
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 9 (2015) 223–242

Fast recognition of partial star products and
quasi cartesian products∗

Marc Hellmuth †

Center for Bioinformatics, Saarland University,
D - 66041 Saarbrücken, Germany

Wilfried Imrich
Chair of Applied Mathematics, Montanuniversität,

A-8700 Leoben, Austria

Tomas Kupka
Department of Applied Mathematics, VSB-Technical University of Ostrava,

Ostrava, 70833, Czech Republic

Received 12 August 2013, accepted 16 December 2013, published online 8 December 2014

Abstract

This paper is concerned with the fast computation of a relation d on the edge set of
connected graphs that plays a decisive role in the recognition of approximate Cartesian
products, the weak reconstruction of Cartesian products, and the recognition of Cartesian
graph bundles with a triangle free basis.

A special case of d is the relation δ∗, whose convex closure yields the product relation
σ that induces the prime factor decomposition of connected graphs with respect to the
Cartesian product. For the construction of d so-called Partial Star Products are of particular
interest. Several special data structures are used that allow to compute Partial Star Products
in constant time. These computations are tuned to the recognition of approximate graph
products, but also lead to a linear time algorithm for the computation of δ∗ for graphs with
maximum bounded degree.

Furthermore, we define quasi Cartesian products as graphs with non-trivial δ∗. We
provide several examples, and show that quasi Cartesian products can be recognized in
linear time for graphs with bounded maximum degree. Finally, we note that quasi products
can be recognized in sublinear time with a parallelized algorithm.
∗We thank Lydia Ostermeier for her insightful comments on graph bundles, as well as for the suggestion of

the term ”quasi product”. This work was supported in part by ARRS Slovenia and the Deutsche Forschungsge-
meinschaft (DFG) Project STA850/11-1 within the EUROCORES Program EuroGIGA (project GReGAS) of the
European Science Foundation. This paper is based on part of the dissertation of the third author.
†Corresponding Author

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/

224 Ars Math. Contemp. 9 (2015) 223–242

Keywords: Cartesian product, quasi product, graph bundle, approximate product, partial star prod-
uct, product relation.

Math. Subj. Class.: 05C15, 05C10

1 Introduction
Cartesian products of graphs derive their popularity from their simplicity, and their im-
portance from the fact that many classes of graphs, such as hypercubes, Hamming graphs,
median graphs, benzenoid graphs, or Cartesian graph bundles, are either Cartesian products
or closely related to them [5]. As even slight disturbances of a product, such as the addition
or deletion of an edge, can destroy the product structure completely [2], the question arises
whether it is possible to restore the original product structure after such a disturbance. In
other words, given a graph, the question is, how close it is to a Cartesian product, and
whether one can find this product algorithmically. Unfortunately, in general this problem
can only be solved by heuristic algorithms, as discussed in detail in [8]. That paper also
presents several heuristic algorithms for the solution of this problem.

One of the main steps towards such algorithms is the computation of an equivalence
relation d|Sv

(W)∗ on the edge-set of a graph. The complexity of the computation of
d|Sv

(W)∗ in [8] is O(n∆4), where n is the number of vertices, and ∆ the maximum de-
gree of G. Here we improve the recognition complexity of d|Sv

(W)∗ to O(m∆), where
m is the number of edges of G, and thereby improve the complexity of the just mentioned
heuristic algorithms.

A special case is the computation of the relation δ∗ = d|Sv
(V (G))∗. This relation

defines the so-called quasi Cartesian product, see Section 3. Hence, quasi products can
be recognized in O(m∆) time. As the algorithm can easily be parallelized, it leads to
sublinear recognition of quasi Cartesian products.

When the given graph G is a Cartesian product from which just one vertex was deleted,
things are easier. In that case, the product is uniquely defined and can be reconstructed in
polynomial time from G, see [1] and [3]. In other words, if G is given, and if one knows
that there is a Cartesian product graphH such thatG = Hrx, thenH is uniquely defined.
Hagauer and Žerovnik showed that the complexity of finding H is O(mn(∆2 +m)). The
methods of the present paper will lead to a new algorithm of complexity O(m∆2 + ∆4)
for the solution of this problem. This is part of the dissertation [13] of the third author, and
will be the topic of a subsequent publication.

Another class of graphs that is closely related to Cartesian products are Cartesian graph
bundles, see Section 3. In [11] it was proved that Cartesian graph bundles over a triangle-
free base can be effectively recognized, and in [14] it was shown that this can be done
in O(mn2) time. With the methods of this paper, we suppose that one can improve it to
O(m∆) time. This too will be published separately.

2 Preliminaries
We consider finite, connected undirected graphs G = (V,E) without loops and multiple
edges. The Cartesian product G1�G2 of graphs G1 = (V1, E1) and G2 = (V2, E2)

E-mail addresses: marc.hellmuth@bioinf.uni-sb.de (Marc Hellmuth), imrich@unileoben.ac.at (Wilfried
Imrich), tomas.kupka@teradata.com (Tomas Kupka)

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 225

is a graph with vertex set V1 × V2, where the vertices (u1, v1) and (u2, v2) are adjacent
if u1u2 ∈ E1 and v1 = v2, or if v1v2 ∈ E2 and u1 = u2. The Cartesian product is
associative, commutative, and has the one vertex graph K1 as a unit [5]. By associativity
we can write G1�G2� · · ·�Gk for a product G of graphs G1, G2, . . . , Gk and can label
the vertices of G by the set of all k-tuples (v1, v2, . . . , vk), where vi ∈ Gi for 1 ≤ i ≤ k.
If v is labeled (v1, v2, . . . , vk), then we call vi its ith coordinate. One says two edges have
the same Cartesian color if their endpoints differ in the same coordinate.

A graph G is prime if it is non-trivial, and if the identity G = G1�G2 implies that G1

or G2 is the one-vertex graph K1. A representation of a graph G as a product G1�G2� · · ·
�Gk of prime graphs is called a prime factorization of G. It is well known that every
connected graph G has a prime factor decomposition with respect to the Cartesian product,
and that this factorization is unique up to isomorphisms and the order of the factors, see
Sabidussi [15]. Furthermore, the prime factor decomposition can be computed in linear
time, see [10].

Following the notation in [8], an induced cycle on four vertices is called chordless
square. Let the edges e = vu and f = vw span a chordless square vuxw. Then f is the
opposite edge of the edge xu. The vertex x is called top vertex (w.r.t. the square spanned
by e and f). A top vertex x is unique if |N(x) ∩ N(v)| = 2, where N(u) denotes the
(open) 1-neighborhood of vertex u. In other words, a top vertex x is not unique if there are
further squares with top vertex x spanned by the edges e or f together with a third distinct
edge g. Note that the existence of a unique top vertex x does not imply that e and f span
a unique square, as there might be another square vuyw with a possible unique top vertex
y. Thus, e and f span a unique square vuxw only if |N(u) ∩ N(w)| = 2. The degree
deg(u) := |N(u)| of a vertex u is the number of edges that contain u. The maximum
degree of a graph is denoted by ∆ and a path on n vertices by Pn.

We now recall the Breadth-First Search (BFS) ordering of the vertices v0, v1, . . . , vn−1
of a graph: select an arbitrary, but fixed vertex v0 ∈ V (G), called the root, and create a
sorted list of vertices. Begin with v0; append all neighbors v1, . . . , vdeg(v0) of v0 to the list;
then append all neighbors of v1 that are not already in the list; and continue recursively
with v2, v3, . . . until all vertices of G are processed.

2.1 The Relations δ, σ and the Square Property.

There are two basic relations δ and σ, among other relations that are defined on the edge set
of a given graph, that play an important role in the field of Cartesian product recognition.
In the sequel we shall also use the notation R∗ for the transitive closure of a relation R,
that is, R∗ is the smallest transitive relation containing R.

Definition 2.1. Two edges e, f ∈ E(G) are in the relation δG, if one of the following
conditions in G is satisfied:

(i) e and f are adjacent and it is not the case that there is a unique square spanned by e
and f , and that this square is chordless.

(ii) e and f are opposite edges of a chordless square.

(iii) e = f .

Clearly, this relation is reflexive and symmetric but not necessarily transitive. The
transitive closure δ∗G is an equivalence relation.

226 Ars Math. Contemp. 9 (2015) 223–242

If adjacent edges e and f are not in relation δ, that is, if Condition (i) of Definition 2.1
is not fulfilled, then they span a unique square, and this unique square spanned by e and f
is chordless. We call such a square the unique chordless square (spanned by e and f).

Two edges e and f are in the product relation σG if they have the same Cartesian colors
with respect to the prime factorization of G. The product relation σG is a uniquely defined
equivalence relation on E(G) that contains all information about the prime factorization1.
Furthermore, δG and δ∗G are contained in σG. If there is no risk of confusion we write δ or
σ for δG or σG, respectively.

We say an equivalence relation ρ defined on the edge set of a graph G has the square
property if the following three conditions hold:

(a) For any two edges e = uv and f = uw that belong to different equivalence classes
of ρ there exists a unique vertex x 6= u of G that is adjacent to v and w.

(b) The square uvxw is chordless.

(c) The opposite edges of any chordless square belong to the same equivalence class of
ρ.

From the definition of δ it easily follows that δ is a refinement of any such ρ. It also
implies that δ∗, and thus also σ, have the square property. This property is of fundamental
importance, both for the Cartesian and the quasi Cartesian product. We note in passing that
σ is the convex hull of δ∗, see [12].

2.2 The Partial Star Product

This section is concerned with the partial star product, which plays a decisive role in the
local approach. As it was introduced in [8], we will only define it here, list some of its most
basic properties, and refer to [8] for details.

Let G = (V,E) be a given graph and Ev the set of all edges incident to some vertex
v ∈ V . We define the local relation dv as follows:

dv = ((Ev × E) ∪ (E × Ev)) ∩ δG ⊆ δ〈NG
2 [v]〉,

where 〈NG
2 [v]〉 denotes the induced closed 2-neigborhood of v in G. In other words, dv is

the subset of δG that contains all pairs (e, f) ∈ δG, where at least one of the edges e and f
is incident to v. Clearly d∗v , which is not necessarily a subset of δ, is contained in δ∗, see
[8].

Let Sv be a subgraph of G that contains all edges incident to v and all squares spanned
by edges e, e′ ∈ Ev where e and e′ are not in relation d∗v . Then Sv is called partial star
product (PSP for short). To be more precise:

Definition 2.2 (Partial Star Product (PSP)). Let Fv ⊆ E \Ev be the set of edges which are
opposite edges of (chordless) squares spanned by e, e′ ∈ Ev that are in different d∗v classes,
that is, (e, e′) 6∈ d∗v .

Then the partial star product is the subgraph Sv ⊆ G with edge set E′ = Ev ∪ Fv

and vertex set ∪e∈E′e, which consists of the end vertices of the edges in E′. We call v the
center of Sv , Ev the set of primal edges, Fv the set of non-primal edges, and the vertices
adjacent to v primal vertices of Sv .

1For the properties of σ that we will cite or use, we refer the reader to [5] or [9].

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 227

As shown in [8], a partial star product Sv is always an isometric subgraph or even
isomorphic to a Cartesian product graph H , where the factors of H are so-called stars
K1,n. These stars can directly be determined by the respective d∗v classes, see [8].

Now we define a local coloring of Sv as the restriction of the relation d∗v to Sv:

d|Sv
:= d∗v|Sv

= {(e, f) ∈ d∗v | e, f ∈ E(Sv)}.

In other words, d|Sv
is the subset of d∗v that contains all pairs of edges (e, f) ∈ d∗v where

both e and f are in Sv and edges obtain the same local color whenever they are in the same
equivalence class of d|Sv

. As an example consider the PSP Sv in Figure 1(d). The relation
d|Sv

has three equivalence classes (highlighted by thick, dashed and double-lined edges).
Note, δ∗ just contains one equivalence class. Hence, d|Sv

6= δ∗Sv
.

For a given subset W ⊆ V we set

d|Sv
(W) = ∪v∈W d|Sv

.

The transitive closure of d|Sv
(W) is then called the global coloring with respect to W . As

shown in [8], we have the following theorem.

Theorem 2.3. Let G = (V,E) be a given graph and d|Sv
(V) = ∪v∈V d|Sv

. Then

d|Sv
(V)∗ = δ∗G.

For later reference and for the design of the recognition algorithm we list the following
three lemmas about relevant properties of the PSP.

Lemma 2.4 ([8]). Let G=(V,E) be a given graph and Sv be a PSP of an arbitrary vertex
v ∈ V . If e, f ∈ Ev are primal edges that are not in relation d∗v , then e and f span a
unique chordless square with a unique top vertex in G.

Conversely, suppose that x is a non-primal vertex of Sv . Then there is a unique chord-
less square in Sv that contains x, and that is spanned by edges e, f ∈ Ev with (e, f) 6∈ d∗v .

Lemma 2.5 ([8]). Let G=(V,E) be a given graph and f ∈ Fv be a non-primal edge of a
PSP Sv of an arbitrary vertex v ∈ V . Then f is opposite to exactly one primal edge e ∈ Ev

in Sv , and (e, f) ∈ d|Sv
.

Lemma 2.6 ([8]). Let G=(V,E) be a given graph and W ⊆ V such that 〈W 〉 is connected.
Then each vertex x ∈W meets every equivalence class of d|Sv

(W)∗ in ∪v∈WSv .

3 Quasi Cartesian Products
Given a Cartesian product G = A�B of two connected, prime graphs A and B, one can
recover the factors A and B as follows: the product relation σ has two equivalence classes,
say E1 and E2, and the connected components of the graph (V (G), E1) are all isomorphic
copies of the factor A, or of the factor B, see Figure 1(a). This property naturally extends
to products of more than two prime factors.

We already observed that δ is finer than any equivalence relation ρ that satisfies the
square property. Hence the equivalence classes of ρ are unions of δ∗-classes. This also

228 Ars Math. Contemp. 9 (2015) 223–242

(a) The Cartesian product G = P3�C4. (b) A quasi Cartesian product, which is also a
graph bundle.

(c) A quasi Cartesian product, which is not a
graph bundle.

0

1 2

v 3

45

(d) The approximate product and PSP Sv ,
which is neither a quasi product nor a graph
bundle.

Figure 1: Shown are several quasi Cartesian products, graph bundles and approximate
products.

holds for σ. It is important to keep in mind that σ can be trivial, that is, it consists of a
single equivalence class even when δ∗ has more than one equivalence class.

We call all graphs G with a non-trivial equivalence relation ρ that is defined on E(G)
and satisfies the square property quasi (Cartesian) products. Since δ∗ ⊆ ρ for every such
relation ρ, it follows that δ∗ must have at least two equivalence classes for any quasi prod-
uct. By Theorem 2.3 we have d|Sv

(V (G))∗ = δ∗. In other words, quasi products can be
defined as graphs where the PSP’s of all vertices are non-trivial, that is, none of the PSP’s
is a star K1,n, and in addition, where the union over all d|Sv

yields a non-trivial δ∗.

Consider the equivalence classes of the relation δ∗ of the graph G of Figure 1(b). It
has two equivalence classes, and locally looks like a Cartesian product, but is actually
reminiscent of a Möbius band. Notice that the graph G in Figure 1(b) is prime with respect
to Cartesian multiplication, although δ∗ has two equivalence classes: all components of the
first class are paths of length 2, and there are two components of the other δ∗-class, which
do not have the same size. Locally this graph looks either like P3�P3 or P2�P3.

In fact, the graph in Figure 1(b) is a so-called Cartesian graph bundle [11], where Carte-
sian graph bundles are defined as follows: Let B and F be graphs. A graph G is a (Carte-

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 229

sian) graph bundle with fiber F over the base B if there exists a weak homomorphism2

p : G→ B such that

(i) for any u ∈ V (B), the subgraph (induced by) p−1(u) is isomorphic to F , and

(ii) for any e ∈ E(B), the subgraph p−1(e) is isomorphic to K2�F.

The graph of Figure 1(c) shows that not all quasi Cartesian products are graph bundles.
On the other hand, not every graph bundle has to be a quasi product. The standard example
is the complete bipartite graph K3,3. It is a graph bundle with base K3 and fiber K2, but
has only one δ∗-class.

Note, in [8] we considered ”approximate products” which were first introduced in [7, 6].
As approximate products are the graphs that have a (small) edit distance to a non-trivial
product graph, it is clear that every bundle and quasi product can be considered as an
approximate product, while the converse is not true. For example, consider the graph in
Figure 1(d). Here, δ∗ has only one equivalence class. However, the relation d|Sv

has, in
this case, three equivalence classes (highlighted by thick, dashed and double-lined edges).

Because of the local product-like structure of quasi Cartesian products we are led to the
following conjecture:

Conjecture 3.1. Quasi Cartesian products can be reconstructed in essentially the same
time from vertex-deleted subgraphs as Cartesian products.

4 Recognition Algorithms
4.1 Computing the Local and Global Coloring

For a given graph G, let W ⊆ V (G) be an arbitrary subset of the vertex set of G such that
the induced subgraph 〈W 〉 is connected. Our approach for the computation is based on the
recognition of all PSP’s Sv with v ∈ W , and subsequent merging of their local colorings.
The subroutine computing local colorings calls the vertices in BFS-order with respect to an
arbitrarily chosen root v0 ∈W .

Let us now briefly introduce several additional notions used in the PSP recognition
algorithm. At the start of every iteration we assign pairwise different temporary local colors
to the primal edges of every PSP. These colors are then merged in subroutine processes to
compute local colors associated with every PSP. Analogously, we use temporary global
colors that are initially assigned to every edge incident with the root v0.

For any vertex v of distance two from a PSP center c we store attributes called first
and second primal neighbor, that is, references to adjacent primal vertices from which v
was ”visited” (in pseudo-code attributes are accessed by v.F irstPrimalNeighbor and
v.SecondPrimalNeighbor). When v is found to have at least two primal neighbors we
add v to Tc, which is a stack of candidates for non-primal vertices of Sc. Finally, we use
incidence and absence lists to store recognized squares spanned by primal edges. Whenever
we recognize that two primal edges span a square we put them into the incidence list. If we
find out that a pair of primal edges cannot span a unique chordless square with unique top
vertex, then we move it into the absence list. Note that the above structures are local and
are always associated with a certain PSP recognition subroutine (Algorithm 4.1). Finally,
we will ”map” local colors to temporary global colors via temporary vectors which helps
us to merge local with global colors.

2A weak homomorphism maps edges into edges or single vertices.

230 Ars Math. Contemp. 9 (2015) 223–242

Algorithm 4.1 computes a local coloring for a given PSP and merges it with the global
coloring d|Sv

(W)∗ where W ⊆ V (G) is the set of treated centers. Algorithm 4.2 summa-
rizes the main control structure of the local approach.

Algorithm 4.1 (PSP recognition)

Input: Connected graph G = (V,E), PSP center c ∈ V , global coloring d|S(W)∗,
where W ⊆ V is the set of treated centers and where the subgraph induced
by W ∪ c is connected.

Output: New temporary global coloring d|S(W ∪ c)∗.
1. Initialization.

2. FOR every neighbor u of c DO:

(a) FOR every neighbor w of u (except c) DO:

i. IF w is primal w.r.t. c THEN add pair of primal edges (cu, cw) to absence list.
ii. ELSEIF w was not visited THEN set w.F irstPrimalNeighbor = u.

iii. ELSE (w is not primal and was already visited) DO:

A. IF only one primal neighbor v (v 6= u) of w was recognized so far, then
DO:

• Set w.SecondPrimalNeighbor = u.
• IF (cu, cv) is not in incidence list, then add w to the stack Tc and add

the pair (cu, cv) to incidence list.
• ELSE (cu and cv span more squares) add pair (cu, cv) to absence list.

B. ELSE:

• Add all pairs formed by primal edges cv1, cv2, cu to absence list, where
v1, v2 are first and second primal neighbors of w.

3. Assign pairwise different temporary local colors to primal edges.

4. FOR any pair (cu, cv) of primal edges cu and cv DO:

(a) IF (cu, cv) is contained in absence list THEN merge temporary local colors of cu
and cv.

(b) IF (cu, cv) is not contained in incidence list THEN merge temporary local colors
of cu and cv.

(Resulting merged temporary local colors determine local colors of primal edges in Sc.
We will reference them in the following steps.).

5. FOR any primal edge cu DO:

(a) IF cu was already assigned some temporary global color d1 THEN

i. IF local color b of cu was already mapped to some temporary global color d2,
where d2 6= d1, THEN merge d1 and d2.

ii. ELSE map local color b to d1.

6. FOR any vertex v from the stack Tc DO:

(a) Check local colors of primal edges cw1 and cw2 (where w1, w2 are first and second
primal neighbor of v, respectively).

(b) IF they differ in local colors THEN

i. IF there was defined temporary global color d1 for vw1 THEN

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 231

A. IF local color b of cw2 was already mapped to some temporary global
color d2, where d2 6= d1 THEN merge d1 and d2.

B. ELSE map local color b to d1.

ii. IF there was already defined temporary global color d1 for vw2 THEN:

A. IF local color b of cw1 was already mapped to some temporary global
color d2, where d2 6= d1 THEN merge d1 and d2.

B. ELSE map local color b to d1.

7. Take every edge e of the PSP Sc that was not colored by any temporary global color up to
now and assign it d, where d is the temporary global color to which the local color of e or
the local color of its opposite primal edge e′ was mapped.
(If there is a local color b that was not mapped to any temporary global color, then we
create a new temporary global color and assign it to all edges of color b.)

Algorithm 4.2 (Computation of d|Sv
(W)∗)

Input: A connected graph G, W ⊆ V (G) s.t. the induced subgraph 〈W 〉 is connected,
and an arbitrary vertex v0 ∈W .

Output: Relation d|Sv (W)∗.

1. Initialization.
2. Set sequence Q of vertices v0, v1, . . . , vn that form W in BFS-order with respect to v0.
3. Set W ′ := ∅.
4. Assign pairwise different temporary global colors to edges incident to v0.
5. FOR any vertex vi from sequence Q DO:

(a) Use Algorithm 4.1 to compute d|Sv (W
′ ∪ vi)∗.

(b) Add vi to W ′.

In order to show that Algorithm 4.1 correctly recognizes the local coloring, we define
the (temporary) relations αc and βc for a chosen vertex c: Two primal edges of Sc are

• in relation αc if they are contained in the incidence list and

• in relation βc if they are contained in the absence list

after Algorithm 4.1 is executed for c. Note, we denote by αc the complement of αc, which
contains all pairs of primal edges of PSP Sc that are not listed in the incidence list.

Lemma 4.1. Let e and f be two primal edges of the PSP Sc. If e and f span a square with
some non-primal vertex w as unique top-vertex, then (e, f) ∈ αc.

Proof. Let e = cu1 and f = cu2 be primal edges in Sc that span a square cu1wu2 with
unique top-vertex w, where w is non-primal. Note, since w is the unique top vertex, the
vertices u1 and u2 are its only primal neighbors. W.l.o.g. assume that for vertex w no first
primal neighbor was assigned and let first u1 and then u2 be visited. In Step 2a vertex w
is recognized and the first primal neighbor u1 is determined in Step 2(a)ii. Take the next
vertex u2. Since w is not primal and was already visited, we are in Step 2(a)iii. Since only
one primal neighbor of w was recognized so far, we go to Step 2(a)iiiA. If (cu1, cu2) is not
already contained in the incidence list, it will be added now and thus, (cu1, cu2) ∈ αc.

232 Ars Math. Contemp. 9 (2015) 223–242

Corollary 4.2. Let e and f be two adjacent distinct primal edges of the PSP Sc. If (e, f) ∈
αc, then e and f do not span a square or span a square with non-unique or primal top
vertex. In particular, αc contains all pairs (e, f) that do not span any square.

Proof. The first statement is just the contrapositive of the statement in Lemma 4.1. For the
second statement observe that if e = cx and f = cy are two distinct primal edges of Sc that
do not span a square, then the vertices x and y do not have a common non-primal neighbor
w. It is now easy to verify that in none of the substeps of Step 2 the pair (e, f) is added to
the incidence list, and thus, (e, f) ∈ αc.

Lemma 4.3. Let e and f be two primal edges of the PSP Sc that are in relation βc. Then
e and f do not span a unique chordless square with unique top vertex.

Proof. Let e = cu1 and f = cu2 be primal edges of Sc. Then pair (e, f) is added to the
absence list in:

a) Step 2(a)i, when u1 and u2 are adjacent. Then no square spanned by e and f can be
chordless.

b) Step 2(a)iiiA (ELSE-condition), when (e, f) is already listed in the incidence list and
another square spanned by e and f is recognized. Thus, e and f do not span a unique
square.

c) Step 2(a)iiiB, when e and f span a square with top vertex w that has more than two
primal neighbors and at least one of the primal vertices u1 and u2 are recognized as
first or second primal neighbor of w. Thus e and f span a square with non-unique
top vertex.

Lemma 4.4. Relation β∗c contains all pairs of primal edges (e, f) of Sc that satisfy at least
one of the following conditions:

a) e and f span a square with a chord.

b) e and f span a square with non-unique top vertex.

c) e and f span more than one square.

Proof. Let e = cu1 and f = cu2 be primal edges of the PSP Sc.

a) If e and f span a square with a chord, then u1 and u2 are adjacent or the top vertex w
of the spanned square is primal and thus, there is a primal edge g = cw. In the first
case, we can conclude analogously as in the proof of Lemma 4.3 that (e, f) ∈ βc. In
the second case, we analogously obtain (e, g), (f, g) ∈ βc and therefore, (e, f) ∈ β∗c .

b) Let e and f span a square with non-unique top vertex w. If at least one of the primal
vertices u1, u2 is a first or second neighbor ofw then e and f are listed in the absence
list, as shown in the proof of Lemma 4.3. If u1 and u2 are neither first nor second
primal neighbors of w, then both edges e and f will be added to the absence list in
Step 2(a)iiiB, together with the primal edge g = cu3, where u3 is the first recognized
primal neighbor of w. In other words, (e, g), (f, g) ∈ βc and hence, (e, f) ∈ β∗c .

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 233

c) Let e and f span two squares with top vertices w and w′, respectively and assume
w.l.o.g. that first vertex w is visited and then w′. If both vertices u1 and u2 are
recognized as first and second primal neighbors ofw andw′, then (cu1, cu2) is added
to the incidence list when visiting w in Step 2(a)iiiA. However, when we visit w′,
then we insert (cu1, cu2) to the absence list in Step 2(a)iiiA, because this pair is
already included in the incidence list. Thus, (e, f) ∈ βc. If at least one of the
vertices w,w′ does not have u1 and u2 as first or second primal neighbor, then e and
f must span a square with non-unique top vertex. Item b) implies that (e, f) ∈ β∗c .

Lemma 4.5. Let f be a non-primal edge and e1, e2 be two distinct primal edges of Sc. Let
(e1, f), (e2, f) ∈ dc. Then (e1, e2) ∈ β∗c .

Proof. Since the edge f is non-primal, f is not incident with the center c. Recall, by the
definition of dc, two distinct edges can be in relation dc only if they have a common vertex
or are opposite edges in a square. To prove our lemma we need to investigate the three
following cases, which are also illustrated in Figure 2:

a) Suppose both edges e1 and e2 are incident with f . Then e1 and e2 span a triangle
and consequently (e1, e2) will be added to the absence list in Step 2(a)i.

b) Let e1 and e2 be opposite to f in some squares. There are two possible cases (see
Figure 2 b)). In the first case e1 and e2 span a square with non-unique top vertex.
By Lemma 4.4, (e1, e2) ∈ β∗c . In the second case e1 and e2 span triangles with
other primal edges e3 and e4. As in Case a) of this proof, we have (e1, e3) ∈ βc,
(e3, e4) ∈ βc, (e4, e2) ∈ βc and consequently, (e1, e2) ∈ β∗c

c) Suppose only e1 has a common vertex with f and e2 is opposite to f in a square.
Again we need to consider two cases (see Figure 2 c)). Since e1 and f are adjacent
and (e1, f) ∈ dc, we can conclude that either no square is spanned by e1 and f , or
that the square spanned by e1 and f is not chordless or not unique. It is easy to see
that in the first case the edges e1 and e2 are contained in a common triangle and thus
will be added to the absence list in Step 2(a)i. In the second case e1, e2 span a square
which has a chord or has a non-unique top vertex. In both cases Lemma 4.4 implies
that e1 and e2 are in relation β∗c .

Lemma 4.6. Let e and f be distinct primal edges of the PSP Sc. Then (e, f) ∈ (αc ∪ βc)∗
if and only if (e, f) ∈ d∗c .

Proof. Assume first that (e, f) ∈ αc ∪ βc. By Corollary 4.2, if (e, f) ∈ αc, then e and f
do not span a common square, or span a square with non-unique or primal top vertex. In
the first case, e and f are in relation δG and consequently also in relation dc. On the other
hand, if e and f span square with non-unique top vertex then, by Lemma 2.4, e and f are
in relation d∗c as well. Finally, if e and f span a square with primal top vertex w, then this
square has a chord cw and (e, f) ∈ d∗c . If (e, f) ∈ βc, then Lemma 4.3 implies that e and
f do not span a unique chordless square with unique top vertex. Again, by Lemma 2.4, we
infer that (e, f) ∈ d∗c . Hence, αc ∪ βc ⊆ d∗c , and consequently, (αc ∪ βc)∗ ⊆ d∗c .

234 Ars Math. Contemp. 9 (2015) 223–242

�

�

�

�

�

�

�

e1 e2 e1 e2

f

�

�

�

�

e1 e2

�

� �

e1 e2

f

�

c

a) b) c)

c

c c

�
f

�f

�

� �

e1 e2

f

�
c

�
e3 e4

Figure 2: The three possible cases a), b), and c) that are investigated in the proof of Lemma
4.5.

Now, let (e, f) ∈ d∗c . Then there is a sequence U = (e = e1, e2, . . . , ek = f), k ≥ 2,
with (ei, ei+1) ∈ dc for i ∈ {1, 2, . . . , k − 1}. By definition of dc, two primal edges are
in relation dc if and only if they do not span a unique and chordless square. Corollary
4.2 and Lemma 4.4 imply that all these pairs are contained in (αc ∪ βc)∗. Hence, any two
consecutive primal edges ei and ei+1 contained in the sequenceU are in relation (αc∪βc)∗.
Assume that there is an edge ei ∈ U that is not incident to the center c and thus, non-primal.
By the definition of dc, and since (ei−1, ei), (ei, ei+1) ∈ dc, we can conclude that the edges
ei−1 and ei+1 must be primal in Sc. Lemma 4.5 implies that ei−1 and ei+1 must be in
relation β∗c . Thus, if we remove the edge ei from U , we still can claim that all consecutive
primal edges in U \ {ei} are in relation (αc ∪ βc)∗. By removing all non-primal edges
from U we therefore obtain a sequence U ′ = e = e1, e

′
2, . . . , e

′
j = f of primal edges. By

analogous arguments as before, all pairs (e′i, e
′
i+1) of U ′ must be contained in (αc ∪ βc)∗.

By transitivity, e and f are also in (αc ∪ βc)∗.

Corollary 4.7. Let e and f be primal edges of the PSP Sc. Then (e, f) ∈ (αc∪βc)∗ if and
only if e and f have the same local color in Sc.

Proof. This is an immediate consequence of Lemma 4.6, the local color assignment, and
the merging procedure (Step 3 and 4) in Algorithm 4.1.

Lemma 4.8. Let d|Sv
(W)∗ be a global coloring associated with a set of treated centers

W and assume that the induced subgraph 〈W 〉 is connected. Let c be a vertex that is not
contained in W but adjacent to a vertex in W . Then Algorithm 4.1 computes the global
coloring d|Sv

(W ∪ c)∗ by taking W and c as input.

Proof. Let W ⊆ V (G) be a set of PSP centers and let c ∈ V (G) be a given center of PSP
Sc where c 6∈ W and 〈W ∪ c〉 is connected. In Step 2 of Algorithm 4.1 we compute the
absence and incidence lists. In Step 3, we assign pairwise different temporary local colors
to any primal edge adjacent to c. Two temporary local colors b1 and b2 are then merged
in Step 4 if and only if there exists some pair of primal edges (e1, e2) ∈ (αc ∪ βc) where

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 235

e1 is colored with b1 and e2 with b2. Therefore, merged temporary local colors reflect
equivalence classes of (αc ∪ βc)∗ containing the primal edges incident to c. By Corollary
4.7, (αc ∪ βc)∗ classes indeed determine the local colors of primal edges in Sc.

Note, if one knows the colors of primal edges incident to c, then it is very easy to de-
termine the set of non-primal edges of Sc, as any two primal edges of different equivalence
classes span a unique and chordless square. In Step 6, we investigate each vertex v from
stack Tc and check the local colors of primal edges cw1 and cw2, where w1 and w2 are the
first and second recognized primal neighbors of v, respectively. If cw1 and cw2 differ in
their local colors, then vw1 and vw2 are non-primal edges of Sc, as follows from the PSP
construction. Recall that the stack contains all vertices that are at distance two from center
c and which are adjacent to at least two primal vertices. In other words, the stack contains
all non-primal top vertices of all squares spanned by primal edges. Consequently, we claim
that all non-primal edges of the PSP Sc are treated in Step 6. Note that non-primal edges
have the same local color as their opposite primal edge, which is unique by Lemma 2.5.

As we already argued, after Step 4 is performed we know, or can at least easily deter-
mine all edges of Sc and their local colors. Recall that local colors define the local coloring
d|Sc

. Suppose, temporary global colors that correspond to the global coloring d|Sv
(W)∗

are assigned. Our goal is to modify and identify temporary global colors such that they will
correspond to the global coloring d|Sv

(W ∪ c)∗. Let B1, B2, . . . , Bk be the classes of d|Sc

(local classes) and D1, D2, . . . , Dl be the classes of d|Sv
(W)∗ (global classes). When a

local class Bi and a global class Dj have a nonempty intersection, then we can infer that
all their edges must be contained in a common class of d|Sv

(W ∪ c)∗. Note, by means of
Lemma 2.6, we can conclude that for each local class Bi there is a global class Dj such
that Bi ∩Dj 6= ∅, see also [8]. In that case we need to guarantee that edges of Bi and Dj

will be colored by the same temporary global color. Note, in the beginning of the iteration
two edges have the same temporary global color if and only if they lie in a common global
class.

In Step 5 and Step 6, we investigate all primal and non-primal edges of Sc. When we
treat first edge e that is colored by some local color bi, that is e ∈ Bi, and has already
been assigned some temporary global color dj , and therefore e ∈ Dj , then we map bi to
dj . Thus, we keep the information that e ∈ Bi ∩Dj . In Step 7, we then assign temporary
global color dj to any edge of Sc that is colored by the local color bi. If the local color
bi is already mapped to some temporary global color dj , and if we find another edge of
Sc that is colored by bi and simultaneously has been assigned some different temporary
global color dj′, then we merge dj and dj′ in Step 5(a)i. Obviously this is correct, since
Bi∩Dj 6= ∅ and Bi∩Dj′ 6= ∅, and hence Dj , Dj′ and Bi must be contained in a common
equivalence class of d|Sv

(W ∪ c)∗. Recall, for each local class Bi there is a global class
Dj such that Bi ∩ Dj 6= ∅. This means that every local color is mapped to some global
color, and consequently there is no need to create a new temporary global color in Step 7.

Therefore, whenever local and global classes share an edge, then all their edges will
have the same temporary global color at the end of Step 7. On the other hand, when edges
of two different global classes are colored by the same temporary global color, then both
global classes must be contained in a common class of d|Sv

(W ∪ c)∗.
Hence, after the performance of Step 7, the merged temporary global colors determine

the equivalence classes of d|Sv
(W ∪ c)∗.

Lemma 4.9. Let G be a connected graph, W ⊆ V (G) s.t. 〈W 〉 is connected, and v0

236 Ars Math. Contemp. 9 (2015) 223–242

an arbitrary vertex of G. Then Algorithm 4.2 computes the global coloring d|Sv
(W)∗ by

taking G, W , and v0 as input.

Proof. In Step 2 we define the BFS-order in which the vertices will be processed and store
this sequence in Q. In Step 4 we assign pairwise different temporary global colors to
all edges that are incident with v0. In Step 5 we iterate over all vertices of the given in-
duced connected subgraph 〈W 〉 of G. For every vertex we execute Algorithm 4.1. Lemma
4.8 implies that in the first iteration we correctly compute the local colors for Sv0 , and
consequently also d|Sv

({v0})∗. Obviously, whenever we merge two temporary local col-
ors of two primal edges in the first iteration, then we also merge their temporary global
colors. Consequently, the resulting temporary global colors correspond to the global col-
oring d|Sv

({v0})∗ after the first iteration. Lemma 4.8 implies that after all iterations are
performed, that is, all vertices in Q are processed, the resulting temporary global colors
correspond to d|Sv

(W)∗ for the given input set W ⊆ V (G).

For the global coloring, Theorem 2.3 implies that d|Sv
(V (G))∗ = δ∗G. This leads

immediately to the following theorem.

Theorem 4.10. Let G be a connected graph and v0 an arbitrary vertex of G. Then Algo-
rithm 4.2 computes the global coloring δ∗G by taking G, V (G), and v0 as input.

4.2 Time Complexity

We begin with the complexity of merging colors. We have global and local colors, and will
define local and global color graphs. Both graphs are acyclic temporary structures. Their
vertex sets are the sets of temporary colors in the initial state. In this state the color graphs
have no edges. Every component is a single vertex and corresponds to an initial temporary
color. Recall that we color edges of graphs, for example the edges of G or Sv . The color
of an edge is indicated by a pointer to a vertex of the color graph. These pointers are not
changed, but the colors will correspond to the components of the color graph. When two
colors are merged, then this will be reflected by adding an edge between their respective
components.

The color graph is represented by an adjacency list as described in [5, Chapter 17.2]
or [9, pp. 34 -37]. Thus, working with the color graph needs O(k) space when k colors
are used. Furthermore, for every vertex of the color graph we keep an index of the con-
nected component in which the vertex is contained. We also store the actual size of every
component, that is, the number of vertices of this component.

Suppose we wish to merge temporary colors of edges e and f that are identified with
vertices a, respectively b, in the color graph. We first check whether a and b are contained
in the same connected component by comparing component indices. If the component in-
dices are the same, then e and f already have the same color, and no action is necessary.
Otherwise we insert an edge between a and b in the color graph. As this merges the com-
ponents of a and b we have to update component indices and the size. The size is updated
in constant time. For the component index we use the index of the larger component. Thus,
no index change is necessary for the larger component, but we have to assign the new index
to all vertices of the smaller component.

Notice that the color graph remains acyclic, as we only add edges between different
components.

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 237

Lemma 4.11. Let G0 = (V,E) be a graph with V = {v1, . . . , vk} and E = ∅. The com-
ponents of G0 consist of single vertices. We assign component index j to every component
{vj}. For i ∈ {1, . . . , k − 1} let Gi+1 denote the graph that results from Gi by adding an
edge between two distinct connected components, say C and C ′. If |C| ≤ |C ′|, we use the
component index of C ′ for the new component and assign it to every vertex of C.

Then every Gi is acyclic, and the total cost of merging colors is O(k log2 k).

Proof. Acyclicity is true by construction.
A vertex is assigned a new component index when its component is merged with a

larger one. Thus, the size of the component at least doubles at every such step. Because the
maximum size of a component is bounded by k, there can be at most log2 k reassignments
of the component index for every vertex. As there are k vertices, this means that the total
cost of merging colors is O(k log2 k).

The color graph is used to identify temporary local, resp., global colors. Based on this,
we now define the local and global color graph.

Assigned labels of the vertices of the global color graph are stored in the edge list,
where any edge is identified with at most one such label. Notice that the original graph is
represented by an extended adjacency list, where for any vertex and its neighbor a reference
to the edge (in the edge list) that connects them is stored. This reference allows to access a
global temporary color from adjacency list in constant time.

In every iteration of Algorithm 4.2, we recognize the PSP for one vertex by calling
Algorithm 4.1. In the following paragraph we introduce several temporary attributes and
matrices that are used in the algorithm.

Suppose we execute an iteration that recognizes some PSP Sc. To indicate whether a
vertex was treated in this iteration we introduce the attribute visited, that is, when vertex
v is visited in this iteration we set v.visited = c. Any value different from c means
that vertex v was not yet treated in this iteration. Analogously, we introduce the attribute
primal to indicate that a vertex is adjacent to the current center c. The attribute tempLabel
maps primal vertices to the indices of rows and columns of the matrices incidenceList
and absenceList. For any vertex v that is at distance two from the center c we store its
first and second primal neighbor w1 and w2 in the attributes FirstPrimalNeighbor and
SecondPrimalNeighbor. Furthermore, we need to keep the position of vw1 and vw2

in the edge list to get their temporary global colors. For this purpose, we use attributes
firstEdge and secondEdge. Attribute mapLocalColor helps us to map temporary local
colors to the vertices of the global color graph. Any vertex that is at distance two from
the center and has a least two primal neighbors is a candidate for a non-primal vertex. We
insert them to the stack. The temporary structures help to access the required information
in constant time:

• v.visited = c
vertex v has been already visited in the current iteration.

• v.primal = c
vertex v is adjacent to center c.

• incidenceList[v.tempLabel, u.tempLabel] = 0
pair of primal edges (cv, cu) is missing in the incidence list.

• absenceList[v.tempLabel, u.tempLabel] = 1
pair of primal edges (cv, cu) was inserted to the absence list.

238 Ars Math. Contemp. 9 (2015) 223–242

• v.firstPrimalNeighbor = u
u is the first recognized primal neighbor of the non-primal vertex v.

• v.firstEdge = e
edge e joins the non-primal vertex v with its first recognized primal neighbor (it is
used to get the temporary global color from the edge list).

• b.mapLocalColor = d
local color b is mapped to temporary global color d (i.e. there exists an edge that is
colored by both colors).

Note that the temporary matrices incidenceList and absenceList have dimension
deg(c) × deg(c) and that all their entries are set to zero in the beginning of every itera-
tion.

Theorem 4.12. For a given connected graph G = (V,E) with maximum degree ∆ and
W ⊆ V , Algorithm 4.2 runs in O(|E|∆) time and O(|E|+ ∆2) space.

Proof. Let G be a given graph with m edges and n vertices. In Step 1 of Algorithm 4.2 we
initialize all temporary attributes and matrices. This consumesO(m+n) = O(m) time and
space, since G is connected, and hence, m ≥ n− 1. Moreover, we set all temporary colors
of edges in the edge list to zero, which does not increase the time and space complexity
of the initial step. Recall that we use an extended adjacency list, where every vertex and
its neighbors keep the reference to the edge in the edge list that connects them. To create
an extended adjacency list we iterate over all edges in the edge list, and for every edge
uv = e ∈ E(G) we set a new entry for the neighbor v for u and, simultaneously, we add
a reference v.edge = e. The same is done for vertex v. It can be done in O(m) time and
space.

In Step 2 of Algorithm 4.2, we build a sequence of vertices in BFS-order starting with
v0, which is done in O(m + n) time in general. Since G is connected, the BFS-ordering
can be computed in O(m) time. Step 3 takes constant time. In Step 4 we initialize the
global color graph that has deg(v0) vertices (bounded by ∆ in general). As we already
showed, all operations on the global color graph take O(∆ log2 ∆) time and O(∆) space.
We proceed to traverse all neighbors u1, u2, . . . , udeg (v0) of the root v0 ∈ V (G) (via the
adjacency list) and assign them unique labels 1, 2, . . . ,deg(v0) in edge list, that is, every
edge v0ui gets the label i. In this way, we initialize pairwise different temporary global
colors of edges incident with v0 , that is, to vertices of the global color graph. Using the
extended adjacency list, we set the label to an edge in the edge list in constant time. In Step
5 we run Algorithm 4.1 for any vertex from the defined BFS-sequence.

In the remainder of this proof, we will focus on the complexity of Algorithm 4.1. Sup-
pose we perform Algorithm 4.1 for vertex c to recognize the PSP Sc. The recognition pro-
cess is based on temporary structures. We do not need to reset any of these structures, for
any execution of Algorithm 4.1 for a new center c, except absenceList and incidenceList.
This is done in Step 1. Further, we set here the attribute tempLabel for every primal vertex
v, such that every vertex has assigned a unique number from {1, 2, . . . ,deg(c)}. Finally,
we traverse all neighbors of the center c and for each of them we set primal to c. Hence,
the initial step of Algorithm 4.1 is done in O(deg(c)2) time.

Step 2a is performed for every neighbor of every primal vertex. The number of all
such neighbors is at most deg(c)∆. For every treated vertex, we set attribute visited to c.

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 239

This allows us to verify in constant time that a vertex was already visited in the recognition
subroutine Algorithm 4.1.

If the condition in Step 2(a)i is satisfied, then we add primal edges cu and cw to the
absence list. By the previous arguments, this can be done in constant time by usage of
tempLabel and absenceList.

If the condition in Step 2(a)ii is satisfied, we set vertex u as first primal neighbor of
vertex w. For this purpose, we use the attribute firstPrimalNeighbor. We also set
w.firstEdge = e, where e is a reference to the edge in the edge list that connects u and
w. This reference is obtained from the extended adjacency list in constant time. Recall,
the edge list is used to store the labels of vertices of the global color graph for the edges
of a given graph, that is, the assignment of temporary global colors to the edges. Using
w.firstEdge, we are able to directly access the temporary global color of edge uw in
constant time.

Step 2(a)iii is performed when we try to visit a vertex w from some vertex u where
w has been already visited before from some vertex v. If v is the only recognized primal
neighbor of w, then we perform analogous operations as in the previous step. Moreover. if
(cu, cv) is not contained in the incidence list, then we set u as second primal neighbor of
w, add (cu, cv) to the incidence list and add w to the stack. Otherwise we add (cu, cv) to
the absence list. The number of operations in this step is constant.

If w has more recognized primal neighbors we process case B. Here we just add all
pairs formed by cv1, cv2, cu to absence list. Again, the number of operations is constant by
usage of tempLabel and matrices incidenceList and absenceList.

In Step 3 we assign pairwise different temporary local colors to the primal edges.
Assume the neighbors of the center c are labeled by 1, 2, . . . ,deg (c), then we set value
u.tempLabel to cu. In Step 4a we iterate over all entries of the absenceList. For all pairs
of edges that are in the absence list we check whether they still have different temporary lo-
cal colors and if so, we merge their temporary local colors by adding a respective edge in the
local color graph. Analogously we treat all pairs of edges contained in the incidenceList
in Step 4b. Here we merge temporary local colors of primal edges cu and cv when the pair
(cu, cv) is missing. To treat all entries of the absenceList and incidenceList we need
to perform deg(c)2 iterations. Recall, the temporary local color of the primal edge cu is
equal to the index of the connected component in the local color graph, in which vertex
u.tempLabel is contained. Thus, the temporary local color of this primal edge can be ac-
cessed in constant time. As we already showed, the number of all operations on the local
color graph is bounded by O(deg(c) log2 deg(c)). Hence, the overall time complexity of
both Steps 3 and 4 is O(deg(c)2).

In Step 5 we map temporary local colors of primal edges to temporary global colors.
For this purpose, we use the attribute mapLocalColor. The temporary global color of
every edge can be accessed by the extended adjacency list, the edge list and the global
color graph in constant time. Since we need to iterate over all primal vertices, we can
conclude that Step 5 takes O(deg(c)) time.

In Step 6 we perform analogous operations for any vertex from Stack Tc as in Step 5.
In the worst case, we add all vertices that are at distance two from the center to the stack.
Hence, the size of the stack is bounded by O(deg(c)∆). Recall that the first and second
primal neighbor w1 and w2 of every vertex v from the stack can be directly accessed by the
attributes firstPrimalNeighbor and secondPrimalNeighbor. On the other hand, the
temporary global colors of non-primal edges vw1 and vw2 can be accessed directly by the

240 Ars Math. Contemp. 9 (2015) 223–242

attributes firstEdge and secondEdge. Thus, all needful information can be accessed in
constant time. Consequently, the time complexity of this step is bounded by O(deg(c)∆).

In the last step, Step 7, we iterate over all edges of the recognized PSP. Note, the list
of all primal edges can be obtained from the extended adjacency list. To get all non-primal
edges we iterate over all vertices from the stack and use the attributes firstEdge and
secondEdge, which takes O(deg(c)∆) time. The remaining operations can be done in
constant time.

To summarize, Algorithm 4.1 runs in O(deg(c)∆) time. Consequently, Step 5 of Al-
gorithm 4.2 runs in O(

∑
c∈W deg(c)∆) = O(m∆) time, which defines also the total time

complexity of Algorithm 4.2. The most space consuming structures are the edge list and
the extended adjacency list (O(m) space) and the temporary matrices absenceList and
incidenceList (O(∆2) space). Hence, the overall space complexity is O(m+ ∆2).

Since quasi Cartesian products are defined as graphs with non-trivial δ∗, Theorem 4.10
and 4.12 imply the following corollary.

Corollary 4.13. For a given connected graph G = (V,E) with bounded maximum de-
gree Algorithm 4.2 (with slight modifications) determines whether G is a quasi Cartesian
product in O(|E|) time and O(|E|) space.

4.3 Parallel Processing

The local approach allows the parallel computation of δ∗(G) on multiple processors. Con-
sider a graph G with vertex set V (G). Suppose we are given a decomposition of V (G) =
W1∪W2∪· · ·∪Wk into k parts such, that |W1| ≈ |W2| ≈ · · · ≈ |Wk|, where the subgraphs
induced by W1,W2, . . . ,Wk are connected, and the number of edges whose endpoints lie
in different partitions is small (we call such a decomposition good).

Algorithm 4.3 (Parallel recognition of δ∗)

Input: A graph G, and a good decomposition V (G) =W1 ∪W2 ∪ · · · ∪Wk.
Output: Relation δ∗G.

1. For every partition Wi concurrently compute global coloring d|Sv (Wi) (i ∈ {1, 2, . . . ,
k}):

(a) Take all vertices of Wi and order them in BFS to get sequence Qi.
(b) Set W ′ := ∅.
(c) Assign pairwise different temporary global colors to edges incident to first vertex in

Qi.
(d) For any vertex v from sequence Qi do:

i. Use Algorithm 4.1 to compute d|Sv (W
′ ∪ v)∗.

ii. Move all edges that were treated in previous step and have at least one endpoint
not in partition Wi to stack Ti.

iii. Add v to W ′.

2. Run concurrently for every partition Wi to merge all global colorings (i ∈ {1, 2, . . . , k}):

(a) For each edge from stack Ti, take all its assigned global colors and merge them.

Marc Hellmuth et al.: Fast recognition of partial star products and quasi cartesian products 241

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � �

� � � � � �
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

� � � �

� �

� � � �
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

� � � �

� �

� � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

W1 W2

W3W4

d|Sv
(W1)

∗

d|Sv
(W2)

∗

d|Sv
(W3)

∗

d|Sv
(W4)

∗

G

Figure 3: Example - Parallel recognition of δ∗.

Then algorithm 4.2 can be used to compute the colorings d|Sv
(W1)∗, d|Sv

(W2)∗, . . . ,
d|Sv

(Wk)∗, where every instance of the algorithm can run in parallel. The resulting global
colorings are used to compute d|Sv

(V (G))∗ = (d|Sv
(W1)∗∪d|Sv

(W2)∗∪· · ·∪d|Sv
(Wk)∗)∗.

The sketch of the parallelization is summarized in Algorithm 4.3.
Figure 3 shows an example of decomposed vertex set of a given graph G. The compu-

tation of global colorings associated with the individual sets of the partition can be done
then in parallel. The edges that are colored by global color when the partition is treated are
highlighted by bold black color. Thus we can observe that many edges will be colored by
more then one color.

Notice that we do not treat the task of finding a good partition. With the methods of [4]
this is possible with high probability in O(log n) time, where n is the number of vertices.

References
[1] W. Dörfler, Some results on the reconstruction of graphs, in: Infinite and finite sets (Colloq.,

Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amster-
dam, pp. 361–363. Colloq. Math. Soc. János Bolyai, Vol. 10, 1975.

[2] J. Feigenbaum, Product graphs: some algorithmic and combinatorial results, Technical Report
STAN-CS-86-1121, Stanford University, Computer Science, 1986, phD Thesis.

[3] J. Hagauer and J. Žerovnik, An algorithm for the weak reconstruction of Cartesian-product
graphs, J. Combin. Inform. System Sci. 24 (1999), 87–103.

[4] S. Halperin and U. Zwick, Optimal randomized EREW PRAM algorithms for finding spanning
forests, J. Algorithms 39 (2001), 1–46, doi:10.1006/jagm.2000.1146.

[5] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Discrete Mathematics
and its Applications, CRC Press, 2nd edition, 2011.

[6] M. Hellmuth, A local prime factor decomposition algorithm, Discrete Math. 311 (2011), 944–
965.

242 Ars Math. Contemp. 9 (2015) 223–242

[7] M. Hellmuth, W. Imrich, W. Klöckl and P. F. Stadler, Approximate graph products, European
J. Combin. 30 (2009), 1119 – 1133.

[8] M. Hellmuth, W. Imrich and T. Kupka, Partial star products: A local covering approach for the
recognition of approximate Cartesian product graphs, Math. Comput. Sci 7 (2013), 255–273.

[9] W. Imrich and S. Klavžar, Product graphs, Wiley-Interscience Series in Discrete Mathematics
and Optimization, Wiley-Interscience, New York, 2000.

[10] W. Imrich and I. Peterin, Recognizing Cartesian products in linear time, Discrete Math. 307
(2007), 472 – 483.

[11] W. Imrich, T. Pisanski and J. Žerovnik, Recognizing Cartesian graph bundles, Discrete Math.
167-168 (1997), 393–403.

[12] W. Imrich and J. Žerovnik, Factoring Cartesian-product graphs, J. Graph Theory 18 (1994),
557–567, doi:10.1002/jgt.3190180604.

[13] T. Kupka, A local approach for embedding graphs into Cartesian products, Ph.D. thesis, VSB-
Technical University of Ostrava, 2013.

[14] T. Pisanski, B. Zmazek and J. Žerovnik, An algorithm for k-convex closure and an application,
Int. J. Comput. Math. 78 (2001), 1–11, doi:10.1080/00207160108805092.

[15] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960), 446–457.

