational field is exceptionally 

strong. Consequently, an object stretches in the direction of a black hole, a process called 

spaghettification. When the opposing force acting on the object exceeds the maximum possible 

force the material can sustain, the object fractures. 

This basic knowledge and my mum’s statement prompted the formation of the following 

question: Which type of black hole is the most suitable for observation in terms of the closest 

approach with a space probe and what is the significance of the changing field for diminishment 

of the effect of elongation? 

However, as space probes are designed from many different materials, I simplified my inquiry. I 

focused on a steel rod with a length of 𝑙 = 4𝑚, which could theoretically represent a space probe. 

Figure 1: Spagettification of a human body in the black hole 

Therefore, this exploration aims to investigate the elongation of a steel rod and its maximum 

length when positioned at the horizon of a black hole. The calculations will focus on black holes 

of different masses to determine where the stretching effects have the smallest impact. They will 

include three known black holes and two smaller hypothetical primordial black holes. The known 

black holes are classified as stellar-mass, intermediate-mass, and supermassive and the primordial 



4 
 

black holes are the significantly smaller ones which, in theory, could have only been formed soon 

after the Big Bang [4].   

Additionally, this investigation aims to determine the significance of the changing gravitational 

field on reducing the effect of gravitational stretching. The results will be derived by comparing 

equations for elongation and maximum length in both constant and changing gravitational fields. 

Deformation of elastic bodies 

When force is applied to a material, each object undergoes a deformation to a certain extent. The 

external forces can cause the object to shrink, elongate or even break apart. The scale of this 

deformation depends on the physical properties of a specific material [5]; however, each material 

can break when sufficient force is applied. The deformation process is usually described in terms 

of stress and strain. Stress (σ) is the cause of deformation and is defined as the force (F) acting 

per unit area (A) and is measured in SI unit Pascal.  

σ =
𝐹
𝐴 . (1) 

It is specified as tensile stress when an object undergoes elongation. [6] Strain (ϵ), however, 

describes the ratio between the deformation (∆L) and the original length (L) [7].  

ϵ =
∆𝐿
𝐿 . (2) 

The two quantities are connected, and their relationship changes depending on the stress applied.  

Since strain depends on the stress applied, the expected graph would include stress as an 

independent variable. However, as strain is usually the measured quantity and stress (σ) is 

calculated afterwards, a consensus for the graph showing the relation is that strain (ϵ) is the 

independent variable (Fig. 2).  
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Figure 2: Stress-strain graph 

Each object undergoes three stages when exposed to an external force. Until a certain point called 

yield strength, the stress changes with strain linearly, and the object returns to its original shape 

if the stress is removed. This region is described as elastic region. The ratio between the applied 

stress (σ) and resulting strain (ϵ) in this region is called Young’s modulus (E), a mechanical 

property of the material that measures the tensile (elonged) or compressive stiffness of a material. 

It is calculated as: 

E =
σ
ϵ . (3) 

After exiting the elastic region, the stress still increases with strain, but the relationship is not 

linear, and deformation occurs even when stress is nominally not decreasing any more. After 

reaching a point of ultimate strength, the object experiences necking, a process where the 

elongation only occurs at one location on the object. From that point onward, the force no longer 

increases, and the object begins to thin at the specific location – the neck. The strain, as defined 

in Eq. 1, still rises and the object eventually fractures.  

For this investigation, a linear approximation is used throughout the whole process of strain 

application resulting in elongation. All stages of the deformation are, therefore, considered as if 

they were in an elastic region and the rod fractures at the maximum σ that the material can endure 

(see Fig. 2) before fracturing. Moreover, a still rod is used to obtain calculations, the properties 

of which are summarised in Table 1. 
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Table 1: Physical properties of steel 

 Density (𝜌) Maximum stress (𝜎) before fracturing Young’s modulus (E) 
Units kg/m3 MPa GPa 
Steel 7860 400 200 

 

Forces acting on an object 

Figure 3: Forces acting on a segment of an attached object 

In the multidimentional space, vector analysis of forces acting on an object would be needed, 

however, in the two dimentional up/down space of the suspended object, the forces are simplified 

from vectors to a one dimensional track of values within ±∞. Considering a small (infinitesimal) 

segment of the rod, the forces acting on the segment depend on its position within the rod. Each 

segment generally experiences a gravitational force, Fg, stretching the object, depending on the 

weight of the part of the rod below the segment in question and an equal. It also experiences an 

opposing force, 𝐹𝑜 , resisting the change, 𝐹𝑔 = −𝐹𝑜, arising from the fact that the segment is being 

secured in place by the previous segment of the rod. Forces governing the segment and their 

directionality are depicted in Fig. 3. Elongation continues until the forces get into equilibrium. If 

the force applied is too big, the object fractures. 
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2. Exploration 

Constant gravitational field 

Some objects exert a gravitational field so weak that its changes due to distance are negligible. 

In such cases, we approximate the gravitational field to a constant.  One such example is the 

planet Earth, the fundamental properties of which are summarised in Table 2 below.   

Table 2: Properties of Earth 

 Radius (r0) Surface acceleration (g) 

Units Km m/s2 

Earth ≈ 6378 ≈ 9.81 

Let’s consider a steel rod of length 𝐿 and a cross-section 𝐴  hanging from a hook, which is exposed 

to a constant gravitational field. The top of the rod experiences the largest 𝐹𝑔, as the weight of the 

whole rod is acting on it. Here, the opposing force is the force in the hook 𝐹ℎ. The bottom of the 

rod, however, experiences a force of zero since no weight is acting underneath it. 

Considering a small rod segment positioned at 𝐿𝑥 − 𝑑𝑥 with a length 𝑑𝑥, the gravitational force 

acting on it is denoted as 𝐹𝑔(𝐿𝑥). Therefore, the weight of the segment can be written as: 

𝐹𝑔(𝐿𝑥) − 𝐹𝑔(𝐿𝑥 − 𝑑𝑥) = 𝑑𝐹𝑔. (4) 

The mass of this segment can be calculated as: 

𝑑𝑚 = 𝜌𝐴𝑑𝑥 , (5) 

where 𝜌 is the density of the material, and 𝑚 is the mass of the rod. 

The gravitational force acting on this segment due to its weight can be defined as: 

𝑑𝐹𝑔 = 𝑑𝑚𝑔 = 𝜌𝐴𝑔𝑑𝑥. (6) 

To evaluate the total weight acting on the segment (the rod underneath it and the weight of the 

segment itself), we integrate 𝑑𝐹𝑔  from the bottom, 0, to the top of the segment, 𝐿𝑥: 

𝐹𝑔(𝐿𝑥) = ∫  
𝐿𝑥

0
 𝑑𝐹𝑔 = ∫  

𝐿𝑥

0
 𝜌 ⋅ 𝐴 ⋅ 𝑔𝑑𝑥 = 𝜌 ⋅ 𝐴 ⋅ 𝑔 ∫  

𝐿𝑥

0
 𝑑𝑥 

𝐹𝑔(𝐿𝑥) = 𝜌 ⋅ 𝐴 ⋅ 𝑔 ⋅ 𝐿𝑥.  (7)     
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This force alone is not responsible for the deformation of the rod. Both the opposing and 

gravitational force together can deform the object. The force in the hook resists the stretching of 

the rod, while gravitational force elongates it. Using the derived equation for 𝐹𝑔 from Eq. 7, stress 

(𝜎) from Eq. 1 acting on the segment 𝑑𝑥 can now be written as: 

𝜎(𝐿𝑥) =
𝐹𝑔(𝐿𝑥)

𝐴 =
𝜌 ⋅ 𝐴 ⋅ 𝑔 ⋅ 𝐿𝑥

𝐴 = 𝜌 ⋅ 𝑔 ⋅ 𝐿𝑥. (8) 

This equation will later be used to obtain the maximum length of the rod. Moreover, total 

elongation of the rod can also be calculated. This is done by connecting the Young's modulus (E) 

from Eq. 3, with the Eq. 8, so that the strain is expressed as: 

𝜖(𝐿𝑥) =
𝜎(𝐿𝑥)

𝐸 =
𝜌 ⋅ 𝑔 ⋅ 𝐿𝑥

𝐸 . (9) 

Using Eq. 2 for strain, the total elongation of a rod for a certain length 𝐿𝑥 is calculated. We 

evaluate the elongation of a small segment 𝑑𝐿𝑥 starting at 𝐿𝑥 − 𝑑𝑥 as:  

𝑑(∆𝐿𝑥) = 𝜖(𝐿𝑥) ⋅ 𝑑𝐿𝑥 =
𝜌 𝑔 𝐿𝑥

𝐸 𝑑𝐿𝑥. (10) 

The segments over the whole rod have to be added to obtain the total elongation of the rod. To 

achieve that, we integrate both sides from 𝑥 = 0 to 𝑥 = 𝐿. Using the fundamental theorem of 

calculus, left hand side is now Δ𝐿𝑥. 

Δ𝐿𝑥 = ∫
𝜌 ⋅ 𝑔 ⋅ 𝐿𝑥

𝐸

𝐿

0
 𝑑𝐿𝑥. (11) 

Δ𝐿𝑥 now becomes 𝛥𝐿, as the expression does not refer to some length on the rod but instead the 

total length L of the rod. The expression is calculated by first excluding the constants from the 

integral and evaluating the rest according to the integration rules. 

Δ𝐿 =
ρ ⋅ 𝑔

𝐸 ∫ 𝐿𝑥

𝐿

0
 𝑑𝐿𝑥 =

ρ ⋅ 𝑔
𝐸 ⋅ [

𝐿𝑥
2

2 ]
0

𝐿

=
ρ ⋅ 𝑔 ⋅ 𝐿2

2𝐸 . (12) 

The total deformation (elongation) of the rod is therefore: 

Δ𝐿 =
ρ ⋅ 𝑔 ⋅ 𝐿2

2𝐸 . (13) 
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These findings can now be used to illustrate the effect of the object's weight on its deformation 

when the change in gravitational force along the length of the rod is not a considerable factor. 

Using data from Table 1, Table 2 and Eq. 13, the elongation of a steel rod, 𝐿 = 4 𝑚, positioned 

on a hook in a uniform gravitational field of Earth is calculated: 

∆𝐿 =
 𝜌𝑔𝐿2

2𝐸 =
7860 ⋅  9.81 ⋅  42

2 ⋅ 200 ⋅ 109 ≈ 3.1 10−6𝑚. (14) 

Although this change is minimal compared to the length of the rod, it is still evidential proof that 

deformation occurs due to the object’s weight.  

The maximum length of a steel rod before breaking can also be determined using Eq. 8, 

where 𝐿𝑥 = 𝐿𝑚𝑎𝑥:  

𝜎𝑚𝑎𝑥(𝐿𝑚𝑎𝑥) = 𝜌 ⋅ 𝑔 ⋅ 𝐿𝑚𝑎𝑥 

𝐿𝑚𝑎𝑥 =
𝜎𝑚𝑎𝑥(𝐿𝑚𝑎𝑥)

𝜌 ⋅ 𝑔
=

400 ⋅ 106

7860 ⋅  9.81
 ≈ 5188m. (15) 

Again, as the effect of elongation is almost negligible, a steel rod would have to exceed a very 

large length to fracture due to its own weight. 

If we consider the exact steel rod in the same uniform field but falling freely, it can be observed 

that the only force acting on the rod is a force of gravity 𝐹𝑔. The opposing force in the hook equals 

0, because the rod is not attached to support but instead falls freely. Therefore, there is no stress 

in the rod itself, the total deformation of the rod is ∆𝐿 =  0𝑚, and the steel rod would not break 

at any length due to elongation. 

Gravitational field changing inversely with the square of the distance 

The constant field serves merely as an approximation for situations where the changes in 

gravitation can be disregarded. However, in many instances, such an approximation may not 

feasible as the gravitational force may vary significantly along the length of the object, 

influencing the behaviour of the objects subjected to gravitational fields. So, the precise equation 

of a changing field, varying inversely with the square of the distance from the centre of the 
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generating object, is applied hereafter. The equation is derived from the Newton’s law, which has 

been defined in introduction. 

𝐹 = 𝑚𝑔 =
𝐺𝑀𝑚

𝑟2 . (16) 

Here a variable 𝑔 can be defined in terms of surface gravitation  g0 of the mass 𝑀, radius 𝑟0 of 

the surface of the mass 𝑀 and distance 𝑥 from this surface. 

𝑔 =
𝐺𝑀
𝑟2 ⇒ 𝑔0 =

𝐺𝑀
𝑟0

2 ⇒ GM = 𝑔0𝑟0
2 ⇒ 𝑔 =

𝑔0𝑟0
2

𝑟2 ⇒ 𝑔 =
𝑔0

( 𝑟
𝑟0

)
2 ⇒ 𝑔 =

𝑔0

(1 + 𝑥
𝑟0

)
2 .  

We define 1
𝑟0

= β. Therefore, the varying gravity 𝑔(𝑥) can be expressed as: 

𝑔(𝑥) =
𝑔0

(1 + β𝑥)2  . (17) 

In this case, contrary to the case with the constant gravitational field, the top of the object 

experiences the smallest 𝐹𝑔, as 𝑔 is diminishing with 𝑥 > 0. Each segment of the suspended 

object bounded by a hook, therefore, experiences different forces. This difference causes the 

object to elongate differently depending on the location 𝑥 on the object. It is important to note 

that 𝑥 in the case of a changing field is the same as 𝐿𝑥 in the constant field, as the lower part of 

the object is positioned at 𝑟0. Therefore variable 𝑥 is used for a more concise notation. 

Here, the Eq. 5 still applies. The force 𝐹𝑔 acting on a segment can again be calculated using  Eq. 

6. However, for this derivation, the changes in gravitation from Eq. 17 over the object’s length 

have to be taken into account. The differential expression for 𝐹𝑔 can, therefore, be written as: 

𝑑𝐹𝑔 = 𝑑(𝑚𝑔(𝑥)) = 𝑑(𝜌 ⋅ 𝐴 ⋅ 𝑔(𝑥) ⋅ 𝑥) = d (𝜌 ⋅ 𝐴 ⋅
𝑔0

(1 + 𝛽𝑥)2 ⋅ 𝑥) . (18) 

The equation can further be rearranged by expanding and obtaining the derivative, which is 

calculated with respect to 𝑥, as distance is the independent variable influencing the magnitude of 

𝐹𝑔. The constants 𝜌𝐴𝑔0 are excluded from the derivation as their value is not influenced by 𝑥.  

𝑑𝐹𝑔 = 𝜌𝐴𝑔0((1 + 𝛽𝑥)−2 ⋅ 𝑥)′𝑑𝑥. (19) 
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Applying the product rule for differentiation, 𝑑
𝑑𝑥

 𝑚(𝑥) 𝑔(𝑥) =  𝑔′(𝑥) 𝑚(𝑥) +  𝑔(𝑥) 𝑚′(𝑥)  we 

differentiate ((1 + 𝛽𝑥)−2 ⋅ 𝑥): 

𝑑𝐹𝑔 = 𝜌𝐴𝑔0(((1 + 𝛽𝑥)−2)′𝑥 + 𝑥′(1 + 𝛽𝑥)−2)𝑑𝑥 =
 = 𝜌𝐴𝑔0(−2𝛽𝑥(1 + 𝛽𝑥)−3 + (1 + 𝛽𝑥)−2)𝑑𝑥 =
 = 𝜌𝐴𝑔0((1 + 𝛽𝑥)−3(−2𝛽𝑥 + 1 + 𝛽𝑥))𝑑𝑥

 

d𝐹𝑔 = 𝜌𝐴𝑔0
1 − 𝛽𝑥

(1 + 𝛽𝑥)3 𝑑𝑥. (20) 

By dividing both sides by 𝑑𝑥, the rate of change of 𝐹𝑔 with respect to distance 𝑥 is obtained. 

𝑑𝐹𝑔

𝑑𝑥 = 𝜌𝐴𝑔0
1 − 𝛽𝑥

(1 + 𝛽𝑥)3 . (21) 

In order to determine the force 𝐹𝑔 acting on the total length of the rod,  𝑑𝐹𝑔

𝑑𝑥
  is integrated over the 

whole rod. We integrate from 𝑥 = 0 to 𝐿,  with respect to 𝑥, where 𝑥 represents the variable of 

integration along the length of the rod. 

𝐹𝑔 = ∫  
𝐿

0

𝑑𝐹𝑔

𝑑𝑥 𝑑𝑥 = 𝜌𝐴𝑔0 ∫  
𝐿

0

1 − 𝛽𝑥

(1 + 𝛽𝑥 )3 𝑑𝑥. (22) 

This equation can further be simplified by substituting 𝛽𝑥 with 𝑦. Consequently 𝑥 = 𝑦
𝛽

  and 𝑑𝑥 =

𝑑𝑦
𝛽

.  As β is a constant, it can be factored out from the equation. Furthermore, the limits of 

integration also have to be adjusted as we now integrate with respect to y. As we still integrate 

over the entire length of the rod, the limits in terms of 𝑥 correspond to the following 𝑦: when  

𝑥 = 0, 𝑦 = 0 when 𝑥 = 𝐿, 𝑦 =  𝛽𝐿:  

𝐹𝑔 =
𝜌𝐴𝑔0

𝛽 ∫  
𝛽𝐿

0

1 − 𝑦
(1 + 𝑦)3 𝑑𝑦. (23) 

To simplify the derivation, only the part including the integrals is considered in the next step. The 

integral is separated following the rule for the addition of integrals (∫(𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 =

∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥). 
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∫  
𝛽𝐿

0

1
(1 + 𝑦)3 𝑑𝑦 − ∫  

𝛽𝐿

0

𝑦
(1 + 𝑦)3 𝑑𝑦. (24) 

For a clear representation, each of the terms is integrated separately. We first consider the first 

term, where integration by substitution is used. 𝑣   and 𝑑𝑣 are defined as follows: 

𝑣 = 1 + 𝑦   and 𝑑𝑣 = 𝑑𝑦. (25) 

The defined variables are substituted into the integral in order to obtain the result. The limits of 

integration change accordingly when 𝑦 = 0, 𝑣 = 1, and 𝑦 =  𝛽𝐿, 𝑣 = 1 + 𝛽𝐿. After the integral 

is evaluated, the original notation is reinstated for consistency. 

∫  
𝛽𝐿

0
 

1
(1 + 𝑦)3 = ∫  𝑣−3

1+𝛽𝐿

1
 𝑑𝑣 = [−

1
2 ⋅ 𝑣−2]

1

1+𝛽𝐿

= [−
1
2 ⋅ (1 + 𝑦)−2]

0

𝛽𝐿

= 

= −
1
2  ⋅ (1 + 𝛽𝐿)−2 +

1
2 . (26) 

The second term consists of a product of two different functions. Therefore, integration by parts 

is suitable for use in this case. New variables u and v are defined as: 

𝑢 = 𝑦 and 𝑑𝑣 =
1

(1 + 𝑦)3  𝑑𝑦. (27) 

𝑑𝑢 = 𝑑𝑦 and 𝑣 = −
1

2(1 + 𝑦)2 . (28) 

Equation ∫ 𝑢  𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣  𝑑𝑢 is applied to integrate the expression by parts. After the final 

expression is obtained, all the variables are replaced by the original terms. The calculation 

proceeds as follows: 

∫  
𝛽𝐿

0
 

𝑦
(1 + 𝑦)3 𝑑𝑦 = [−

𝑦
2(1 + 𝑦)2]

0

𝛽𝐿
+ ∫  

𝛽𝐿

0
 

1
2(1 + 𝑦)2 𝑑𝑦 = 

= [−
𝑦

2(1 + 𝑦)2]
0

𝛽𝐿
+ [−

1
2(1 + 𝑦)]

0

𝛽𝐿

= −
𝛽𝐿

2(1 + 𝛽𝐿)2 −
1

2(1 + 𝛽𝐿) +
1
2 (29) 

The solutions from each of the terms Eq. 26 and Eq. 29 are combined in the original Eq. 22. The 

total gravitational force on the rod over its whole length can now be defined as: 
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𝐹𝑔 = 𝜌𝐴𝑔0 ∫  
𝐿

0
 

1 − 𝛽𝑥
(1 + 𝛽𝑥)−3 𝑑𝑥 = 

=
𝜌𝐴𝑔0

𝛽 ((−
1

2 ⋅ (1 + 𝛽𝐿)2 +
1
2) + (−

𝛽𝐿
2(1 + 𝛽𝐿)2 −

1
2(1 + 𝛽𝐿) +

1
2)) (30) 

𝐹𝑔 =
𝜌𝐴𝑔0

𝛽
𝐿𝛽

1 + 𝐿𝛽 =
𝜌𝐴𝐿𝑔0

1 + 𝐿𝛽 . (31) 

The relationship between 𝐹𝑔 and 𝜌𝐴𝐿𝑔0 can be established through known quantities 

𝜌, 𝐴, 𝐿 and 𝑔0. However, the expression in the denominator 1 + 𝐿𝛽 reduces the 𝐹𝑔 with 

increasing distance from mass M's surface (𝛽 = 1
𝑟
) and with the increasing lenght of the 

suspended object under inspection. Moreover, we see again as in Eq. 31, that when 𝐿 is small, 

𝐹𝑔 ≈  𝜌𝐴𝐿𝑔0. The result coincides with the result for gravitational force in a constant field, 

observed in Eq. 7. 

Combining the procedures from Eq. 8, 9 and 10, we determine the elongation of one segment on 

the rod with variable gravitational acceleration. 

𝑑Δ𝐿 =
𝐹𝑔

𝐴𝐸
𝑑𝑥 =

𝜌𝐴 𝑥𝑔0
1 + 𝑥𝛽
𝐴𝐸

𝑑𝑥 =
𝜌
𝐸

𝑔0𝑥
(1 + 𝑥𝛽) 𝑑𝑥 (32) 

We find the total elongation by summing all the segments. This is done using integration with 

limits  𝑥 =  0 to 𝑥 =  𝐿 : 

Δ𝐿 = ∫  
𝐿

0
𝑑Δ𝐿 =

𝜌𝑔0

𝐸 ∫  
𝐿

0

𝑥
(1 + 𝑥𝛽) 𝑑𝑥 (33) 

As the expression does not have a direct antiderivative that would solve the, the method of 

integration by substitution is used. We define new variable u and rearrange its definition to obtain 

the following expressions: 

𝑢 = 1 + 𝛽𝑥 ⇒ 𝑑𝑢 = 𝛽𝑑𝑥 ⇒ 𝑑𝑥 =
𝑑𝑢
𝛽 ⇒ 𝑥 =

𝑢 − 1
𝛽

(34) 

The obtained expressions are substituted into Eq. 33. The expression is now integrated with 

respect to du, and the limits of integration change accordingly: when 𝑥 = 0, 𝑢 = 1 , when  𝑥 =
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𝐿, 𝑢 = 1 + 𝛽𝐿 . Moreover 𝛽 is exluded from the integration, as its value is a constant and remains 

unaffected. The resulting expression becomes: 

Δ𝐿 =
𝜌𝑔0

𝐸 ∫  
1+𝛽𝐿

1
 

𝑢 − 1
𝛽
𝑢 ⋅

𝑑𝑢
𝛽 =

𝜌𝑔0

𝐸𝛽2 ∫  
1+𝛽𝐿

1
 
𝑢 − 1

𝑢 𝑑𝑢 

Δ𝐿 =
𝜌𝑔0

𝐸𝛽2 ∫  
1+𝛽𝐿

1
 (1 −

1
𝑢) 𝑑𝑢 (35) 

Δ𝐿 =
𝜌𝑔0

𝐸𝛽2 |𝑢 − ln 𝑢|1
1+𝛽𝐿 (36) 

We evaluate this expression using fundamental theorem of calculus ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎)𝑏
𝑎  

to obtain the total elongation of the rod:  

Δ𝐿 =
𝜌𝑔0

𝐸𝛽2 ((1 + 𝛽𝐿) − ln(1 + 𝛽𝐿) − 1 + ln 1) 

Δ𝐿 =
𝜌𝑔0

𝐸𝛽2 (𝛽𝐿 − ln(1 + 𝛽𝐿)) (37) 

Now replacing β with 1
𝑟0

 the total elongation of the string exposed to gravitational field changing 

inversely with square of the distance is: 

Δ𝐿 =
𝜌𝑔0𝑟0

2

𝐸 (
𝐿
𝑟0

− ln (1 +
𝐿
𝑟0

)) (38) 

It is interesting to see that for large distances 𝑟0 the Eq. 38 converges to Eq. 14 . In this case the 

term  𝐿
𝑟0

 is small and approaches 0. We can use the Taylor’s series expansion for small 𝑥 and write  

𝑙𝑛(1 + 𝑥) = 𝑥 − 1
2

𝑥2 + 1
3

𝑥3 − ⋯ and use the result to show that the 𝐿
𝑟0

− 𝑙𝑛 (1 + 𝐿
𝑟0

) 

approximately equals 𝐿
𝑟0

− 𝐿
𝑟0

+ 2 ( 𝐿
𝑟0

)
2

− ⋯ ≈ 2 ( 𝐿
𝑟0

)
2

 and hence ∆𝐿 =  𝜌𝑔𝐿2

2𝐸
 . 

To put the obtained results additionally into perspective, we can use Eq. 38 to calculate the 

elongation of a 4𝑚 steel rod suspended on a hook in the Earth’s atmosphere. The equation 

requires data from Table 1 and Table 2. 
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Δ𝐿 =
7860 × 9.81 × 643782 × 106

200 ×  109 (
4

64378 × 103 − ln (1 +
4

64378 × 103 ))  

Δ𝐿 = 3.08 × 10−6 𝑚 (39) 

This result aligns with the expectations, as the value obtained from Eq. 14 is only marginally 

higher, larger by only 0.02 or 0,6 %. This proves that the changing gravitational field diminishes 

the effect of elongation. Moreover, we can also calculate the length at which the suspended rod 

would fracture, by combining, expanding and rearranging Eq. 1 and Eq. 31, where 

𝛽 is replaced by 1
𝑟0

 : 

𝜎 =
𝐹𝑔

𝐴 =
𝜌𝐴𝐿𝑔0

(1 + 𝐿𝛽)𝐴 =
𝜌𝐿𝑔0

(1 + 𝐿𝛽)  

𝜎(1 + 𝐿𝛽) = 𝜌𝐿𝑔0 

𝜎 + 𝜎𝐿𝛽 = 𝜌𝐿𝑔0 

𝜎 = 𝜌𝐿𝑔0 − 𝜎𝐿𝛽 

𝐿max =
𝜎

𝜌𝑔0 − 𝜎𝛽 =
𝜎

𝜌𝑔0 − 𝜎
𝑟0

=
400 × 106

7860 ×  9.81 − 400 × 106

6378 × 103

 

𝐿max = 5192𝑚 (40) 

It can be observed that the maximum length in comparison to the maximum length calculated in 

Eq. 15 for a constant field, is by 4𝑚 longer.  The result is expected, as the field changes and the 

gravitational force at 𝑥 = 5192𝑚 is smaller than at 𝑥 = 0. Therefore, less force acts upon the 

object of the equivalent length, and it can stretch more. This means that an object can reach 

greater lengths before reaching the critical point where it fractures, because the strain is smaller. 

Schwarzschild radius 

Table 3: Some physical properties and relations to be used in further calculations 

G (gravitational constant) c (speed of light) Kinetic energy Gravitational potential energy 

6.6743 ×
10−11𝑚3

𝑘𝑔 𝑠2  
3 × 108𝑚/𝑠 𝑚𝑣2

2  
𝐺𝑀𝑚

𝑟0
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Previous calculations prove that the deformation of an object depends on the material properties 

as well as on the strength of the gravitational field and the distance of the object from the centre 

of the mass 𝑀 producing this field. The field exibited on the object can also be expressed with 

the mass 𝑀's radius and the distance of the object from this radius. Therefore, to calculate the 

elongation of the object exposed to the gravitational field generated by black holes, their radiuses 

(Schwarzschield's radiuses) need to be defined. Black holes are one of the densest bodies in the 

universe [8] and generate almost infinite gravitational fields from which even light cannot escape. 

This is helpful in determining their radiuses (horizons), which will denote the last point at which 

light will be detained, and therefore the border of the black hole. We also use physical properties 

and relations shown in Table 3. The escape velocity (velocity needed for an object to escape from 

the black hole) can be equated to the speed of light 𝑣 = 𝑐. As the object wants to move further 

away, it increases its potential energy. Therefore, we can denote that the kinetic energy of this 

object equals the gravitational potential energy. [9] 

𝑚𝑐2

2 =
𝐺𝑀𝑚

𝑟0
  , (41) 

where G is again the gravitational constant (now of the black hole with mass 𝑀) and m is the 

mass of the object to escape the black hole. 

By rearranging this equation, we can obtain the Schwarzschild's radius: 

𝑟0 =
2𝐺𝑀

𝑐2 (42) 

Calculations for a black hole 

For the calculations of a black hole, we consider five examples (Table 4), each belonging to a 

specific type of black hole, depending on their size. Three of those (XTE J1650-500, HLX-1, 

TON 618) are real life examples of black holes, while data for the two primordial black holes 

(one of which would be of a mass 𝑀 of the planet Mars) is hypothetical, and has not yet been 

found in the universe.  
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Table 4: Considered black holes, their masses and surface gravity 

Type Example Mass (kg) 
Primordial Hypothetical 1012 
Planet as primordial Mars 6.41 × 1023 
Stellar-mass XTE J1650-500 7.5 × 1030 
Intermediate-mass HLX-1 2.0 × 1034 
Supermassive TON 618 1.31 × 1041 

To complete calculations for deformation in the environment of those black holes, the 

Schwarzchield's radiuses first have to be defined by Eq. 42 and using Table 4. Afterwards, using 

Eq. 16, surface gravitation is calculated. Lastly, Table 1, Table 3 and the result for gravitation 

and radiuses are used for calculations of total elongation of a suspended 4𝑚 steel rod at rest, 

bounded by a hook. The length at which the rod would break when exposed to either a constant 

field, equal to the surface gravity or to gravitational field changing inversely with square of a 

distance is also calculated. The calculations are obtained using Eq. 13,15, 38, and 40. An example 

of calculation for a hypothetical primordial black hole is presented below. 

Determination of Schwarzschields radius: 

𝑟0 =
2𝐺𝑀

𝑐2 =
2 ∙ 6.6743 ∙ 10−11 ∙ 1012

9 ∙ 1016 ≈ 1.48 ∙ 10−15 𝑚 (43) 

Calculation of surface gravitation: 

𝑔 =
𝐺𝑀
𝑟2 =

6.6743 ∙ 10−11 ∙ 1012

(1.48 ∙ 10−15)2 ≈ 3.05 ∙ 1031 (44) 

Calculating total elongation for constant approximation of gravitational field using Eq.13: 

Δ𝐿 =
ρ ⋅ 𝑔 ⋅ 𝐿2

2𝐸 =
7860 ∙  3.05 ∙ 1031  ∙  42

2 ∙ 200 ∙ 109 ≈ 9.59 ∙ 1024 𝑚 (45) 

Calculating the maximum length of the rod before breaking in a field with a constant 

approximation using Eq. 15: 

𝐿𝑚𝑎𝑥 =
𝜎(𝐿)
𝜌 ⋅ 𝑔 =

400 ∙ 106

7860 ∙ 3.05 ∙ 1031 ≈ 1.67 ∙ 10−27𝑚 (46)  
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Calculating total elongation in a changing field using Eq. 38: 

Δ𝐿 =
𝜌𝑔0𝑟0

2

𝐸
(

𝐿
𝑟0

− ln (1 +
𝐿
𝑟0

)) = 

=
7860 ∙  3.05 ∙ 1031 ∙ (1.48 ∙ 10−15)2

200 ∙ 109 (
4

1.48 × 10−15 − ln (1 +
4

1.48 × 10−15)) ≈ 7.10 ∙ 109 (47)  

Calculating the maximum length of the rod before breaking in a changing  field using Eq. 40: 

𝐿𝑚𝑎𝑥 =
𝜎

𝜌𝑔0 − 𝜎
𝑟0

=
400 ∙ 106

7860 ∙ 3.05 ∙ 1031 − 400 ∙ 106

1.48 ∙ 10−15

≈ 1.67 ∙ 10−27𝑚 (48) 

The results of the calculations for the other examples from Table 4 are displayed in a Table 5. 

Table 5: Results of calculations for the black hole examples of Table 4

 

Firstly, it can be observed that with increasing mass M, Schwarzschield's radius also increases. 

A significant change can be observed between the smallest and the biggest radius, ranging from 

10−15𝑚 to 1014𝑚. Moreover, surface gravitation ranges from twenty times the Earths 

gravitation, to the order of 1031. The values of the maximum length of an object (the rod) before 

fracturing do not differ for constant and changing fields when shown to three significant figures. 

This suggests that the contribution from the varying gravitational field is negligible. Moreover, 

an increase in the maximum length before object fractures is observed with increasing radius. 

The graph is plotted in Fig. 4. 

A linear relationship  between the two variables is observed, confirming that the maximum length 

increases linearly with increasing black hole's mass 𝑀.  
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Moreover, data for total rod elongation can also be analysed for the constant and varying 

gravitational field. Graphs for both examples are presented in Fig. 5.

 

Figure 4: Maximum length versus black hole’s mass M 

 

Figure 5: Total elongation of the rod for changing (left) and constant (right) gravitational field 
versus black hole’s mass M 

Both graphs show that the total elongation of the rod decreases with increasing mass of a black 

hole. This is an expected result coinciding with the results of the calculations for maximum length 

(Figure 4). The smaller the object generating the gravitational field is, the stronger the forces 
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acting on a body in such a field are, resulting in extensive stretching. Interestingly, the elongation 

decreases linearly in a constant field and non-linearly  in the case of a changing field. 

In the integration, elongations much smaller than the length L were assumed. However, the 

elongation in the presence of the small black holes are much bigger than the length of the object 

itself. This means that the results has no physical meaning and that the rod breaks much before 

the object reaches the event horizon. Moreover, the results for stellar and intermediate-mass black 

holes coincide with the calculations for a constant field, suggesting that, again, the change in the 

gravitation over the length of the rod does not have a significant influence on the rod's behaviour. 

Interestingly, when calculating the results for the most massive black holes, the numerical error 

due to 16 bit representation of the real numbers in the calculator resulted in the negative difference 

of the linear and logarithmic term in the Eq. 38.  

3. Conclusion 

 This investigation gives a fascinating insight into the behaviour of objects  at the event horizon 

of  a black hole. The aim of this exploration was first to determine what types of black holes are 

the most suitable candidates for exploration in terms of elongation of the space probes leading to 

their fracture. As a good approximation a rigid steel rod was used. The effect of the changing 

gravitational field was evaluated, and compared to the case where the gravitational field strenght 

is the same at upper and lower end of the rod. Firstly, it can be seen in Figure 4 that the maximum 

length of the rod in a black hole increases linearly with the black hole's mass. The calculation 

showed that the maximum length of an objects positioned in heavy black holes is greater. This is 

a consequence of a large distance 𝑟 between the black hole center and the object influencing the 

gravitation acceleration as  𝑔 = 𝐺𝑀
𝑟2 . Therefore, if the distance is smaller, the small value of the 

denominator increases the gravitational force and results in a more significant stretch. In 

conclusion, larger black holes would be best for exploration, as they could be approached closest 

to the event horizon. 
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Secondly, by comparing calculations for constant and changing fields, it has been discovered that 

the effect of changing gravitation between the lower and upper end of the object is negligible and 

that the most significant contribution to an object's elongation is its weight. A significant 

difference in the calculated elongation is observed for low-weight black holes. Note however that 

in both cases the calculated elongations cannot  be realized physically as it has only been assumed 

that the elongations are small compared to the length of the object.    

4. Evaluation 

While the investigation has provided some important insights, it is essential to note the limited 

accuracy of the results. Firstly, a linear dependence between the strain and stress in the whole 

elongation region has been assumed. While this is a useful approximation for calculation, it 

might not be that accurate as the stress does not change linearly with strain after exiting the 

elastic region. Secondly, as already noted above, it has been assumed that the elongation is much 

smaller compared to the instantaneous integration length of the rod. Had this assumption not 

been used, the calculations would be much more complex and might not be analytically solvable.  

Interestingly, the numerical error due to the limited accuracy of real numbers in the computer 

results in evidently wrong negative result, although the analytical expresion is positive.  
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