Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 35, 2025, 2 UDK 5 Annales, Ser. hist. nat., 35, 2025, 2, pp. 169-396, Koper 2025 ISSN 1408-533X KOPER 2025 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 35, 2025, 2 UDK 5 ISSN 1408-533X e-ISSN 2591-1783 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 35, leto 2025 številka 2 e-ISSN 2591-1783 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capape (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Edy Fantinato (IT), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Hakan Kabasakal (TR), Mitja Kaligarič, Marcelo Kovačič (HR), Petar Kružić (HR), Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Borut Mavrič, Patricija Mozetič, Martina Orlando-Bonaca, Michael Stachowitsch (AT), Francesco Tiralongo (IT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Založnika/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della società, cultura e ambiente© Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annalesSHN@nib.si, internet: www.zdjp.si Redakcija te številke je bila zaključena 6. 12. 2025. Sofinancirajo/Supporto finanziario/ Financially supported by: Javna agencija za znanstveno-raziskovalno in inovacijsko dejavnost Republike Slovenije (ARIS) Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL); Directory of Open Access Journals (DOAJ). To delo je objavljeno pod licenco / Quest’opera è distribuita con Licenza / This work is licensed under a Creative Commons BY 4.0. Navodila avtorjem in vse znanstvene revije in članki so brezplačno dostopni na spletni strani https://zdjp.si/en/p/annalesshn/ The submission guidelines and all scientific journals and articles are available free of charge on the website https://zdjp.si/en/p/annalesshn/ Le norme redazionali e tutti le riviste scientifiche e gli articoli sono disponibili gratuitamente sul sito https://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 35 · 2025 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 35, Koper 2025, številka 2 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Hakan KABASAKAL Analysis of Confirmed Shark Attacks in the Eastern Mediterranean Sea and the Sea of Marmara (1827–2025) ...................... Analiza potrjenih napadov morskih psov v vzhodnem Sredozemskem morju in Marmarskem morju (1827–2025) Alen SOLDO Observations of a Juvenile Basking Shark Cetorhinus maximus in the Adriatic Sea Support the Hypothesis of a Distinct Mediterranean Population ............................... Opazovanja mladega morskega psa orjaka (Cetorhinus maximus) v Jadranskem morju podpirajo hipotezo o ločeni sredozemski populaciji Jacopo BERNARDI, Pero UGARKOVIĆ & Ilija ĆETKOVIĆ An Unusual Encounter with a Juvenile Kitefin Shark, Dalatias licha, in Shallow Coastal Waters of Montenegro (Adriatic Sea) ................. Nenavadno srečanje z mladim primerkom klinoplavutega morskega psa, Dalatias licha, v plitvih obalnih vodah Črne gore (Jadransko morje) Cemal TURAN, Alen SOLDO, Servet A. DOĞDU, Funda TURAN, Ayşegül ERGENLER & Ali UYAN Identification of a Potential Nursery Ground of the Spiny Butterfly Ray, Gymnura altavela, in the Northeastern Mediterranean Sea, Türkiye ..... Identifikacija potencialnih jaslic za metuljastega skata, Gymnura altavela, v severovzhodnem Sredozemskem morju, Turčija Alen SOLDO, Eleonora DE SABATA & Simona CLO Recent Records of Critically Endangered Common Guitarfish Rhinobatos rhinobatos (Linnaeus, 1758) in the Northern Mediterranean ................................................. Nedavni zapiski o pojavljanju kritično ogroženega navadnega goslaša Rhinobatos rhinobatos (Linnaeus, 1758) v severnem Sredozemlju Hakan KABASAKAL & F. Saadet KARAKULAK Demersal Elasmobranchs of the Sea of Marmara: Updated Inventory, Taxonomic Issues and Environmental Implications ................................ Pridnene hrustančnice v Marmarskem morju: posodobljena inventarizacija, taksonomska vprašanja in okoljske posledice IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Jamila RIZGALLA, Amani FITORI, Francesco TIRALONGO & Abdalh BEN ABDALAH First Records of Blennies (Suborder Blennioidea) off the Coast of Libya ................... Prvi zapisi o pojavljanju babic (podred Blennioidea) ob libijski obali Farid HEMIDA, Sara LADOUL, Christian REYNAUD & Christian CAPAPÉ Confirmed Occurrence of the Mediterranean Spearfish Tetrapturus belone (Osteichthyes: Istiophoridae) from the Algerian Coast (Southwestern Mediterranean Sea) .................... Potrjeno pojavljanje sredozemske jadrovnice, Tetrapturus belone (Osteichthyes: Istiophoridae) iz alžirske obale (jugovzhodno Sredozemsko morje) 169 187 197 205 221 213 245 257 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 Lana KHREMA, Adib SAAD & Christian CAPAPÉ First Substantiated Record of Blackfish Centrolophus niger (Centrolophidae) from the Syrian Coast (Eastern Mediterranean Sea) ............................................ Prvi potrjen zapis črnuha, Centrolophus niger (Centrolophidae), s sirske obale (vzhodno Sredozemsko morje) Amir IBRAHIM, Chirine HUSSEIN, Firas ALSHAWY & Alaa ALCHEIKH AHMAD Marine Fishes (Teleostei / Osteichthyes) of Syria (Eastern Mediterranean): an Updated Checklist ....................................... Morske ribe (Teleostei / Osteichthyes) Sirije (vzhodno Sredozemsko morje): posodobljeni seznam vrst BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Paola LEOTTA, Rocco CICCIARELLA, Ruben GARRANO, Enrico LA SPINA, Daniele TIBULLO & Francesco TIRALONGO Cassiopea andromeda at the Southernmost Tip of Italy: a Recent Arrival or an Overlooked Resident? ...................................... Tujerodni klobučnjak Cassiopea andromeda na najjužnejši konici Italije: nedavni prišlek ali spregledan prebivalec? Mourad CHÉRIF, Rimel BENMESSAOUD, Sihem RAFRAFI-NOUIRA, Mohamed Nouri AYADI & Christian CAPAPÉ First Substantiated Record of the Golden-Banded Goatfish Upeneus moluccensis (Osteichthyes: Mullidae) from the Coast of Tunisia (Central Mediterranean Sea) .............................. Prvi potrjen zapis o zlatoprogem bradaču Upeneus moluccensis (Osteichthyes: Mullidae) z obale Tunizije (osrednje Sredozemsko morje) Nikola DJORDJEVIĆ, Slavica PETOVIĆ, Ilija ĆETKOVIĆ, Borut MAVRIČ & Lovrenc LIPEJ New Record of the Long-Jawed Squirrelfish, Holocentrus adscensionis (Osbeck, 1765), in the Adriatic Sea ............................................ Novi zapis o pojavljanju veveričjaka vrste Holocentrus adscensionis (Osbeck, 1765) v Jadranskem morju MORSKA FAVNA FAUNA MARINA MARINE FAUNA Nicola BETTOSO, Lisa FARESI, Saul CIRIACO, Marco FANTIN & Marco SEGARICH New Findings of the Cup-Shaped Demosponge Calyx nicaeensis (Risso, 1826) on the Rocky Outcrops in the Gulf of Trieste (Northern Adriatic Sea) ....................................... Nove najdbe morskega keliha Calyx nicaensis (Risso, 1826) na skalnih osamelcih v Tržaškem zalivu (severno Jadransko morje) Aleksandra V. BORODINA & Yuri O. VELYAEV Features of Lipid Accumulation in Striped Venus Clam Chamelea gallina in the Sublittoral Zone of the Crimean Coast (Black Sea) ................. Značilnosti kopičenja lipidov v navadni venerici (Chamelea gallina) v obrežnem pasu krimske obale (Črno morje) Okan AKYOL & Oğuzhan TAKICAK Recent Observations on Monachus monachus (Phocidae) at Sea-Cage Fish Farms in Izmir (Turkish Aegean Sea) ........................................ Nedavna opažanja primerkov Monachus monachus (Phocidae) v ribogojnicah z morskimi kletkami v Izmirju (turško Egejsko morje) FLORA FLORA FLORA Amelio PEZZETTA & Marco PAOLUCCI La Flora di Palena (Parco Nazionale della Majella): Aggiornamento Floristico .................... Flora Palene (Nacionalni park Majella): floristična posodobitev DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Bojana LIPEJ Reviving Landscapes, Connecting Species: Lessons from the ReCo Project ............................ IN MEMORIAM Tom TURK V spomin Marjanu Richterju (1935–2025) ......... Kazalo k slikam na ovitku ................................... Index to images on the cover ............................. 287 269 295 263 319 311 383 337 389 303 329 391 391 SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS ANNALES · Ser. hist. nat. · 35 · 2025 · 2 169 received: 2025-07-18 DOI 10.19233/ASHN.2025.20 ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025) Hakan KABASAKAL WWF Türkiye, İstanbul, Türkiye e-mail: kabasakal.hakan@gmail.com ABSTRACT This paper analyses data from 46 confirmed shark attacks recorded in the geographical subareas of the eastern Mediterranean Sea (GSAs 22–27) and the Sea of Marmara (GSA 28) from 1827 to 2025. The recent distribution of attacks shows the highest concentration in Turkish waters, followed by the Mediterranean waters of Egypt and Greece. Subarea-specific data reveal that the Aegean Sea (GSA 22) and the southern Levant (GSA 26) had the highest number of incidents. Temporal analysis shows an overall increasing trend in annual shark attacks throughout the study period. Since the large pelagic predatory sharks of the Mediterranean Sea are highly migratory, they can be encountered off any Mediterranean coast at any time. Considering the critical role of predatory sharks in marine ecosystems, a shark-safe eastern Mediterranean means creating safe environmental conditions for both humans and sharks. Key words: Elasmobranchii, aggression, human, conservation, GSA22-28, shark attack ANALISI DEGLI ATTACCHI DI SQUALI CONFERMATI NEL MEDITERRANEO ORIENTALE E NEL MAR DI MARMARA (1827-2025) SINTESI L’articolo analizza i dati relativi a 46 attacchi di squali confermati nelle sottozone geografiche del Mediterraneo orientale (GSA 22-27) e del Mar di Marmara (GSA 28) dal 1827 al 2025. La distribuzione recente degli attacchi mostra la più alta concentrazione nelle acque turche, seguite dalle acque mediterra- nee dell’Egitto e della Grecia. I dati specifici per sottozona rivelano che il Mar Egeo (GSA 22) e il Levante meridionale (GSA 26) hanno registrato il numero più elevato di incidenti. L’analisi temporale mostra una tendenza generale all’aumento degli attacchi di squali annuali durante tutto il periodo di studio. Poiché i grandi squali predatori pelagici del Mediterraneo sono altamente migratori, possono essere incontrati al largo di qualsiasi costa mediterranea in qualsiasi momento. Considerando il ruolo fondamentale degli squali predatori negli ecosistemi marini, un Mediterraneo orientale sicuro per gli squali significa creare condizioni ambientali sicure sia per gli esseri umani che per gli squali. Parole chiave: Elasmobranchii, aggressività, esseri umani, conservazione, GSA22-28, attacchi di squali ANNALES · Ser. hist. nat. · 35 · 2025 · 2 170 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 INTRODUCTION Sharks, a diverse group of cartilaginous fish belonging to the class Chondrichthyes (subclass Elas- mobranchii), have inhabited the oceans for over 400 million years (Ebert et al., 2021). They play important roles as predators, competitors, facilitators, nutrient transporters, and prey across multiple ecosystem types (Dedman et al., 2024). Public perception, however, often demonises them as dangerous creatures or ‘man eaters’ (Kabasakal, 2010a; Peace, 2015), focusing more on their attacks on humans than on their ben- efits to the ecosystem. The narrative of shark attacks in the Mediterranean Sea has a profound historical background, dating back centuries before the birth of Christ. The epic writings of the Greco-Roman poet Oppian of Cilicia referenced the fear of sharks among sponge divers, describing their fear of being bitten and killed by these ferocious predators (Mair, 1968). Similarly, the Roman historian Claudius Aelianus recorded that divers, under constant pressure from shark threats, painted their hands and feet black to avoid detection by these fearsome creatures (Frost, 1968). According to the Greek historian Herodotus, sharks attacked survivors following the wreck of the Persian fleet off the coast of Thessaly in 493 BC. This incident, documented as case number 128 in the Global Shark Attack File (GSAF, 2025), is considered one of the earliest documented cases of a shark attack in the Mediterranean. Midway et al. (2019) characterise shark attacks as a global phenomenon that attracts widespread atten- tion and publicity, often with adverse implications for shark populations. As one of the few groups of animals with which humans have primarily negative interactions, sharks remain a perpetual source of public fascination. In fact, although the annual risk of dying from a shark attack is extremely low (1 in 4,332,817) – far lower than the likelihood of dying from heart disease (1 in 5), a car accident (1 in 84) or a bicycle accident (1 in 4,919) (International Shark Attack File [ISAF], 2025) – humans have meticulously documented such incidents for centuries. As of 3 July 2025, a total of 7,021 shark attacks had been recorded in the GSAF. Several country-specific studies have analysed records of shark attacks in the eastern Mediterranean (Taklis, 2023, in Greek waters) and the Sea of Mar- mara (Kabasakal & Gedikoğlu, 2015). Researchers have also reported sporadic attacks near aquaculture cages (Ergüden et al., 2020) or power station cooling water discharges (Abd Rabou et al., 2025; Bigal et al., 2025), as well as historical cases from almost a cen- tury ago (Kabasakal & Gedikoğlu, 2015; Kabasakal & Bayrı, 2021). To date, however, recorded shark attacks in the eastern Mediterranean and the Sea of Marmara have not been analysed as a whole. Given the ongo- ing expansion of economic activities such as fishing, aquaculture, tourism, and hydrocarbon production in the eastern Mediterranean (Öztürk & Başeren, 2008), it is likely that human–shark encounters will increase as anthropogenic pressures on this marine region intensify. Due to the heterogeneous nature of the phenomenon (Chapman & McPhee, 2016), a better understanding of shark attacks requires an analysis of regional trends. Furthermore, a recent fatal shark attack in Israel in April 2025 (Abd Rabou et al., 2025; Bigal et al., 2025) and the subsequent spread of conflicting media reports highlight the necessity for a rigorous, data-based analysis of shark attacks in these marine regions. Therefore, this paper analyses recorded shark attacks in the eastern Mediterranean Sea and the Sea of Marmara since 1827, aiming to detect any potential increasing trend and identify the possible causes of the attacks. MATERIAL AND METHODS Study area The eastern Mediterranean Sea, the easternmost part of the Mediterranean Basin (Fig. 1), is subdivided by the General Fisheries Commission for the Medi- terranean (GFCM) into the following geographical subareas (GSAs): the Aegean Sea (GSA 22), Crete (GSA 23), the northern Levant Sea (GSA 24), Cyprus (GSA 25), the southern Levant Sea (GSA 26), and the eastern Levant Sea (GSA 27) (GFCM, 2018). The broader Levantine Basin is bounded by the Cretan archipelago and Anatolian peninsula to the north, the Middle East to the east, and northeastern Africa to the south. It has a total volume of 7.5 x 105 km3 and reaches a maximum depth of ~4,300 m (Akpınar et al., 2016). Although the Sea of Marmara (GSA 28; Fig. 1) was once considered the northernmost extension of the Mediterranean ecosystem (Stanley & Blanpied, 1980), it is now classified as part of the larger Black Sea geographical subregion, with the exception of the Dardanelles Strait (GFCM, 2018). With a water volume of 11,500 km³ and a maximum depth of ~1,390 m, the Sea of Marmara – together with the Dardanelles and Bosphorus straits (collec- tively known as the Turkish Straits System) – forms a transitional zone between the Mediterranean and Black Sea basins, functioning as a barrier, migration corridor, and acclimatisation zone for marine organ- isms (Öztürk & Öztürk, 1996). The topography of the Aegean Sea is characterised by hundreds of islands and thousands of islets, making it a highly archipelagic marine region (Onmuş, 2015), where several potential nurseries for top predatory lamniform sharks, such as the white shark, Carcharodon carcharias, and the shortfin mako shark, Isurus oxyrinchus, have been documented (Kabasakal, 2015, 2020). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 171 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 Data acquisition Shark attacks are defined as any forceful or aggres- sive contact between a living human and one or more sharks that results in injury or death to the person, or causes damage to equipment, such as surfboards, boats or diving fins (Baldridge, 1988; Taglioni et al., 2019). In accordance with this definition, data were filtered from the Global Shark Attack File (GSAF, 2025), a long-running, comprehensive, scientific repository of global shark bite incidents. This initial search yielded 53 incidents from the study area. To identify recent unrecorded cases, a supplementary search was con- ducted on social media platforms (e.g., Facebook and Instagram), which are extensively used by spearfishers and commercial fishery communities. This search re- vealed four additional, provoked shark attacks, two of which were documented in published articles (Ergüden et al., 2020; Kabasakal & Gedikoğlu, 2015; Kabasakal & Bayrı, 2021) but not catalogued in the GSAF. The final consolidated dataset – comprising GSAF records, incidents sourced from the literature, and those report- ed only on social media – thus consisted of 59 shark attacks. It is important to note that the GSAF database also includes two historical shark attacks from around 336 and 493 BC (GSAF case numbers 128 and 129, respectively; see Appendix 1), as well as one incident for which an accurate date is unavailable (GSAF case number 28; see Appendix 1); all three of these occurred in the Greek waters of the Aegean Sea. Fur- thermore, the GSAF curator has classified 10 records as “invalid or questionable” due to unconfirmed shark involvement prior to death. The distribution of these 10 incidents across countries is as follows: Türkiye (n = 1), Greece (n = 4), Israel (n = 1), Egypt (n = 3), and Syria (n = 1). In total, 13 incidents – comprising the 10 questionable reports, the two historical incidents, and the one undated incident – were excluded from the study. The analysis was therefore based on a final ‘safe dataset’ of 46 incidents identified as confirmed events of shark attack in the study area. Since the GSAF database lacks data on environmental factors (e.g., sea surface temperature, rainfall, lunar phases, wave height, water turbidity) for the confirmed shark attacks reported in the eastern Mediterranean and the Sea of Tab. 1: Data collection and preparation protocol (adapted from Taglioni et al., 2019). Tab. 1: Protokol zbiranja in priprave podatkov (prirejeno po Taglioni in sod., 2019). Fig. 1: (A) Approximate locations (red dots and a circle) of the 46 confirmed shark attacks reported in the eastern Mediterranean and Sea of Marmara between 1827 and 2025. The attacks in the Sea of Marmara (n = 9) are aggregated into a single circle, while the red dots represent individual incidents in the GSAs of the eastern Mediterranean. (B) Map of the GSAs of the eastern Mediterranean (GSA 22–27, shown in red) and the Sea of Marmara (GSA 28, shown in blue). Adapted from GFCM (2018). Sl. 1: (A) Približne lokacije (rdeče pike in krog) 46 potrjenih napadov morskih psov, o katerih so poročali v vzhodnem Sredozemlju in Marmarskem morju med letoma 1827 in 2025. Napadi v Marmarskem morju (n = 9) so združeni v krog, rdeče pike pa predstav- ljajo posamezne incidente v območjih geografskega področja (GSA) vzhodnega Sredozemlja. (B) Zemlje- vid območij geografskega področja (GSA) vzhodnega Sredozemlja (GSA 22–27, prikazano z rdečo barvo) in Marmarskega morja (GSA 28, prikazano z modro barvo). Prirejeno po GFCM (2018). Contextual factors Date (day; month; year, of attack) Attack location (GSA, marine region) Shark species involved Activity factors Victim’s activity at time of attack (spearfishing, fishing, swimming, sponge diving, recreational diving, aquaculture) Type of attack Provoked, unprovoked, on watercraft Consequences of attack Fatal, non-fatal ANNALES · Ser. hist. nat. · 35 · 2025 · 2 172 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 Marmara, these parameters were not included in the analyses. The relevant available data for each attack were integrated into the present dataset to illustrate the conditions and consequences of the incidents (Tab. 1). Data analysis The collated data from the 46 confirmed shark attacks were analysed retrospectively using a set of statistical tests. A Kruskal–Wallis test was applied to assess for statistically significant differences between the distributions of the tested variable pairs (Parab & Bhalerao, 2010). Where a significant result was obtained, Dunn’s post-hoc test was used for pairwise comparisons to identify which specific variable pairs (e.g., geographical subarea [GSA] vs. year, country vs. other countries, or country vs. year) differed significantly (Dinno, 2015). The Mann–Kendall test was used to detect annual trends in the GSA vs. year, country vs. year, and total study area vs. year data (Gilbert, 1987). The data were also disaggregated by country and GSA to calculate and plot the yearly incidence of attacks. Linear regression was applied to these annual counts to determine the overall trend in attack frequency over the study period (Chapman & McPhee, 2016). All analyses were performed using the statistical software PAST, version 4.03 (Hammer et al., 2001), with a p value of 0.05 defined as statistical significance (Parab & Bhalerao, 2010). The data sup- porting the findings of this study are available from the author upon reasonable request. RESULTS AND DISCUSSION Spatiotemporal distribution of confirmed shark attacks An analysis of collated data identified 46 con- firmed shark attacks in the eastern Mediterranean Sea (GSAs 22–27) and the Sea of Marmara (GSA 28) (Fig. 1). The earliest recorded attack occurred in 1827 off the coast of Alexandria (Egypt, GSA 26), the most recent on 30 June 2025 off the coast of Mersin (Tür- kiye, GSA 24). Detailed information on all analysed attacks is provided in Appendix 1. The distribution of attacks by country showed the highest number in Turkish waters (n = 17, 39.96%), followed by the Mediterranean waters of Egypt (n = 10, 21.74%) and Greece (n = 8, 17.39%) (Fig. 2). Analysis by geo- graphical subarea (GSA) indicated that the Aegean Sea (GSA 22; n = 11, 23.91%) and the southern Le- vant (GSA 26; n = 11, 23.91%) recorded the highest Fig. 2: Percentage distribution of confirmed shark attacks (n = 46) recorded in the eastern Mediterranean Sea (Tür- kiye, Greece, Israel, Egypt, Cyprus, Lebanon) and the Sea of Marmara (Türkiye) between 1827 and 2025. Sl. 2: Odstotna porazdelitev potrjenih napadov morskih psov (n = 46), zabeleženih v vzhodnem Sredozemskem morju (Turčija, Grčija, Izrael, Egipt, Ciper, Libanon) in Marmarskem morju (Turčija) med letoma 1827 in 2025. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 173 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 number of incidents, followed by the eastern Levant (GSA 27; n = 10, 21.73%), the Sea of Marmara (GSA 28; n = 7, 15.21%), the northern Levant (GSA 24; n = 6, 13.04%), and Cyprus (GSA 25; n = 1, 2.17%). A statistically significant difference was found in the number of confirmed attacks – whether provoked, unprovoked, fatal or non-fatal – across the GSAs (Kruskal–Wallis test, p<0.05, p = 0.02 for all GSAs). Significant differences were also identified when comparing the number of confirmed attacks among individual GSAs (Dunn’s post-hoc test: p = 0.008 for the Aegean Sea, p = 0.01 for the southern Levant, and p = 0.007 for the eastern Levant). Although the GSAF database lists one alleged shark attack on a sponge diver in Syria from 1880 (case no. 484), the record was deemed invalid due to unconfirmed shark involvement and was consequently excluded from the study. This single exclusion accounts for the absence of any attack records from Syria. Temporal distribution by year Although the temporal distribution of confirmed shark attacks in the study area between 1827 and 2025 showed a slight upward annual trend (Fig. 3), no statistically significant trend was observed for Tab. 2: Results of the Mann–Kendall trend test for individual countries and GSAs (z: normalised test statistic; p: p value; Y: yes; N: no). Tab. 2: Rezultati Mann-Kendallovega trendnega testa za posamezne države in geografska podobmočja (GSA) (z: normalizirana statistika testa; p: vrednost p; Y: da; N: ne). Fig. 3: Annual trend of confirmed shark attacks recorded in the entire study area between 1827 and 2025, show- ing total (n = 46) and fatal (n = 19) incidents. Sl. 3: Letni trend potrjenih napadov morskih psov, zabeleženih na celotnem območju raziskave med letoma 1827 in 2025, ki prikazuje skupne primere (n = 46) in primere s smrtnim izzidom (n = 19).   z p Significant trend Y/N Türkiye 1.86 0.06 N Greece 1.19 0.23 N Israel 2.08 0.04 N Egypt (Med waters) -1.77 0.08 N Cyprus 0.25 0.80 N Lebanon -0.96 0.34 N Aegean Sea (GSA 22) 1.76 0.08 N Northern Levant (GSA 24) 2.42 0.02 Y Cyprus (GSA 25) -0.25 0.80 N Southern Levant (GSA 26) -1.00 0.32 N Eastern Levant (GSA 27) 1.13 0.26 N Sea of Marmara (GSA 28) 0.25 0.80 N Total study area 1.33 0.18 N Fig. 4: Annual trend of confirmed shark attacks (1827– 2025) by GSA. The dashed line indicates the increasing trend for GSA 24 (northern Levant). GSA 23 (Cretan waters) is omitted due to a lack of confirmed incidents. Sl. 4: Letni trend potrjenih napadov morskih psov (1827–2025) po GSA. Črtkana črta označuje naraščajoči trend za GSA 24 (severni Levant). GSA 23 (kretske vode) je izpuščena zaradi pomanjkanja potrjenih primerov incidentov. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 174 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 the entire study area (Mann–Kendall trend test: z = 1.33, p = 0.18) or for individual countries (Tab. 2). A statistically significant difference, however, was identified in the annual number of confirmed at- tacks with respect to countries (Kruskal–Wallis test, p<0.05, p = 0.03 for year vs. country). Although fewer attacks occurred in the northern Levant (GSA 24, n = 6) than other GSAs – except for Cyprus (GSA 25, n = 1) – the Mann–Kendall trend test indicated a statistically significant increasing trend for this geographical subarea (Tab. 2; Fig. 4). With the exception of the eastern Levant (GSA 27), no more than one attack was recorded after 2010 in the other GSAs: the Aegean Sea (GSA 22), Cretan waters (GSA 23), Cypriot waters (GSA 25), the southern Levant (GSA 26) and the Sea of Marmara (GSA 28). Despite the overall low number of attacks in GSA 24 between 1827 and 2025, the relatively high number of incidents (n = 3) after 2010 likely contributed to the statistically significant upward trend observed for this area. Temporal distribution by month and season Of the 46 confirmed shark attacks, the month of occurrence was recorded for 45 (97.82%; Fig. 5). A significant difference was found in the number of attacks by month (Kruskal–Wallis test: p<0.05, p = 0.03). Seasonally, the highest number of attacks occurred in summer (n = 23, 51.11%). The greatest number of incidents (n = 10, 22.22%) was recorded in August, which showed a statistically significant dif- ference compared to several other months of the year, and followed by September (n = 8, 17.39%). Seven or fewer attacks were recorded in each of the remaining months, with none in October (Fig. 5) and Dunn’s post-hoc test confirmed no statistically significant dif- ferences between these months (p>0.05). Victim activity during shark attacks Information on the activities of the victims at the time of the attack was available for 45 incidents (97.83%). Most shark attacks occurred during swim- ming (n = 15, 33.3%), fishing (n  =  12, 26.6%), or sponge diving (n = 10, 11.1%). Five shark attacks were recorded during spearfishing (n = 5, 11.1%), two during recreationally scuba diving (n = 2, 4.4%), and one during aquaculture cage maintenance (n = 1, 2.2%). Although no significant difference was found between activity type and the number of at- tacks (Kruskal–Wallis test: p > 0.05; p = 0.07), the Mann–Kendall trend test indicated a statistically significant increasing trend for spearfishing (z = 2.674; p = 0.008). The results of the Mann–Kendall trend test for victim activity at the time of confirmed shark attacks are presented in Tab. 3. Type of shark attack Of the 46 confirmed shark attacks, 44 (95.6%) were categorised by incident type (provoked, unpro- voked, or involving watercraft). The majority were unprovoked attacks (n  =  29, 65.9%), followed by attacks on watercraft (n = 8, 18.1%), and provoked attacks (n  =  7, 15.9%). A statistically significant difference was found in the number of attacks by Fig. 5: Monthly distribution of confirmed shark at- tacks (n = 45), 1827–2025). Values above columns indicate the number of attacks per month. Results of Dunn’s post-hoc test: August vs. January, p = 0.024; vs. March, p = 0.007; vs. April, p = 0.007; vs. October, p = 0.001; vs. November, p = 0.024; and vs. December, p = 0.024). September had the second highest number of attacks (n = 8, 17.77%, Dunn’s post-hoc test: September vs. March, p = 0.025; vs. April, p = 0.025; and vs. October, p = 0.007), fol- lowed by June (n = 7, 15.55%, Dunn’s post-hoc test: June vs. March, p = 0.029; vs. April, p = 0.029; and vs. October, p = 0.009). Sl. 5: Mesečna porazdelitev potrjenih napadov morskih psov (n = 45), 1827–2025. Vrednosti nad stolpci označujejo število napadov na mesec. Rezul- tati Dunnovega post-hoc testa: avgust v primerjavi z januarjem, p = 0,024; v primerjavi z marcem, p = 0,007; v primerjavi z aprilom, p = 0,007; v primerjavi z oktobrom, p = 0,001; v primerjavi z novembrom, p = 0,024; in v primerjavi z decembrom, p = 0,024. V septembru je bilo drugo največje število napadov (n = 8, 17,77 %, Dunnov post-hoc test: september v primerjavi z marcem, p = 0,025; v primerjavi z aprilom, p = 0,025; in v primerjavi z oktobrom, p = 0,007), sledil mu je junij (n = 7, 15,55 %, Dunnov post-hoc test: junij v primerjavi z marcem, p = 0,029; v primerjavi z aprilom, p = 0,029; in v primerjavi z oktobrom, p = 0,009). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 175 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 type (Kruskal–Wallis test: p < 0.05, p = 0.0008). Despite unprovoked attacks being most common, the Mann–Kendall trend test indicated a statistically significant increasing trend for provoked attacks (z = 2.166, p = 0.03; Tab. 3). Consequences of a shark attack Information on the outcome of shark attacks (fatal or non-fatal) was available for 43 of the 46 incidents (93.4%). Of these, 24 were non-fatal (55.8%) and 19 were fatal (44.1%). No statistically significant difference was found in the frequency of fatal and non-fatal attacks (Kruskal–Wallis test: p>0.05, p = 0.81), and the Mann–Kendall trend test detected no statistically significant temporal trend for either category (Tab. 3). Shark species involved in attacks The species of the shark involved in the attack was identified in 9 of the 46 incidents (19.56%). No statistically significant associations were found between shark species and victim activity, type of attack, or outcome (Kruskal–Wallis test: p>0.05, p = 0.86 for activity, p = 0.27 for type, and p = 0.46 for consequences), nor between species and the year of attack (p = 0.13). Nevertheless, a statistically significant increasing trend was observed for the involvement of Isurus oxyrinchus (Mann–Kendall trend test: z = 2.272, p = 0.023; Tab. 3). In the vast marine environment, few phenomena evoke as much terror in humans as shark attacks – one of the most recognised examples of aggressive interactions between humans and nature. Due to this historic apprehension, humans have continu- ally sought methods to fend off sharks and reduce the risk of attacks in coastal waters (Valenti, 2023), most notably through the use of shark nets (Valenti, 2023). However, these mitigation tools are known to have devastating environmental impacts (Cliff & Dudley, 2011). For example, based on the long-term observations by Queensland Shark Control Program in Australian waters, Sumpton et al. (2011) reported that higher numbers of marine mammals, teleost fish and rays have been unintentionally captured in protective nets, while the highest mortality of threat- ened loggerhead turtle Caretta caretta recorded in baited drumlines. Conversely, understanding the underlying causes of shark attacks has long been a major challenge for researchers. Over the years, nu- merous theories have been proposed to explain the occurrence of shark attacks globally. For instance, in a paper for the Taronga Conservation Society of Australia, West (2014) outlined 18 different theories regarding shark attack causation. While early expla- nations focused primarily on “hunger and feeding” as the motivating factors (Baldridge & Williams, 1969), contemporary perspectives are more varied and nuanced. Following the recent unprovoked fatal shark attack on a scuba diver off the coast of Hadera, Israel (GSA 27), Abd Rabou et al. (2025) proposed several potential contributing factors, ranging from the diver’s sudden movements and loud noises to behavioural changes in the sharks due to human harassment. Given the complex be- haviour of sharks, as emphasised by West (2014), the motivation for most attacks remains unclear, rendering the prediction of unprovoked incidents nearly impossible. Whatever the underlying cause(s) of shark at- tacks, aggressive interactions with humans – par- ticularly unprovoked shark bites – have increased Tab. 3: Results of the Mann–Kendall trend test for victim activity, type of attack, outcome, and shark species involved (z: normalised test statistic; p: p value; Y: yes; N: no). Tab. 3: Rezultati Mann-Kendallovega trendnega testa za aktivnost žrtve, vrsto napada, izid in vpletene vrste mor- skih psov (z: normalizirana statistika testa; p: vrednost p; Y: da; N: ne).   z p Significant trend Y/N Victim activity during shark attack (n=45) • Spearfishing 2.674 0.008 Y • Fishing 0.268 0.789 N • Swimming 0 1 N • Sponge diving 0.659 0.510 N • Recreational diving 2.217 0.027 N • Aquaculture 1.404 0.160 N Type of attack (n=44) • Provoked 2.166 0.030 Y • Unprovoked 0 1 N • Watercraft 0.533 0.594 N Consequences of attack (n=43) • Fatal 0 1 N • Non-fatal 1.911 0.056 N Shark species involved (n=9) • Carcharodon carcharias 0.651 0.515 N • Isurus oxyrinchus 2.272 0.023 Y • Carcharhinus plumbeus 1.404 0.160 N • Carcharhinus obscurus 1.569 0.117 N ANNALES · Ser. hist. nat. · 35 · 2025 · 2 176 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 worldwide over the past few decades (Chapman & McPhee, 2016; Taglioni et al., 2019). In this con- text, the results of the present study are consistent with global findings (Chapman & McPhee, 2016; Taglioni et al., 2019), revealing an increasing, though not statistically significant, annual trend in the eastern Mediterranean Sea (GSAs 22–27). This regional trend, however, masks a significant local shift. During the first half of the 20th century, the Sea of Marmara (GSA 28) was a seasonal hotspot for provoked attacks on handline fishing boats by white sharks pursuing Atlantic bluefin tuna (Thun- nus thynnus), which migrated seasonally into this small inland sea (Kabasakal & Gedikoğlu, 2015; Kabasakal, 2016). However, with the extirpation of large pelagic predatory sharks such as C. carcha- rias, Lamna nasus, and Prionace glauca – with the exception of the common thresher shark (Alopias vulpinus) – from the Sea of Marmara decades ago (Kabasakal & Karakulak, 2024), the most recent confirmed shark attack in the region dates to 1983 (Kabasakal & Gedikoğlu, 2015). Consequently, the increasing annual trend observed in the wider eastern Mediterranean Sea is not applicable to the Sea of Marmara. However, ongoing severe deoxy- genation and habitat deterioration in the region’s deep bathyal and shelf waters have forced the large, deep-dwelling, demersal bluntnose sixgill shark (Hexanchus griseus) – which still inhabits the basin – to migrate to shallow coastal zones (Kabasakal et al., 2024). Although this species is not known for unprovoked attacks (Compagno, 1984), its considerable size (total length up to 570 cm; Lipej et al., 2022) and predatory capacity suggest it may still pose a potential danger to swimmers and divers along the coast. In their analysis of global shark attack hotspots, Chapman and McPhee (2016) suggested that increases in shark bites are likely the result of a combination of factors beyond the shark-specific motivators proposed by West (2014) and Abd Ra- bou et al. (2025). They argued that a disruption to the natural balance of an area, whether at a local or regional level, can increase the likeli- hood of interactions between sharks and humans. The conditions underlying several provoked and unprovoked shark attacks in the northern Levant (GSA 24; Ergüden et al., 2020) and the eastern Levant (GSA 27; Abd Rabou et al., 2025) exemplify such ecological disruptions that may eventually trigger aggressive interactions. For example, the presence of excessive amounts of wounded and/ or dead farmed fish in aquaculture cages anchored on the seabed nearly 4 km off the coast of Taşucu in Türkiye (GSA 24) caused a feeding frenzy among sandbar sharks (Carcharhinus plumbeus), result- ing in non-fatal attacks and minor injuries to two commercial divers (Ergüden et al., 2020). Under unstimulated and unprovoked conditions, C. plumbeus is not considered particularly dangerous and has never been implicated in attacks on hu- mans (Compagno, 1984). In a second incident, the water discharged from the Orot Rabin power plant in Israel (GSA 27), which is 10 degrees warmer than the surrounding sea, attracts schools of two large coastal shark species – the dusky shark (C. obscurus) and the sandbar shark – to the coast of Hadera every year from November to May (Abd Rabou et al., 2025; Bigal et al., 2025). According to Barash et al. (2018), sharks are observed much more frequently near power plants, likely due to elevated water temperatures. Adventure-seeking divers, of which are trying to feed the sharks or touch them at designated aggregation spots – cre- ated by anthropogenic impacts – have been known to elicit stress-related behaviours in sharks. All of these factors confirm the role of provocation in the progression of a fatal attack (Abd Rabou et al., 2025). Therefore, as coastal development can degrade habitat quality and induce environmental changes that disrupt shark behaviour (Chapman & McPhee, 2016), environmental impact assessments for projects such as coastal aquaculture facilities or power plants with hot water discharges should explicitly consider their potential impact on local shark populations in the eastern Mediterranean Sea and elsewhere. Researchers have emphasised that in many marine areas worldwide, the dramatic increase in shark attack risk parallels the increase in time people spend in the sea, and the number of in- dividuals engaging in water sports such as swim- ming, recreational scuba diving, and surfing (Tag- lioni et al., 2019; Taklis, 2023). Supporting this, Ferretti et al. (2015) documented an increase in white shark attack records in California. However, the authors also emphasised that the individual attack risk for ocean users decreased by over 91% between 1950 and 2013. This apparent contradic- tion could be explained by an undetected long- term shark population decline and/or changes in behaviour and spatial distribution of both people and sharks. In the Sea of Marmara, historical fatal shark attacks during spearfishing and swimming have been attributed to C. carcharias (Kabasakal & Gedikoğlu, 2015). Similarly, in Greek waters, most shark attacks were directed at swimmers and divers, and predominantly involved C. carcharias (Taklis, 2023). In the present study, swimming was revealed as the most common activity at the time of attack (n = 15, 33.3%); however, there was also a statistically significant increasing trend for spearfishing (n = 5, 11.1%). The examined pro- voked shark attacks were predominantly caused ANNALES · Ser. hist. nat. · 35 · 2025 · 2 177 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 by the shortfin mako (Isurus oxyrinchus), and the Mann–Kendall test also indicated an upward trend for this specific type of attack. The convergence of these trends is of particular importance, as three out of five provoked shark attacks occurred during spearfishing and were caused by shortfin mako sharks. Spearfishing is a dangerous pastime that can result in shark attacks (Randall, 1986), particularly when carried out offshore or at dawn and dusk and has been associated with a global increase in bites (Duval et al., 2025). As of 10 June 2025, the GSAF database had recorded 410 spearfishing victims, accounting for 5.84% of its total incidents (GSAF, 2025). In Reunion Island, a global shark attack hotspot, attacks on spearfishers (n = 6, 17%) are considered a predominant form of human–shark interaction (Taglioni et al., 2019). Unlike events involving spearfishing, incidents linked to occu- pational or recreational diving (scuba or surface- supplied) showed no statistically significant trend, despite the remarkably high number of people practising these activities in the eastern Mediter- ranean Sea. A comparison of the numbers of attacks in occupational diving (surface-supplied sponge diving, n = 10) and recreational scuba diving (n = 2) reveals that all attacks on scuba divers occurred after 2010, while 90% (n = 9) of attacks on sponge divers occurred between 1871 and 1940 – a histori- cal pattern also supported by Taklis (2023). Unlike freediving spearfishers, recreational scuba divers do not typically harpoon fish or carry dead catch. Therefore, as stated by Taglioni et al. (2019), they can be considered the least vulnerable to shark at- tacks. Also, occupational diving – whether surface- supplied (‘Hookah’) harvest diving or aquaculture cage maintenance diving – is a year-round activity and appears to carry a higher risk due to the time these divers spend in the water, which can be mark- edly longer than in recreational divers. As Lippman (2018) noted, diving for seafood collection is a major risk factor for shark attacks. Records of en- counters involving occupational harvest divers are therefore important for improving our understand- ing of the factors that drive diver–shark interactions in the eastern Mediterranean Sea. Although not as common as in certain other regions of the world, hand-feeding or chumming of sharks – an activity known to facilitate agonistic behaviour in sharks (Clua, 2018) – has been initiated by professional underwater filmmakers in some localities of the eastern Mediterranean (Abd Rabou et al., 2025), possibly contributing to the region’s increasing trend in shark attacks. Despite intensive chumming performed in the Italian waters of the Mediterranean and Adriatic seas for scientific research (Soldo & Peirce, 2005; Micarelli et al., 2023), the number of large predatory sharks attracted was extremely low, suggesting a drastic population decline. Ulti- mately, as the level of interaction between sharks and humans appears to be the most important driver of attacks (Clua, 2018), it is critical to remember that the likelihood of any single interaction result- ing in a fatal, unprovoked attack – like the Hadera incident – remains exceedingly low (Abd Rabou et al., 2025; Bigal et al., 2025). Identifying the species of shark involved in an attack is not always possible. This information typically relies on survivor accounts, which can be unreliable due to limited public knowledge of shark species. While some, such as the white and shortfin mako sharks, are easily recognisable, a significant knowledge gap exists for many other species. In a global analysis of 1,052 shark bites across six global shark attack hotspots, Chapman and McPhee (2016) found remarkable regional variations, yet the white shark was consistently responsible for most of the incidents. In South African waters, it alone accounted for 42.5% of bites. The predominance of white sharks is further emphasised by the GSAF data, in which they are implicated in 493 cases (7.02%), with only three of these classified as invalid or questionable (GSAF 25). De Maddalena and Heim (2012) documented 55 white shark attacks in the Mediterranean Sea but emphasised that 13 were doubtful due to un- certainties regarding the exact species involved. The predominance of white sharks contrasts with the minor role of mako sharks (Isurus spp.), which account for only 47 (0.66%) of the total shark bites in the GSAF database (GSAF, 2025). Since mako- related bites are uncommon worldwide (GSAF, 2025) – representing a mere 0.11% of bites in the six global shark attack hotspots (Chapman & McPhee, 2016) – the statistically significant in- crease in provoked attacks involving this species (Isurus oxyrinchus) in the northern Levant (GSA 24) is noteworthy. In recent decades, predatory pelagic sharks have been repeatedly recorded in the very shallow coast- al waters of the northern Levant (GSA 24) and the Aegean Sea (GSA 22) (Kabasakal, 2015; Filiz, 2019; Kabasakal et al., 2022). In rare cases, large preda- tors such as the blue shark, Prionace glauca, have intentionally stranded themselves in pursuit of prey, remaining out of water for several seconds before returning (Kabasakal et al., 2021). Although several large pelagic predators, including C. carcharias, I. oxyrinchus, and C. plumbeus, have been observed in the shallows, these coastal occurrences predomi- nantly involved I. oxyrinchus. According to Ebert et al. (2021), I. oxyrinchus prefers coastal and oceanic waters warmer than 16°C, and a recent study also showed that it displays transiting behaviour at sea ANNALES · Ser. hist. nat. · 35 · 2025 · 2 178 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 surface temperatures (SSTs) exceeding 26°C (Banks et al., 2025). Climate change is currently consid- ered one of the four major global threats to sharks (Dulvy et al., 2021); thus, warming marine waters could affect the spatial distribution of I. oxyrinchus in the eastern Mediterranean, as has been observed elsewhere in its distribution range (Abascal et al., 2011; Banks et al., 2025). The Mediterranean Basin is a recognised hotspot for climate change, having experienced a consistent warming trend for almost 40 years, with the highest values recorded precisely in the eastern Mediterranean (GSAs 22–27; Pastor et al., 2020). During the summer months – when the highest number of shark attacks occurred in the studied region – the monthly averaged SSTs ranged from 24°C in June to 30°C in August and September in the eastern Mediterranean, and from 18°C in June to 24°C in August and September in the Aegean Sea (GSA 22) (Pastor et al., 2020). All three attacks on freediving spearfishers involving I. oxyrinchus occurred in the northern Levant (n = 2) and the northern Aegean Sea (n = 1). Records of I. oxyrinchus in the waters of the northern Levant in the winter months – when SSTs average around 16°C (Pastor et al., 2020) – followed by a northward shift into the northern Aegean Sea in late spring and summer (Kabasakal, 2015), suggest a seasonal, SST-dependent coastal occurrence pattern for the shortfin mako shark along the coast of Türkiye. A similar SST-linked pattern has been observed for C. plumbeus, whose annual aggregations peaked during summer, when SSTs averaged 29.4°C (Filiz, 2019). In contrast, coastal occurrences of the blue shark (P. glauca) appear to be a year-round phenom- enon (Kabasakal, 2010b; Kabasakal et al., 2021). An SST of 20–21°C has been suggested as a ‘critical temperature’ threshold for shark attacks (Baldridge, 1988), and the summer occurrence of confirmed shark attacks in the eastern Mediterranean (peak- ing in August) aligns with this threshold. Therefore, as marine water use increases during the summer, the safety of beachgoers in the warming eastern Mediterranean Basin should be insured by moni- toring sea surface temperatures and implementing protective measures, based on the knowledge of the SST-associated patterns of coastal occurrence of large pelagic predatory sharks. As Neff (2014) observed, though, the public and policymakers often focus on the question, ‘What can sharks do for humans?’ This perspective can cause the sharks’ critical role in maintaining balanced marine ecosystems to be overlooked or underestimated. Governing sharks near coastlines is a complex public policy endeavour, creating a ‘predator policy paradox’ (Neff, 2014), which makes the objective management of human per- ceptions through news media critically important. In the Western world, few phrases evoke fear as instantly as ‘shark attack’ (Neff & Hueter, 2013). Such powerful terminology has been nurtured by the ‘Jaws effect’, a legacy seeded decades ago that continues to frame our contemporary understand- ing of human–shark interaction. The fear of sharks is significantly shaped by environment and culture, with the media exerting a tremendous influence on public perception (Kabasakal, 2010a; Ostrovski et al., 2021). As noted by Peschak (2006), the media perpetuate this fear because shark stories, especially sensational shark bite stories, sell well. Such stories used to be published only after editorial review and fact-checking, but the ‘citizen journalism’ enabled by instant widespread sharing on social media can now amplify a single incident virally, often with significant exaggeration. This dynamic was also ob- served in the recent unprovoked fatal attack off the coast of Hadera (Abd Rabou et al., 2025). However, since not all human–shark interactions result in at- tack, a more refined language for reporting these incidents is needed. To address this issue, Neff and Hueter (2013) proposed a new classification system to be used by scientists, the media, policymakers, and the public to describe human–shark incidents. Regardless of the incident’s severity, the authors strongly recommend avoiding the term ‘shark at- tack’ unless the shark’s motivation and intent have been clearly established by experts. In conclusion, the shark fauna of the Mediterranean Sea comprises 48 species, including 20 large pelagic predatory species (Barone et al., 2022). Among these are the great white shark (Carcharodon carcharias) and the tiger shark (Galeocerdo cuvier) (Tobuni et al., 2016; Kovačić et al., 2021; Barone et al., 2022), both of which are known for their involvement in provoked or unprovoked attacks on humans and watercraft (Ebert et al., 2021). As the large pelagic predatory sharks of the Mediterranean Sea are highly migratory, they can be encountered off any Mediterranean coast at any time. The white shark, which once migrated seasonally to the Sea of Marmara in pursuit of schools of Atlantic bluefin tuna (Thunnus thynnus) (Kabasakal, 2016), has, on rare occasions, attacked fishing boats and people in this region (Kabasakal & Gedikoğlu, 2015). However, due to environmental deterioration and overfishing, the Atlantic bluefin tuna population no longer migrates to the region. Consequently, the white shark has also withdrawn following the decline of its prey. While this may suggest that the Sea of Mar- mara is now shark safe, new anthropogenic stimuli – such as tuna transport cages, the rapid growth of aquaculture farms, and the continuous discharge of warm water from coastal facilities – are increasing the potential for encounters with large sharks in coastal waters. Furthermore, the extirpation of the white shark points to severe environmental degradation and a loss ANNALES · Ser. hist. nat. · 35 · 2025 · 2 179 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 of biodiversity in the region. These large sharks play a crucial balancing role in marine ecosystems, yet they are critically endangered in the Mediterranean Sea (as of 2021, these species constitute the 32.6% of the 1,199 species assessed; Dulvy et al., 2021), where their regional populations have declined by at least 90 per cent (Ferretti et al., 2008). Since the essential role of predatory sharks in the marine ecosystems and the decline of their populations are often overlooked, there is an urgent need to implement adaptive, science-based management measures to mitigate the risks of unregulated human–shark proximity in coastal environments (Bigal et al., 2025). Such policies are necessary not only for public safety but also for the survival of sharks in the eastern Mediterranean. ACKNOWLEDGMENTS I thank to following freediving spearfishermen for sharing me their stories about provoked and non- fatal shark attacks they have experienced recently: Mr. Ersun Büyükgöze and Mr. Faruk Kaan. Special thanks go to two anonymous reviewers for their com- ments, which improved the content of the article. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 180 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 GSAF Case No Country Date Year Type Location Activity Sex Age Injury Fatal Y/N Time Species N/A TURKEY Reported 30-Jun-2025 2025 Prv Mersin Taşucu Dana Island Spearfishing M Not injuried N Early hours of the day Isurus oxyrinchus N/A TURKEY 4-Jul-2023 2023 Prv Antakya İskenderun Spearfishing M >30 Non severe bruises on hands N Isurus oxyrinchus; ca. 2 m TL N/A TURKEY 21-Sep-2020 2020 Prv Çanakkale Gulf of Saros, Three Islands; 40º34’23.8”N 26º47’38.8”E Spearfishing M 40 Severly hits the diver, grasp the fish on the weight belt N Early hours of the day Probably Isurus oxyrinchus; ca. 1,8 m TL N/A TURKEY 26-Aug-2019 2019 Prv Mersin Taşucu Dana Island Aquaculture net contol M Non severe injuries on feet and ankles; lacerations on dive fins N Carcharhinus plumbeus; 7 to 8 specimens, ca. 2 m TL 2793 TURKEY 05-Jul-1967 1967 Unprv İstanbul Off Tuzla coast Spearfishing M 36 Fatal Y 13h40 2520 TURKEY 30-Aug-1962 1962 Wcrt Antalya Üçağız M No injury N 2427 TURKEY 16-Jul-1961 1961 Unprv İzmir İnciralti Beach Swimming M 16 Left leg injured N 2226 TURKEY Reported 26-Jun-1959 1959 Unprv Mersin Off Mezitli M Leg injured N 2188 TURKEY 28-Dec-1958 1958 Wcrt İstanbul Ahirkapi coast Fishing Boat damaged N White shark N/A TURKEY 1958 1958 Wcrt İstanbul Ahırkapı Fishing Boat damaged N White shark 1773 TURKEY Reported 17-Sep-1948 1948 Unprv Adana Yumurtalik Swimming M Fatal Y 1500 TURKEY Reported 17-Jul-1938 1938 Prv İstanbul Fishing M Injured by harpooned shark N 1469 TURKEY 16-Aug-1937 1937 Invalid İstanbul Swimming M No injury, no attack Invalid 1363 TURKEY Reported 08-Feb-1934 1934 Wcrt İstanbul Haydarpasa jetty Fishing M No injury N 1290 TURKEY 16-Mar-1931 1931 Wcrt İstanbul Bakırköy coast Fishing No injury to occupants, shark crushed boat N 1268 TURKEY Reported 11-May-1930 1930 Wcrt İstanbul Yeşilköy Fishing M No injury but shark damaged boat N 1225 TURKEY 06-Jan-1929 1929 Wcrt İstanbul Yeşilköy Fishing boat M Fatal Y Appendix 1: Dataset of 59 shark attacks reported from the eastern Mediterranean Sea (GSAs 22–27) and the Sea of Marmara (GSA 28). Unshaded rows represent the final ‘safe dataset’ of 46 confirmed shark attacks. Grey-shaded rows indicate unconfirmed records (invalid, questionable attack or unconfirmed shark involvement), historical or undated incidents that were excluded from the analysis (N/A: not applicable, unpublished, or not in the GSAF; Prv: provoked, Unprv: unprovoked; Wcrt: watercraft; Sea dis: Sea disaster). Victim names are anonymised. Priloga 1: Nabor podatkov o 59 napadih morskih psov, zabeleženih v vzhodnem Sredozemskem morju (GSA 22–27) in Marmarskem morju (GSA 28). Ne osenčene vrstice predstavljajo končni „varen nabor podatkov“ o 46 potrjenih napadih morskih psov. Sivo osenčene vrstice označujejo nepotrjene zapise (neveljaven, vprašljiv napad ali nepotrjena vpletenost morskih psov), zgodovinske ali nedatirane primere, ki so bili izključeni iz analize (N/A: ni relevantno, neobjavljeno ali ni v GSAF; Prv: izzvano, Unprv: neizzvano; Wcrt: plovilo; Sea dis: morska nesreča). Imena žrtev so anonimizirana. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 181 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 N/A TURKEY Reported 2-Feb-1926 1926 Prv İstanbul Prince Islands Fishing N/A Fatal Y Carcharodon carcharias; ca. 5 m TL 92 GREECE Before 2003 0000 Unprv Dodecanese Islands near Symi Island Free diving for sponges M Fatal Y 3414 GREECE 30-Dec-1983 1983 Invalid Andikira Fokithes Spearfishing M 36 Coroner determined the man was killed by a boat propeller, not a tiger shark 02h45 Invalid 3274 GREECE Summer of 1981 1981 Unprv Pagasitikos Gulf Free diving / spearfishing, M Minor injury N 3240 GREECE 1980s 1980 Invalid Island of Kos Surfing M Knee bitten Said to involve a white shark but shark involvement not confirmed 72 GREECE No date, Before 8-May-1965 0000 Unprv Island of Volos Swimming F Fatal Y 2567 GREECE 01-Jun-1963 1963 Unprv Thessaly Swimming F 42 Fatal Y 16h30 White shark, 3 m 2505 GREECE Reported 03-Jul-1962 1962 Invalid Cyclades No injury Questionable incident 1819 GREECE Summer 1950 1950 Unprv Swimming Fatal Y 1776 GREECE 22-Sep-1948 1948 Unprv Attica Swimming M 17 Fatal Y 16h00 Said to be 6.4 m [21’] shark 1738 GREECE Jul-1947 1947 Invalid Carpathian Sea Jumped overboard M Shark involvement unconfirmed Questionable 1465 GREECE Reported 28-Jun-1937 1937 Unprv Salonika Fatal Y 444 GREECE Reported 07-Sep-1876 1876 Unprv Cyclades archipelago between the islands of Tenos and Andros Diving for sponges M Fatal Y 129 GREECE Ca. 336.B.C.. 0000 Unprv Piraeus Washing his pig in preparation for a religious ceremony M Fatal, shark “bit off all lower parts of him up to the belly” Y 128 GREECE Ca. 493 B.C. 0000 Sea dis. Off Thessaly Shipwrecked Persian Fleet M Herodotus tells of sharks attacking men in the water Y 28 GREECE No date 0000 Unprv Dodecanese Islands Symi Island Sponge diving M Head bitten N ISRAEL 21-Apr-2025 2025 Unprv Hadera Diving M 45 Remains recovered several days after the attcks Y 15h00 Dusky sharks 6501 ISRAEL 22-Nov-2019 2019 Unprv Haifa Snorkeling M No injury, swim fin bitten N 5710 ISRAEL 29-Sep-2013 2013 Unprv Ashdod Diving M 27 Hand bitten N 11h30 2521 ISRAEL Reported 31-Aug-1962 1962 Prv Sharon Fishing M Details unknown ? 2.5 m [8.25’] shark 1718 ISRAEL 24-Aug-1946 1946 Unprv Gaza Fishing M 15 Laceration to back N ANNALES · Ser. hist. nat. · 35 · 2025 · 2 182 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 1686 ISRAEL 05-Feb-1945 1945 Unprv Tel Aviv Swimming M Survived. R.A.F. pilot, seeing commotion in the water, dived his plane to investigate and scared off shark N 1389 ISRAEL Reported 21-Jan-1935 1935 Invalid Herzliyah human remains washed ahore Shark involvement prior to death unconfirmed 1357 ISRAEL Reported 27-Sep-1933 1933 Wcrt Nabi Rubin Fishing M One man bitten on thigh, another on arm N 3 sharks 6708 EGYPT 10-Sep-2021 2021 Sidi Abdel Rahmen Swimming M Laceration to arm caused by metal object No shark invovlement 1486 EGYPT Reported 1938 1938 Unprv Mersa Matruh Sponge diving M Fatal Y 987 EGYPT Reported 15-May-1915 1915 Invalid Alexandria Fell overboard M Shark involvement not confirmed Shark involvement prior to death unconfirmed 822 EGYPT 24-Aug-1905 1905 Invalid Suez Canal Port Said Human head found in shark caught by British steamer Syria M Probable drowning and scavenging. Tiger shark, 3.9 m 775 EGYPT Jun-1902 1902 Unprv Tzortzou Reef, Marsa Matruh Sponge diving M Bitten on hand and thigh N 739 EGYPT 08-Aug-1899 1899 Unprv Port Said Floating on his back M 9 Back muscles torn away N 11h30 738 EGYPT 08-Aug-1899 1899 Unprv Port Said Bathing M 19 Forearm, wrist and hand bitten N 09h30 737 EGYPT 08-Aug-1899 1899 Unprv Port Said Bathing M 13 Left leg bitten N 08h30 695 EGYPT 1897 1897 Unprv Port Said No details ? 636 EGYPT 1893 1893 Unprv Port Said No details ? 607 EGYPT Reported 02-Jun-1890 1890 Unprv Port Said Swimming M Fatal Y 382 EGYPT Reported 22-Aug-1867 1867 Unprv Port Said Swimming M Fatal Y 209 EGYPT 1827 1827 Unprv Alexandria M Remains of the men were recovered from a +17-foot shark Y 767 CYPRUS Reported 23-Sep-1901 1901 Unprv Southern Cyprus Larnaca Swimming M Teen Fatal, bitten on arms, chest and legs Y 2 m shark 484 SYRIA 1880? 1880 Invalid Diving for sponges M Fatal Y Shark involvement prior to death unconfirmed 644 LEBANON 22-Jun-1893 1893 Unprv Off Tripoli HMS Victoria collided with the HMS Camperdown M Fatal Y 440 LEBANON 1876 1876 Unprv Batroun Sponge diving M Fatal Y 107 LEBANON Before 1876 0000 Unprv Collecting fish M Posterior thigh bitten N ANNALES · Ser. hist. nat. · 35 · 2025 · 2 183 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 ANALIZA POTRJENIH NAPADOV MORSKIH PSOV V VZHODNEM SREDOZEMSKEM MORJU IN MARMARSKEM MORJU (1827–2025) Hakan KABASAKAL WWF Türkiye, İstanbul, Türkiye e-mail: kabasakal.hakan@gmail.com POVZETEK Avtor poroča o rezultatih analize podatkov o 46 potrjenih napadih morskih psov v geografskih podob- močjih vzhodnega Sredozemskega morja (GSAs 22–27) in Marmarskega morja (GSA 28) v obdobju med 1827 in 2025. Nedavna porazdelitev napadov kaže na največjo gostoto primerov v turških vodah, sledijo jim sredozemske vode Egipta in Grčije. Podatki po podobmočjih kažejo, da je bilo največ incidentov v Egejskem morju (GSA 22) in južnem Levantu (GSA 26). Časovna analiza kaže na splošno naraščajoč trend letnih napadov morskih psov v celotnem obdobju študije. Ker so veliki pelagični plenilski morski psi Sredozemskega morja selivci, jih je mogoče srečati ob kateri koli sredozemski obali kadar koli. Glede na ključno vlogo plenilskih morskih psov v morskih ekosistemih pomeni vzhodno Sredozemlje, varno pred morskimi psi, ustvarjanje varnih okoljskih pogojev tako za ljudi kot za morske pse. Ključne besede: Elasmobranchii, agresivnost, človek, ohranjanje, GSA22-28, napadi morskih psov ANNALES · Ser. hist. nat. · 35 · 2025 · 2 184 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 REFERENCES Abascal, F.J., M. Quintans, A. Ramos-Cartelle & J. Mejuto (2011): Movements and environmental prefer- ences of the shortfin mako, Isurus oxyrinchus, in the southeastern Pacific Ocean. Mar. Biol., 158, 1175- 1184. https://doi.org/10.1007/s00227-011-1639-1. Abd Rabou, A.F.N., M.F. Gafar, A.M. Mohanna, A.A. Rafeea, R.I. Jadallah, A.A. Abd Rabou, O.A. Abd Ra- bou, R.A. Shaladan, R.M. Benmessaoud, M.M. Cherif, A.O. Fathalli, N.Ben Hadj Hamida, O. Ben Abdallah, M.S. Beheary, H.A. Madkour, F.A. Madkour, M.A. Abd Rabou, O.A. Abd Rabou, H.A. Al-Harazeen, W.M. Saqallah, S.M. Awadalah, M.R. Al-Agha, D.I. Al-Hali & N.A. Khalaf (2025): A look at the deadly shark attack on an Israeli diver off the Mediterranean coast of Hadera, Palestine. Uttar Pradesh Journal of Zoology, 46, 124-42. https://doi.org/10.56557/upjoz/2025/v46i125050. Akpınar, A., E. Yılmaz, B.A. Fach & B. Salihoğlu (2016): Physical oceanography of the eastern Medi- terranean Sea. In: Turan, C., B. Salihoğlu, E. Özgür Özbek & B. Öztürk (Eds.): The Turkish Part of the Mediterranean Sea Marine Biodiversity, Fisher- ies, Conservation and Governance, Turkish Marine Research Foundation Publication No. 43, İstanbul, Türkiye, pp. 1-14. Baldridge, H.D. (1988): Shark aggression against man: beginnings of an understanding. Calif. Fish and Game, 74, 208-217. Banks, K.G., D.M. Coffey, M.R. Fisher & G.W. Stunz (2025): To stay or go: movement, behavior, and habitat use of shortfin mako sharks (Isurus oxyrinchus) in the Gulf of Mexico. Front. Mar. Sci., 12, 1562581. https://doi.ord/10.3389/fmars.2025.1562581. Barash, A., R. Pickholtz, E. Pickholtz, L. Blaustein & G. Rilov (2018): Seasonal aggregations of sharks near coastal power plants in Israel: an emerging phe- nomenon. Mar. Ecol. Prog. Ser., 590, 145-154. https:// doi.org/10.3354/meps12478. Baldridge, H.D. & J. Williams (1969): Shark attack: feeding or fighting? Mil. Med., 134, 130-133. Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, Rays and Chimaeras in Mediterranean and Black Seas: Key to Identification. Rome: Food & Ag- riculture Organization of the United Nations. https:// doi.org/10.4060/cc0830en. Bigal, E., L. Livne, Z. Zemah-Shamir, D. Morick, S. Einbinder, D. Tchernov & A. Scheinin (2025): Fatal shark incident in the eastern Mediterranean Sea high- lights urgent need for enhanced management meas- ures. Ocean Coast. Manag., 269, 107848. https://doi. org/10.1016/j.ocecoaman.2025.107848. Chapman, B.K. & D. McPhee (2016): Global shark attack hotspots: Identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag., 133, 72-84. http://dx.doi. org/10.1016/j.ocecoaman.2016.09.010. Cliff, G. & S.F.J. Dudley (2011): Reducing the en- vironmental impact of shark-control programs: a case study from KwaZulu-Natal, South Africa. Mar. Freshw. Res., 62, 700-709. Clua, E.E.G. (2018): Managing bite risk for divers in the context of shark feeding ecotourism: A case study from French Polynesia (Eastern Pacific). Tour. Manag., 68, 275-283. https://doi.org/10.1016/j.tour- man.2018.03.022. Compagno, L.J.V. (1984): FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illus- trated catalogue of shark species known to date. Part 2. Carcharhiniformes. FAO Fish. Synop., 4, 251-655. Dedman, S., J.H. Moxley, Y.P. Papastamatiou, M. Braccini, J.E. Caselle, D.D. Chapman, J.E Cinner, E.M. Dillon, N.K. Dulvy, R.E. Dunn, M. Espinoza, A.R. Harborne, E.S. Harvey, M.R. Heupel, C. Huveneers, N.A.J. Graham, J.T. Ketchum, N.V. Klinard, A.A. Kock, C.G. Lowe, M.A. MacNeil, E.M.P. Madin, D.J. McCauley, M.G. Meekan, A.C. Meier, C.A. Simpfen- dorfer, M.T. Tinker, M. Winton, A.J. Wirsing & M.R. Heithaus (2024): Ecological roles and importance of sharks in the anthropocen ocean. Science, 385, eadl2362. https//doi.org/10.1126/science.adl2362. De Maddalena, A. & W. Heim (2012): Mediter- ranean Great White Sharks. A Comprehensive Study Including All Recorded Sightings. McFarland and Company, Inc., Jefferson, North Carolina and London, 256 pp. Dinno, A. (2015): Nonparametric pairwise multi- ple comparisons in independent groups using Dunn’s test. Stata J., 15, 292-300. Dulvy N.K., N. Pacoureau, C.L. Rigby, R.A. Pol- lom, R.W. Jabado, D.A. Ebert, B. Finucci, C.M. Pol- lock, J. Cheok, D.H. Derrick, K.B. Herman, C.S. Sher- man, W.J. VanderWight, J.M. Lawson, R.H. L. Walls, J.K. Carlson, P. Charvet, K.K. Bineesh, D. Fernando, G.M. Ralph, J.H. Matsushiba, C. Hilton-Taylor, S.V. Fordham & C.A. Simpfendorfer (2021): Overfishing drives over one-third of all sharks and rays toward a global extinction crisis, Curr. Biol., 31, 1-15. https:// doi.org/10.1016/j.cub.2021.08.062. Duval, D., M. Mangeas, C. Huveneers, A. Barnett & L. Vigliola (2025): Global systematic review of the factors influencing shark bites. Glob. Ecol. Conserv., 62, e03684. https://doi.org/10.1016/j.gecco.2025. e03684. Ebert, D.A., M. Dando & S. Fowler (2021): Sharks of the World: A Complete Guide. Princeton University Press, Princeton, 608 pp. Ergüden, D., D. Ayas & H. Kabasakal (2020): Provoked non-fatal attacks to divers by sandbar shark, Carcharhinus plumbeus (Carcharhiniformes: Carcharhinidae), off Taşucu coast (NE Mediterranean Sea, Turkey). Annales, Ser. Hist. Nat., 30, 1-8. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 185 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 Ferretti, F., R.A. Myers, F. Serena & H.K. Lotze (2008): Loss of large predatory sharks from the Medi- terranean Sea. Conserv. Biol., 22, 952-964. https:// doi.org/10.1111/j.1523-1739.2008.00938.x. Ferretti, F., S. Jorgensen, T.K. Chapple, G. De Leo & F. Micheli (2015): Reconciling predator conserva- tion with public safety. Front. Ecol. Environ., 13(8), 412-417, doi:10.1890/150109. Filiz, H. (2019): Year-Round Aggregation of Sandbar Shark, Carcharhinus plumbeus (Nardo, 1827), in Boncuk Cove in the southern Aegean Sea, Turkey (Carcharhini- formes: Carcharhinidae). Zool. Middle East, 65, 35-39. https://doi.org/10.1080/09397140.2018.1540148. Frost, F.J. (1968): Scyllias: Diving in antiquity. Greece & Rome 15, 180-185. GFCM (2018): GFCM Data Collection Reference Framework (DCRF). Version: 23.2., FAO, 190 pp. Gilbert, R.O. (1987): Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York. GSAF (2025): https://www.sharkattackfile.net/ incidentlog.htm. (last accession, 17 July 2025). Hammer, Ø., D.A.T. Harper & D.R. Paul (2001): Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeont. Electr., 4. http://palaeo-electronica.org/2001_1/past/issue1_01. htm. ISAF (2025): https://www.floridamuseum.ufl.edu/ shark-attacks/odds/compare-risk/death/. (last acces- sion, 17 July 2025). Kabasakal, H. (2010a): A review of newspaper and internet portrayals of the sixgill shark, Hexanchus gri- seus (Bonnaterre, 1788) (Chondrichthyes: Hexanchi- dae), caught in Turkish waters between 1974-2009. Annales, Ser. Hist. Nat., 20, 175-180. Kabasakal, H. (2010b): On the occurrence of the blue shark, Prionace glauca (Chondrichthyes: Car- charhinidae), off Turkish coast of northern Aegean Sea. Mar. Biodivers. Rec., 3, e31. https://doi.org/10.1017/ S1755267210000266. Kabasakal, H. (2015): Occurrence of shortfin mako shark, Isurus oxyrinchus Rafinesque, 1810, off Turkey’s coast. Mar. Biodivers. Rec., 8, e134, 1-7. doi:10.1017/S1755267215000342. Kabasakal, H. (2016): Historical dispersal of the great white shark, Carcharodon carcharias, and blue- fin tuna, Thunnus thynnus, in Turkish waters: decline of a predator in response to the loss of its prey. An- nales, Ser. Hist. Nat., 26, 213-220. Kabasakal, H. (2020): Exploring a possible nursery ground of white shark (Carcharodon carcharias), in the Edremit Bay (northeastern Aegean Sea, Turkey). J. Black Sea/Medit., 26, 176-189. Kabasakal, H. & S.Ö. Gedikoğlu (2015): Shark attacks against humans and boats in Turkey’s waters in the twentieth century. Annales, Ser. Hist. Nat., 25, 115-122. Kabasakal, H. & E. Bayrı (2021): Great white sharks, Carcharodon carcharias, hidden in the past: Three unpublished records of the species from Turkish waters. Annales, Ser. Hist. Nat., 31, 195-202. Kabasakal, H. & F.S. Karakulak (2024): A Review of Sharks and Batoids of the Sea of Marmara: Current Inventory, Conservation Issues and Future Projections. In: İşinibilir, M., A.E. Kıdeyş & A. Malej (Eds.): Ecologi- cal Changes in the Sea of Marmara. İstanbul University Press, E-ISBN 978-605-07-1633-7. pp. 819-846. htt- ps://doi.org/10.26650/B/LSB21LSB37.2024.023.025. Kabasakal, H., D. Ayas & D. Ergüden (2021): In- tentional stranding of a blue shark, Prionace glauca (Carcharhiniformes: Carcharhinidae), in pursuit of prey. Annales, Ser. Hist. Nat., 31, 45-50. https://doi. org/10.19233/ASHN.2021.07. Kabasakal, H., E. Bayrı & G. Alkan (2022): Distri- bution and status of the great white shark, Carcharo- don carcharias (Linnaeus, 1758), in Turkish waters: a review and new records. Annales, Ser. Hist. Nat., 32, 325-342. Kabasakal, H., U. Uzer & F.S. Karakulak (2024): Impact of fishing capacity and environmental param- eters on landings of Hexanchus griseus in the Sea of Marmara. Annales, Ser. Hist. Nat., 34, 257-272. doi:10.19233/ASHN.2024.31. Lipej, L., D. Trkov, B. Mavrič, T. Fortibuoni & N. Bettoso (2022): Occurrence of bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788) in the Gulf of Trieste (northern Adriatic) with particular reference to historical and contemporary records in the Adriatic Sea. Acta Adriat., 63, 93-108. Lippmann, J. (2018): Fatal shark attacks on divers in Australia, 1960-2017. Diving Hyperb. Med., 48, 224-228. https://doi.org/10.28920/dhm48.4.224-228. Kovačić, M., L. Lipej, J. Dulčić, S.P. Iglesias & M. Goren (2021): Evidence-based checklist of the Medi- terranean Sea fishes. Zootaxa, 4998, 001-115. https:// doi.org/10.11646/zootaxa.4998.1.1. Mair, A.W. (1968): Oppian, Halieutica, Book V. William Heinemann Ltd., London; G.P. Putnam’s Sons, New York. Micarelli, P., F. Romana Reinero, A. Marsella, E. Vernelli, E. Vittorini, L. Monteleone, M. Vailati, L. Marsili, F. Tinti & E. Sperone (2023): Attempts to locate and sample the white shark, Carcharodon carcharias (Lamniformes: Lamnidae), along the Italian coasts in the Mediterranean Sea. Acta Adriat., 64. https://doi. org/10.32582/aa.64.2.6. Midway, S.R., T. Wagner & G.H. Burgess (2019): Trends in global shark attacks. PlosONE, 14. e0211049. https://doi.org/10.1371/journal.pone.0211049. Neff, C. (2014): Human perceptions and attitudes towards sharks - Examining the predator policy paradox. In: Techera, E.J. & N. Klein (Eds.): Sharks: Conservation, Governance and Management. Taylor & Francis, Routledge, London, pp. 107-131. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 186 Hakan KABASAKAL: ANALYSIS OF CONFIRMED SHARK ATTACKS IN THE EASTERN MEDITERRANEAN SEA AND THE SEA OF MARMARA (1827–2025), 169–186 Neff, C. & R. Hueter (2013): Science, policy, and the public discourse of shark “attack”: a proposal for reclassifying human-shark interactions. J. Environ. Stud. Sci., 3, 65-73. https://doi.org/10.1007/s13412- 013-0107-2. Onmuş, O. (2015): Birds of the Aegean Sea. In: Katağan, T., A. Tokaç, Ş. Beşiktepe & B. Öztürk (Eds.): The Aegean Sea Marine Biodiversity, Fisheries, Conservation and Governance. Turkish Marine Research Foundation, Publication No. 41, İstanbul, Türkiye, pp. 258-274. Ostrovski, R.L., G.M. Violante, M.R. de Brito, J.L. Valentin & M. Vianna (2021): The media paradox: influence on human shark perceptions and potential conservation impacts. Ethnobiol. Conserv., 10, 12. https://doi.org/10.15451/ec2020-12-10.12-1-15. Öztürk, B. & A.A. Öztürk (1996): On the biology of the Turkish Straits System. Bulletin de l’Institut océanographique, Monaco, no special 17, CIESM Sci- ence Series no 2, 205-221. Öztürk, B. & S.H. Başeren (2008): The exclusive economic zone debates in the eastern Mediterranean Sea and fisheries. J. Black Sea/Medit., 14, 77-83. Parab, S. & S. Bhalerao (2010): Choosing statistical test. IJAR., 1, 187-191. https://doi.org/10.4103/0974- 7788.72494. Pastor, F., J.A. Valiente & S. Khodayar (2020): A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens., 12, 2687. https:// doi.org/10.3390/rs12172687. Peace, A. (2015): Shark attack! A cultural ap- proach. Anthropol. Today, 31, 3-7. Peschak, T.P. (2006): Sharks and shark bite in the media. In: Nel, D.C. & T.P. Peschak (Eds.): Finding a balance: White shark conservation and recreational safety in the inshore waters of Cape Town, South Africa. Proocedings of a specialist workshop. WWF South Africa Report Series, pp. 159-163. Randall, J.E. (1986): Sharks of Arabia. IMMEL Publishing, London,148 pp. Soldo, A. & R. Peirce (2005): Shark chumming in the eastern Adriatic. Annales, Ser. Hist. Nat., 15, 203-208. Stanley, D.J. & C. Blanpied (1980): Late quater- nary water exchange between the eastern Mediter- ranean and the Black Sea. Nature, 285, 537-541. Sumpton, W.D., S.M. Taylor, N.A. Gribble, G. McPherson & T. Ham (2011): Gear selectivity of large-mesh nets and drumlines used to catch sharks in the Queensland Shark Control Program. Afr. J. Mar. Sci., 33, 37-43. https://doi.org/10.2989/18142 32X.2011.572335. Taglioni, F., S. Guiltat, M. Teurlai, M. Delsaut & D. Payet (2019): A spatial and environmental analy- sis of shark attacks on Reunion Island (1980-2017). Mar. Policy, 101, 51-62. https://doi.org/10.1016/j. marpol.2018.12.010. Taklis, C. (2023): Recorded shark attacks in Greece over the last 180 years: A retrospective analysis. Int. J. Fish. Aquat. Stud., 11, 29-31. https:// doi.org/10.22271/fish.2023.v11.i2a.2786. Tobuni, I.M., B.-A.R. Benabdallah, F. Serena & E.A. Shakman (2016): First documented presence of Galeocerdo cuvier (Péron & Lesueur, 1822) (ELASMOBRANCHII, CARCHARHINIDAE) in the Mediterranean basin (Libyan waters). Mar. Biodiv- ers. Rec., 9, Article 94. https://doi.org/10.1186/ s41200-016-0089-3. Valenti, E. (2023): Forecasting shark attack risk using AI: A deep learning approach. JDAIP., 11, 360-370. https://www.scirp.org/journal/jdaip. West, J. (2014): Shark attack theories. https:// t a ronga .org .au / s i te s /de fau l t / f i l e s /conten t /pd f / Shark_Attack_Theories_Paper_2014.pdf. (last ac- cession, 17 July 2025). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 187 received: 2025-06-11 DOI 10.19233/ASHN.2025.21 OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA SUPPORT THE HYPOTHESIS OF A DISTINCT MEDITERRANEAN POPULATION Alen SOLDO Department of Marine Studies, University of Split, Croatia e-mail: soldo@unist.hr ABSTRACT The basking shark Cetorhinus maximus is a large planktivorous shark which sightings in the Medi- terranean Sea have increased in recent decades, particularly in the Adriatic Sea. This study reports the incidental capture and release of a juvenile basking shark (estimated total length ~2 m) in July 2015 near the island of Mljet, Eastern South Adriatic. The observation aligns with prior records indicating the appearance of juveniles and subadults during summer, after the departure of adults in late spring. When considered alongside global data on juvenile distribution, this finding strengthens the hypothesis that the Mediterranean Sea functions as a significant breeding and nursery area for basking sharks. Furthermore, the consistent regional presence and lack of evidence for migratory exchange with Atlantic populations suggest the possibility of a distinct Mediterranean population. Key words: basking shark, Cetorhinus maximus, juvenile, Adriatic Sea, Mediterranean Sea, nursery area OSSERVAZIONI DI UN GIOVANE SQUALO ELEFANTE CETORHINUS MAXIMUS IN ADRIATICO CONFERMANO L’IPOTESI DI UNA POPOLAZIONE MEDITERRANEA DISTINTA SINTESI Lo squalo elefante Cetorhinus maximus è un grande squalo planctivoro che negli ultimi decenni è stato avvistato sempre più spesso nel Mediterraneo, in particolare nell’Adriatico. Questo studio riporta la cattura accidentale e il rilascio di uno squalo elefante giovane (lunghezza totale stimata ~2 m) nel luglio 2015 vicino all’isola di Meleda (Mljet), nell’Adriatico sud-orientale. L’osservazione è in linea con precedenti registrazioni che indicano la comparsa di esemplari giovani e subadulti durante l’estate, dopo la partenza degli adulti alla fine della primavera. Se considerata insieme ai dati globali sulla distribuzione degli esemplari giovani, questa scoperta rafforza l’ipotesi che il Mediterraneo funga da importante area di riproduzione e crescita per gli squali elefante. Inoltre, la presenza costante nella regione e la mancanza di prove di scambi migratori con le popolazioni dell’Atlantico suggeriscono la possibilità di una popolazione mediterranea distinta. Parole chiave: squalo elefante, Cetorhinus maximus, giovane, Adriatico, Mediterraneo, area di crescita ANNALES · Ser. hist. nat. · 35 · 2025 · 2 188 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 INTRODUCTION The basking shark, Cetorhinus maximus (Gun- nerus, 1765), is a coastal-pelagic, semioceanic, or oceanic species inhabiting boreal to warm-temperate waters along continental and insular shelves. It is found both far offshore and near the coast, sometimes just beyond the surf zone or within enclosed bays (Compagno, 2001; Ebert et al., 2021). This species is highly seasonal, known for its periodic appearances and disappearances in specific locations (Ebert et al., 2021). The number of basking sharks observed in a given area can vary significantly from year to year, with unexplained fluctuations, including occa- sional population surges (‘invasions’). In the Eastern Atlantic, its range extends from Iceland and Norway to North Africa and the Mediterranean (Compagno, 2001; Ebert et al., 2021). While basking shark sight- ings are widespread throughout the Mediterranean, they are most frequently reported in the Tyrrhenian, Balearic, and Adriatic regions (Mancusi et al., 2005; 2020; Soldo, 2022). The first record of the basking shark in the East- ern Adriatic area, from where most of the Adriatic records are reported, dates back to 1822. Over the following two centuries, until 2022, 75 records have been documented, with a significant increase in sightings since the early 2000s (Soldo, 2022). In the beginning, the basking shark was relatively rare in the Adriatic, but its occurrence has substan- tially increased since the start of the 21st century. Records with known precise locations show the occurrence of the basking shark widespread along the Eastern Adriatic coast, with the highest num- bers in the Northern Adriatic, particularly Kvarner Bay, known for its rich zooplankton biomass (Soldo et al., 2008; Soldo, 2022). After analyzing the occurrence of the basking sharks and compar- ing it to fluctuations in zooplankton structure and abundance it was evident that the basking sharks were found in the time of high density of large copepods, particularly Calanus helgolandicus, which is considered their major prey (Soldo et al., 2008). Thus, it was suggested that basking sharks migrate from the Mediterranean toward the Northern Adriatic, following water masses carrying specific copepod species that are sufficiently abun- dant for their feeding (Soldo et al., 2008). Soldo (2022) indicated that basking sharks predominantly appear in late winter and early spring, coinciding with peak copepod abundance. Fewer records exist for autumn and summer with most summer sight- ings involving juveniles and subadults (< 299 cm: juveniles, 300–499 cm: subadults), supporting the hypothesis of seasonal segregation, where younger sharks arrive after adults leave the Adriatic (Soldo, 2022). The only exception to this Adriatic seasonal pattern was a male juvenile (217 cm, 40 kg) caught in December 2014 in shallow Northern Adriatic wa- ters (20 m depth) (Lipej & Mavrič, 2015). Records of juveniles in the Mediterranean are scarcer than for adults, but the majority corresponds to the summer season pattern (Mancusi et al., 2005). However, there are comparable cases of a juvenile basking shark reported during other periods, e.g. a recent report on a specimen of 259 cm TL that was acci- dentally captured by a gillnet on 27 February 2024 off the Syrian coast, Eastern Mediterranean (Ali et al., 2024). Even more interestingly, Ali et al. (2024) also report the statement from the fishermen that the caught specimen was part of a shoal that contained up to 40 young basking sharks of similar size. Kaba- sakal (2013) also reported several juvenile records from the Eastern Mediterranean out of the summer season which suggest a possible different behavior pattern of juvenile basking sharks in that area. In the Mediterranean, which includes the Adri- atic Sea, the basking shark is protected under various legislation. Additionally, in Croatian waters, which encompass most of the Eastern Adriatic Sea, the high- est level of protection is given to the basking shark as it is declared as a Strictly protected species (Soldo & Lipej, 2022). The aim of this paper is to contribute to the understanding of basking shark occurrence in the Adriatic by reporting a juvenile record and examining its relevance to the hypothesis of a Mediterranean population. MATERIAL AND METHODS On 4 July 2015, a commercial fisherman acci- dentally caught a juvenile basking shark, Cetorhinus maximus, during purse seining for Atlantic bonito, Sarda sarda (Bloch, 1793) near the island of Mljet in the Eastern south Adriatic Sea (Fig. 1). The shark was hauled onto the vessel’s deck along with the rest of the catch and then promptly released un- harmed back into the sea (Fig. 2). According to the fisherman’s testimony, the shark immediately swam away vigorously, indicating that the brief period on the deck did not cause it any harm. Based on visible characteristics of the vessel in the photograph where the juvenile shark is also visible, its size is estimated to be approximately 2 meters, which aligns with the initial information provided by the fisherman. The grey-dark brown shark was easily identified as a juvenile basking shark due to its pointed, hook-like snout, which is longer and more pointed than that of adults, its large subterminal mouth, and the enormous gill slits that nearly encircle the head (Matthews & Parker, 1950). Furthermore, the absence of visible claspers suggests that the shark was female. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 189 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 RESULTS AND DISCUSSION This record aligns with previously documented patterns of basking shark occurrence in the Adriatic Sea, where individuals and even schools have been regularly observed since the beginning of the 21st cen- tury. What has also been noted is segregation between adults and young-of-the-year individuals (Soldo et al., 2008; Soldo, 2022). Adult basking sharks typically arrive in the second half of winter and, in the fol- lowing months are observed near the surface, feeding on dense patches of zooplankton. From mid-spring to late spring, as zooplankton abundance declines, adult basking sharks begin to leave the Adriatic, migrating along the eastern coastline but in deeper waters. Later, with the onset of summer, juvenile sharks emerge from deeper areas and move toward coastal feeding grounds (Soldo et al., 2008; Soldo, 2022). Incorporat- ing this new observation into the existing dataset of summer records (Soldo, 2022) further supports the temporal segregation of age classes. Of the seven summer records, three involved juveniles and three involved subadults (Soldo, 2022). Notably, Katooka et al. (2022) compiled records of juvenile basking sharks worldwide and found that more than 90% originated from the Mediterranean Sea (84 out of a total of 93 records). Applying the three criteria outlined by Heupel et al. (2007) for identi- fying a nursery area: (1) sharks are more commonly encountered in the area than elsewhere; (2) individu- als tend to remain in or return to the area for extended periods; and (3) the area is repeatedly used across years, it can be concluded that the Mediterranean Sea functions as both a breeding and nursery area for the basking shark. This does not necessarily imply that the Mediterranean is the only breeding and nursery ground globally, especially given the species’ circum- global distribution across both hemispheres and the existence of juvenile records from regions far beyond the Mediterranean. In the present study, we compiled an updated list of juvenile basking shark records in the Mediterranean Sea. After excluding duplicate en- tries from Katooka et al. (2022) and incorporating new data, the dataset comprises 83 Mediterranean records of individuals measuring up to 4 m in length (Tab. 1). This figure greatly exceeds the number of juvenile records from all other regions combined, highlighting the Mediterranean as a major breeding and nursery ground for the species. A report of the capture of an adult female carrying egg cases off the Syrian coast (Ali et al., 2012), as well as the recent catch of a 259 cm long basking shark in the same area, accompanied Fig. 1: Location of a catch and release of the juvenile basking shark. Sl. 1: Zemljevid z lokaliteto ulova in izpusta mladega morskega psa orjaka. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 190 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 by fishermen’s reports that the specimen was part of a shoal of up to 40 similarly sized juveniles (Ali et al., 2024), lends further support to this hypothesis. However, a crucial question remains unanswered: for which population does the Mediterranean serve as a breeding and nursery ground? Due to limited scien- tific understanding of basking shark biology and ecol- ogy, particularly regarding global migration routes, it is still unclear whether discrete local populations ex- ist or how regional population structures relate to one another. Consequently, it remains unknown whether the basking sharks recorded in the Mediterranean belong to a distinct Mediterranean population or are part of a broader North/Northeast Atlantic popula- tion. Nevertheless, there is currently no evidence of migratory exchange between the Mediterranean and Fig. 2: Photos of the juvenile basking shark on board of the fishing vessel and after the release. Sl. 2: Fotografije mladega morskega psa orjaka na krovu ribiškega plovila in po izpustu. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 191 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 Tab. 1: Records of juvenile and sub-adult (up to 4 m) basking sharks in the Mediterranean Sea. Tab. 1: Zapisi o pojavljanju mladih in skoraj odraslih (do 4 m) primerkov morskih psov orjakov v Sredozemskem morju. No Date Location TL (m) Sex Reference 1 1795 Strait of Messina-Reggio Calabria 2.62 male Barrull & Mate (1999) 2 1819 Island of Capri-Naples, Italy 2.76 male Barrull & Mate (1999) 3 11/6/1870 Penzance, Italy 2.76 - Cornish (1870) 4 25/4/1871 Gulf of Spezia-Liguria, Italy 2.95 male Pavesi (1874), Barrull & Mate (1999) 5 25/4/1874 Lerici-Gulf of Spezia-Liguria, Italy 2.95 male Carruccio (1906) 6 10/6/1877 Vado Ligure-Savona, Italy 3.25 male Pavesi (1878) 7 1880 Messina-Sicily 2.85 female Barrull & Mate (1999) 8 1880 Camogli – Liguria, Italy 3.58 - Carruccio (1906) 9 18/6/1880 Messina - Sicily 3.1 female Senna (1913) 10 3/6/1884 Naples – Campania, Italy 3.5 - Barrull & Mate (1999) 11 1888 Camogli-Liguria, Italy 1.5 - Carruccio (1906) 12 10/6/1903 Elba Island – Tuscany, Italy 3.9 male Barrull & Mate (1999) 13 20/6/1903 Portoferraio - Elba Island – Tuscany, Italy 3.9 male Barrull & Mate (1999) 14 15/3/1904 Gulf of Alghero-Sassari-Sardinia, Italy 3.37 female Carazzi (1904) 15 7/3/1905 Naples – Campania, Italy 3.35 female Barrull & Mate (1999) 16 23/3/1905 Cape Tres Forcas – Melilla, Spain 2.92 - Escribano (1909) 17 12/5/1907 Faro - Messina – Sicily 2.55 female Barrull & Mate (1999) 18 23/4/1908 Portulipe - Pozzallo - Ragusa - Sicily 3.6 male Barrull & Mate (1999) 19 23/7/1908 Island Vis, Croatia 3.1 female Soldo & Jardas (2002) 20 23/4/1910 Porto Conte – Cerdeña, Italy 2.6 - Barrull & Mate (1999) 21 4/5/1910 Porto Conte – Cerdeña, Italy 3.3 - Barrull & Mate (1999) 22 June 1912 Genoa-Liguria, Italy 3.16 male Barrull & Mate (1999) 23 13/6/1912 Finale Ligure – Liguria, Italy 3.45 female Vinciguerra (1923) 24 1913 Port of Paglio -Cardeña, Italy 1.5 - Ariola (1913) 25 24/5/1913 Quercianella and Castiglioncello – Tuscany, Italy 2.7 male Senna (1913) 26 1/6/1913 Port of Vado-Liguria, Italy 2.85 female Ariola (1913) 27 19/6/1913 Port of Vado Ligure – Liguria, Italy 3.25 male Ariola (1913) 28 24/7/1913 Portofino – Liguria 2.5 - Ariola (1913) 29 27/6/1921 S. Michele Beach - Savona – Liguria, Italy 3 - Vinciguerra (1923) 30 7/10/1921 Island Cres, Croatia 3.2 male Soldo & Jardas (2002) 31 12/7/1922 Santa Margherita Ligure– Liguria, Italy 3 male Vinciguerra (1923) 32 September 1922 Cornigliano, Italy 3.7 male Vinciguerra (1923) 33 10/11/1922 Sesta Levante – Liguria, Italy 3 male Vinciguerra (1923) 34 5/5/1923 Arebzabi Liguria, Italy 3.9 male Vinciguerra (1923) 35 13/6/1923 Santa Margherita Ligure– Liguria, Italy 3.37 female Vinciguerra (1923) 36 15/6/1923 Multedo Beach, Italy 2.68 male Vinciguerra (1923) 37 7/6/1927 Ognina - Syracuse – Sicily 2 female Monterosso (1931) 38 16/12/1929 Capo Zafferano - Palermo - Sicily 3.19 male Barrull & Mate (1999) 39 27/12/1929 Ras Falcon, Tunisia 3.75 male Capapé et al. (2003) 40 25/11/1930 Porticello - Palermo - Sicily 3.05 male Barrull & Mate (1999) ANNALES · Ser. hist. nat. · 35 · 2025 · 2 192 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 41 25/5/1931 Balestrate - Palermo – Sicily 2.85 male Barrull & Mate (1999) 42 6/2/1931 Plaia - Catania - Sicily 3.4 female Monterosso (1931) 43 10/7/1937 Lumbarda-Korčula, Croatia 3.5 - Soldo & Jardas (2002) 44 19/5/1939 Palma, Spain 3 male Navarro (1943) 45 1942 Palma, Spain 2 - Navarro (1943) 46 October 1957 Valencia, Spain 3.3 - López (1963) 47 11/1/1965 Acre, Israel 2.67 - Barrull & Mate (1999) 48 7/3/1965 Acre, Israel 2.59 - Barrull & Mate (1999) 49 1968 Ston, Croatia 2.5 - Lipej et al. (2000) 50 February 1969 Ses Caletes des Cap Pinar – Mallorca, Spain 3.4 female Barrull & Mate (1999) 51 January-March 1971 Israel coast 259-261 - 52 1974 Trieste, Italy 3.92 - Lipej et al. (2000) 53 1979 Benicarló – Castellón, Spain 4 male Barrull & Mate (1999) 54 1980 Gulf of Tunis 2.7 male Capapé et al. (2003) 55 14/2/1981 Bar, Montenegro 4 - Soldo & Jardas (2002) 56 18/6/1981 Ičići, Croatia 2.65 - Soldo & Jardas (2002) 57 August 1981 Ras Fartas – Gulf of Tunis 3.5 male Capapé et al. (2003) 58 18/4/1987 Antalya bay, Turkey 4 - Kabasakal (2004) 59 7/2/1991 Haifa, Israel 2.5 - Barrull & Mate (1999) 60 10/8/1992 Sant Pere Pescador – Girona, Spain 2.5 - Barrull & Mate (1999) 61 19/3/1995 Gulf of Santa Eufemia – Calabria, Italy 3 male Barrull & Mate (1999) 62 24/4/1997 Vittoria - Ragusa - Sicily 3.2 - Barrull & Mate (1999) 63 11/5/1998 Lido Marza. Pozzallo - Ragusa – Sicily 2.48 male Barrull & Mate (1999) 64 June 1998 Strait of Messina-Sicily 4 - Barrull & Mate (1999) 65 4/3/2000 Offshore Annaba, Algeria 3.3 female Capapé et al. (2003) 66 22/5/2000 Piran, Slovenia 2.99 male Lipej et al. (2000) 67 10/6/2000 Camogli-Liguria, Italy 2.66 male Barrull & Mate (1999) 68 19/7/2000 Piran, Slovenia 2.49 male Lipej et al. (2000) 69 30/12/2006 Iskenderun Bay, Turkey 3 - Bilecenoglu et al. (2013) 70 February 2007 Gulf of Gabès 2.42 female Enajjar et al. (2019) 71 29/4/2007 Lumbarda-Korčula, Croatia 2.7 - Soldo (2022) 72 11/7/2008 Port of Rijeka, Croatia 2.5 - Soldo (2022) 73 11/6/2010 Ancona, Italy 3.65 male This study 74 29/4/2011 Moščenička draga 3.7 - Soldo (2022) 75 7/4/2012 Erdemli Coast, Turkey 2.36 male Bilecenoglu et al. (2013) 76 12/5/2013 Famagusta harbour, Cyprus 4 - Kabasakal (2013) 77 20/3/2014 Mersin Bay, Turkey 2.45 female Ergüden et al. (2020) 78 25/12/2014 Piran, Slovenia 2.17 male Tsiamis et al. (2015) 79 4/6/2015 Island Mljet, Croatia 2 female This study 80 6/5/2017 Plage de Port Leucate, France 4 - Carpaye-Taïlamée (2019) 81 7/5/2017 Banyuls sur Mer, France 4 - Carpaye-Taïlamée (2019) 82 8/7/2017 Port des Embiez, France 2.5 - Carpaye-Taïlamée (2019) 83 27/2/2024 South of Lattakia, Syria 2.59 - Ali et al. (2024) ANNALES · Ser. hist. nat. · 35 · 2025 · 2 193 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 Atlantic populations. Basking sharks in the Mediter- ranean are observed during the same periods as those in the Northeast Atlantic, and the seasonal distribu- tion patterns appear consistent across both regions (Soldo et al., 2008). This temporal overlap suggests the existence of regionally isolated populations. Like- wise, studies in the Northeast Atlantic, particularly around Britain, have reported basking shark move- ments confined to the Atlantic, with no indications of individuals migrating into the Mediterranean Sea (Sims et al., 2005; Doherty et al., 2017, 2019; Dol- ton et al., 2020). Consequently, it can be assumed that basking sharks in the Mediterranean constitute a distinct regional population, but this hypothesis requires further verification through more focused and multidisciplinary studies. Comprehensive popu- lation genetic analyses should be prioritized as it is needed to determine whether Mediterranean basking sharks form a distinct genetic population. In parallel, long-term satellite tagging programs are essential to monitor movements of individual sharks, particularly to detect any connectivity between Mediterranean and Atlantic populations. In conclusion, the high number of juvenile sightings in the Mediterranean, the apparent lack of migratory exchange with the Atlantic, and the consistent regional occurrence patterns all support the hypothesis of a distinct Mediterranean population of basking sharks. To validate this, an integrated research strategy combining genetic, ecological, and telemetry-based approaches is urgently needed. Such efforts are not only critical for advancing our understanding of basking shark popula- tion structure but also for producing effective regional conservation and management strategies. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 194 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 OPAZOVANJA MLADEGA MORSKEGA PSA ORJAKA (CETORHINUS MAXIMUS) V JADRANSKEM MORJU PODPIRAJO HIPOTEZO O LOČENI SREDOZEMSKI POPULACIJI Alen SOLDO Department of Marine Studies, University of Split, Croatia e-mail: soldo@unist.hr POVZETEK Morski pes orjak (Cetorhinus maximus) je velik planktivoren morski pes, katerega število opažanj v Sredozemskem morju se je v zadnjih desetletjih povečalo, zlasti v Jadranskem morju. Avtor poroča o naključnem ulovu in izpustu mladega morskega psa orjaka (ocenjene skupne dolžine ~2 m) julija 2015 v bližini otoka Mljet v vzhodnem južnem Jadranu. Opazovanje se ujema s prejšnjimi zapisi, ki kažejo na pojav mladih in skoraj odraslih primerkov poleti, po odhodu odraslih pozno spomladi. Če to ugoto- vitev obravnavamo skupaj z globalnimi podatki o razširjenosti mladih primerkov, to podpira hipotezo, da Sredozemsko morje deluje kot pomembno območje za razmnoževanje in odraščanje mladih primerkov morskih psov orjakov. Poleg tega dosledna regionalna prisotnost in pomanjkanje dokazov o migracijski izmenjavi z atlantskimi populacijami kažeta na možnost obstoja ločene sredozemske populacije. Ključne besede: morski pes orjak, Cetorhinus maximus, Jadransko morje, Sredozemsko morje, mladostni primerek, jaslice ANNALES · Ser. hist. nat. · 35 · 2025 · 2 195 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 REFERENCES Ali. M., A. Saad, C. Reynaud & C. Capapé (2012): Occurrence of basking shark, Cetorhinus maximus (Cetorhinidae) off the Syrian coast (eastern Mediterra- nean) with first description of egg case. Acta Ichthyol. Piscat., 42(4), 335-339. Ali, M., A. Fandi, D. Ghanem & C. Capapé (2024): Capture of a juvenile Basking shark, Cetorhinus maxi- mus (Cetorhinidae), off the Syrian coast, with com- ments on the occurrence of the species in the Levant Basin (Eastern Mediterranean Sea). Annales, Ser. Hist. Nat., 34(2), 251-256. Ariola, V. (1913): Cattura di squali nel Golfo di Genova. Atti Soc. Ligustica, 24, 3-19. Barrull, J. & I. Mate (1999): Registros de tiburón peregrino (Cetorhinus maximus) en aguas del Mediter- ráneo. Boletín de la Asociación Esoañola de Elasmo- branquios, 2, 37-52. Ben-Tuvia, A. (1971): Revised list of the Mediter- ranean fishes of Israel. Isr. J. Zool., 20, 1-39. Bilecenoglu, M., J.E.F. Alfaya, E. Azzurro, R. Bal- dacconi, Y.Ö. Boyaci, V. Circosta, L.J.V. Compagno, F. Coppola, A. Deidun, H. Durgham, F. Durucan, D. Ergüden, F.Á. Fernández-Álvarez, P. Gianguzza, G. Giglio, M. Gökoglu, M. Gürlek, S. Ikhtiyar, H. Kaba- sakal, P.K. Karachle, S. Katsanevakis, D. Koutsogian- nopoulos, E. Lanfranco, P. Micarelli, Y. Özvarol, L. Peña-Rivas, D. Pouranidis, J. Saliba, E. Sperone, D. Tibullo, F. Tiralongo, S. Tripepi, C. Turan, P. Vella, M.B. Yokes & B. Zava (2013): New Mediterranean marine biodiversity records (December, 2013). Mediterr. Mar. Sci., 14(2), 463-480. Capapé, C., F. Hemida, J. Bensaci, B. Saïdi & M.N. Bradaï (2003): Records of basking shark, Cetorhinus maximus (Gunnerus, 1765) (Chondrichthyes: Cetorhi- nidae) off the Maghrebin Shore (southern Mediterra- nean): a survey. Annales, Ser. Hist. Nat., 13(1), 13-18. Carazzi, D. (1904): Sulla Selache maxima Gunn. Zool. Anz., 28(5), 161-165. Carruccio, A. (1906): Sulla Selache maxima Günn. Boll.Soc.zool.ital., 7, 192-202. Compagno, L.J.V. (2001): Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Volume 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). No. 1, Vol. 2. FAO, Rome, 269 pp. Cornish, T. (1870): On a shark captured in Mount’s Bay on June 11, 1870, supposed to be identical with the basking shark of Pennant and the broadheaded gazer of Couch. The Zoologist, 5, 2253-2260. Doherty, P.D., J.M. Baxter, F.R. Gell, B.J. Godley, R.T. Graham, G. Hall, J. Hall, L.A. Hawkes, S.M. Hen- derson, L. Johnson, C. Speedie & M.J. Witt (2017): Long-term satellite tracking reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic. Sci. Rep., 7, 42837. Doherty, P.D., J.M. Baxter, B.J. Godley, R.T. Gra- ham, G. Hall, J. Hall, L.A. Hawkes, S.M. Henderson, L. Johnson, C. Speedie & M.J. Witt (2019): Seasonal changes in basking shark vertical space use in the north-east Atlantic. Mar. Biol., 166, 129. Dolton, H.R., F.R. Gell, J. Hall, G. Hall, L.A. Hawkes & M.J. Witt (2020): Assessing the importance of Isle of Man waters for the basking shark Cetorhinus maximus. Endanger. Species Res., 41, 209-223. Ebert, D.A., M. Dando & S. Fowler (2021): Sharks of the World: A complete guide. Princeton 112 Uni- versity Press, Wild Nature Press Series, UK, 608 pp. Enajjar, S., B. Saidi & M.N. Bradai (2019): Records analysis of the basking shark Cetorhinus maximus (Chondrichthyes: Lamniformes: Lamnidae) in Tunisian coast (central Mediterranean Sea). Bull. Inst. Natl. Sci. Technol. Mer, 46, 195-199. Ergüden, D., D. Ayas., S.A. Ergüden & H.D. Akbora (2020): Rare occurrence of the young bask- ing shark Cetorhinus maximus (Gunnerus, 1765) in the northeastern Mediterranean. Emerging Trends and Research in Biological Science, 1, 99-105. Escribano, C. (1909): Sobre el hallazgo Cetorhi- nus (Selache) maximus Gun., cerca de Melilla. Bol. R. Soc. Esp. Hist. Nat., 9, 340-342. Heupel, M.R., K.J. Carlson & C.A. Simpfendorfer (2007): Shark nursery areas: concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser., 337, 287-297. Kabasakal, H. (2004): Cetorhinus maximus (Gun- nerus, 1765) (Lamniformes, Cetorhinidae) in the Gulf of Antalya in 1987: a summary of the previous records of the species from Turkish coastal waters in the Mediterranean. Annales, Ser. Hist. Nat., 14(1), 29-34. Kabasakal, H. (2013): Rare but present: status of basking shark, Cetorhinus maximus (Gunnerus, 1765) in eastern Mediterranean. Annales, Ser. Hist. Nat., 23, 127-132. Katooka, D., T. Sakiyama & H. Senou (2020): Record of a juvenile basking shark, Cetorhinus maxi- mus (Lamniformes: Cetorhinidae), from Sagami Bay, central Japan, with a review of worldwide records of juveniles of the species. Kanagawa Nature Magazine Material, 43, 53-60. Lipej, L. & B. Mavrič (2015): Juvenile basking shark Cetorhinus maximus caught in the waters off Piran (northern Adriatic). In: Tsiamis et al. New Medi- terranean Biodiversity Records (July 2015). Mediterr. Mar. Sci., 16(2), 472-488. Lipej, L., T. Makovec, M. Orlando & V. Žiža (2000): Occurrence of the basking shark, Cetorhinus maximus (Gunnerus, 1765), in the waters off Piran (Gulf of Trieste, northern Adriatic). Annales, Ser. Hist. Nat., 10(2), 211-215. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 196 Alen SOLDO: OBSERVATIONS OF A JUVENILE BASKING SHARK CETORHINUS MAXIMUS IN THE ADRIATIC SEA ..., 187–196 López, J. (1963): Peces emigrantes. Garriga, Bar- celona, 260 pp. Mancusi, C., S. Clò, M. Affronte, M.N. Bradaï, F. Hemida, F. Serena, A. Soldo & M. Vacchi (2005): On the presence of basking shark (Cetorhinus maximus) in the Mediterranean Sea, Cybium, 29(4), 399-405. Mancusi, C., R. Baino, C. Fortuna, L. De Sola, G. Morey, M. Bradai, A. Kallianotis, A. Soldo, F. Hemida, A. Saad, M. Dimech, P. Peristeraki, M. Bariche, S. Clò, E. De Sabata, L. Castellano, F. Garibaldi, L. Lanteri, F. Tinti, A. Pais, E. Sperone, P. Micarelli, F. Poisson, L. Sion, R. Carlucci, D. Cebrian-Menchero, B. Séret, F. Ferretti, A. El-Far, I. Saygu, E. Shakman, A. Bartoli, J. Guallart, D. Damalas, P. Megalofonou, M. Vacchi, M. Bottaro, G. Notarbartolo Di Sciara, M. Follesa, R. Cannas, H. Kabasakal, B. Zava, G. Cavlan, A. Jung, M. Abudaya, J. Kolitari, A. Barash, A. Joksimović, B. Marčeta, L. Gonzalez Vilas, F. Tiralongo, I. Giovos, F. Bargnesi, S. Lelli, M. Barone, S. Moro, C. Mazzoldi, C. Charis, A. Abella & F. Serena (2020): MEDLEM database, a data collection on large Elasmobranchs in the Mediterranean and Black seas. Mediterr. Mar. Sci., 21(2), 276-288. Matthews, L.H. & H.W. Parker (1950): Notes on the anatomy and biology of the Basking Shark (Cetorhinus maximus (Gunner)). Proc. Zool. Soc. Lond., 120(3), 535-576. Monterosso, B. (1931): Notizie e considerazioni su quattro recenti catture di Selache maxima Gunn, nel mare di Catania. Atti Acad. Gioenia, 18(5), 1–29. Navarro, F. de P. (1943): Tres notas faunisticas de Baleares: Cetorhinus, Trachypterus y Orcinus. Bol. R. Soc. Españ, Hist. Nat. (Biol.), 41, 55-60. Pavesi, P. (1878): Seconda contribuzione alla mor- fologia e sistematica dei Selachi. Ann. Mus. civ. stor. nat. Giacomo Doria, 12, 348-418. Senna, A. (1913): Una nuova cattura di Selache maxima (Gunn.) nel mar Toscano. Monit. zool. ital., 24, 229-232. Sims, D.W., E.J. Southall, J.D. Metcalfe & M.G. Pawson (2005): Basking shark population assessment - Final report for Global Wildlife Division of Defra. CEFAS, Lowestoft, 87 pp. Soldo, A. (2022): 200 years of records of the Bask- ing shark, Cetorhinus maximus, in the eastern Adriatic. Annales, Ser. Hist. Nat., 32(2), 343-350. Soldo A. & I. Jardas (2002): Occurrence of great white shark, Carcharodon carcharias (Linnaeus, 1758) and basking shark, Cetorhinus maximus (Gunnerus, 1765) in the Eastern Adriatic and their protection. Period. Biol., 104(2), 195-201. Soldo, A. & L. Lipej (2022). An Annotated Check- list and the Conservation Status of Chondrichthyans in the Adriatic. Fishes 2022, 7, 245. Soldo, A., D. Lučić & I. Jardas (2008): Basking shark (Cetorhinus maximus) occurrence in relation to zooplankton abundance in the eastern Adriatic Sea. Cybium, 32(2), 103-109. Carpaye-Taïlamée, T. (2019): On the presence of the basking shark Cetorhinus maximus (Chondrich- thyes, Cetorhinidae) in front of the French Mediter- ranean coast. Marine life, 1-15. Tsiamis, K., Ö. Aydogan, N. Bailly, P. Balistreri, M. Bariche, S. Carden-Noad, M. Corsini-Foka, F. Crocetta, B. Davidov, C. Dimitriadis, B. Dragicevic, M. Drakulic, J. Dulcic, A. Escánez, F. A. Fernández- Álvarez, V. Gerakaris, V. Gerovasileiou, R. Hoff- man, D. Izquierdo-Gómez, A. Izquierdo-Muñoz, G. Kondylatos, P. Latsoudis, L. Lipej, F. Madiraca, B. Mavric, M. Parasporo, L. Sourbès, E. Taskin, A. Türker & S. Yapici (2015): New Mediterranean Biodiversity Records (July 2015). Mediterr. Mar. Sci, 16(2), 472-488. Vinciguerra, D. (1923): Nuove catture di Selache maxima nel Golfo di Genova. Ann. Mus. civ. stor. nat. Giacomo Doria, 12, 51, 133-144. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 197 received: 2025-09-06 DOI 10.19233/ASHN.2025.22 AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO (ADRIATIC SEA) Jacopo BERNARDI Experimental Center for Habitats Conservation (CESTHA), Marina di Ravenna, Italy Department of Biology, University of Padova, Padova, Italy e-mail: jacopo.bernardi@unipd.it Pero UGARKOVIĆ Velebitska 24, 21000 Split, Croatia e-mail: lignja@gmail.com Ilija ĆETKOVIĆ Institute of Marine Biology, University of Montenegro, Kotor, Montenegro e-mail: ilija.c@ucg.ac.me ABSTRACT The aim of this study is to document the first confirmed report of the kitefin shark, Dalatias licha, in Montenegrin waters (southern Adriatic Sea). On 5 May 2025, a juvenile specimen was observed near Miločer Beach (Budva) at 10 m depth, with an in situ average temperature of approximately 20 °C, as measured by the diver’s computer. The encounter was recorded on high-resolution video, which allowed for unambiguous identification based on morphological characters. The shark, estimated at less than 50 cm total length, displayed calm swimming behavior, showed no visible injuries, and exhibited characteristics consistent with juvenile individuals. This record represents the first confirmation of the species in Montenegro and the shallowest recorded depth for D. licha. Key words: Mediterranean Sea, citizen science, deep-sea shark, Dalatiidae, Dalatias licha INCONTRO INSOLITO CON UN GIOVANE SQUALO ZIGRINO, DALATIAS LICHA, IN ACQUE COSTIERE POCO PROFONDE DEL MONTENEGRO (MARE ADRIATICO) SINTESI Lo scopo di questo studio è documentare la prima segnalazione confermata dello squalo zigrino, Dalatias licha, nelle acque montenegrine (Adriatico meridionale). Il 5 maggio 2025, un esemplare giovane è stato avvistato vicino alla spiaggia di Miločer (Budva) a 10 m di profondità, con una temperatura media in situ di circa 20 °C, misu- rata dal computer del subacqueo. L’incontro è stato registrato con un video ad alta risoluzione, che ha permesso un’identificazione inequivocabile sulla base delle caratteristiche morfologiche. Lo squalo, della lunghezza totale sti- mata inferiore a 50 cm, nuotava tranquillamente, non presentava ferite visibili e mostrava caratteristiche tipiche degli esemplari giovani. Questo avvistamento rappresenta la prima conferma della presenza della specie in Montenegro e la profondità più bassa mai registrata per il D. licha. Parole chiave: Mediterraneo, citizen science, squalo di acque profonde, Dalatiidae, Dalatias licha ANNALES · Ser. hist. nat. · 35 · 2025 · 2 198 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 INTRODUCTION The kitefin shark, Dalatias licha (Bonnaterre, 1788) (Elasmobranchii: Squaliformes: Dalatiidae) (WoRMS Editorial Board, 2025), is a medium-sized demersal shark, reaching a maximum total length (TL) of 182 centimeters (Ebert et al., 2021; Barone et al., 2022). D. licha is a deep-water species, occurring from 37 to at least 1800 m of depth, mainly deeper than 200 m), distributed across warm-temperate and tropical outer continental and insular shelves and upper slopes, usually on or near the bottom (Ebert et al., 2021). It is geographically distributed in the Atlantic, Indian, Pacific Ocean, as well as in the Mediterranean Sea (Compagno, 1984; De Maddalena et al., 2015; Ebert et al., 2021). Kitefin shark was also reported from the Sea of Marmara, the northernmost extension of the Mediterranean Basin (Meriç, 1995). Studies on stomach contents of the species have been carried out in sub-basins of the Mediterranean show that this species feeds mainly on cephalopods, crustaceans, tunicates, bony fishes and also small demersal sharks, such as velvet belly lanternshark, Etmopterus spinax (Linnaeus, 1758), blackmouth catshark, Galeus melastomus Rafinesque, 1810, and Scyliorhinus sp., Blainville, 1816 (Kabasakal & Kabasakal, 2002; Navarro et al., 2014; Mulas et al., 2021; Bottaro et al., 2023; Calabrò et al., 2024). The kitefin shark is an aplacental viviparous shark, and the known mating areas in the Mediter- ranean Sea occur in the Ligurian Sea, along the Maghreb coast and in the Tyrrhenian Sea (Capapé et al., 2008; Mulas et al., 2021; Bottaro et al., 2023). In these sub-basins, males reach sexual maturity around 70.5 cm in TL and females around 98 cm (Capapé et al., 2008; Mulas et al., 2021; Bottaro et al., 2023). The gestation period is unknown, while the litter size ranges between 3-16 pups, whose size at birth is 30-37 cm in TL (De Maddalena et al., 2015; Ebert & Dando, 2021). Based on the captures of new-borns with un- healed umbilical scars in bottom-trawl fishery, Kabasakal and Kabasakal (2002) proposed a nursery ground of D. licha in the northern Aegean Sea, and this nursery ground was further supported by the occurrence of gravid females in the same region (Kabasakal, 2023). Furthermore, Ergüden et al. (2022) also proposed another nursery of the kitefin shark in the northeastern Mediterranean Sea. Although it is generally considered rare in the Adriatic Sea (Serena et al., 2020; Soldo & Lipej, 2022), some studies suggest that it is frequently found in the deeper areas of the Southern Adriatic (Ungaro et al., 1996; Follesa et al., 2019; Dulčić & Kovačić 2020), particularly on its Italian side (D’Onghia et al., 2015; D’Onghia et al., 2015; Car- luccio et al., 2021). The species was also recorded during regional deep-sea surveys conducted in the framework of the MEDITS and FAO-AdriaMed projects (Isajlović 2012). However, documented records from the southeastern Adriatic are rare, with the species being only recently recorded in Albania (Hysolakoj et al., 2020; Gajić, 2025), with no records from Montenegro (Ćetković et al., 2024). This work reports the first confirmed record of D. licha in Montenegrin waters and the shallowest depth ever reported for this species, underlining the importance of the collaboration between citizen scientists and researchers. MATERIAL AND METHODS Data on the location, depth and water tem- perature were collected from the dive computer of spearfisherman Mr Dušan Vukčević. The authors were provided with two videos recorded in 4K resolution with a GoPro action camera, totaling 1 minute and 1 second. Still images of the observed kitefin shark were captured with the image soft- ware VLC Media Player. The species was identified based on morphological descriptions provided by Compagno (1984), De Maddalena et al. (2015), and Ebert et al. (2021) (Fig. 1). The geographical subarea (GSA) definition follows the GFCM (2018). The scientific name and taxonomy of the species follow the WoRMS Editorial Board (2025). RESULTS AND DISCUSSION On 5 May 2025, a shark was observed off Miločer Beach in the Municipality of Budva (42°15’38.6”N, 18°53’30.3”E; Montenegrin waters of the southern Adriatic Sea, GSA 18; Fig. 1) swimming over a mixed sand and gravel bottom at a depth of 10 m, with an average sea temperature about 20°C. The shark was sighted near to the sandy bottom displaying calm behaviour and normal swimming activity (Fig. 2). The following description is based on video footage of the observed shark: It can be easily distinguished from related species by its unique morphological features, including a cylindrical body, the absence of an anal fin, large eyes, large nostrils, large spira- cles, and five pairs of short gill slits located anterior to the pectoral fin origin. It also has papillose thick lips and serrated lower teeth with erect, triangular, serrated cusps and distal blades. It has spineless dorsal fins, with the first dorsal fin originating be- hind the pectoral fin’s free rear tips, with the base closer to the pectoral fin than the pelvic fin bases. The second dorsal fin is larger than the first. The lower caudal lobe is less developed than the upper lobe. It is brown to blackish in colour and juveniles ANNALES · Ser. hist. nat. · 35 · 2025 · 2 199 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 often show white posterior margins on their fins. The observed morphological characters are con- sistent with those given in Compagno (1984), De Maddalena et al. (2015) and Ebert et al. (2021), and the species is thus positively identified as Dalatias licha (Bonnaterre, 1788) (Fig. 2). Based on the obtained video footage, the specimen showed no signs of visible injuries. The TL of the specimen is below 50 cm, showing also the fin posterior margins white, a clear diagnostic feature of juvenile individuals. In one of the frames from the available video footage, the specimen passed close to an individual of a red mullet Mullus sp. (Fig. 3), which further illustrates its small size. Additionally, this represents the first confirmed record of this species in the waters of Montenegro. Given the fact that species is considered as a deep- sea species, whose abundance is highest at depths greater than 200 m (Compagno, 1984; Serena, 2005; Ebert et al., 2022), the cause of its occurrence near the coastline remains a subject of discussion. Although the location of the observation is extremely close to the shore, it is relatively far away, 2.66 nautical miles from the nearby port of Budva, which hosts several fishing vessels. Montenegrin fishing fleet is consider- ably smaller than most of the fleets of the other Adri- atic countries and operates mostly up to 100 m depth (Joksimović et al., 2019). This is reflected in the lack of records of the deep-sea sharks in general, and most of such species are known to be present in the country’s territorial waters only from the earlier scientific surveys Fig. 1: Kitefin shark, Dalatias licha (Bonnaterre, 1788): A) lateral view, B) ventral view of the head, C) upper and lower teeth. Drawing by Jacopo Bernardi. Sl. 1: Klinoplavuti morski pes, Dalatias licha (Bonnaterre, 1788): A) stranski pogled, B) trebušni pogled na glavo, C) zgornji in spodnji zobje. Risba: Jacopo Bernardi. Fig. 2: Map of the Adriatic Sea, the study area in which the specimen of Dalatias licha was sighted is indicated by a red circle. Sl. 2: Zemljevid Jadranskega morja. Območje raziskave, na katerem je bil opažen primerek Dalatias licha, je označeno z rdečim krogom. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 200 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 Fig. 3: A) Close lateral view of the described juvenile specimen of Dalatias licha, displaying taxonomic markers of the species, highlighted with arrows, such as: a) spineless dorsal fins; b) first dorsal fin originates behind free rear tip of the pectoral fin, with base closer to pectoral than pelvic fin bases; c) second dorsal fin larger; d) posterior margins of most fins are translucent (Ebert et al., 2021); B) Lateral view of the specimen; C) The specimen next to the individual of Mullus sp., both highlighted with arrows, showing its small size (Photo: D. Vukčević). Sl. 3: Bližnji stranski pogled (A) na opisani mladi primerek vrste Dalatias licha, ki prikazuje taksonomske značilnosti vrste, označene s puščicami, kot so: a) hrbtne plavuti brez trnov; b) prva hrbtna plavut izvira za prosto zadnjo konico prsne plavuti, pri čemer je osnova bližje prsni kot trebušni plavuti; c) druga hrbtna plavut je večja; d) zadnji robovi večine plavuti so prosojni (Ebert in sod., 2021); B) Stranski pogled na primerek; C) Primerek poleg primerka vrste Mullus sp., oba označena s puščicami, kar kaže na njegovo majhnost (Foto: D. Vukčević). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 201 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 (Ćetković et al., 2024). However, the possibility that the shark was caught and released by a fisherman cannot be excluded. A recent study on the movement ecology of D. licha documents that the species typically remains at depths of at least 100 m, although one of the tagged individuals descended to a depth of 33 m (Gandra et al., 2025). In a previous report, Soto and Mincarone (2001) collected a newborn kitefin shark alive at the surface and considered this finding to be an expansion of the species’ bathymetric range from 0 to 1800 m. The depths at which newborn kitefin sharks have been captured in the Mediterranean and south Atlantic raise the question of whether gravid females give birth in very shallow waters and then the newborns migrate to deep bathyal grounds, or whether encountering a newborn D. licha specimen at the surface was just a co- incidence. Soto and Mincarone (2001) speculated that the unusual capture conditions of the South Atlantic specimen may have been caused by the kitefin shark attacking the luminous buoy of the fishing net in order to feed. If the present record of the kitefin shark was indeed free of anthropogenic influence, it would repre- sent the shallowest depth documented for the species to date. Alternatively, the occurrence of D. licha in shallow waters may reflect environmental alterations in deep-water habitats, such as climate-driven deoxy- genation events, which have recently been linked to the upward movement of deep-water species (Vedor et al., 2021; Lipej & Mavrič, 2022; Lipej et al., 2022; Kabasakal et al., 2023). Considering the facts that several previously mentioned studies contain contemporary records of D. licha along the Italian southwestern Adriatic coast and that this species is only recently recorded on the opposite side of the basin, there is a possibility that its abundance is higher in the southwestern area of the Adriatic Sea. This may be supported by its absence from earlier studies conducted in the southeastern Adriatic Sea, such as the HVAR expedition, which has also covered considerable depths (Jukić-Peladić et al., 2001; Ikica et al., 2021). However, given that this is a poorly studied deep-sea species inhabiting areas that are neither commercially exploited, nor routinely surveyed, it is difficult to accurately assess its true distribution and population abundance in the deep-sea regions of the southern Adriatic Sea. In conclusion, the distribution of this species in the Adriatic is probably underestimated and as demon- strated in this study, integrating research with citizen science offers a valuable approach to improving our understanding of the distribution, ecology, and biology of threatened Mediterranean elasmobranch species. ACKNOWLEDGEMENTS The authors are grateful to the Montenegrin spear- fisherman Dušan Vukčević for reporting the observation and sharing the video footage. This work is a part of the citizen science initiative #pošaljiajkulu, conducted in Montenegro, and supported by GEF-funded project “Fisheries and Ecosystem-Based Management for the Blue Economy of the Mediterranean” (FishEBM MED), Italian Ministry of the Environment and Energy Secu- rity (MASE) and the UNEP Mediterranean Action Plan (MAP), including its Specially Protected Areas Regional Activity Centre (SPA/RAC). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 202 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 NENAVADNO SREČANJE Z MLADIM PRIMERKOM KLINOPLAVUTEGA MORSKEGA PSA, DALATIAS LICHA, V PLITVIH OBALNIH VODAH ČRNE GORE (JADRANSKO MORJE) Jacopo BERNARDI Experimental Center for Habitats Conservation (CESTHA), Marina di Ravenna, Italy Department of Biology, University of Padova, Padova, Italy e-mail: jacopo.bernardi@unipd.it Pero UGARKOVIĆ Velebitska 24, 21000 Split, Croatia e-mail: lignja@gmail.com Ilija ĆETKOVIĆ Institute of Marine Biology, University of Montenegro, Kotor, Montenegro e-mail: ilija.c@ucg.ac.me POVZETEK Avtorji poročajo o prvem potrjenem zapisu o pojavljanju klinoplavutega morskega psa Dalatias licha v črnogorskih vodah (južno Jadransko morje). Petega maja 2025 je bil v bližini plaže Miločer (Budva) na globini 10 m opažen mladi primerek, pri čemer je bila povprečna temperatura na lokaliteti približno 20 °C, kot jo je izmeril potapljaški računalnik. Srečanje je bilo posneto na videozapis visoke ločljivosti, kar je omogočilo nedvoumno identifikacijo na podlagi morfoloških znakov. Morski pes, čigar skupna dolžina je bila ocenjena na manj kot 50 cm, je plaval mirno, ni kazal vidnih poškodb in je imel značilnosti, ki so značilne za mlade primerke. Gre za prvi potrjeni zapis o pojavljanju vrste v Črni gori in najnižjo zabeleženo globino za vrsto D. licha. Ključne besede: Sredozemsko morje, občanska znanost, globokomorski morski pes, Dalatiidae, Dalatias licha ANNALES · Ser. hist. nat. · 35 · 2025 · 2 203 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 REFERENCES Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, rays and chimaeras in Mediterranean and Black Seas – Key to identification. Rome, FAO, 96 pp. Bottaro, M., M. Sinopoli, I. Bertocci, M. C. Follesa, A. Cau, I. Consalvo, F. Scarcelli, E. Sperone, M. Vac- chi, L. Marsili, G. Consales & R. Danovaro (2023): Jaws from the deep: biological and ecological insights on the kitefin shark Dalatias licha from the Mediter- ranean Sea. Front. Mar. Sci., 10, 1155731. Calabrò, M. (2024): Diet of the rare deep-sea kitefin shark Dalatias licha (Bonnaterre, 1788) (Chon- drichthyes: Dalatiidae) in the Strait of Sicily. Biol. mar. mediterr., 28(1), 176-179. Capapé, C., F. Hemida, J.P. Quignard, M.M. Ben Amor & C. Reynaud (2008): Biological observations on a rare deep-sea shark, Dalatias licha (Chondrich- thyes: Dalatiidae), off the Maghreb coast (south- western Mediterranean). Pan-Am. J. Aquat. Sci., 3(3), 355-360. Carluccio, A., F. Capezzuto, P. Maiorano, L. Sion & G. D’Onghia (2021): Deep-water cartilaginous fishes in the central Mediterranean Sea: Comparison between geographic areas with two low impact tools for sampling. J. Mar. Sci. Eng., 9(7), 686. Ćetković, I., F. Serena, A. Barash, D. Mrdak, I. Giovos, Z. Ikica, N. Đorđević, P. Pešić, M. Divanović & D. Milošević (2024): Combining official fisheries monitoring and citizen science data to create the first chondrichthyan checklist of Montenegro. Acta Adriat., 65(1), 21-31. Compagno, L.J. (1984): FAO species catalogue. Vol. 4. Sharks of the world. An annotated and il- lustrated catalogue of shark species known to date. Part 1. Hexanchiformes to Lamniformes. FAO. Fish. Synop., 125(4), 1 - 656. De Maddalena, A., H. Baensch & W. Heim (2015): Sharks of the Mediterranean. An illustrated study of all species. McFarland & Co., Jefferson, 204 pp. D’Onghia, G., F. Capezzuto, A. Carluccio, R. Car- lucci, A. Giove, F. Mastrototaro, M. Panza, L. Sion, A. Tursi & P. Maiorano (2015): Exploring composition and behaviour of fish fauna by in situ observations in the Bari Canyon (Southern Adriatic Sea, Central Mediterranean). Mar. Ecol., 36(3), 541-556. D’Onghia, G., F. Capezzuto, F. Cardone, R. Carlucci, A. Carluccio, G. Chimienti, G. Corriero, C. Longo, P. Maiorano, F, Mastrototaro, P. Panetta, A. Rosso, R. Sanfilippo, L. Sion & A. Tursi (2015): Macro-and megafauna recorded in the submarine Bari Canyon (southern Adriatic, Mediterranean Sea) using different tools. Mediterr. Mar. Sci., 180-196. Dulčić, J. & M. Kovačić (2020): Ihtiofauna Jadranskog Mora. Golden Marketing-Tehnicka Knjiga, Zagreb and Institute of Oceanography and Fisheries: Split, Croatia, 680. Ebert, D.A., M. Dando & S. Fowler (2021): Sharks of the world: a complete guide. Princeton University Press, 608 pp. Ergüden, D., H. Kabasakal & D. Ayas (2022): Fisheries bycatch and conservation priorities of young sharks (Chondrichthyes: Elasmobranchii) in the Eastern Mediterranean. Zool. Middle East, 68, 135-144. Follesa, M.C., M.F. Marongiu, W. Zupa, A. Bellodi, A. Cau, R. Cannas, F. Colloca, M. Djurovic, I. Isajlovic, A. Jadaud, C. Manfredi, A. Mulas, P. Peristeraki, C. Porcu, S. Ramirez-Amaro, F. Salmerón Jiménez, F. Serena, L. Sion, I. Thasitis, A. Cau & P. Carbonara (2019): Spatial variability of Chondrichthyes in the northern Mediterranean. Sci. Mar., 83(1), 81-100. Gajić, A.A. (2025): Documenting the first neonate and juvenile rare deep-sea kitefin shark (Dalatias licha) in the Adriatic Sea, with insight into fishery-induced trauma. Environ. Biol. Fish., 108(10), 1589-1598. Gandra, M., J. Fontes, B.C.L. Macena, C.G. Meyer & P. Alfonso (2025): Long-term multitracking reveals contrasting yet highly resident movement ecologies of two sympatric and endangered deep-sea sharks. Ocean Coast. Manage., 269, 107782. GFCM (2018): GFCM Data Collection Reference Framework (DCRF). Version: 23.2. Hysolakoj, N., R. Bakiu, & A. Soldo (2020): The first record of kitefin shark Dalatias licha in Albanian waters. Annales, Ser. Hist. Nat., 30(2), 151-156. Ikica, Z., I. Isajlović, A. Pešić, I. Ćetković & N. Vrgoč (2021): “HVAR” Expedition (1948–1949) in South-Eastern Adriatic (Croatia, Montenegro, Alba- nia). The Montenegrin Adriatic Coast: Marine Biology, 301-327. Isajlović (2012): The Composition of Demersal Communities of Deep Adriatic and the Population Structure of the Commercially Most Important Spe- cies. University of Zagreb: Zagreb, Croatia. Joksimović, A., A. Pešić, M, Đurović, Z. Ikica, O. Marković, & M. Mandić (2019): The state of marine fisheries in Montenegro in the last 15 years. Stud. Mar., 33(2), 12-22. Jukić-Peladić, S., N. Vrgoč, S. Krstulović-Šifner, C. Piccinetti, G. Piccinetti-Manfrin, G. Marano & N. Ungaro (2001): Long-term changes in demersal resources of the Adriatic Sea: comparison between trawl surveys carried out in 1948 and 1998. Fish. Res., 53(1), 95-104. Kabasakal, H. (2023): A preliminary social media survey of sharks and batoids captured in north Aegean Sea. Annales, Ser. Hist. Nat., 33, 165-186. Kabasakal, H. & E. Kabasakal (2002): Morphomet- rics of young kitefin shark, Dalatias licha (Bonnaterre, 1788), from northeastern Aegean Sea, with notes on its’ biology. Annales, Ser. Hist. Nat., 12: 161-166. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 204 Jacopo BERNARDI et al.: AN UNUSUAL ENCOUNTER WITH A JUVENILE KITEFIN SHARK, DALATIAS LICHA, IN SHALLOW COASTAL WATERS OF MONTENEGRO ..., 197–204 Kabasakal, H., A. Oruç, E. Kalecik, E. Sevim, N. Araç & C. İlkilinç (2022): Notes on a newborn kitefin shark, Dalatias licha: New evidence on the nursery of a rare deep-sea shark in northeastern levant (Turkey). Annales, Ser. Hist. Nat., 32(2) 367-374. Kabasakal, H., S. Sakınan, L. Lipej & D. Ivajnšıč (2023): A preliminary life history traits analysis of sharks in the Sea of Marmara (Türkiye), where deoxygenation and habitat deterioration are raising concerns. Aquat. Res., 6(1), 72-82. Lipej, L. & B. Mavrič (2022); An unusual record of the sharpnose sevengill shark, Heptranchias perlo off (Bon- naterre, 1788), in waters of Slovenia (northern Adriatic Sea). Spixiana, 45(1), 103-108. Lipej, L., D. Trkov, B. Mavrič, T. Fortibuoni, N. Bet- toso, D. Donša & D. Ivajnšič (2022): Occurrence of bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788) in the Gulf of Trieste (northern Adriatic) with par- ticular reference to historical and contemporary records in the Adriatic Sea. Acta Adriat., 63(1), 93-108. Meriç, N. (1995): A study on existence of some fishes on the continental slope of the Sea of Marmara. Turk. J. Zool., 19, 191-198. Mulas, A., A. Bellodi, P. Carbonara, A. Cau, M.F. Marongiu, P. Pesci, C. Porcu & M.C. Follesa (2021): Bio- Ecological Features Update on Eleven Rare Cartilaginous Fish in the Central-Western Mediterranean Sea as a Con- tribution for Their Conservation. Life, 11, 871. Navarro, J., L. López, M. Coll, C. Barría & R. Sáez- Liante (2014): Short-and long-term importance of small sharks in the diet of the rare deep-sea shark Dalatias licha. Mar. Biol., 161, 1697-1707. Serena, F. (2005): Field identification guide to the sharks and rays of the Mediterranean and Black Sea. Food & Agriculture Org. Rome. 97 pp. Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J., 87(1), 497-536. Soldo, A. & L. Lipej (2022): An annotated checklist and the conservation status of chondrichthyans in the Adriatic. Fishes, 7(5), 245. Soto, J.M.R. & M.M. Mincarone (2001): First re- cord of kitefin shark, Dalatias licha (Bonnaterre, 1788) (Chondrichthyes, Dalatiidae), in the south Atlantic. Mare Magnum, 1, 23-36. Ungaro, N., G. Marano, E. Rizzi & M.C. Marzano (1996): Demersal Squaliformes and Rajiformes in the South-Western Adriatic Sea: trawl surveys 1985-1994. FAO Fis. Rep., 533 (Suppl.), 87-92. Vedor, M., N. Queiroz, G. Mucientes, A. Couto, I.D. Costa, A.D. Santos, F. Vandeperre, J. Fontes, P. Alfonso, R. Rosa, N.E. Humphries & D.W. Sims (2021): Climate- driven deoxygenation elevates fishing vulnerability for the ocean’s widest ranging shark. Elife, 10, e62508. WoRMS Editorial Board (2025): World Register of Marine Species. Available from https://www.marinespe- cies.org at VLIZ. Accessed 2025-09-08. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 205 received: 2025-05-16 DOI 10.19233/ASHN.2025.23 IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, IN THE NORTHEASTERN MEDITERRANEAN SEA, TÜRKİYE Cemal TURAN Iskenderun Technical University, Faculty of Marine Sciences and Technology, Molecular Ecology and Fisheries Genetics Laboratory, 31220, Iskenderun, Hatay, Türkiye Nature and Science Society, Modernevler Neighborhood 303 St. No:9/1, Iskenderun, Hatay e-mail: cemal.turan@iste.edu.tr Alen SOLDO Department of Marine Studies, University of Split, Split 21000, Croatia Servet A. DOĞDU Nature and Science Society, Modernevler Neighborhood 303 St. No:9/1, Iskenderun, Hatay Iskenderun Technical University, Maritime Technology Vocational School of Higher Education, Underwater Technologies, 31200 Iskenderun, Hatay, Türkiye Funda TURAN, Ayşegül ERGENLER & Ali UYAN Iskenderun Technical University, Faculty of Marine Sciences and Technology, Molecular Ecology and Fisheries Genetics Laboratory, 31220, Iskenderun, Hatay, Türkiye Nature and Science Society, Modernevler Neighborhood 303 St. No:9/1, Iskenderun, Hatay ABSTRACT This study reports the first identified potential nursery area for the critically endangered Gymnura altavela off the coast of Samandağ in the northeastern Mediterranean. Two divers conducted seasonal surveys across a total area of 750 m² at three depth intervals (5–10 m, 11–20 m, 21–30 m) using the standard underwater visual census method. Additionally, bycatch data from nearby commercial trawling operations were collected. The highest individual density recorded was 0.051 n/m² in autumn, the lowest 0.02 n/m² in summer. The findings suggest that the area functions as a nursery habitat for the G. altavela population. Key words: Gymnura altavela, nursery site, breeding area, Samandağ coasts, northeastern Mediterranean IDENTIFICAZIONE DI UN POTENZIALE LUOGO DI RIPRODUZIONE DI GYMNURA ALTAVELA NEL MAR MEDITERRANEO NORD-ORIENTALE, TURCHIA SINTESI Questo studio riporta la prima area potenziale identificata come zona di riproduzione per la specie Gymnura altavela, gravemente minacciata di estinzione, al largo della costa di Samandağ, nel Mediterraneo nord-orienta- le. Due subacquei hanno condotto indagini stagionali su un’area totale di 750 m² a tre intervalli di profondità (5-10 m, 11-20 m, 21-30 m) utilizzando il metodo standard di censimento visivo subacqueo. Sono stati inoltre raccolti dati sulle catture accessorie delle vicine attività di pesca commerciale con reti a strascico. La densità individuale più alta registrata è stata di 0,051 n/m² in autunno, la più bassa di 0,02 n/m² in estate. I risultati suggeriscono che l’area funge da habitat di riproduzione per la popolazione di G. altavela. Parole chiave: Gymnura altavela, sito di nursery, area di riproduzione, coste di Samandağ, Mediterraneo nord-orientale ANNALES · Ser. hist. nat. · 35 · 2025 · 2 206 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 INTRODUCTION Butterfly rays (Elasmobranchii: Myliobatiformes: Gymnuridae) are demersal batoids with a global distribution in the inshore coastal waters of tropical and temperate seas, typically found over soft sandy or muddy bottoms but also occurring over rocky reefs (Compagno & Last, 1999, McEachran & Carvalho, 2002; Ebert & Dando, 2020; Barone et al., 2022). The family is represented by a single genus, Gymnura, which comprises 16 species worldwide. Gymnura altavela (Linnaeus, 1758) is the only mem- ber of this family present in the Mediterranean Sea (Ebert & Dando, 2020; Barone et al., 2022). The spiny butterfly ray G. altavela is the largest member of the Gymnuridae family, reaching a maximum disc width (DW) of approximately 2600 mm (Ebert & Dando, 2020). It is widely distributed in the western and eastern Atlantic Ocean, the Mediterranean Sea, and the Black Sea (Weigmann, 2016), inhabiting shallow inshore waters in the bathymetric range from 10 to 69 m (Ebert & Stehmann, 2013). Its diet consists of all kinds of benthic animals, but primarily fish and cephalopods (Bauchot, 1987). The species is aplacen- tal viviparous, with an annual reproductive cycle that includes a six-month gestation period and results in a litter of 2–7 pups (McEachran & Capapé 1984; Bradai et al., 2012). Although generally harmless to humans, G. altavela possesses a caudal spine capable of inflict- ing a painful wound if stepped on. It is also listed as a game fish in some regions (Conrath & Scarbrough, 2009). G. altavela is caught as bycatch in trawl, trammel net, and longline fisheries (Bauchot 1987; Yağlıoğlu et al., 2015). The wings are marketed fresh, chilled, or frozen in Sicily and Morocco, rarely elsewhere (Bauchot, 1987). The IUCN Red List of Threatened Species classifies the species as Endangered globally, and Critically Endangered in the Mediterranean, due to a suspected population decline exceeding 80% over the past three generations (Dulvy et al., 2021). This drastic decline, documented in catch data (Abdul Malak et al., 2011; Özbek et al., 2016), is driven by intense fishing pressure and the species’ slow repro- ductive rate. The spiny butterfly ray was historically moderately abundant and commonly caught throughout the Med- iterranean region. For much of the last century, up until the 1980s, it frequently appeared in the catches of demersal trawl and set net fisheries, particularly along the southern shores. In areas such as the Sicilian Channel, where it was once regularly captured, the species has now become very rare or is absent from local catch records (Bauchot, 1987). Its decline is fur- ther evidenced by its absence from the International Trawl Survey in the Mediterranean (MEDITS) records since 1994. The occasional contemporary reports of its presence are typically based on the incidental cap- ture of individual specimens in demersal fisheries. An exception to this overall decline is the Levant coast, where the species remains relatively abundant and is regularly caught using bottom trawls, fixed nets, and longlines (Dulvy et al., 2021). Identification of critical habitats is an essential and well-established component of sustainable resource management (Gonçalves Silva and Vianna, 2018; Ergüden et al., 2025; Turan et al., 2025), and nursery sites are an important category of such habitats (Medeiros et al., 2015; Rangel et al., 2018). They can be used by many species, separated in space and time, and it is important to understand the mechanisms and drivers behind their use (Heithaus, 2007; Rosenfelder et al., 2012; Cengiz et al., 2024; Kabasakal et al., 2024; Turan et al., 2024). Heupel et al. (2007) established three key criteria for identi- fying an elasmobranch nursery habitat: (1) juvenile elasmobranchs are more commonly encountered there than in other areas, (2) they remain in the area for extended periods, and (3) the area is used repeatedly across years. Therefore, the main aim of this study is to evaluate a potential nursery ground Fig. 1: Map of the study area. Sl. 1: Zemljevid obravnavanega območja. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 207 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 for the spiny butterfly ray G. altavela in the north- eastern Mediterranean. If confirmed, this site would represent the second identified critical habitat for this species along the Turkish Mediterranean coast (Bilgili & Kabasakal, 2023). MATERIAL AND METHODS This study, carried out over a one-year research period within the framework of a project supported by the Turquoise Coast Environment Fund–Turkey (ElasmoKAP-TCEF-2024), utilized a standardized underwater visual census (UVC) method (Whitfield et al., 2007; Murphy et al., 2010; Turan & Doğdu, 2022) to assess the density, abundance, distribu- tion, and reproductive status–based on observed abdominal swellings–of G. altavela in the Ray field region of Hatay-Samandağ coast. Two divers monitored three depth ranges: shallow (5–10 m), Fig. 2: Mean density of G. altavela across all depths and seasons within the identified nursery area. Sl. 2: Povprečna gostota primerkov vrste G. altavela v vseh globinah in letnih časih znotraj opredeljenega območja jaslic. Fig. 3: Dorsal view of egg sacs from pregnant females G. altavela (A and B) (Photo: Cemal Turan). Sl. 3: Pogled na hrbtno stran jajčnih vrečk brejih samic vrste G. altavela (A in B) (Foto: Cemal Turan). Fig. 4: Individuals of G. altavela in the investigating area: (A) a pregnant female and (B) an adult male (Photo: Cemal Turan). Sl. 4: Osebki vrste G. altavela na raziskovanem območju: (A) breja samica in (B) odrasel samec (Foto: Cemal Turan). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 208 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 intermediate (11–20 m), and deep (21–30 m). At each depth range, a 5 × 50 m transect was surveyed, resulting in a total examined area of 750 m² along the Samandağ coast (Fig. 1). Surveys were con- ducted four times over a year, once per season. The estimate of the mean density (D) on a transect is expressed as: where n is the number of G. altavela individu- als observed, and a the census area (Whitfield et al., 2007). In addition to UVC, data on G. altavela bycatch from commercial trawling activities near the study area were monitored for one year, and biologi- cal data were collected from captured individuals. All captured spiny butterfly rays were handled carefully and retained under appropriate conditions to mini- mize post-release mortality. All statistical analyses were performed using R-Studio. RESULTS G. altavela was observed on the Samandağ coast in all seasons, which suggests its regular occurrence in the area. The mean density across all depths and sea- sons was 0.038 n/m². Densities varied by depth range, with 0.0 n/m² at 5–10 m, 0.076 n/m² at 10.1–20 m, and 0.052 n/m² at 20.1–30 m. Seasonally, the high- est density was recorded in autumn (0.051 n/m²), the lowest in summer (0.02 n/m²) (Fig. 2). A single visual count in autumn along a 150 m transect in the 11–20 m depth range was documented. There were pregnant females and males were resting on the sandy seabed that a dorsal view of egg sacs from a pregnant females G. altavela was given in the Fig. 3A and 3B. Eight pregnant females and three males with long claspers resting on the sandy seabed (Fig. 4A and 4B). Conversely, during a summer survey in the same area and depth range, three non-pregnant females and one male were counted. During the study, female butterfly ray–pregnant individuals in particular–were observed moving away from the area as divers approached (Fig. 5), a behavior not exhibited by males. The UVC findings were further corroborated by trawl observations carried out in an adjacent area where commercial fishing is permitted. Trawl bycatch data collected during the local fishing season con- firm that G. altevera–including mature individuals, juveniles, and newborns–are commonly encountered (Fig. 6) from September to May. The species is less frequently observed during the remaining, rest period. DISCUSSION The present study identifies a potential and rare nursery site for Gymnura altavela in the Mediterranean. The area is predominantly sandy, with a few small rocky structures, exhibiting similar oceanographic features as other known aggregation sites (Silva & Vianna, 2018; Castro & Meyers, 2022; Espino Ruano et al., 2023). Fig. 5: Ventral surface of a pregnant female G. altavela, showing the egg sac and open cloaca (Photo: Cemal Turan). Sl. 5: Trebušna površina breje samice vrste G. altavela, na kateri je prikazana jajčna vrečka in odprta kloaka (Foto: Cemal Turan). Rosenfelder et al., 2012; Cengiz et al., 2024; Kabasakal et al., 2024; Turan et al., 2024). Heupel et al. (2007) established three key criteria for identifying an elasmobranch nursery habitat: (1) juvenile elasmobranchs are more commonly encountered there than in other areas, (2) they remain in the area for extended periods, and (3) the area is used repeatedly across years. Therefore, the main aim of this study is to evaluate a potential nursery ground for the spiny butterfly ray G. altavela in the northeastern Mediterranean. If confirmed, this site would represent the second identified critical habitat for this species along the Turkish Mediterranean coast (Bilgili & Kabasakal, 2023). MATERIAL AND METHODS This study, carried out over a one-year research period within the framework of a project supported by the Turquoise Coast Environment Fund‒Turkey (ElasmoKAP-TCEF-2024), utilized a standardized underwater visual census (UVC) method (Whitfield et al., 2007; Murphy et al., 2010; Turan & Doğdu, 2022) to assess the density, abundance, distribution, and reproductive status‒based on observed abdominal swellings‒of G. altavela in the Ray field region of Hatay-Samandağ coast. Two divers monitored three depth ranges: shallow (5–10 m), intermediate (11–20 m), and deep (21–30 m). At each depth range, a 5 × 50 m transect was surveyed, resulting in a total examined area of 750 m² along the Samandağ coast (Fig. 1). Surveys were conducted four times over a year, once per season. The estimate of the mean density (D) on a transect is expressed as: D = ∑ nii=1 a where n is the number of G. altavela individuals observed, and a the census area (Whitfield et al., 2007). In addition to UVC, data n G. altavela bycatch from commercial trawling activities ANNALES · Ser. hist. nat. · 35 · 2025 · 2 209 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 The average water temperature shows considerable seasonal variations: 30–32°C in summer (July), 20–24°C in autumn (November), 16–20°C in winter (February), and 20–22°C in spring (May). Salinity levels fluctuate between 33.6 and 37.1‰. Prior to this study, Bilgili and Kabasakal (2023) identified another aggregation site and potential breeding ground for G. altavela in Güllük Bay (SE Aegean Sea). Based on eight years of observation, the authors reported that aggregations of large pregnant females in that area peaked in mid-summer and were subsequently replaced by juveniles in the fall–a pattern consistent with a reproductive aggregation. Applying the three established criteria for iden- tifying nursery habitats (Heupel et al., 2007) to our findings, we can confirm that the Samandağ Hırlavuk area functions as a nursery ground for G. altavela. The highest number of pregnant females was recorded in early autumn, aligning with the known fecundation period (Espino Ruano et al., 2023). Furthermore, year-round observations suggest that this area serves multiple purposes, including feeding, mating, and parturition. The designation of a site as a nursery area is contingent on the presence of newborns, juveniles, and gravid females (Castro, 1993; Heupel et al., 2007). Such areas typically support a higher proportion of juveniles, thereby contributing more significantly to adult recruitment compared to other habitats (Gunter, 1967; Beck et al., 2001). Beck et al. (2001) further emphasized the essential role of juvenile survival in driving population growth. Also, in the spawning area they examined, females significantly outnumbered males among the adult population, a pattern consistent with our findings. Capapé et al. (2003) suggested that females migrate to shallow coastal waters to find suit- able hydrobiological conditions for parturition, thereby minimizing risks to free-swimming neonates from both intra- and interspecific competition, including can- nibalism. This behavior underscores the ecological importance of shallow nursery grounds in enhancing juvenile survival. Given that G. altavela is classified as a critically en- dangered species in the Mediterranean, the identification and protection of its nursery habitats are crucial for ef- fective conservation and population sustainability. How- ever, research on its reproductive biology and life history remains limited, both in Türkiye and globally (Alkusairy et al., 2014; Silva & Vianna, 2018; Yeldan et al., 2018; Taylan et al., 2019). The findings of this study contribute valuable insights into the species’ reproductive ecology and habitat preferences, emphasizing the need for further research and conservation efforts. In conclusion, the data presented in this study indicate that a sustainable population of G. altavela is established in the Samandağ Hırlavuk area, which serves as a critical nursery habitat. This finding adds Samandağ Hırlavuk to the list of other essential habitats for this species, alongside the Aegean coast of Türkiye (Taylan et al., 2019) and Tunisian and Syrian waters (Alkusairy et al., 2014; Capapé et al., 1992; El Kamel et al., 2009). Given the species’ endangered status, it is imperative to implement conservation strategies that prioritize the protection of these nursery sites to sup- port population recovery and long-term sustainability. ACKNOWLEDGEMENTS This study was supported by Turquoise Coast Envi- ronment Fund-Turkey with the project “Restoration, Conservation and Monitoring of Shark and Stingray Species Habitats in Hatay Samandağ Hırlavuk Coast- TCEF-2024”, carried out by the Nature and Science Society (www.dogavebilim.com). Fig. 6: Specimens of G. altavela on a trawler deck, captured as bycatch near the nursery area: (A) adult and (B) newborn individuals (Photo: Cemal Turan). Sl. 6: Primerki vrste G. altavela na palubi vlečne mreže, ujeti kot prilov v bližini območja jaslic: (A) odrasli in (B) novoskoteni primerki (foto: Cemal Turan). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 210 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 IDENTIFIKACIJA POTENCIALNIH JASLIC ZA METULJASTEGA SKATA, GYMNURA ALTAVELA, V SEVEROVZHODNEM SREDOZEMSKEM MORJU, TURČIJA Cemal TURAN Iskenderun Technical University, Faculty of Marine Sciences and Technology, Molecular Ecology and Fisheries Genetics Laboratory, 31220, Iskenderun, Hatay, Türkiye Nature and Science Society, Modernevler Neighborhood 303 St. No:9/1, Iskenderun, Hatay e-mail: cemal.turan@iste.edu.tr Alen SOLDO Department of Marine Studies, University of Split, Split 21000, Croatia Servet A. DOĞDU Nature and Science Society, Modernevler Neighborhood 303 St. No:9/1, Iskenderun, Hatay Iskenderun Technical University, Maritime Technology Vocational School of Higher Education, Underwater Technologies, 31200 Iskenderun, Hatay, Türkiye Funda TURAN, Ayşegül ERGENLER & Ali UYAN Iskenderun Technical University, Faculty of Marine Sciences and Technology, Molecular Ecology and Fisheries Genetics Laboratory, 31220, Iskenderun, Hatay, Türkiye Nature and Science Society, Modernevler Neighborhood 303 St. No:9/1, Iskenderun, Hatay POVZETEK Avtorji poročajo o prvem prepoznanem potencialnem območju za razmnoževanje kritično ogrožene vrste Gymnura altavela ob obali Samandağa v severovzhodnem Sredozemlju. Dva potapljača sta izvedla sezonske raziskave na skupni površini 750 m² v treh globinskih intervalih (5–10 m, 11–20 m, 21–30 m) z uporabo standardne metode podvodnega opazovalnega popisa. Poleg tega so bili zbrani podatki o prilovu iz bližnjih komercialnih vlečnih mrež. Najvišja zabeležena gostota primerkov je bila 0,051 n/m² jeseni, najnižja pa 0,02 n/ m² poleti. Ugotovitve kažejo, da območje deluje kot jaslice za populacijo vrste G. altavela. Ključne besede: metuljasti skat, Gymnura altavela, jaslice, razmnoževalno okolje, obale Samandağ, severovzhodno Sredozemlje ANNALES · Ser. hist. nat. · 35 · 2025 · 2 211 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 REFERENCES Abdul Malak, D., S.R. Livingstone, D. Pollard, B.A. Polidoro, A. Cuttelod, M. Bariche, M. Bilecenoglu, K.E. Carpenter, B.B. Collette, P. Francour, M. Goren, M. Hichem Kara, E. Massutí, C. Papaconstantinou & L. Tunesi (2011): Overview of the conservation status of the marine fishes of the Mediterranean Sea. IUCN, Gland and Spain, 61 pp. Alkusairy, H., M. Ali, A. Saad, C. Reynaud & C. Capapé (2014): Maturity, reproductive cycle, and fecundity of spiny butterfly ray, Gymnura altavela (Elas- mobranchii: Rajiformes: Gymnuridae), from the coast of Syria (eastern Mediterranean). Acta Ichthyol. Piscat., 44, 229-240. Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, rays and chimaeras in the Mediterranean and Black Seas – Key to identification. FAO, Rome. Bauchot, M.L. (1987): Raies et autres batoides. In: Fischer, W., M.L. Bauchot & M. Schneider (eds.): Fich- es FAO d’identification pour les besoins de la pêche, Vol. 2. Commission des Communautés Européennes and FAO, Rome, pp. 845-886. Beck, M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan & M.P. Weinstein (2001): The identifica- tion, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site- specific variability in nursery quality will improve conservation and management of these areas. Biosci- ence, 51(8), 633-641. Bilgili, A. & H. Kabasakal (2023): Encounters with threatened batoids from the perspective of a spearfisher- man suggesting an aggregation site in southeastern Ae- gean Sea, Turkey. Regional Studies in Marine Science, 61, 102894. Bradai, M.N., B. Saidi & S. Enajjar (2012): Elasmo- branchs of the Mediterranean and Black Sea: status, ecology and biology, Bibliographic analysis, Studies and Reviews. FAO, Rome, 103 pp. Capapé, C., O. Guélorget, C. Reynaud, A. Marquès, J.L. Bouchereau & J. Zaouali (2003): Effects of repro- ductive factors on interrelationships among three deep water sharks from northern Tunisia (Central Mediterra- nean). Annales, Ser. Hist. Nat., 13(2), 109-120. Capapé, C., J. Zaouali, J.A. Tomasini & J.L. Bouchereau (1992): Reproductive biology of the spiny butterfly ray, Gymnura altavela (Linnaeus, 1758) (Pisces: Gymnuridae) from off the Tunisian coasts. Sci. Mar., 56(4), 347-355. Castro, J.I. (1993): The shark nursery of Bulls Bay, South Carolina, with a review of the shark nurseries of the southeastern coast of the United States. Environ. Biol. Fishes., 38, 37-48. Castro, J.J. & E.K. Meyers (2022): Aggregative Behaviour of Spiny Butterfly Rays (Gymnura altavela, Linnaeus, 1758) in the Shallow Coastal Zones of Gran Canaria in the Eastern Central Atlantic. Animals, 13(9), 1455. Cengiz, Ç.C., C.M. Aydın, A. Ünlüoğlu & S. Akalın (2024): Length-weight relationship of the blackmouth catshark (Galeus melastomus Rafinesque, 1810) on the Turkish coasts of the Mediterranean Sea. Tethys Env. Sci., 1(3), 135-143. Compagno, L.J.V. & P.R. Last (1999): Gymnuridae Butterfly rays. In: Carpenter, K. E. & V. Neim (eds.): FAO Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Pacific, Vol. 3. FAO, Rome, pp. 1506-1510. Conrath, C. & R. Scarbrough (2009): Biological Pro- files: Spiny Butterfly Ray. https://www.floridamuseum. ufl.edu/ (Last accession, 4 March 2025). Dulvy, N.K., P. Charvet, J. Carlson, L. Badji, M.P. Blanco-Parra, E. Chartrain, G. De Bruyne, D. Derrick, M. Dia, P. Doherty, J. Dossa, M. Ducrocq, G.H.L. Leurs, G. Notarbartolo di Sciara, J.C. Pérez Jiménez, J.D. Pires, I. Seidu, F. Serena, A.-L. Soares, A. Tamo, M. Vacchi, R.H.L. Walls & A.B. Williams (2021): Gymnura altavela. The IUCN Red List of Threatened Species 2021: e.T63153A3123409. https://www.iucnredlist.org/spe- cies/63153/3123409 (Last accession, 19 September 2024). Ebert, D.A. & M. Stehmann (2013): Sharks, batoids, and chimaeras of the North Atlantic. FAO Species Cata- logue for Fishery Purposes. No. 7. FAO, Rome. 523 pp. Ebert, D.A. & M. Dando (2020): Field guide to sharks, rays & chimaeras of Europe and the Mediterranean, Vol. 20. Princeton University Press, New Jersey, 384 pp. El Kamel, O., N. Mnasri, M. Boumaïza, M.M.B. Amor, C. Reynaud & C. Capapé (2010): Additional records of the bull ray Pteromylaeus bovinus (Chon- drichthyes: Myliobatidae), in the Lagoon of Bizerte (Northern Tunisia, central Mediterranean). Annales, Ser. Hist. Nat., 20(2), 169-174. Ergüden, D., A. Uyan & S.A. Doğdu (2025): Rare occurrence of the rough ray Raja radula (Family: Ra- jidae) in the northeastern Mediterranean. Tethys Env. Sci., 2(2), 68-76. Espino Ruano, A., J.J. Castro, A. Guerra-Marrero, L. Couce-Montero, E.K.M. Meyers, A. Santana-del-Pino & D. Jimenez-Alvarado (2023): Aggregative Behaviour of Spiny Butterfly Rays (Gymnura altavela, Linnaeus, 1758) in the Shallow Coastal Zones of Gran Canaria in the Eastern Central Atlantic. Animals, 13(9), 1455. Gonçalves Silva, F. & M. Vianna (2018): Diet and reproductive aspects of the endangered butterfly ray Gymnura altavela raising the discussion of a possible nursery area in a highly impacted environment. Braz. J. Oceanogr., 66(3), 315-324. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 212 Cemal TURAN et al.: IDENTIFICATION OF A POTENTIAL NURSERY GROUND OF THE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA, ..., 205–212 Gunter, G. (1967): Some relationships of estuar- ies to the fisheries of the Gulf of Mexico. In: Lauff, G. H. (ed.): Estuaries. American Association for the Advancement of Science, Washington, pp. 621-638. Heithaus, M.R. (2007): Nursery Areas as Essential Shark Habitats: A Theoretical Perspective. Am. Fish. Soc. Symp., 50, 3-13. Heupel, M.R., K.J. Carlson & C.A. Simpfendorfer (2007): Shark nursery areas: concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser., 337, 287-297. Kabasakal, H., U. Uzer, O. Gönülal & F.S. Karakulak (2024): Bioecological lessons lerned from the neonate longnose spurdogs, Squalus blainville (Squaliformes: Squalidae) suggest a potential nursery ground in the Marmara Sea. Acta Adriatica, 65. McEachran, J.D. & C. Capapé (1984): Gymnuri- dae. In: Carpenter K. E. (ed.): FAO species identifica- tion guide for fishery purposes. The living marine resources of the Western Central Atlantic, Vol. 1: Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes and chimaeras. FAO, Rome, pp. 575-577. McEachran, J.D. & M.R. Carvalho (2002): Rays. In: Carpenter K. E. (ed.): The living marine resources of the Western Central Atlantic, Vol. 1: Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes and chimaeras. FAO, Rome, pp. 508-530. Medeiros, A.M., O.J. Luiz & C. Domit (2015): Occurrence and use of an estuarine habitat by giant manta ray Manta birostris. J. Fish Biol., 86, 1830- 1838. Murphy, H.M. & G.P. Jenkins (2010): Observa- tional methods used in marine spatial monitoring of fishes and associated habitats: a review. Mar. Freshw. Res., 61(2), 236-252. Özbek, E.Ö., M. Çardak & T. Kebapçıoğlu (2016): Spatio-temporal patterns of abundance, biomass and length-weight relationships of Gymnura altavela (Linnaeus, 1758) (Pisces: Gymnuridae) in the Gulf of Antalya, Turkey (Levantine Sea). J. Black Sea/Medit. Environ., 22, 16-34. Rangel, B.S., A. Rodrigues & R.G. Moreira (2018): Use of a nursery area by cownose rays (Rhinopteri- dae) in southeastern Brazil. Neotrop. Ichthyol., 16, e170089. Rosenfelder, N., K. Lehnert, S. Kaffarnik, J.P.M. Tor- res, M. Vianna & W. Vetter (2012): Thorough analysis of polyhalogenated compounds in ray liver samples off the coast of Rio de Janeiro, Brazil. Environ. Sci. Pollut. Res., 19, 379-389. Silva, F.G. & M. Vianna (2018): Diet and reproduc- tive aspects of the endangered butterfly ray Gymnura altavela raising the discussion of a possible nursery area in a highly impacted environment. Braz. J. Oceanogr., 66(3), 315-324. Simpfendorfer, C.A. & N.E. Milward (1993): Utilisa- tion of a tropical bay as a nursery area by sharks of the families Carcharhinidae and Sphyrnidae. Environ. Biol. Fishes., 37, 337-345. Taylan, B., B. Bayhan, C. Sağlam & A. Kara (2019): First observation of the embryos of spiny butterfly ray, Gymnura altavela (Linnaeus, 1758) (Chondrichthyes: Gymnuridae) from Eastern Mediterranean, a species critically endangered. Fresenius Environ. Bull., 28, 3147-3152. Turan, C. & S.A. Doğdu (2022): Preliminary assess- ment of invasive lionfish Pterois miles using underwater visual census method in the Northeastern Mediterra- nean. Croat. J. Fish., 80(1), 38-46. Turan, C., S.A. Doğdu & A. Soldo (2024): Evidence of a nursery area and length-weight relationships for longnose spurdog Squalus blainville in the eastern Medi- terranean Sea. Tethys Env. Sci., 1(4), 200-210. Turan, C., A. Uyan, A. Soldo, S.A. Doğdu & D. Ergüden (2025): Checklist of cartilaginous species with current status and conservation strategies in Turkish marine waters. Tethys Env. Sci., 2(1), 31-61. Weigmann, S. (2016): Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish Biol., 88(3), 837-1037. Whitfield, P.E., J.A. Hare, A.W. David, S.L. Harter, R.C. Muñoz & C.M. Addison (2007): Abundance esti- mates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biol. Invasions, 9(1), 53-64. Yağlıoğlu, D., T. Deniz, M. Gürlek, D. Ergüden & C. Turan (2015): Elasmobranch bycatch in a bottom trawl fishery in the Iskenderun Bay, northeastern Mediterra- nean. Cah. Biol. Mar., 56(3), 237-243. Yeldan, H. (2018): Estimating some population parameters and stock assessment of spiny butterfly ray, Gymnura altavela (Linnaeus, 1758) the Levant Basin Coast (Northeastern Mediterranean). Indian J. Anim. Res., 52(12), 1790-1796. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 213 received: 2025-06-20 DOI 10.19233/ASHN.2025.24 RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) IN THE NORTHERN MEDITERRANEAN Alen SOLDO Department of Marine Studies, University of Split, Croatia e-mail: soldo@unist.hr Eleonora DE SABATA MedSharks, Rome, Italy Simona CLO MedSharks, Rome, Italy Stazione Zoologica Anton Dohrn, Naples, Italy ABSTRACT The Common Guitarfish, Rhinobatos rhinobatos, a demersal elasmobranch listed as Critically Endangered on the IUCN Red List, has experienced severe population declines across its range, particularly in the northern Mediterranean, where it is widely considered locally extinct. This study reports two new records of R. rhino- batos from the Gulf of Taranto, on the Italian side of the Ionian Sea, representing the first confirmed sightings in this region in several decades. Given the species’ vulnerability to unselective coastal fishing practices and the ongoing pressure in shallow marine habitats, these records are of considerable conservation significance. They highlight the urgent need to map critical habitats, refine bycatch mitigation measures, and reevaluate the species’ regional conservation status. The detection of this species in areas previously thought to be devoid of it offers a rare opportunity to develop targeted management actions for its recovery. Key words: Rhinobatos rhinobatos, Critically Endangered, Mediterranean Sea, Elasmobranch conservation, Gulf of Taranto RITROVAMENTI RECENTI DI PESCE CHITARRA RHINOBATOS RHINOBATOS (LINNAEUS, 1758), SPECIE IN PERICOLO CRITICO DI ESTINZIONE NEL MEDITERRANEO SETTENTRIONALE SINTESI Il pesce chitarra, Rhinobatos rhinobatos, un elasmobranco demersale classificato come “in pericolo critico” nella Lista Rossa dell’IUCN, ha subito un grave declino della popolazione in tutto il suo areale, in particolare nel Mediterraneo settentrionale, dove è ampiamente considerato estinto a livello locale. Questo studio riporta due nuovi avvistamenti di R. rhinobatos nel Golfo di Taranto, sul versante italiano del Mar Ionio, che rappresentano i primi avvistamenti confermati in questa regione da diversi decenni. Data la vulnerabilità della specie alle pratiche di pesca costiera non selettiva e alla pressione continua sugli habitat marini poco profondi, questi av- vistamenti rivestono una notevole importanza dal punto di vista della conservazione. Essi evidenziano l’urgente necessità di mappare gli habitat critici, perfezionare le misure di mitigazione delle catture accessorie e rivalutare lo stato di conservazione regionale della specie. Il ritrovamento di questa specie in aree che in precedenza si ritenevano prive di essa offre una rara opportunità per sviluppare azioni di gestione mirate al suo recupero. Parole chiave: Rhinobatos rhinobatos, in pericolo critico di estinzione, Mediterraneo, conservazione degli elasmobranchi, Golfo di Taranto ANNALES · Ser. hist. nat. · 35 · 2025 · 2 214 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 INTRODUCTION Guitarfishes are cartilaginous fishes, members of the order Rhinopristiformes (Chondrichthyes: Elasmo- branchii), which includes the families Rhinobathidae, Glaucostegidae and Pristidae (Barone et al., 2022). Formerly included in a single family Rhinobatidae (Serena, 2005), guitarfishes have undergone major revisionary changes in classification over recent years: the giant guitarfishes (Glaucostegidae) have been placed into their own family and genus, and the remaining genus, Rhinobatos, split into three genera (Acroteriobatus, Rhinobatos and Pseudobatos) (Ebert and Dando, 2020; Barone et al., 2022). These taxonomic revisions are critical for accurate species identification, historical data interpretation, and the application of conservation regulations. Globally, the family Rhinobatidae currently includes 39 spe- cies (Fricke et al., 2024; Van der Laan et al., 2024), but only Common Guitarfish Rhinobatos rhinobatos (Linnaeus, 1758) is present in the Mediterranean Sea (Barone et al., 2022). Guitarfishes have already been identified as be- ing amongst the most vulnerable of elasmobranch families (Kyne et al., 2024) as out of the 39 species belonging to the Family Rhinobatidae, 23 are assessed as threatened under the IUCN Red List of Threatened Species, including ten as Critically Endangered (CR). Common Guitarfish is targeted and caught as bycatch worldwide in a range of industrial and artisanal gears, including demersal trawl, longline, and gillnet. The meat is consumed locally and traded regionally as a dried or dried and smoked product, while the fins likely enter international trade (Bradai & Soldo, 2016). Severe population declines have been ob- served in many regions, and it is suspected that the Common Guitarfish has undergone severe population reduction. According to Bradai and Soldo (2016) the generation length of the common guitarfish is 13.5 years, and given evidence for local extinction in parts of the Mediterranean Sea and intense and continued fishing pressure in the region in the absence of any effective, enforced fisheries management that might protect the species or its habitat, it is suspected to have declined in the Mediterranean Sea by at least 50% over three generations (40.5 years). Considering the aforementioned and consider- ing that fishing pressure in shallow coastal habitats, which are the main habitats of the species, is unlikely to decrease, R. rhinobatos is assessed as Critically Endangered on a global level (Jabado et al., 2021). In the Mediterranean, the common guitarfish is assessed as Endangered (Bradai & Soldo, 2016), which may suggest a relatively better status compared to other regions. However, this could be due to the regional assessment being older than the global one. Even at the time of the Mediterranean assessment, it was noted that with more accurate, species-specific data in the future, the species might require uplisting to a higher threat category as that assessment was a conservative estimate based on limited information (Bradai & Soldo, 2016). R. rhinobatos is a medium-sized guitarfish that inhabits coastal, sandy bottom habitat from the intertidal zone to about 100 m throughout coastal subtropical waters in the entire Mediterranean Sea and the eastern Atlantic from the Bay of Biscay in France to Angola (Capapé et al. 1975; Bradai & Soldo, 2016; Newell, 2017). It is widespread in the Mediterranean Sea, but most common along the southern and eastern coasts. It is subjected to fishing pressure throughout most of its range in inshore coastal habitats, mainly by small scale and subsistence fisheries. In the northern Mediterranean Sea (in European countries bordering the Mediter- ranean Sea), guitarfishes were historically quite com- mon, but the Common Guitarfish’s absence during research trawl surveys conducted from the Alboran to Aegean Sea and absence from landings from other northern Mediterranean regions suggest that it is now possibly locally extinct (Bradai & Soldo, 2016). Soldo and Lipej (2022) reported Common Guitarfish as historically present in the Adriatic Sea but consid- ered it as regionally extinct nowadays. Psomadakis et al. (2009) also consider R. rhinobatos as locally extinct from the Tyrrhenian Sea as well as around Sicily. A similar conclusion is reported for the French Mediterranean coast (Capape et al., 2006), while the last observation in Greek waters of the Ionian Sea was reported decades ago (Giovos et al., 2022). The long history of fishing in the Mediterranean has driven the extirpation of this species from European countries bordering the Mediterranean Sea and likely led to declines in abundance throughout much of its remaining Mediterranean range. In areas of the southern and eastern Mediterranean Sea guitarfishes are common in catches, even as species of high com- mercial value, e.g. in the Gulf of Gabes, southern Tunisia (Echwikhi et al., 2013). Common Guitarfish also has high commercial value in Lebanon where is directly targeted (Lteif et al., 2016). According to Bilecenoğlu (2024) R. rhinobatos occurs along the Turkish coasts of Aegean and Mediterranean Seas, which is protected according to National Legisla- tion of Fisheries Act, however, the population status of the species throughout its’ distribution range in Turkish waters is still unclarified, particularly in the Iskenderun Bay, where it is landed as a bycatch and used for human consumption but as less commercial species (Başusta et al. 2008; Çek et al., 2009). In the present article, two recent records of R. rh- inobatos from the Gulf of Taranto, on the Italian side of the Ionian Sea, representing the first confirmed sight- ings in this region in several decades, are reported. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 215 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 MATERIAL AND METHODS As part of the LIFE European Sharks project, which aims, among other objectives, to increase public awareness of the essential role that sharks and rays play in the Mediterranean ecosystem, various activi- ties were carried out to collect data on elasmobranchs, with a particular focus on rare and threatened species. As a result of these efforts, data were obtained on two recent records of Rhinobatos rhinobatos from the Gulf of Taranto, Italian side of the Ionian Sea. The first specimen was accidentally caught in gillnets on 18 May 2019 near Santa Maria al Bagno (Nardò, Lecce), while the second was captured on 26 August 2023 in the vicinity of Torre Colimena (Taranto) (Fig. 1). Both records were documented with photographic evidence (Fig. 2), clearly displaying distinguishing morphological features characteristic of R. rhinoba- tos: a long, wedge-shaped snout; widely separated rostral ridges along their entire length; large anterior nasal lobes reaching the inner corners of the nostrils; spiracles with two moderately developed folds, the outer one being more prominent; a thick tail with two large, widely spaced dorsal fins; and a plain greenish to reddish-brown dorsal surface marked with light bluish-grey longitudinal stripes and blotches with a white underside (Ebert & Dando, 2020). RESULTS AND DISCUSSION These two recent records of Rhinobatos rhinobatos are particularly important, as they represent the first confirmed sightings of the species in the northern Mediterranean in several decades. Hence, these findings reinforce the urgency of region-specific con- servation actions and suggest the possible existence of overlooked remnant populations that may benefit from targeted protective measures. Although R. rhino- batos was historically presumed to be common in the western and northern Mediterranean Sea, recent stud- ies have reported it as locally extinct in those areas, specifically in the coastal waters of Spain, France, and Italy (Jabado et al., 2021), as well as in the Adriatic Sea (Soldo & Lipej, 2022). MEDITS experimental trawl surveys (from the Alboran Sea to the Aegean Sea) conducted between 1994 and 1999, along with trawl surveys in the Adriatic Sea from 1948 to 2005, failed to record any individuals (Relini & Piccinetti, 1991; Baino et al., 2001), a trend that continued in more re- cent surveys (Follesa et al., 2019). In Greek waters of the Ionian Sea, the last confirmed records of R. rhino- batos date back several decades (Giovos et al., 2022). Furthermore, the Common Guitarfish is not even listed as a valid species in the chondrichthyan list of Calabria (southern Italy), which includes the opposite coast of the Gulf of Taranto (Leonetti et al., 2020). In the Iskenderun Bay (northeastern Mediterranean Sea, Turkish coast), it is landed as a bycatch and used for human consumption but as less commercial species (Başusta et al. 2008; Çek et al., 2009). Yağlıoğlu et al. (2015) found that the frequency of occurrence of R. rhinobatos in bottom trawl bycatch in İskenderun Bay was 11.1%; on the other hand, Bengil & Başusta (2018) found that the bycatch rate of the species in the eastern Mediterranean was 2.47%. Given that R. rhinobatos is a demersal species primarily inhabiting shallow coastal waters, areas heavily impacted by a combination of subsistence, artisanal, and industrial fishing, its recent detection in regions where it was previously considered lo- cally extinct is of great conservation significance. However, although the species is protected under various legal frameworks, Soldo & Lipej (2022) highlighted a major challenge affecting demersal chondrichthyans. Many of these species, which are often considered locally extinct across parts of the Mediterranean, are highly vulnerable to unselective fishing practices, particularly bottom trawling. Therefore, Soldo & Lipej (2022) argue that legal protection alone is insufficient to prevent bycatch, especially for species inhabiting inshore areas where fishing pressure is highest and a wide array of unselective bottom-fishing gear is used in both small- and large-scale fisheries. Thus, beyond incorporating existing conservation measures into national legislation, a key priority should be the identification and mapping of critical habitats for these species. A recent study revealed that guitar- fishes are regularly aggregated in the same shallow embayments in summer months for parturition, Fig. 1: Map of locations of records:  - 2019 record;  - 2023 record. Sl. 1: Zemljevid obravnavnega območja z lokalitetami ulova:  - zapis iz leta 2019;  - zapis iz leta 2023. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 216 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 Fig. 2: Photos of the caught specimens: A - 2019 record; B- 2023 record. Sl. 2: Fotografije ujetih primerkov: A - zapis iz leta 2019; B - zapis iz leta 2023. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 217 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 which suggests site fidelity and underlines the importance of an integrated conservation approach for protecting not only the species, but also its’ critical habitats (Bilgili & Kabasakal, 2023; Kyne et al., 2024). These habitats can be relatively small, minimizing potential conflict with fisheries, but can be effective if bottom-fishing activities are restricted to highly selective gear types (Soldo & Lipej, 2022; Kyne et al., 2024). In the case of R. rhinobatos, it is now evident that a probably very small, localized population persists in restricted areas of the Gulf of Taranto. Greater effort is therefore needed to ac- curately determine the species’ area of occupancy in this region and to implement new conservation measures that, at a minimum, ensure the safe and unharmful release of individuals caught as bycatch. To conclude, the recent records of Rhinobatos rhinobatos from the Gulf of Taranto represent the first confirmed presence of the species in the north- ern Mediterranean in decades, challenging prior assumptions of its regional extinction. These find- ings underscore the potential existence of remnant populations in areas previously considered devoid of the species. As R. rhinobatos is highly susceptible to coastal fishing activities, particularly due to its demersal nature and preference for shallow habitats, urgent measures are needed to mitigate bycatch and further population decline. Conservation priorities should include precise mapping of critical habitats, implementing selective fishing gear in these zones, and ensuring strict enforcement of existing protective regulations. Moreover, community engagement and fisher awareness are essential components in facilitat- ing reporting and safe handling of future encounters. The rediscovery in the Gulf of Taranto provides a critical opportunity for renewed research, monitoring, and conservation strategies to prevent the complete disappearance of this critically endangered species from the region. Future studies should include genetic analyses to assess population structure and connectiv- ity, which would help clarify whether these individu- als represent an isolated relic population or part of a wider, underreported distribution. ACKNOWLEDGEMENTS The data presented in this paper were obtained by the activities carried out within the LIFE Euro- pean Sharks project (LIFE22-GOV-IT-LIFE EU SHARKS 101114031). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 218 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 NEDAVNI ZAPISKI O POJAVLJANJU KRITIČNO OGROŽENEGA NAVADNEGA GOSLAŠA RHINOBATOS RHINOBATOS (LINNAEUS, 1758) V SEVERNEM SREDOZEMLJU Alen SOLDO Department of Marine Studies, University of Split, Croatia e-mail: soldo@unist.hr Eleonora DE SABATA MedSharks, Rome, Italy Simona CLO MedSharks, Rome, Italy Stazione Zoologica Anton Dohrn, Naples, Italy POVZETEK Navadni goslaš, Rhinobatos rhinobatos, pridnena vrsta hrustančnic, ki je na rdečem seznamu IUCN uvrščena med kritično ogrožene vrste, je doživela močan upad populacije na celotnem območju razširje- nosti, zlasti v severnem Sredozemlju, kjer velja za lokalno izumrlo. V pričujočem prispevku avtorji poročajo od dveh novih najdbah vrste R. rhinobatos iz Tarantskega zaliva na italijanski strani Jonskega morja, kar predstavlja prvi potrjeni opažanji v tej regiji v več desetletjih. Glede na ranljivost vrste za neselektivne obalne ribolovne prakse in nenehen pritisk na plitvo morsko okolje so ti zapisi o pojavljanju precejšnjega pomena za ohranjanje vrste. Poleg tega poudarjajo nujno potrebo po kartiranju kritičnih habitatov, izboljšanju ukrepov za zmanjšanje prilova in ponovni oceni regionalnega stanja ohranjenosti vrste. Odkritje te vrste na območjih, za katera se je prej mislilo, da v njih ni prisotna, ponuja redko priložnost za razvoj ciljno usmerjenih ukrepov za njeno obnovo. Ključne besede: Rhinobatos rhinobatos, kritično ogrožena vrsta, Sredozemsko morje, ohranjanje hrustančnic, Tarantski zaliv ANNALES · Ser. hist. nat. · 35 · 2025 · 2 219 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 REFERENCES Baino, R., F. Serena, S. Ragonese, J. Rey & P. Rinelli (2001): Catch composition and abundance of Elas- mobranchs based on the MEDITS program. Rapports de la Commission Internationale pour L’Exploration Scientifique de la Mer Mediterranee 36, 234. Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, rays and chimaeras in Mediterranean and Black Seas – Key to identification. Rome, FAO. https:// doi.org/10.4060/cc0830en. Başusta, N., S.A. Demirhan, E. Çiçek, A. Başusta & T. Kuleli (2008): Age and growth of the common guitarfish, Rhinobatos rhinobatos, in Iskenderun Bay (north-eastern Mediterranean, Turkey). J. Mar. Biol. Assoc. U. K., 88(04), 837-842. Bengil, E.G.T. & N. Başusta (2018): Chondrichthy- an species as by-catch: a review on species inhabiting Turkish waters. J. Black Sea/Mediterranean Environ- ment 24, 288-305. Bilecenoğlu, M. (2024): Diversity of fishes along the coast of Türkiye. Turk. J. Zool., 48, 589-616. https:// doi.org/10.55730/1300-0179.3197. Bilgili, A. & H. Kabasakal (2023): Encounters with threatened batoids from the perspective of a spearfisherman suggesting an aggregation site in southeastern Aegean Sea, Turkey. Regional Stud- ies in Marine Science, 61, 102894. https://doi. org/10.1016/j.rsma.2023.102894. Bradai, M.N. & A. Soldo (2016): Rhinobatos rhino- batos (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T63131A16527789. Accessed on 18 May 2025. Capapé, C., J. Zaouali & J.P. Quignard (1975): Premières données sur le cycle de la reproduction de Rhinobatos rhinobatos (Linné, 1758) et de Rhino- batos cemiculus (Geoffroy Saint-Hilaire, 1817) des côtes tunisiennes. Archive de l’Institut Pasteur Tunis, 52, 47-60. Capapé, C., O. Guélorget, Y. Vergne, A. Marquès & J.P. Quignard (2006): Skates and rays (Chon- drichthyes) from waters off the Languedocian coast (southern France, northern Mediterranean). Annales, Ser. His. Nat, 16, 165-178. Çek, S., N. Başusta, S.A. Demirhan & M. Karalar (2009): Biological observations on the common gui- tarfish Rhinobatos rhinobatos from İskenderunBay (Turkey, Eastern Mediterranean). Anim. Biol., 59, 211-230 Ebert, D.A. & M. Dando (2020): Field Guide to Sharks, Rays & Chimaeras of Europe and the Medi- terranean. Princeton University Press; Princeton, NJ, USA, 384 pp. Echwikhi, K., B. Saidi, & M.N. Bradaï (2013): Elasmobranchs longline fisheries in the Gulf of Gabès (southern Tunisia). J. Mar. Biol. Assoc. U. K., 64(1), 203-210. Follesa, M.C., M.F. Marongiu, W. Zupa, A. Bel- lodi, A. Cau, R. Cannas, F. Colloca, M. Djurovic, I. Isajlovic, A. Jadaud, C. Manfredi, A. Mulas, P. Peristeraki, C. Porcu, S. Ramirez-Amaro, F. Salm- erón Jiménez, F. Serena, L. Sion, I. Thasitis, A. Cau & P. Carbonara (2019): Spatial variability of Chondrichthyes in the northern Mediterranean. Sci. Mar., 83(S1), 81-100. Fricke, R., W.N. Eschmeyer & R. Van der Laan (Eds.) (2024): Eschmeyer’s Catalogue of Fishes: Genera, Species, References. Available online: http://researcharchive.calacademy.org/research/ ichthyology/catalog/fishcatmain.asp (accessed on 18 May 2025). Giovos, I., R.N. Aga-Spyridopoulou, F. Serena, A. Soldo, A. Barash, N. Doumpas, G.A. Gkafas, D. Katsada, G. Katselis, P. Kleitou, V. Minasidis, Y.P. Papastamatiou, E. Touloupaki & D.K. Moutopoulos (2022): An Updated Greek National Checklist of Chondrichthyans. Fishes, 7(4), 199. Jabado, R.W., N. Pacoureau, M. Diop, M. Dia, A. Ba, A.B. Williams, J. Dossa, L. Badji, I. Seidu, E. Chartrain, G.H.L. Leurs, A. Tamo, G. Porriños, W.J. VanderWright, D. Derrick, P. Doherty, A. Soares, G. De Bruyne & K. Metcalfe (2021): Rhinobatos rhinobatos. The IUCN Red List of Threatened Species 2021: e.T63131A124461877. https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS. T63131A124461877.en. Accessed on 18 May 2025. Kyne, P.M., P. Carlson, R.M. Aitchison, S. Al Hameli, B.M. D’Alberto, A. Gonzalez-Pestana, M.J. Groeneveld, J. Hanna, D. Karnad & D.A. Ebert (2024): Global status and research priorities for rhino rays. Endang. Species Res., 55, 129-140. Leonetti, F.L., G. Giglio, A. Leone, F. Coppola, C. Romano, M. Bottaro, F.R. Reinero, C. Milazzo, P. Micarelli, S. Tripepi & E. Sperone (2020): An updat- ed checklist of chondrichthyans of Calabria (Central Mediterranean, southern Italy), with emphasis on rare species. Med. Mar. Sci., 21(3), 794-807. Lteif, M., R. Mouawad, G. Khalaf, P. Lenfant & M. Verdoit-Jarraya (2016): Population biology of an endangered species: The common guitarfish Rhinobatos rhinobatos in Lebanese marine waters of the eastern Mediterranean Sea. J. Fish. Biol., 88, 1441-1459. Newell, B.M. (2017): Status Review Report of Two Species of Guitarfish: Rhinobatos rhinobatos and Rhinobatos cemiculus. Report to National Marine Fisheries Service, Office of Protected Re- sources, 62 pp. Psomadakis, P.N., N. Maio & M. Vacchi (2009): The chondrichthyan biodiversity in the Gulf of Naples (SW Italy, Tyrrhenian Sea): An historical overview. Cybium, 33, 199-209. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 220 Alen SOLDO et al.: RECENT RECORDS OF CRITICALLY ENDANGERED COMMON GUITARFISH RHINOBATOS RHINOBATOS (LINNAEUS, 1758) ..., 213–220 Relini, G. & C. Piccinetti (1991): Stato attuale dei censimenti ittici nei mari Italiani. Atti II Semi- nario Italiano Censimenti Faunistici dei Vertebrati. Supplemento alle Ricerche di Biologia della Selvag- gina XVI, 29-54. Serena, F. (2005): Field identification guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Identification Guide for Fishery Purposes. Rome, FAO. 97 pp. Soldo, A. & L. Lipej (2022): An Annotated Checklist and the Conservation Status of Chondrichthyans in the Adriatic. Fishes, 7(5), 245. https://doi.org/10.3390/ fishes7050245. Van der Laan, R., R. Fricke & W.N. Eschmeyer (Eds.) (2024): Eschmeyer’s Catalogue of Fishes: Classi- fication. Available online: http://www.calacademy.org/ scientists/catalog-of-fishes-classification/ (accessed on 18 May 2025). Yağlıoğlu, D., T. Deniz, M. Gürlek, D. Ergüden & C. Turan (2015): Elasmobranch bycatch in a bottom trawl fishery in the Iskenderun Bay, northeastern Mediterranean. Cah. Biol. Mar., 56, 237-243. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 221 received: 2025-06-16 DOI 10.19233/ASHN.2025.25 DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ENVIRONMENTAL IMPLICATIONS Hakan KABASAKAL Istanbul University, Institute of Graduate Studies in Sciences, Fisheries Technologies and Management Program, Istanbul, Türkiye WWF Türkiye, İstanbul, Türkiye e-mail: kabasakal.hakan@gmail.com F. Saadet KARAKULAK Department of Fisheries Technologies and Management, Faculty of Aquatic Sciences, İstanbul University, İstanbul, Türkiye ABSTRACT A total of 16 elasmobranch species (nine shark and seven batoid species) were sampled in the Sea of Marmara (SoM) between 2014 and 2024 for this study. During the same period, an additional nine species (six shark and three batoid species) were recorded from the same area by other researchers. Over the past 100 years, 32 species of demersal elasmobranchs (16 shark and 16 batoid species) have been reported from the SoM, but applying “evidence-based confirmed or unconfirmed presence” criteria reduces the current number to 25 (15 shark species, 10 batoid species). Principal Component Analysis indicates that adaptability to shallower waters is now critical to the spatial distribution of demersal elasmobranchs in the SoM. This shift clearly shows how dramatically the environmental degradation, marine pollution, and deoxygenation have reduced the region’s elasmobranch fauna primarily to demersal species over the last 40 years, underscoring the potentially devastating impact of such degradation on biodiversity. Key words: Elasmobranchii, survival, conservation, inventory, Sea of Marmara,Turkey ELASMOBRANCHI DEMERSALI DEL MARE DI MARMARA: INVENTARIO AGGIORNATO, QUESTIONI TASSONOMICHE E IMPLICAZIONI AMBIENTALI SINTESI Per questo studio, tra il 2014 e il 2024 sono state campionate nel Mar di Marmara (SoM) un totale di 16 specie di elasmobranchi (nove specie di squali e sette specie di batoidi). Nello stesso periodo, altri ricerca- tori hanno registrato altre nove specie (sei specie di squali e tre specie di batoidi) nella stessa area. Negli ultimi 100 anni, nel SoM sono state segnalate 32 specie di elasmobranchi demersali (16 specie di squali e 16 specie di batoidi), ma applicando i criteri di “presenza confermata o non confermata basata su prove” il numero attuale si riduce a 25 (15 specie di squali e 10 specie di batoidi). L’analisi delle componenti principali indica che l’adattabilità alle acque meno profonde è ora fondamentale per la distribuzione spa- ziale degli elasmobranchi demersali nel Mar di Marmara. Questo cambiamento mostra chiaramente come il degrado ambientale, l’inquinamento marino e la deossigenazione abbiano ridotto drasticamente la fauna di elasmobranchi della regione, principalmente alle specie demersali, negli ultimi 40 anni, sottolineando l’impatto potenzialmente devastante di tale degrado sulla biodiversità. Parole chiave: Elasmobranchii, sopravvivenza, conservazione, inventario, Mar di Marmara, Turchia ANNALES · Ser. hist. nat. · 35 · 2025 · 2 222 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 INTRODUCTION Fauna inventories provide the most direct means of assessing the components of animal diversity in a specific biome or locality at a given time (Silveira et al., 2010). From this perspective, the elasmo- branch species inventory of the Sea of Marmara (SoM) has been updated many times in studies by various researchers over the past 100 years. These studies either (1) include elasmobranchs as part of the region’s general ichthyofauna (Ninni, 1923; Deveciyan, 1926; Rhasis Erazi, 1942; Kocataş et al., 1993; Eryılmaz & Meriç, 2005; Torcu Koç et al., 2012; Daban et al., 2021; Bilecenoğlu, 2024), or (2) focus specifically on the elasmobranch fauna of the SoM (Kabasakal, 2016, 2022; Artüz & Fricke, 2024; Karadurmuş & Sarı, 2024; Kabasakal & Karakulak, 2024). In one of the earliest general ichthyological studies listing sharks and batoids, Ninni (1923) reported 21 elasmobranch species among the 162 fish species landed at Istanbul Wholesale Fish Market. In another pioneering study, Deveciyan (1926) provided detailed information on 16 species of sharks and batoids landed at the same market. However, neither author specified the exact loca- tions in the SoM where these elasmobranchs were captured. Although the most recent surveys report 35 (Bilecenoğlu, 2024) and 38 (Artüz & Fricke, 2024) elasmobranch species in the ichthyofauna of the SoM, the number of species with confirmed current presence in the region decreases to 25 (Kabasakal & Karakulak, 2024) when evidence-based confirma- tion criteria are applied (Kovačić et al., 2020). Based on commercial landings data, several researchers have pointed to a dramatic reduction (of up to 98%) in demersal elasmobranch species in the SoM over the past three decades (Demirel et al., 2020; Gül & Demirel, 2021). It has recently been suggested that this decline is primarily due to overfishing and deteriorating environmental condi- tions, particularly the deoxygenation of bottom waters (Kabasakal, 2025). According to Silveira et al. (2010), fauna inventories are essential for assess- ing projects with myriad environmental impacts, many of which may be significant and irreversible. Therefore, creating an accurate ‘snapshot’ of the specific locality to be impacted is a task of utmost importance and responsibility. Given that proper species identification is the foundational step in effective fisheries management (Stauffer Jr. & Ko- covsky, 2007), updating the inventory of demersal elasmobranchs in the environmentally degraded and deoxygenated SoM is a critical initiative that extends far beyond mere taxonomic curiosity. The present article provides an updated and confirmed list of demersal elasmobranch species in the SoM, based on the latest environmental monitoring and stock assessment surveys. In addition, it discusses key environmental threats to the future survival of these species in the SoM, as well as factors contrib- uting to taxonomic inconsistencies. MATERIAL AND METHODS An overview of the SoM A significant environmental issue currently threatening marine ecosystems is the emergence and expansion of ‘dead zones’ – hypoxic or an- oxic marine areas caused by human activity (Diaz, 2016). The SoM is experiencing severe hypoxia in its deep waters, with conditions in some areas progressing towards anoxia (Mantıkçı et al., 2022; Salihoğlu et al., 2022). Hypoxia in seawater is defined as a decrease in dissolved oxygen (DO) concentration to below 2 mg/L (or 80 µM; Diaz & Rosenberg, 2008; Vaquer-Sunyer & Duarte, 2008). The SoM, designated as geographical subarea (GSA) 28 by the General Fisheries Commission for the Mediterranean (GFCM, 2018), is one of the most damaged marine ecosystems in the Mediterranean Basin (Saygu et al., 2023). It is a relatively small marine basin with a sur- face area of 11,500 km² and a maximum depth of 1,390 m, connected to the Mediterranean and Black Seas through narrow straits (Beşiktepe et al., 1994; Fig. 1). Its hydrographic characteristics are largely shaped by water exchange through these straits. A distinctive feature of this system is the persistent oxygen deficiency in the deeper sub-halocline lay- ers (Ünlüata & Özsoy, 1988; Beşiktepe et al., 1994). Acting as a receiving and settling basin for or- ganic matter transported from the Black Sea via the Bosphorus Strait (Ünlüata & Özsoy, 1988; Yılmaz et al., 1990), the SoM has experienced substantial eco- logical degradation over the past four decades due to increasing anthropogenic pressures. As a result of eutrophication, DO concentrations – particularly in bathyal waters – have fallen below the hypoxia threshold (Yılmaz et al., 1990; Mantıkçı et al., 2022). In the eastern and northeastern parts of the SoM, where deoxygenation is most severe, hypoxic condi- tions now extend onto the continental shelf (ÇŞİDB, TUBİTAK-MAM, 2021, p. 27; Kabasakal, 2025). Bottom trawl surveys The bottom trawl surveys conducted throughout the SoM (Fig. 1) between 2014 and 2024 were mainly carried out as part of two projects: (1) the Stock Assess- ment of Demersal Fish Species in the Eastern Marmara Sea (Project No. 51922), and (2) the Marine Monitor- ing (DEN-İZ) project of the Ministry of Environment, Urbanisation and Climate Change. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 223 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Sampling was performed on board R/V Yunus- S, a 510 hp stern trawler operated by the Istanbul University’s Faculty of Aquatic Sciences. A bottom trawl with a cod-end mesh size of 14 mm (ap- proximately 22 mm mesh opening) was used for the hauls following the MEDITS protocol (Anonymous, 2017). Haul duration was set at 30 min for depths under 200 m and 60 min for depths over 200 m, with a standard towing speed of 3 knots (Anony- mous, 2017). Oceanographic parameters (salinity, S; temperature, T; and dissolved oxygen, DO) were recorded using a SeaBird CTD probe. The start and end coordinates of each trawl haul, along with the corresponding seafloor depths, were determined using the vessel’s onboard GPS and echo sounder. Handling of specimens and species identification To reduce at-vessel mortality and increase post- release survival of captured sharks and rays, we fol- lowed best-practice procedures proposed by Saygu and Deval (2014) and Ellis et al. (2016a). An on-board survival tank was improvised using a large container with a continuous supply of fresh seawater via a hose. Large specimens were handled according to the FAO and ACCOBAMS (2018) guides. All individuals were counted, weighed, and measured as soon as possible. With the exception of a few voucher samples, the remaining elasmobranch catch was gently released. Voucher samples are preserved at the laboratory of the Department of Fisheries Technologies and Man- agement, Faculty of Aquatic Sciences, Istanbul Uni- versity. For very large specimens (e.g., Hexanchus griseus or Echinorhinus brucus), photographs were taken and are kept in the authors’ personal archives. Species identification is based on Serena (2005), Ebert and Stehmann (2013), Last et al. (2016), Ebert et al. (2021), and Barone et al. (2022). Scientific names fol- low WoRMS Editorial Board (2025). The current status of elasmobranch species not sampled in the present survey, but known to oc- cur in the SoM from previous studies (Ninni, 1923; Rhasis Erazi, 1942; Geldiay, 1969; Anonymous, 1974; JICA, 1993; Benli et al., 1993; Meriç, 1995; Uysal et al., 1996; Zengin et al., 2004; Yaka & Yüce, 2006; Torcu Koç et al., 2012; Yıldız et al., 2016; Bilecenoğlu, 2019; Kabasakal et al., 2023a, 2024a,b; Karadurmuş & Sarı; 2024), was assessed using evidence-based criteria for confirmed and unconfirmed presence (Kovačić et al., 2020). De- tailed descriptions of these criteria are provided by Kovačić et al. (2020). Dispersal/settlement success of demersal elasmobranch species Principal Component Analysis (PCA) was used to examine the effect of life history characteristics and bathymetric distribution on the past and present abundance of demersal elasmobranch species in Fig. 1: Map of the study area showing sampling stations. Solid red circles denote the fixed stations of Project 51922, and solid purple squares indicate the fixed stations of DEN-İZ project. Sl. 1: Zemljevid obravnavanega območja raziskave, ki prikazuje vzorčevalne postaje. Rdeči krogi označujejo fiksne postaje projekta 51922, vijolični kvadratki pa fiksne postaje projekta DEN-IZ. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 224 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Tab. 1: Species-specific life history traits used in the PCA of demersal elasmobranch species of the SoM. TL – total length; LmM, LmF length at 50% sexual maturity (males, females); GL – generation length. Continues in the next section. Tab. 1: Vrstno specifične značilnosti življenjskega cikla, uporabljene pri PCA pridnenih vrst rib v Marmarskem morju. TL – skupna dolžina; LmM, LmF – dolžina pri doseženi 50% spolni zrelosti (samci, samice); GL – dolžina generacije. Nadaljevanje v naslednjem razdelku. Species FAO code TL (cm) LmM (cm) LmF (cm) GL (years) Hexanchus griseus (Bonnaterre, 1788) SBL 600 400 330 53 Galeus melastomus Rafinesque, 1810 SHO 90 42 45 5.7 Scyliorhinus canicula (Linnaeus, 1758) SYC 80 56 60 ? Scyliorhinus stellaris (Linnaeus, 1758) SYT 162 77 79 20 Mustelus asterias Cloquet, 1819 SDS 140 85 96 13 Mustelus mustelus (Linnaeus, 1758) SMD 175 112 124 17.8 Mustelus punctulatus Risso, 1827 MPT 190 88.5 100 17.8 Galeorhinus galeus (Linnaeus, 1758) GAG 195 170 185 30 Dalatias licha (Bonnaterre, 1788) SCK 182 100 120 28.7 Oxynotus centrina (Linnaeus, 1758) OXY 150 60 66 20 Centrophorus uyato (Rafinesque, 1810) CPU 128 91 89 20 Squalus acanthias Linnaeus, 1758 DGS 195 64 93 8 Squalus blainville (Risso, 1827) QUB 92 56 60 19.5 Echinorhinus brucus (Bonnaterre, 1788) SHB 394 190 230 30 Squatina oculata Cuvier, 1829 SUT 160 82 100 12 Squatina squatina (Linnaeus, 1758) AGN 244 132 169 11 Tetronarce nobiliana (Bonaparte, 1835) TTO 180 ? ? ? Torpedo marmorata Risso, 1810 TTR 100 44 49 16 Torpedo torpedo (Linnaeus, 1758) TTV 60 ? ? 12.5 Dipturus batis (Linnaeus, 1758) RJB 285 197.5 185.5 20 Dipturus oxyrinchus (Linnaeus, 1758) RJO 150 103.5 91 10 Leucoraja naevus (Müller & Henle, 1841) RJN 81 56.16 54.96 8 Raja asterias Delaroche, 1809 JRS 75 56 52 4.36 Raja clavata Linnaeus, 1758 RJC 105 85 75 11.5 Raja miraletus Linnaeus, 1758 JAI 63 41.8 34.3 7.2 Raja montagui Fowler, 1910 RJM 102 60.7 53.74 7 Raja radula Delaroche, 1809 JAR 70 46 40 9 Dasyatis pastinaca (Linnaeus, 1758) JDP 69.5 32 38 7.5 Dasyatis tortonesei Capapé, 1975 JDO 80 38 47 ? Gymnura altavela (Linnaeus, 1758) RGL 400 105 102 7 Aetomylaeus bovinus (Geoffroy St. Hilaire, 1817) MPO 222 90 90 15 Myliobatis aquila (Linnaeus, 1758) MYL 183 40 60 11 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 225 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Tab. 1 (Continued): MRD – maximum recorded depth range; CDR – common depth range; TRL – trophic level. Continues in the next section. Tab. 1 (nadaljevanje): MRD – največji zabeleženi razpon globin; CDR – običajni razpon globin; TRL – trofična raven. Nadaljevanje v naslednjem razdelku. Species MDR (m) MDR (m) CDR (m) CDR (m) TRL 200–500 501–1000 >1000 0–100 101–200 >200 H. griseus 0 0 1 2500 0 0 1 200–1100 4.48 G. melastomus 0 0 1 2000 0 0 1 200–500 4.2 S. canicula 0 1 0 800 1 1 1 0–450 3.8 S. stellaris 1 0 0 380 1 0 0 20–63 4 M. asterias 1 0 0 200 1 1 0 0–200 3.6 M. mustelus 0 1 0 800 1 0 0 5–50 4.3 M. punctulatus 1 0 0 200 1 1 0 0–200 3.8 G. galeus 0 1 0 800 1 1 1 0–800 4.3 D. licha 0 0 1 1800 0 0 1 1800 4.2 O. centrina 0 1 1 805 1 1 1 35–805 3.1 C. uyato 0 0 1 1400 0 1 1 115–745 4.5 S. acanthias 0 0 1 1978 1 1 1 0–600 4.4 S. blainville 0 0 1 1500 1 1 1 15–1500 4 E. brucus 0 0 1 1214 1 1 1 10–1214 4.4 S. oculata 1 0 0 500 1 0 0 50–100 4 S. squatina 1 0 0 150 1 1 0 1–150 4.1 T. nobiliana 0 1 0 800 1 1 0 10–150 4.5 T. marmorata 1 0 0 370 1 1 0 2–370 4.5 T. torpedo 1 0 0 400 1 0 0 2–70 4.5 D. batis 0 1 0 1000 1 1 1 30–600 4.1 D. oxyrinchus 0 1 1 1461 0 0 1 200 3.5 L. naevus 0 1 0 900 1 1 0 20–250 3.6 R. asterias 0 1 0 700 1 0 0 20–50 3.5 R. clavata 0 1 1 1020 1 0 0 10–60 4.2 R. miraletus 1 0 0 462 1 1 0 50–150 3.8 R. montagui 1 1 0 530 1 1 0 20–120 4 R. radula 1 0 0 300 1 1 1 0–300 3.7 D. pastinaca 1 0 0 200 1 0 0 20–35 4.1 D. tortonesei 1 0 0 200 0 1 0 100–200 4 G. altavela 1 0 0 100 1 0 0 5–100 4.5 A. bovinus 1 0 0 150 1 1 0 10–150 3.8 M. aquila 1 0 0 300 1 1 0 1–300 3.6 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 226 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Tab. 1 (Continued): DFRSoM – Date of first record in the Sea of Marmara; DLRSoM – Date of last record in the Sea of Marmara; SLF – continental shelf; SUS – shelf–upper slope; DWT – deep bathyal water. Data on LmM, LmF, GL, and TRL were obtained from the literature cited in the reference column. Tab. 1 (nadaljevanje): DFRSoM – Datum prvega zapisa v Marmarskem morju; DLRSoM – Datum zadnjega zapisa v Marmarskem morju; SLF – kontinentalni prag; SUS – kontinentalni prag–zgornje pobočje; DWT – globoki batial. Podatki o LmM, LmF, GL in TRL so bili pridobljeni iz literature, navedene v referencah. Species Before1990 DFR SoM DLR SoM After 2000 SLF SUS DWT Reference H. griseus 1 1923 2022 1 0 1 1 Finucci et al. (2020) G. melastomus 0 1993 2017 1 0 1 1 Abella et al. (2016) S. canicula 1 1923 2024 1 1 1 0 Serena et al. (2015) S. stellaris 1 1923 2023 1 1 0 0 Ellis et al. (2016b) M. asterias 1 1969 2024 1 1 0 0 Farrell et al. (2016a) M. mustelus 1 1923 2024 1 1 0 0 Farrell et al. (2016b) M. punctulatus 0 2023 2023 1 1 0 0 Ebert et al. (2021) G. galeus 1 1923 2021 1 1 0 0 McCully et al. (2016) D. licha 0 1991 1991 0 0 1 0 Walls & Guallart (2016) O. centrina 1 1942 2024 1 0 1 0 Soldo & Guallart (2016) C. uyato 0 1992 2019 1 0 1 1 Guallart & Walls (2015) S. acanthias 1 1923 2023 1 1 1 0 Ellis et al. (2016c) S. blainville 1 1923 2024 1 1 1 0 Soldo et al. (2016) E. brucus 1 1923 2023 1 1 1 1 Ferretti & Buscher (2016) S. oculata 0 1995 2018 1 1 1 0 Ferretti et al. (2016a) S. squatina 1 1923 2023 1 1 0 0 Ferretti et al. (2016b) T. nobiliana ? ? ? ? 1 1 0 Finucci et al. (2021) T. marmorata 1 1923 2023 1 1 1 0 Notarbartolo di Sciara et al. (2016) T. torpedo 1 1923 2023 1 1 1 0 Serena et al. (2016a) D. batis 1 1923 2023 1 1 1 0 Ellis et al. (2021) D. oxyrinchus 1 1923 2024 1 0 1 1 Ellis et al. (2016d) L. naevus 1 1996 1996 0 1 1 0 Ellis & Dulvy (2016) R. asterias 0 1996 2009 1 1 0 0 Serena et al. (2016b) R. clavata 1 1923 2023 1 1 0 0 Ellis et al. (2016e) R. miraletus 1 1923 2014 1 1 0 0 Dulvy et al. (2020) R. montagui 1 1996 1996 0 1 0 0 Ellis et al. (2016f) R. radula 0 2006 2023 1 1 1 0 Mancusi et al. (2016) D. pastinaca 1 1942 2023 1 1 0 0 Serena et al. (2016c) D. tortonesei 0 2016 2016 1 1 0 0 Jabado & Derrick (2021) G. altavela 0 1984 ? 0 1 0 0 Walls et al. (2016) A. bovinus 0 ? 2019 1 1 0 0 Walls & Buscher (2016) M. aquila 1 1923 2024 1 1 1 0 Serena et al. (2016d) ANNALES · Ser. hist. nat. · 35 · 2025 · 2 227 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 the SoM (Villagra et al., 2022). This analysis tested the hypothesis that “demersal elasmobranch species with a wider bathymetric distribution range are more likely to have adapted to, and persisted in, the SoM”. The most recent species lists (Artüz & Fricke, 2024; Kabasakal & Karakulak, 2024; Karadurmuş & Sarı, 2024) were consulted to compile the life history parameters of the 32 demersal elasmobranch species reported from the SoM over the past century and currently categorised as ‘present’, ‘absent’ or ‘doubt- ful’ in this region. Information on the species’ first and last recorded occurrences (date of first record in the Sea of Marmara (DFRSoM) and date of last record in the Sea of Marmara (DLRSoM) in Table 1), as well as depth distribution in the SoM (continental shelf occurrence (SLF), shelf-upper slope occurrence (SUS) and deep bathyal water occurrence (DWT) in Table 1) were retrieved from the literature (Tab. 1), specifically from Ninni (1923), Rhasis Erazi (1942), Geldiay (1969), Anonymous (1974), JICA (1993), Benli et al. (1993), Meriç (1995), Uysal et al. (1996), Zengin et al. (2004), Yaka and Yüce (2006), Torcu Koç et al. (2012), Yıldız et al. (2016), Bilecenoglu (2019), Kabasakal et al. (2023a, 2024a, b), and Karadurmus and Sarı (2024). The sources for data on total length (TL), male and female sexual maturation lengths (LmM and LmF, respectively), generation length (GL), depth distribution, and habitat are provided in Table 1. These life history parameters, compiled from the literature, were first organised in a raw data table. A matrix was then formulated where these data were expressed as numerical values (maximum TL and sexual maturation length in cm; GL in years; trophic level) and binary values (0 for absent and 1 for present). The PCA analysis was based on this final data matrix (Villagra et al., 2022), using PAST - Paleontological Statistics ver. 4.03 (Hammer et al., 2001; Rincón-Díaz et al., 2018). RESULTS AND DISCUSSION Updated species inventory and taxonomic issues Sixteen elasmobranch species (nine sharks and seven batoids; Tab. 2) were sampled between 2014 and 2024 in the present study (Fig. 2). During the same period, an additional nine species (six sharks and three batoids; Table 2) were recorded in same area by Bilecenoğlu (2019), Daban et al. (2021), Kabasakal and Türetken (2021), Karadurmuş and Sarı (2024), and Kabasakal et al. (2024a, b). As evidenced by the ichthyological inventories presented in Table 2, a total of 32 species of de- mersal elasmobranchs (16 sharks and 16 batoids) have been reported from the SoM over the past 100 years. However, using the criterion proposed by Bilecenoğlu (2024) – including only species whose presence has been confirmed within the past 10 years – sets the current count at 25 (15 sharks and 10 batoids; Table 2). This figure is remarkably lower than the totals reported by Bilecenoğlu (2024; n = 34) and Artüz and Fricke (2024; n = 38), as these authors included in their checklists all shark and batoid species recorded in the SoM since 1923, regardless of whether any had been observed in the region within the past decade or not. Furthermore, the presence of the 25 species was assessed apply- ing the criteria for “evidence-based confirmed or unconfirmed presence” proposed by Kovačić et al. (2020). Only 16 species have a verified presence under Criterion 1, which requires that at least one specimen from the SoM is stored in a scientific col- lection with a published reference. Six species were confirmed under Criterion 2, which applies where there are no stored specimens, but the species can be positively identified from a photo of the SoM locality provided in a published record. Three spe- cies were confirmed under Criterion 5; this is used when there are no stored specimens or published morphological/genetic evidence, but species cita- tions can be traced back to an author – with expert knowledge of the taxon or fish guild of a particular habitat – who reported numerous findings (or, in a study on ecology or species biology, numerous specimens), making correct identification highly probable. Although Dalatias licha, Torpedo torpedo, and Leucoraja naevus each have at least one positive historical record from the SoM and meet the crite- ria for verified presence (1, 5, and 2, respectively), they were not included in the updated inventory because none has been recorded in the region during the past decade. According to Bilecenoğlu (2024), Tetronarce nobiliana and Gymnura altavela are also present in the SoM; however, their listing among elasmobranch fauna of the SoM is based on a historical ichthyological inventory (Bilecenoğlu et al., 2014). A critical retrospective review of ich- thyological checklists for the seas of Turkey, pub- lished at roughly ten-year intervals (Bilecenoğlu et al., 2002, 2014; Bilecenoğlu, 2024), reveals that all three studies cite the occurrence of T. nobiliana and G. altavela in the SoM based solely on Mater and Meriç (1996) – the first inventory of Turkish marine fishes. This original source, however, provides no information where the examined specimens were captured or deposited in a scientific collection for verification. Since the evidence was insufficient to confirm the contemporary occurrences of T. nobili- ana and G. altavela in the SoM, the only applicable classification was exclusion Criterion 13 (Kovačić et al., 2020). This applies when a species’ reported presence is based on a review publication citing an original reference that in itself contains no ANNALES · Ser. hist. nat. · 35 · 2025 · 2 228 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Tab. 2: Chronological summary of demersal elasmobranch species (n=32) recorded in the SoM by different re- searchers between 1923 and 2024. The numbers in the top row refer to source references that reported shark and batoid records from the SoM (indicated by +). These references are as follows: (1) Ninni (1923), (2) Anonymous (1974), (3) JICA (1993), (4) Meriç (1995), (5) Mater and Meriç (1996), (6) Uysal et al. (1996), (7) Kabasakal (2003), (8) Zengin et al. (2004), (9) Yaka and Yüce (2006), (10) Torcu Koç et al. (2012), (11) Yıldız et al. (2016), (12) Bilecenoğlu (2019), (13) Kabasakal and Türetken (2021), (14) Daban et al. (2021), (15) Karadurmuş and Sarı (2024), (16) Kabasakal et al. (2023a), (17) Kabasakal et al. (2024a), (18) Kabasakal et al. (2024b), and (19) elasmobranch species captured during the 2014–2024 sampling period of the present study. Demersal elasmobranch species recorded in the SoM in the last 10 years are marked with a check () in the 2025 column; these records constitute the updated list of elasmobranch species. C denotes the applicable criterion for confirmed or unconfirmed pres- ence (Kovačić et al., 2020). Elasmobranch species not included in the updated inventory are shown in bold. Tab. 2: Kronološki povzetek pridnenih vrst hrustančnic (n=32), ki so jih v Marmarskem morju zabeležili različni raziskovalci med letoma 1923 in 2024. Številke v zgornji vrstici se nanašajo na vire, ki so poročali o zapisih o morskih psih in skatih iz Marmarskega morja (označeno z +). Ti viri so naslednji: (1) Ninni (1923), (2) Anonymous (1974), (3) JICA (1993), (4) Meriç (1995), (5) Mater in Meriç (1996), (6) Uysal in sod. (1996), (7) Kabasakal (2003), (8) Zengin in sod. (2004), (9) Yaka in Yüce (2006), (10) Torcu Koç in sod. (2012), (11) Yıldız in sod. (2016), (12) Bilecenoğlu (2019), (13) Kabasakal in Türetken (2021), (14) Daban in sod. (2021), (15) Karadurmuş in Sarı (2024), (16) Kabasakal in sod. (2023a), (17) Kabasakal in sod. (2024a), (18) Kabasakal in sod. (2024b) in (19) vrste pridnenih hrustančnic, ujete v obdobju vzorčenja 2014–2024 v tej študiji. Pridnene vrste hrustančnic, zabeležene v Marmar- skem morju v zadnjih 10 letih, so označene s kljukico () v stolpcu 2025; ti zapisi predstavljajo posodobljen seznam vrst hrustančnic. C označuje veljavno merilo za potrjeno ali nepotrjeno prisotnost (Kovačić in sod., 2020). Vrste hrustančnic, ki niso vključene v posodobljeni popis, so prikazane s krepko pisavo. Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2025 C Hexanchus griseus + + + + +  1 Galeus melastomus + + + + +  1 Scyliorhinus canicula + + + + + + + + +  1 Scyliorhinus stellaris + + + + +  2 Mustelus asterias + + + + + +  1 Mustelus mustelus + + + + + + + +  1 Mustelus punctulatus +  5 Galeorhinus galeus + +  2 Dalatias licha + 1 Oxynotus centrina + + + + + + +  1 Centrophorus uyato + + + +  1 Squalus acanthias + + + + + + + + +  1 Squalus blainville + + + + + +  1 Echinorhinus brucus + + +  2 Squatina oculata +  2 Squatina squatina + + + + + +  1 Tetronarce nobiliana + 13 Torpedo marmorata + + + + + +  1 Torpedo torpedo + + + 5 Dipturus batis + + + +  5 Dipturus oxyrinchus + + +  2 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 229 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 supporting data. Therefore, although listed in the most recent ichthyological checklist (Bilecenoğlu, 2024), T. nobiliana and G. altavela were excluded from our updated inventory. The occurrence of Raja asterias in the SoM was first reported by Mater and Meriç (1996), again without information where the examined specimen was captured and without a voucher specimen stored for further inspection. In 2009, another purported specimen of R. asterias was recorded in the southwestern SoM (Torcu Koç et al., 2012); although detailed collection data were provided (capture depth and coordinates, substratum type etc.), photographic evidence later revealed that the specimen was a misidentified juvenile R. clavata (Kabasakal et al., 2025a). The occurrence record for R. montagui is also based on Mater and Meriç (1996) and does not provide the relevant informa- tion (e.g., original source reference) for this species either. Therefore, the only applicable criterion for SoM records of both R. asterias and R. montagui is exclusion Criterion 14, which is employed when a species’ reported presence cited in a review pub- lication is traceable to an original reference that, upon inspection, proves to have been based on synonymization or misidentification. Although R. brachyura was included in another recent elasmo- branch inventory of the SoM (Artüz & Fricke, 2024), it does not appear in our updated list – not even as a ‘questionable’ or ‘unconfirmed’ species – due to its documented absence from Turkish seas (Kaba- sakal, 2002; Bilecenoğlu, 2024). Its inclusion in the aforementioned checklist may stem from misidenti- fication of the polymorphic R. clavata (Criterion 14, Kovačić et al., 2020), as emphasised by Kabasakal et al. (2025a). Karadurmuş and Sarı (2024) recently reported Mustelus punctulatus from the SoM for the first time. However, their record was not supported by any mor- phological, genetic, or photographic evidence, aside from locality data. The principal diagnostic feature used to identify M. punctulatus is the presence of black spots on the body (Ebert et al., 2021). Although Marino et al. (2018) note that black spots are almost exclusively associated with M. punctulatus, they also emphasise that their absence is not diagnostic of M. mustelus. Furthermore, Ebert and Stehmann (2013) pointed out that some M. mustelus specimens may also exhibit dark spotting. In this taxonomi- cally challenging situation, a second diagnostic key feature for M. punctulatus is the presence of fringed posterior margins on the dorsal fins (Marino et al., 2018). Bello et al. (2014) proposed a best-practice approach for avoiding unverified or unverifiable ‘first records’ in ichthyology, which entails the preparation and deposition of a voucher specimen in a curated collection, accompanied by photographs, meristic and morphometric data, and, where possible, a DNA sequence (barcode). This protocol was not followed for the M. punctulatus record reported by Karadurmuş and Sarı (2024). The same authors also reported a new occurrence of Dipturus batis in the SoM, based on a single specimen captured off the northern coast (Karadurmuş & Sarı, 2024). Aside from the locality data, no supporting material (e.g., morphometric data or photographs) was provided to substantiate this im- portant record, contrary to the verification standards proposed by Bello et al. (2014). Although D. batis appears in the recent checklists of Bilecenoğlu (2024) and Artüz and Fricke (2024), its inclusion is based on two historical references (Deveciyan, 1915; Ninni, 1923). Notably, Kabasakal et al. (2024b) reported Leucoraja naevus + 2 Raja asterias + + 14 Raja clavata + + + + + + +  1 Raja miraletus + + + +  1 Raja montagui + 14 Raja radula + +  1 Dasyatis pastinaca + + + + +  1 Dasyatis tortonesei + +  5 Gymnura altavela + 13 Aetomylaeus bovinus +  2 Myliobatis aquila + + + + +  1 Number of species per reference 17 13 10 9 4 3 8 8 1 3 1 2 1 12 14 2 1 1 16 25 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 230 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 sympatric D. oxyrinchus almost at the same location where Karadurmuş and Sarı (2024) claimed D. batis. As D. oxyrinchus and D. batis are morphologically very similar (Ebert & Stehmann, 2013; Barone et al., 2022), they may be confused by researchers not specialising in elasmobranchs. Because of ambiguous evidence, the presence of M. punctulatus and D. oxyrinchus in the SoM was classified as confirmed only under the lowest applicable criterion (Criterion 5; defined above). We hope that future studies will obtain ad- ditional specimens to clarify the occurrence of these elasmobranchs in the SoM, allowing their status to be assessed against more robust criteria. Finally, a recent study showed that either a highly differentiated variety of S. blainville or an undescribed species within the S. megalops clade may occur in the SoM (Kabasakal et al., 2024c). Given the uncertainties surrounding several elasmobranch species – primarily arising from potential misidentifications by non-taxon- omists or researchers without specialised expertise in elasmobranchology and species-specific polymorphism – a genetically informed revision of the elasmobranch fauna of the SoM is urgently needed. To summarise this section, as of 16 June 2025, the updated inventory of demersal elasmobranchs of the SoM consists of the fol- lowing species: Hexanchus griseus, Galeus melastomus, Scyliorhinus canicula, S. stellaris, Mustelus asterias, M. mustelus, M. punctulatus, Galeorhinus galeus, Oxynotus centrina, Centrophorus uyato, Squalus acanthias, S. blainville, Echinorhinus brucus, Squatina oculata, S. squatina, Torpedo marmorata, Dipturus batis, D. oxy- rinchus, Raja clavata, R. miraletus, R. radula, Dasya- tis pastinaca, D. tortonesei, Aetomylaeus bovinus, and Myliobatis aquila (Tab. 2). Fig. 2: Examples of sharks and batoids occurring in the SoM: (a) Hexanchus griseus; (b) Echinorhinus brucus; (c) Oxynotus centrina; and (d) Myliobatis aquila. All specimens were held in a survival tank until examination and subsequently released alive (photos: Hakan Kabasakal & F. Saadet Karakulak). Sl. 2: Primeri morskih psov in skatov, ki se pojavljajo v južnem delu Marmarskega morja: (a) Hexanchus griseus; (b) Echinorhinus brucus; (c) Oxynotus centrina; in (d) Myliobatis aquila. Vsi primerki so bili do pregleda shranjeni v rezervoarju za preživetje in nato živi izpuščeni na prostost (fotografije: Hakan Kabasakal in F. Saadet Karakulak). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 231 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Dispersal/settlement success of demersal elasmobranch species The PCA incorporating basic life history charac- teristics, first and last record dates, and bathymetric distribution (depth ranges) for the 32 demersal elasmobranch species recorded in the SoM (Tab. 2) explained 47.62% of the total variance (Fig. 3). In contrast, a second PCA considering only the spe- cies’ first and last record dates and their common depth ranges in the SoM, accounted for a variance of approximately 61.34% (Fig. 3). While records from the SoM preceding 1990 show that elasmobranch species were more common in the deep continental shelf (100–200 m depth) and in waters deeper than 200 m, since the 2000s, these species have mostly been recorded at depths of 0–100 m. The PCA model based solely on common depth ranges and record- ing dates showed a 13.72% difference in explained variance compared to the PCA including basic life history parameters – such as maximum size, size at sexual maturity, and generation length – of demer- sal elasmobranchs. This suggests that adaptability to shallower waters is a key factor influencing the spatial distribution of demersal elasmobranch spe- cies in the SoM. Fig. 3: Plots of Principal Component Analysis (PCA) of demersal elasmobranch species of the SoM, based on (a) all available data, and (b) only the first and last record dates and the common depths at which individuals were recorded in the SoM. The three-letter abbreviations next to the red triangles represent FAO codes for cartilaginous fishes, shown alongside their corresponding species names: Hexanchus griseus, SBL; Galeus melastomus, SHO; Scyliorhinus canicula, SYC; Scyliorhinus stellaris, SYT; Mustelus asterias, SDS; Mustelus mustelus, SMD; Mustelus punctulatus, MPT; Galeorhinus galeus, GAG; Dalatias licha, SCK; Oxynotus centrina, OXY; Centrophorus uyato, CPU; Squalus acanthias, DGS; Squalus blainville, QUB; Echinorhinus brucus, SHB; Squatina oculata, SUT; Squatina squatina, AGN; Tetronarce nobiliana, TTO; Torpedo marmorata, TTR; Torpedo torpedo, TTV; Dipturus batis, RJB; Dipturus oxyrinchus, RJO; Leucoraja naevus, RJN; Raja asterias, JRS; Raja clavata, RJC; Raja miraletus, JAI; Raja montagui, RJM; Raja radula, JAR; Dasyatis pastinaca, JDP; Dasyatis tortonesei; JDO; Gymnura altavela; RGL; Aetomylaeus bovinus, MPO; Myliobatis aquila, MYL. Sl. 3: Diagrami analize glavnih komponent (PCA) pridnenih vrst hrustančnic v Marmarskem morju, ki temeljijo na (a) vseh razpoložljivih podatkih in (b) le na datumu prvega in zadnjega zapisa ter skupnih globinah, na katerih so bili primerki osebki zabeleženi v Marmarskem morju. Tri črkovne okrajšave poleg rdečih trikotnikov predstavljajo kode FAO za hrustančnice, prikazane poleg njihovih ustreznih imen vrst: Hexanchus griseus, SBL; Galeus melastomus, SHO; Scylio- rhinus canicula, SYC; Scyliorhinus stellaris, SYT; Mustelus asterias, SDS; Mustelus mustelus, SMD; Mustelus punctulatus, MPT; Galeorhinus galeus, GAG; Dalatias licha, SCK; Oxynotus centrina, OXY; Centrophorus uyato, CPU; Squalus acanthias, DGS; Squalus blainville, QUB; Echinorhinus brucus, SHB; Squatina oculata, SUT; Squatina squatina, AGN; Tetronarce nobiliana, TTO; Torpedo marmorata, TTR; Torpedo torpedo, TTV; Dipturus batis, RJB; Dipturus oxyrinchus, RJO; Leucoraja naevus, RJN; Raja asterias, JRS; Raja clavata, RJC; Raja miraletus, JAI; Raja montagui, RJM; Raja radula, JAR; Dasyatis pastinaca, JDP; Dasyatis tortonesei; JDO; Gymnura altavela; RGL; Aetomylaeus bovinus, MPO; Myliobatis aquila, MYL. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 232 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Environmental implications Table 3 compares the maximum recorded depths of demersal elasmobranchs in the SoM with records from other regions of the Mediterranean Basin. The table highlights notable differences in maximum re- corded depths depending on the year of observation in SoM-specific studies. Specifically, in the early 1990s, elasmobranch species were recorded down to upper slope depths (≤500 m) throughout the SoM; however, since the mid-2000s, their bathymetric ranges have been restricted to shelf waters (see as- terisked references in Tab. 3). The only exceptions to this narrowing of the bathymetry were observa- tions of E. brucus and G. melastomus in the Tekirdağ Trench (northwestern SoM) at depths below 1,000 m. (Kabasakal et al., 2005; Oral, 2010). Several elasmo- branchs (marked with an “δ”) that elsewhere in the Mediterranean inhabit shelf waters as well as upper and lower slope depths (e.g., Follesa et al., 2019; Ruiz-García et al., 2023; Deval & Mutlu, 2024) have, in the SoM since the mid-2000s, had maximum recorded depths restricted to outer and even inner shelf waters (see asterisked references in Table 3). Daban et al. (2021) reported that the number of elas- mobranch species in the SoM increases with depth, and that the highest catch per unit of effort (CPUE; kg/km²) for H. griseus, M. asterias and S. acanthias was recorded at depths between 100 and 200 m. This suggests a distribution largely restricted to outer shelf waters. They also observed increased CPUE for M. mustelus, S. squatina, and several batoids at depths of 20–50 m. Karadurmuş and Sarı (2024) reported a similar shelf-restricted bathymetric distribution for elasmobranchs in the region. A recent study by Ka- basakal (2025) found that the spatial distribution and abundance (number/km2) of demersal elasmobranchs in the SoM are now restricted to the inner shelf at depths of 50–100 m. The author attributes this to ver- tical habitat compression, driven by deoxygenation and the emergence of dead zones in deep shelf and bathyal waters – a process particularly severe in the environmental degraded eastern SoM. Based on correlations between captures of H. griseus and environmental parameters, Kabasakal et al. (2024d) concluded that the recent increase in bluntnose sixgill shark captures in continental shelf waters is primarily associated with an annual rise in dissolved organic compounds (NO2+NO3 nitrogen and PO4 phosphorus) in bathyal waters. They also found that deteriorating environmental conditions and progressive deoxygenation in the deep waters of the SoM coincide with a reduction in the capture depth of H. griseus on the continental shelf. Severe hypoxia in deep continental shelf waters (>100 m) and anoxia in the slope waters of the northeastern SoM drastically constrict the bathymetric and spatial distribution of demersal elasmobranchs in the region. PCA shows that, since the 2000s, records of demer- sal elasmobranchs have been concentrated at depths shallower than 150 m, reflecting the ongoing mass migration of these species toward continental shelf areas. This suggests that ‘adaptability to shallows on the continental shelf’ is a key factor in determining the spatial distribution of these species in the SoM. So what is the future of the demersal elasmo- branchs still struggling to survive in the SoM today? According to Diaz and Rosenberg (2008), these species may recolonise their former habitats if dis- solved oxygen (DO) levels and ecosystem functions improve, although they may not reach pre-hypoxia levels. Historical observations support the one-time suitability of deeper waters for demersal cartilagi- nous fish: E. brucus was recorded at 1,214 m in the Tekirdağ Trench in northwestern SoM in the early 2000s (Kabasakal et al., 2005), and G. melastomus was sampled at similar depths in the same region in 2008 (Oral, 2010). Additionally, Gallo et al. (2019) noted that certain elasmobranch species, such as cat sharks (e.g., Cephalurus cephalus), can tolerate sub- oxic conditions and withstand hypoxia better than previously believed. The species list presented in the 1974 Environmental Impact Assessment (EIA) report prepared by the Hydrobiology Research Institute to provide biological information prior to the construc- tion of a sewage system discharging into the Bospho- rus Strait – the gateway between the SoM and the Black Sea – offers insight into the historical species richness of elasmobranchs in the SoM (Anonymous, 1974; Fig. 4). Although the taxonomy used in the report is no longer valid, it is still possible to identify many of the listed species, especially pelagic ones, that have been absent from the region for years. The extreme rarity of large pelagic sharks in the SoM is both remarkable and alarming. Early ichthyological inventories (Ninni, 1923; Deveciyan, 1926; Anonymous, 1974) considered the following pelagic shark species to be seasonal visitors to or residents of the region: Alopias vulpinus, Cetorhinus maximus, Carcharodon carcharias, Lamna nasus, and Prionace glauca. In addition, A. superciliosus was first recorded in the SoM in 2007 (Kabasakal & Karhan, 2008), with a second specimen captured in 2011. Since then, no A. superciliosus specimens have been captured or sighted. Today, all pelagic sharks except A. vulpinus have been extirpated from the SoM, and even incidental captures or sightings of this remaining species are becoming increasingly rare. This decline coincides with the warming of the region: over the past 20 years, the annual average sea surface temperature (SST) in the seas of Türkiye has increased by 0.4–1.4 °C due to global warming and climate change, with the SoM being the second most affected after the Black Sea (Demircan, 2022). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 233 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Tab. 3: Comparison between maximum recorded depths for demersal elasmobranchs included in the updated SoM inventory and values recorded in various studies from other regions of the Mediterranean. Notes: § species observed at the surface, no maximum depth record available; µ record based on data from a commercial fisherman, no maxi- mum depth record available; δ species with bathyal distribution in Mediterranean subregions; * study specific to SoM. Tab. 3: Primerjava med največjimi zabeleženimi globinami za pridnene hrustančnice, vključene v posodobljen popis vrst v Marmarskem morju, in vrednostmi, zabeleženimi v različnih študijah iz drugih regij Sredozemlja. Opombe: § - vrste, opažene na površini, ni na voljo zapisa o največji globini; µ - zapis temelji na podatkih komercialnega ribiča, ni na voljo zapisa o največji globini; δ - vrste z batialno razširjenostjo v sredozemskih podregijah; * študija, specifična za Marmarsko morje. Species Pr es en t S tu dy JI C A (1 99 3) * M er iç (1 99 5) * Ka ba sa ka l e t a l. (2 00 5) * O ra l ( 20 10 )* To rc u Ko ç et a l. (2 01 2) * Bi le ce no ğl u (2 01 9) * Fo lle sa e t a l. (2 01 9) D ab an e t a l. (2 02 1) * Ru iz -G ar cí a et a l. (2 02 3) D ev al & M ut lu (2 02 4) Ka ra du rm uş & S ar ı (2 02 4) * Hexanchus griseusδ 188 – 350 – – – – 800 200 537 – – Galeus melastomusδ 140 500 350 – 1213 – – 800 – 685 800 – Scyliorhinus caniculaδ 124 500 350 – – 60 – 800 200 649 600 146 Scyliorhinus stellaris – – – – – – – 200 200 – – 146 Mustelus asterias – 500 350 – – – – 200 200 – – 45 Mustelus mustelus 188 100 350 – – – – 200 200 – 200 85 Mustelus punctulatus – – – – – – – 200 – – – 146 Galeorhinus galeus§ – – – – – – – 800 – – – – Oxynotus centrinaδ 66 500 – – – – – 800 200 214 600 146 Centrophorus uyatoδ 150 500 270 – – – – 800 – 588 800 – Squalus acanthiasδ 140 200 350 – – – – 800 200 – – 146 Squalus blainvilleδ 140 500 350 – – – – 800 200 – 600 – Echinorhinus brucus 150 – – 1214 – – – – – – – – Squatina oculataµ – – – – – – – – – – – – Squatina squatina – – – – – – – – 50 – – 47 Torpedo marmorata 116 200 – – – 45 – 200 200 257 300 85 Dipturus batis – – – – – – – – – – – 68 Dipturus oxyrinchusδ 100 500 – – – – – 800 – 329 600 – Raja clavataδ 188 500 – – – 45 – 800 50 329 500 146 Raja miraletus 95 – – – – – – 200 – – 200 85 Raja radula 25 – – – – – – 200 – – – – Dasyatis pastinaca 84 200 – – – – – 200 50 133 200 146 Dasyatis tortonesei 67 – – – – – – – – – – – Aetomylaeus bovinus – – – – – – 3 200 – 73 – – Myliobatis aquila 90 200 – – – – – 200 200 73 – 85 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 234 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Fig 4: Pelagic and demersal elasmobranch species reported from the southern entrance of the Bosphorus Strait (northeastern SoM) in the Environmental Impact Assessment (EIA) report compiled by the Hydrobiology Research Institute (adapted from Anonymous, 1974). Sl. 4: Pelaške in pridnene vrste hrustančnic, o katerih so poročali pri južnem vhodu v Bosporsko ožino (severovzhodni del Marmarskega morja) v poročilu o presoji vplivov na okolje (EIA), ki ga je sestavil Raziskovalni inštitut za hidrobiologijo (prirejeno po Anonymous, 1974). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 235 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 This rise in seawater temperatures has reduced the solubility of DO, causing elasmobranch species to become less tolerant of hypoxia, as their metabolic rates increase in parallel with warming (Breitburg et al., 2018; Waller et al., 2024). Vedor et al. (2021) suggested that the expanding oxygen minimum zones (OMZs) driven by climate change – (through shoal- ing of low-DO waters and rising SST) – will compress the habitat of pelagic sharks, such as the blue shark, P. glauca, forcing them into surface waters above the OMZs and thereby reducing their overall available habitat volume. Such dynamic is indeed described by the OMZ ‘habitat trap’ hypothesis. According to Sims (2019), the high oxygen demands of pelagic sharks compel them to retreat to normoxic zones when encountering oxygen-depleted waters of the open ocean (like those in the SoM). Consequently, the apparent absence of most pelagic shark species (except A. vulpinus) from the SoM today is likely due to regional deoxygenation and an increased rate of their incidental capture in the resulting OMZ habitat trap. It seems that decades of environmental degradation, marine pollution, and deoxygenation in the SoM have reduced the region’s elasmobranch fauna largely to demersal species. This highlights the potentially devastating impact of environmental degradation on marine fauna and biodiversity. A comparable depletion of large mesopredators such as G. galeus and Carcharhinus plumbeus, and top predators such as A. vulpinus, L. nasus, and P. glauca, has been recorded in the Adriatic Sea, where envi- ronmental variability, in addition to fisheries, has been suggested to impact elasmobranch abundance (Barausse et al., 2014). In conclusion, while overfishing was once consid- ered the primary threat to chondrichthyans (sharks, rays, and chimaeras) (Stevens et al., 2000), habitat degradation, pollution, and climate change are now recognised as additional major drivers of species loss in this group (Dulvy et al., 2021). Based on the as- sessment of fish communities across several aquatic ecosystems worldwide, Moyle and Leidy (1992) concluded that most faunas are in serious decline, primarily due to commercial exploitation, habitat alteration, and pollution, and therefore require im- mediate protection. Pollom et al. (2024) reported of two South African cat shark species (Haploblepharus fuscus and H. kistnasamyi) threatened not only by overfishing but also by coastal urbanisation, indus- trialisation, and increasing marine pollution. The combined pressures have led to both species being categorised as ‘Vulnerable’ on the Red List. The find- ings of Pollom et al. (2024) align with numerous other studies demonstrating the drastic effects of human activities on regional fish faunas, as also documented by Bin Aziz et al. (2021) and Yang et al. (2024). The assumption that shallow continental shelf areas may become a habitat trap for demersal elasmobranchs – forcing these out of deep waters and exposing them to higher fishing pressure – has now materialised in the SoM, as pointed out by Kabasakal et al. (2023b) and Waller et al. (2024). According to Akoğlu et al. (2024), the pattern traditionally observed in demer- sal fishery – years of overfishing followed by stock collapse and gradual recovery over decades – no longer holds true for demersal elasmobranchs in the SoM. Although Important Shark and Ray Areas (ISRAs) have recently been designated in the SoM (Jabado et al., 2023) – that confirm the presence of 25 demersal elasmobranch species and encompass potential breeding grounds for various taxa (e.g., S. canicula, O. centrina, S. blainvillei and M. aquila) distributed across the region (Daban et al., 2021; Kabasakal et al. 2024e, 2025b) – we propose that the entire SoM be declared an ISRA to protect the taxonomic diversity of these sensitive species in an area undergoing severe environmental degradation. ACKNOWLEDGMENTS The authors thank the crew of R/V Yunus-S for their efforts during the field work. This study is part of the following research projects: (1) Stock Assessment of Demersal Fish Species in the Eastern Marmara Sea”, which is funded by the Scientific Research Projects Coordination Unit of Istanbul Uni- versity (Project No. 2714/51922); and (2) Integrated Marine Pollution Monitoring (DEN-İZ) 2023-2025 Programme” carried out by the Ministry of Environ- ment, Urbanization and Climate Change / General Directorate of Environmental Impact Assessment, Permit and Inspection and coordinated by TUBITAK Marmara Research Center. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 236 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 PRIDNENE HRUSTANČNICE V MARMARSKEM MORJU: POSODOBLJENA INVENTARIZACIJA, TAKSONOMSKA VPRAŠANJA IN OKOLJSKE POSLEDICE Hakan KABASAKAL Istanbul University, Institute of Graduate Studies in Sciences, Fisheries Technologies and Management Program, Istanbul, Türkiye WWF Türkiye, İstanbul, Türkiye e-mail: kabasakal.hakan@gmail.com F. Saadet KARAKULAK Department of Fisheries Technologies and Management, Faculty of Aquatic Sciences, İstanbul University, İstanbul, Türkiye POVZETEK Pričujoča raziskava temelji na vzorcih 16 vrst hrustančnic (devet vrst morskih psov in sedem vrst skatov), pridobljenih med letoma 2014 in 2024 v Marmarskem morju (SoM). V istem obdobju so drugi raziskovalci na istem območju zabeležili še dodatnih devet vrst (šest vrst morskih psov in tri vrste skatov). V zadnjih 100 letih je bilo na območju SoM tako zabeleženih 32 vrst pridnenih hrustančnic (16 vrst morskih psov in 16 vrst skatov), vendar uporaba meril za „potrjeno ali nepotrjeno prisotnost na podlagi dokazov“ trenutno število zmanjša na 25 (15 vrst morskih psov, 10 vrst skatov). Analiza glavnih komponent (PCA) kaže, da je prilagodljivost plitvejšim vodam zdaj ključnega pomena za prostorsko porazdelitev pridnenih hrustančnic v morskem okolju. Ta premik jasno kaže, kako dramatično so degradacija okolja, onesnaževanje morja in deoksigenacija v zadnjih 40 letih zmanjšali favno hrustančnic v regiji, predvsem pridnenih vrst, kar poudarja potencialno uničujoč vpliv takšne degradacije na biotsko raznovrstnost. Ključne besede: Elasmobranchii, preživetje, ohranjanje, inventarizacija, Marmarsko morje, Turčija ANNALES · Ser. hist. nat. · 35 · 2025 · 2 237 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 REFERENCES Akoğlu, E., İ. Saygu & N. Demirel (2024): Decadal changes in the Sea of Marmara indicate degraded eco- system conditions and unsustainable fisheries. Front. mar. sci., 11 (1412656). https://doi.org/ 10.3389/ fmars.2024.1412656. Anonymous (1974): Biological information for sewage disposal in the Bosphorus, Hydrobiological Research Institute, Project I/1974. Anonymous (2017): MEDITS-Handbook, Version n. 9, MEDITS Working Group, 106 pp. Artüz, M.L. & R. Fricke (2024): The marine carti- laginous fishes and sturgeons of the Sea of Marmara: an updated and annotated checklist. Zootaxa, 5501, 531- 541. https://doi.org/10.11646/zootaxa.5501.4.3. Barausse, A., V. Correale, A. Curkovic, L. Finotto, E. Riginella, E. Visentin & C. Mazzoldi (2014): The role of fisheries and the environment in driving the decline of elasmobranchs in the northern Adriatic Sea. ICES J. Mar. Sci., 71, 1593-1603. doi:10.1093/icesjms/fst222. Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, rays and chimaeras in Mediterranean and Black Seas – Key to identification. FAO, Rome, 87 pp. https:// doi.org/10.4060/cc0830en. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposed best practice approach to overcome un- verified and unverifiable “first records” in ichthyology. Cybium, 38, 9-14. Benli, H.A., B. Cihangir & K.C. Bizsel (1993): A new record for the Sea of Marmara; (Family: Squalidae) Centrophorus granulosus (Bloch & Schneider, 1801). Turk. J. Zool., 17, 133-135. Beşiktepe, Ş.T., H.İ. Sur, E. Özsoy, M.A. Latif, T. Oğuz & Ü. Ünlüata (1994): The circulation and hydrog- raphy of the Marmara Sea. Prog. Oceanogr., 34, 285- 334. https://doi.org/10.1016/0079-6611(94)90018-3. Bilecenoğlu, M. (2019): First record of Aetomylaeus bovinus (Geoffroy St. Hilaire, 1817) Elasmobranchii: Myliobatidae), from the Sea of Marmara. J. Black Sea/ Medit., 25, 182-187. Bilecenoğlu, M. (2024): Diversity of fishes along the coast of Türkiye. Turk. J. Zool., 48, 589-616. https:// doi.org/10.55730/1300-0179.3197. Bilecenoğlu, M., E. Taşkavak, S. Mater & M. Kaya (2002): Checklist of the marine fishes of Turkey. Zootaxa, 113, 1-194. Bilecenoğlu, M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38, 901-929. https://doi. org/10.3906/zoo-1405-60. Bin Aziz, S., N.A. Hasan, M.R. Mondol, M. Alam & M.M. Haque (2021): Decline in fish species di- versity due to climatic and anthropogenic factors in Hakaluki Haor, an ecologically critical wetland in northeast Bangladesh. Heliyon, 7, e05861. https://doi. org/10.1016/j.heliyon.2020.e05861. Breitburg, D., L.A. Levin, A. Oschlies, M. Gré- goire, F.P. Chavez, D.J. Conley, V. Garçon, D. Gilbert, G. Gutiérrez, K. Isensee, G.S. Jacinto K.E. Limburg, I. Montes, S.W.A. Naqvi, G.C. Pitcher, N.N. Rabalais, M.R. Roman, K.A. Rose, B.A. Seibel, M. Telszewski, M. Yasuhara & J. Zhang (2018): Declinig oxygen in the global ocean and coastal waters. Science 359, eaam7240. doi: 10.1126/science.aam7240. ÇŞİDB, TUBİTAK-MAM (2021): Denizlerde Bütünleşik Kirlilik İzleme Programı 2014-2019 Marmara Denizi Özet Raporu, TÜBİTAK-MAM Matbaası, Kocaeli. [in Turkish]. Daban, İ.B., A. İşmen, M. Şirin, C.Ç. Yığın & M. Arslan İhsanoğlu (2021): Analysis of Demersal Fish Fauna off the Sea of Marmara, Turkey. COMU-JMSF., 4, 20-31. https://doi.org/10.46384/jmsf.912403. Demircan, M. (2022): Climate Change’s Impact on Turkish Seas’ Temperature and Aquaculture. JENAS., 4, 96-108. https://doi.org/10.53472/je- nas.1096917. Demirel, N., M. Zengin & A. Ulman (2020): First large-scale eastern Mediterranean and Black Sea stock assessment reveals a dramatic decline. Front. mar. sci., 7, 103. https://doi.org/10.3389/ fmars.2020.00103. Deval, M.C. & E. Mutlu (2024): Spatio-temporal density of the demersal chondrichthyes assemblage in an upper bathyal of the eastern Mediterranean Sea. Mar. Biodivers., 54, 31. https://doi.org/10.1007/ s12526-024-01423-x. Devedjian, K. (1915): Balık ve Balıkçılık. İstanbul: Düyun-u Umumiye-i Osmaniye Varidat-ı Mahsusa İdare-i Merkeziyesi Matbaası. [in Turkish]. Deveciyan, K. (1926): Pêche et Pécheries en Turquie. Imprimerie de l’Administration de la Dette Publique Ottomane, Istanbul, 480 pp. Diaz, R.J. (2016): Anoxia, hypoxia, and dead zones. In: M.J. Kennish (Ed.). Encyclopedia of Estu- aries, Springer Science+Business Media, Dordrecht, pp. 19–29. http://dx.doi.org/10.1007/978–94–017– 8801–4. Diaz, R.J. & R. Rosenberg (2008): Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929. http://dx.doi.org/10.1126/ science.1156401. Dulvy N.K., N. Pacoureau, C.L. Rigby, R. A. Pol- lom, R.W. Jabado, D.A. Ebert, B. Finucci, C.M. Pol- lock, J. Cheok, D.H. Derrick, K.B. Herman, C.S. Sher- man, W.J. VanderWight, J.M. Lawson, R.H.L. Walls, J.K. Carlson, P. Charvet, K.K. Bineesh, D. Fernando, G.M. Ralph, J.H. Matsushiba, C. Hilton-Taylor, S.V. Fordham & C.A. Simpfendorfer (2021): Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol., 31, 1-15. https:// doi.org/10.1016/j.cub.2021.08.062. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 238 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Ebert, D.A. & M.F.W. Stehmann (2013): Sharks, batoids, and chimaeras of the North Atlantic, FAO Species Catalogue for Fishery Purposes. No. 7. FAO, Rome, 523 pp. Ebert, D.A., M. Dando & S. Fowler (2021): Sharks of the World: A Complete Guide. Princeton University Press, Princeton, 608 pp. Ellis, J.R. & N.K. Dulvy (2016): Leuc- oraja naevus (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T161626A16527841. Ellis, J.R., S.R. McCully Phillips & F. Poisson (2016a): A review of capture and post-release mor- tality of elasmobranchs. J. Fish Biol., 90, 653-722. https://doi.org/10.1111/jfb.13197. Ellis, J.R., F. Serena, C. Mancusi, F. Haka, G. Morey, J. Guallart & T. Schembri (2016b): Scyliorhinus stellaris (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T161484A16527873. Ellis, J.R., A. Soldo, M. Dureuil & S. Fordham (2016c): Squalus acanthias (Mediterranean assess- ment). The IUCN Red List of Threatened Species 2016: e.T91209505A16527761. Ellis, J.R., A. Abella, F. Serena & M.F.W. Ste- hmann (2016d): Dipturus oxyrinchus (Mediterra- nean assessment). The IUCN Red List of Threatened Species 2016: e.T63100A16527733. Ellis, J.R., N.K. Dulvy & F. Serena (2016e): Raja clavata (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T39399A103113598. Ellis, J.R., F. Serena & N. Dulvy (2016f): Raja montagui (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T63146A16564906. Ellis, J., S.R. McCully-Philipps, D. Sims, D. Derrick, J. Cheok & N.K. Dulvy (2021): Dipturus batis . The IUCN Red List of Threatened Spe- cies 2021: e.T203364219A203375487. https:/ / d x . d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 2 1 - 2 . R LT S . T203364219A203375487.en. Eryılmaz, L. & N. Meriç (2005). Review of fish fauna of the Sea of Marmara. J. Black Sea/Medit., 11, 153-178. FAO, ACCOBAMS (2018): Good practice guide for the handling of sharks and rays caught inciden- tally in Mediterranean pelagic longline fisheries. http://www.fao.org/3/i9152en/I9152EN.pdf. Farrell, E.D., S. McCully, N.K. Dulvy, C. Mancusi & J.R. Ellis (2016a): Mustelus asterias (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T39357A16527992. Farrell, E.D. & N.K. Dulvy (2016b): Muste- lus mustelus (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T39358A16527988. Ferretti, F. & E. Buscher (2016): Echinorhi- nus brucus (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T41801A90728641. Ferretti, F., G. Morey, F. Serena, C. Mancusi, R.P. Coelho, M. Seisay, F. Litvinov & E. Buscher (2016a): Squatina oculata (Mediterranean assess- ment). The IUCN Red List of Threatened Species 2016: e.T61418A16570000. Ferretti, F., G. Morey, F. Serena, C. Mancusi, S.L. Fowler, F. Dipper & J.R. Ellis (2016b): Squati- na squatina (Mediterranean assessment) (errata version published in 2016). The IUCN Red List of Threatened Species 2016: e.T39332A101695971. Finucci, B., A. Barnett, K.K. Bineesh, J. Cheok, C.F. Cotton, Dharmadi, K.J. Graham, D.W. Kulka, F.C. Neat, N. Pacoureau, C.L. Rigby, S. Tanaka & T.I. Walker (2020): Hexanchus griseus. The IUCN Red List of Threatened Species 2020: e.T10030A495630. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS. T10030A495630.en. Finucci, B., D. Derrick, J. Dossa & A.B. Williams (2021): Tetronarce nobiliana. The IUCN Red List of Threatened Species 2021: e.T116861529A116861706. https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS. T116861529A116861706.en. Follesa, M.C., M.F. Marongiu, W. Zupa, A. Bel- lodi, A. Cau, R. Cannas, F. Colloca, M. Djurović, I. Isajlović, A. Jadaud, C. Manfredi, A. Mulas, P. Peri- steraki, C. Porcu, S. Ramirez-Amaro, F. S. Jiménez, F. Serena, L. Sion, I. Thasitis, A. Cau & P. Carbonara (2019): Spatial variability of Chondrichthyes in the northern Mediterranean. In: Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveys (M.T. Spedicato, G. Tserpes, B. Mérigot & E. Massutí, eds.) Sci. Mar., 83S1, December 2019, 81-100. ISSN-L 0214-8358 https://doi.org/10.3989/ scimar.04998.23A. Gallo, N.D., L.A. Levin, M. Beckwith & J.P. Barry (2019): Home sweet suboxic home: remark- able hypoxia tolerance in two demersal fish species in the Gulf of California. Ecology, 100 (3), e02539. https://doi.org/10.1002/ecy.2539. Geldiay, R. (1969): İzmir Körfezinin Başlıca Balıkları ve Muhtemel İnvasionları. Ege Üniversitesi Matbaası, İzmir. [in Turkish]. GFCM (2018): GFCM Data Collection Reference Framework (DCRF). Version: 23.2., FAO, 190 p. Guallart, J. & R. Walls (2015): Centrophorus uyato (Europe assessment). The IUCN Red List of Threatened Species 2015: e.T41745A72821789. Gül, G. & N. Demirel (2021): Evaluation of the comprehensive feeding strategy and trophic role of overexploited mesopredator species in the Sea of Marmara (northeastern Mediterranean). Estuar. Coast. Shelf Sci., 259, 107448. https://doi. org/10.1016/j.ecss.2021.107448. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 239 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Hammer, Ø., D.A.T. Harper & P.D. Ryan (2001): Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. electronica, 4, 9 pp. http://palaeo-electronica.org/2001_1/past/ issue1_01.htm. Jabado, R.W. & D. Derrick (2021): Dasyatis torton- esei. The IUCN Red List of Threatened Species 2021: e.T18907453A68783115. Jabado, R.W., E. García-Rodríguez, P.M. Kyne, R. Charles, A.H. Armstrong, J. Bortoluzzi, T.L. Mouton, A. GonzalezPestana, A. Battle-Morera, C. Rohner & G. Notarbartolo di Sciara (2023): Mediterranean and Black Seas: A regional compendium of Important Shark and Ray Areas, IUCN SSC Shark Specialist Group, Dubai. JICA (1993): Marmara, Ege ve Akdenizde demersal balıkçılık kaynakları sörvey raporu. Ja- ponya Uluslararası İşbirliği Ajansı (JICA), T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Üretim ve Geliştirme Genel Müdürlüğü, Ankara, 579 p. [in Turkish]. Kabasakal, H. (2002): Elasmobranch species of the seas of Turkey. Ann. Ser. Hist. Nat., 12, 15-22. Kabasakal, H. (2016): Status of Cartilaginous Fishes in the Sea of Marmara. In: E. Özsoy, M.N. Çağatay, N. Balkıs & B. Öztürk (Eds.). The Sea of Marmara - Marine Biodiversity, Fisheries, Conservation and Governance. İstanbul, Turkish Marine Research Foundation No: 42, pp. 903-918. Kabasakal, H. (2022): Marmara Denizi’nde köpekbalıkları: İçdenizde yaşayan türlere güncel bilgiler ışığında bir bakış. In: B. Öztürk, H.A. Ergül, A.C. Yalçıner, H. Öztürk & B. Salihoğlu (Eds.). Mar- mara Denizi 2022 Sempozyumu Bildiriler Kitabı, Türk Deniz Araştırmaları Vakfı, Publication No: 63, 8-9 Ocak 2022 İstanbul, 337-343. [in Turkish]. Kabasakal, H. (2025): Effects of dissolved oxygen on distribution of chondrichthyes in eastern Sea of Marmara. PhD Thesis, Istanbul University, Institute of Graduate Studies in Sciences, Fisheries Technologies and Management Program, Istanbul, 165 pp. Kabasakal, H. & S.Ü. Karhan (2008): On the occur- rence of the bigeye thresher shark, Alopias supercilio- sus (Chondricthyes: Alopiidae), in Turkish waters. Mar. Biodivers. Rec., 1,e69, 1-3. https://doi.org/10.1017/ S1755267207007452. Kabasakal, H. & K.F. Türetken (2021): Photographic documentation of tope shark, Galeorhinus galeus (Linnaeus, 1758), in İstanbul Strait: Reoccurrence of a rare shark in troubled waters. J. Black Sea/Medit., 27, 372-378 Kabasakal, H. & F.S. Karakulak (2024): A Review of Sharks and Batoids of the Sea of Marmara: Current Inventory, Conservation Issues and Future Projections. In: M. İşinibilir, A.E. Kıdeyş & A. Malej (Eds.). Ecologi- cal Changes in the Sea of Marmara, İstanbul University Press, E-ISBN 978-605-07-1633-7. pp. 819-846. doi: 10.26650/B/LSB21LSB37.2024.023.025. Kabasakal, H., M.İ. Öz, S.Ü. Karhan, Z. Çaylarbaşı & U. Tural (2005): Photographic evidence of the occurrence of bramble shark, Echinorhinus brucus (Bonnaterre, 1788) (Squali- formes: Echinorhinidae) from the Sea of Marmara. Annales, Ser. Hist. Nat., 15, 51-56. Kabasakal, H., U. Uzer & F.S. Karakulak (2023a): Occurrence of deep-sea Squaliform sharks, Echinorhinus brucus (Echinorhinidae) and Centrophorus uyato (Centrophoridae), in Marmara shelf waters. Annales, Ser. Hist. Nat., 33, 27-36. https://doi.org/10.19233/ASHN.2023.05. Kabasakal, H., S. Sakınan, L. Lipej & D. Ivajnšič (2023b): A preliminary life history traits analysis of sharks in the Sea of Marmara (Türkiye), where deoxygenation and habitat deterioration are rais- ing concerns. Aquat. Res., 6, 72-82. https://doi. org/10.3153/AR23008. Kabasakal, H., U. Uzer & F.S. Karakulak (2024a): Where have you been hiding? Recurrence of Squatina oculata in the Sea of Marmara, with a review of the captures in Turkish seas. Aquat. Sci. Eng., 39, 200-205. https://doi.org/10.26650/ ASE20241406066. Kabasakal, H., U. Uzer & F.S. Karakulak (2024b): Occurrence of longnosed skate, Dipturus oxyrinchus, in the Sea of Marmara. Annales, Ser. Hist. Nat., 34, 221-228. https://doi.org/10.19233/ ASHN.2024.27. Kabasakal, H., U. Uzer & F.S. Karakulak (2024c): Is there a third species of the genus Squalus (Squali- dae) present in the Marmara Sea, or just an extreme case of intraspecific variability of Squalus blainville? J. Ichthyol., 64, 727-736. https://doi.org/10.1134/ S0032945224700462. Kabasakal, H., U. Uzer & F.S. Karakulak (2024d): Impact of fishing capacity and envi- ronmental parameters on landings of Hexanchus griseus in the Sea of Marmara, Annales, Ser. Hist. Nat., 34, 257-272. https://doi.org/10.19233/ ASHN.2024.31. Kabasakal, H., U. Uzer, O. Gönülal & F.S. Kara- kulak (2024e): Bioecological lessons learned from the neonate longnose spurdogs Squalus blainville (Squaliformes: Squalidae) suggest a potential nurs- ery ground in the Marmara Sea. Acta Adriatica, 65. https://doi.org/10.32582/aa.65.2.2. Kabasakal, H., U. Uzer & F.S. Karakulak (2025a): Did Raja asterias ever occur in the Sea of Marmara or were previous records just the cases of misidenti- fied Raja clavata? Turk. J. Zool., 49, 92-102. https:// doi.org/10.55730/1300-0179.3215. Kabasakal, H., U. Uzer & F.S. Karakulak (2025b): Captures of maturing and gravid female angular roughsharks, Oxynotus centrina (Oxynotidae), in the Sea of Marmara. J. Ichthyol., 65, 282-290. https://doi.org/10.1134/S0032945224701029. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 240 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Karadurmuş, U. & M. Sarı (2024): Distribution and diversity of elasmobranchs in the Sea of Marmara: a 2023 status report. Aquat. Conserv.: Mar. Freshw., 34, e4121. https://doi.org/10.1002/aqc.4121. Kocataş, A., T. Koray, M. Kaya, & Ö.F. Kara (1993) Review of the fishery resources and their environ- ment in the Sea of Marmara. Studies and Reviews No: 64, Fisheries and Environmental Studies in the Black Sea System, FAO, Rome, pp. 87-143. Kovačić, M., L. Lipej & J. Dulčić (2020): Evidence approach to checklists: critical revision of the check- list of the Adriatic Sea fishes. Zootaxa, 4767, 001- 055. https://doi.org/10.11646/zootaxa.4767.1.1. Last P.R., B. Séret, M.F.W. Stehmann & S. Weig- mann (2016): Skates - Family Rajidae, In: (W.T. White, M.R. de Carvalho, B. Séret, M.F.W. Stehmann, G.J.P. Naylor & L. Marshall) (Eds.). Rays of the world, CSIRO, Clayton South, pp. 204-363. Mancusi, C., G. Morey & F. Serena (2016): Raja radula. The IUCN Red List of Threatened Species 2016: e.T161339A16527984. Mantıkçı, M., H. Örek, M. Yücel, Z. Uysal, S. Arkın & B. Salihoğlu (2022): Marmara Denizi’nin güncel oksijen durumu ve müsilajın etkisi, In: B. Öztürk, H.A. Ergül, A.C. Yalçıner, H. Öztürk & B. Salihoğlu (Eds.). Marmara Denizi 2022 Sempozyumu Bildiriler Kitabı, Türk Deniz Araştırmaları Vakfı, Pub- lication No: 63, 8-9 Ocak 2022 İstanbul, pp. 18-24. [in Turkish]. Marino, I.A.M., L. Finotto, F. Colloca, M. Di Lorenzo, M. Gristina, E.D. Farrell, L. Zane & C. Mazzoldi (2018): Resolving the ambiguities in the identification of two smooth-hound sharks (Mustelus mustelus and Mustelus punctulatus) using genetics and morphology. Mar. Biodiv., 48, 1551-1562. https://doi.org/10.1007/s12526-017- 0701-8. Mater, S. & N. Meriç (1996): Deniz balıkları - Pisces. In: Türkiye Omurgalılar Tür Listesi (A. Kence & C.C. Bilgin, eds.). TÜBİTAK, Ankara, 133-172. [in Turkish]. McCully, S., M. Dureuil & E.D. Farrell (2016): Galeorhinus galeus (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T39352A16527949. Meriç, N. (1995): A study on existence of some fishes on the continental slope of the Sea of Mar- mara. Turk. J. Zool., 19, 191-198. Moyle, P.B. & R.A. Leidy (1992): Loss of biodi- versity in aquatic ecosystems: evidence from fish faunas. In: P.L. Fiedler & S.K. Jain (Eds.). Conserv. Biol. Springer, Boston, MA, pp. 127-169. https:// doi.org/10.1007/978-1-4684-6426-9_6. Ninni, E. (1923): Primo contributo allo studio dei pesci e della pesca nelle acque dell’Impero Ot- tomano. Premiate Officine Grafiche Carlo Ferrari, Venezia. Notarbartolo di Sciara, G., F. Serena, N. Ungaro, F. Ferretti, S. Pheeha, B. Human, S. McCully & E. Buscher (2016): Torpedo marmorata (Mediterra- nean assessment). The IUCN Red List of Threatened Species 2016: e.T161328A16527917. Oral, M. (2010): A preliminary study on feeding habits of blackmouth catshark Galeus melastomus, Rafinesque, 1810, sampled from the Sea of Marma- ra. p. 312-316. In: B. Öztürk (Ed.). Marmara Denizi 2010 Sempozyumu, Bakırköy Yunus Emre Kültür Merkezi, Istanbul, 25-26 September 2010. Bildiriler Kitabı. Türk Deniz Araştırmaları Vakfı Istanbul. [in Turkish]. Pollom, R.A., J. Cheok, N. Pacoureau, K.S. Gledhill, P.M. Kyne, D.A. Ebert, R.W. Jabado, K.B. Herman, R.H. Bennett, C. da Silva, S. Fernando, B. Kuguru, R.W. Leslie, M.E. McCord, M. Samoilys, H. Winker, S.T. Fennessy, C.M. Pollock, C.L. Rigby & N.K. Dulvy, N.K. (2024): Overfishing and climate change elevate extinction risc of endemic sharks and rays in the southwest Indian Ocean hotspot. PLoS ONE, 19, e0306813. https://doi.org/10.1371/ journal.pone.0306813. Rhasis Erazi, R.A. (1942): Marine fishes found in the Sea of Marmara and in the Bosphorus. İstanbul Üniversitesi Fen Fakültesi Mecmuası, Seri B, 7, 103- 115. Rincón-Díaz, M.P., S.J. Pittman, I. Arismendi & S.S. Heppell (2018): Functional diversity metrics de- tect spatio-temporal changes in the fish communities of a Caribbean marine protected area. Ecosphere, 9, e02433. https://doi.org/10.1002/ecs2.2433. Ruiz-García, D., J.A. Raga, D. March, A.I. Colmenero, F. Quattrocchi, J.B. Company, L. Recasens & C. Barría (2023): Spatial distribution of the demersal chondrichthyan community from the western Mediterranean trawl bycatch. Front. mar. sci., 10:1145176. https://doi.org/ 10.3389/ fmars.2023.1145176. Salihoğlu, B., B.F. Salihoğlu, D. Tezcan, S. Tuğrul, E. Akoğlu, K. Özkan & S. Arkın (2022): Sea of Marmara ecosystem under multiple stressors and rehabilitation plans, In: B. Öztürk, H.A. Ergül, A.C. Yalçıner, H. Öztürk & B. Salihoğlu (Eds.). Marmara Denizi 2022 Sempozyumu Bildiriler Kitabı, Türk Deniz Araştırmaları Vakfı, Yayın No: 63, 8-9 Ocak 2022 İstanbul, pp. 49-53. [in Turkish]. Saygu, İ. & M.C. Deval (2014): The post- release survival of two skate species discarded by bottom trawl fisheries in Antalya Bay, Eastern Mediterranean. TrJFAS, 14, 947-953. https://doi. org/10.4194/1303-2712-v14_4_14. Saygu, İ., E. Akoğlu, G. Gül, D. Bedikoğlu & N. Demirel (2023): Fisheries impact on the Sea of Mar- mara ecosystem structure and functioning during the last three decades. Front. mar. sci., 9, 1076399. https://doi.org/10.3389/fmars.2022.1076399. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 241 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Serena, F. (2005): Field identification guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Identification Guide for Fishery Purposes. FAO, Roma. Serena, F., J. Ellis, A. Abella, C. Mancusi, F. Haka, J. Guallart, N. Ungaro, R.P. Coelho, T. Schembri & M. Kirsteen (2015): Scyliorhinus canicula (Europe assessment). The IUCN Red List of Threat- ened Species 2015: e.T161307554A201955962. https://dx.doi.org/10.2305/IUCN.UK.2015-1.RLTS. T161307554A201955962.en. Serena, F., G. Notarbartolo di Sciara, & N. Ungaro (2016a): Torpedo torpedo (Mediterranean assessment). The IUCN Red List of Threatened Spe- cies 2016: e.T161397A16527797. Serena, F., A. Abella, R.H.L. Walls & N.K. Dulvy (2016b): Raja asterias (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T63120A16527773. Serena, F., C. Mancusi, G. Morey & J.R. El- lis (2016c): Dasyatis pastinaca (Mediterranean assessment) (errata version published in 2016). The IUCN Red List of Threatened Species 2016: e.T161453A97841681. Serena, F., J. Holtzhausen, D.A. Ebert & C. Mancusi (2016d): Myliobatis aquila (Mediterranean assessment). The IUCN Red List of Threatened Spe- cies 2016: e.T161569A16527996. Silveira, L.F., D. de Mello Beisiegel, F.F. Curcio, P.H. Valdujo, M. Dixo, V.K. Verdade, G. M.T. Mattox & P.T.M. Cunningham (2010): What use do fauna inventories serve? Estud. Av., 24, 173-207. Sims, D.W. (2019): The significance of ocean deoxygenation for elasmobranchs. In: Laffoley, D. and Baxter, J.M. (Eds.). Ocean deoxygenation: everyone’s problem: causes, impacts, consequences and solutions. IUCN Global Marine and Polar Programme. pp. 431-448. https://doi.org/10.2305/ IUCN.CH.2019.13.en. Soldo, A. & J. Guallart (2016): Oxynotus cen- trina (Mediterranean assessment) (errata version published in 2016). The IUCN Red List of Threat- ened Species 2016: e.T63141A97834254. Soldo, A., M.N. Bradai, E. Buscher, D.A. Ebert, F. Serena & C. Mancusi (2016): Squalus blainville (Med- iterranean assessment). The IUCN Red List of Threat- ened Species 2016: e.T169229923A200982471. Stauffer Jr., J.R. & P.M. Kocovsky (2007): Explor- ing links between systematics and fisheries man- agement. Trans. Am. Fish. Soc., 136, 1122-1125. https://doi.org/10.1577/T06-166.1. Stevens, J.D., R. Bonfil, N.K. Dulvy & P.A. Walker (2000): The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implica- tions for marine ecosystems. ICES Journal of Marine Science, 57(3), 476-494. https://doi.org/10.1006/ jmsc.2000.0724. Torcu Koç, H., F. Üstün, Z. Erdoğan & L. Artüz (2012): Species composition of benthic fish fauna in the Sea of Marmara, Turkey. J. Appl. Ich- thyol., 37, 303-307. https://doi.org/10.1111/j.1439- 0426.2012.02037.x. Uysal, A., A. Yüksek & E. Okuş (1996): Marmara Denizi’nde ender rastlanan üç elasmobranchii türü ve dağılımları: (Raja naevus Müller & Henle, 1841; Raja oxyrinchus Linnaeus, 1758; Galeus melasto- mus Rafinesque, 1809), Abstracts of 13th National Congress of Biology, 17-20 September 1996, 28. [in Turkish]. Ünlüata, Ü. & E. Özsoy (1988): Deep water renewals and oxygen deficiency in the Sea of Mar- mara. Rapp. Comm. int. Mer Medit., 31, 193. Vaquer-Sunyer, R. & C.M. Duarte (2008): Thresh- olds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U. S. A., 105, 15452-15457. https://doi. org/10.1073/pnas.0803833105. Vedor, M., N. Queiroz, G. Mucientes, A. Couto, I. da Costa, A. dos Santos, F. Vandeperre, J. Fontes, P. Afonso, R. Rosa, N.E. Humphries & D.W. Sims (2021): Climate-driven deoxygenation elevates fishing vulnerability for the ocean’s widest ranging shark. eLife, 10, e62508. https://doi.org/10.7554/ eLife.62508. Villagra, D., N. Van Bogaert, B. Ampe, P. Walker & S.S. Uhlmann (2022): Life-history traits of batoids (Superorder Batoidea) in the northeast Atlantic and the Mediterranean. Rev. Fish Biol. Fish., 32(2), 473-495. https://doi.org/10.1007/ s11160-021-09695-3. Waller, M.J., N.E. Humphries, F.C. Womersley, A. Loveridge, A.L. Jeffries, Y. Watanabe, N. Payne, J. Semmens, N. Queiroz, E.J. Southall & D.W. Sims (2024): The vulnerability of sharks, skates, and rays to ocean deoxygenation: physiological mechanisms, behavioral responses, and ecological impacts. J. Fish Biol., 105, 482-511. https://doi.org/10.1111/ jfb.15830. Walls, R.H.L. & E. Buscher (2016): Aeto- mylaeus bovinus (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T60127A81163810. Walls, R.H.L. & J. Guallart (2016): Da- latias l icha (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T6229A16527825. Walls, R.H.L., M. Vacchi, G. Notarbartolo di Sciara, F. Serena & N.K. Dulvy (2016): Gym- nura altavela (Mediterranean assessment). The IUCN Red List of Threatened Species 2016: e.T63153A16527909. WoRMS Editorial Board (2025): World Register of Marine Species. Available from https://www. marinespecies.org at VLIZ. Accessed 2025-06-11. doi:10.14284/170. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 242 Hakan KABASAKAL & F. Saadet KARAKULAK: DEMERSAL ELASMOBRANCHS OF THE SEA OF MARMARA: UPDATED INVENTORY, TAXONOMIC ISSUES, AND ..., 221–242 Yaka, U. & R. Yüce (2006): The rough ray, Raja radula Delaroche, 1809 (Rajidae), new to the Sea of Marmara, Turkey. Zool. Middle East, 39, 112-114. http://dx.doi.org/10.1080/09397140.2006.10638193. Yang, B., X. Qu, H. Liu, M. Yang, W. Xin, W. Wang & Y. Chen (2024): Urbanization reduces fish taxonomic and functional diversity while increases phylogenetic diversity in subtropical rivers. Sci. To- tal Environ., 908, 168178. https://doi.org/10.1016/j. scitotenv.2023.168178. Yıldız, T., E. Yemişken, F.S. Karakulak, U. Uzer, C. Dalyan & I.K. Oray (2016): A new record of dasyatid fish from the Sea of Marmara: Tortonese’s stingray, Dasyatis tortonesei Capapé, 1975 (Dasy- atidae). J. Appl. Ichthyol., 32, 721-723. https:// doi.org/10.1111/jai.13087. Yılmaz, A., Ö. Baştürk, S. Tuğrul, C. Saydam & Ü. Ünlüata (1990): Marmara Denizi ve boğazlar sisteminin su dinamiği ve çevresel karakteristiği. 7 Bölümde İstanbul’un Çevre Sorunları ve Çözüm- leri Sempozyumu, 9-13 Nisan 1990, Türkiye Çevre Koruma ve Yeşillendirme Kurumu, pp. 231-261. [in Turkish]. Zengin, M., H. Polat, S. Kutlu, A.C. Dinçer, H. Güngör, M. Aksoy, C. Özgündüz, E. Karaaslan & Ş. Firidin (2004): Marmara Denizi’ndeki derin su pembe karidesi (Parapenaeus longi- rostris Lucas, 1846) balıkçılığın geliştirilmesi üzerine bir araştırma, Sonuç Raporu (TAGEM/ HAYSUD/2001/09/2004), T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü. [in Turkish]. IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 245 received: 2025-08-21 DOI 10.19233/ASHN.2025.26 FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA Jamila RIZGALLA Department of Aquaculture, Faculty of Agriculture, University of Tripoli, Tripoli, Libya e-mail: jamilarizagalla@gmail.com Amani FITORI Department of Marine Resources, Faculty of Natural Resources, University of Tobruk, Tobruk, Libya Francesco TIRALONGO Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy National Research Council (CNR), Institute for Biological Resources and Marine Biotechnologies (IRBIM), Messina, Italy Abdalh BEN ABDALAH Department of Zoology, Faculty of Science, University of Tripoli, Tripoli, Libya ABSTRACT Visual census surveys in two areas along the western coast of Libya, conducted in 2012 and from 2018 to 2024, led to the first records of nine species of blennies (suborder Blennioidea) in Libyan waters. These species, comprising seven Blenniidae and two Tripterygiidae, were Aidablennius sphynx (Valenciennes, 1836), Coryphoblennius galerita (Linnaeus, 1758), Microlipophrys canevae (Vinciguerra, 1880), Microlipophrys dalmatinus (Steindachner & Kolom- batovic, 1883), Parablennius gattorugine (Linnaeus, 1758), Parablennius zvonimiri (Kolombatovic, 1892), Scartella cristata (Linnaeus, 1758), Tripterygion melanurus Guichenot, 1850 and Tripterygion tripteronotum (Risso, 1810). Key words: bony fish, cryptobenthic, native, North Africa, visual census PRIME SEGNALAZIONI DI BLENNIDI (SOTTORDINE BLENNIOIDEA) AL LARGO DELLA COSTA LIBICA SINTESI In due aree esaminate lungo la costa occidentale della Libia nel 2012 e tra il 2018 e il 2024, sono stati segnalati per la prima volta nelle acque libiche otto pesci del sottordine Blennioidea, tramite censimenti visivi. Le specie identificate, appartenenti a sette Blenniidae e due Tripterygiidae, sono: Aidablennius sphynx (Valenciennes, 1836), Coryphoblennius galerita (Linnaeus, 1758), Microlipophrys canevae (Vinciguerra, 1880), Microlipophrys dalmatinus (Steindachner & Kolombatovic, 1883), Parablennius gattorugine (Lin- naeus, 1758), Parablennius zvonimiri (Kolombatovic, 1892), Scartella cristata (Linnaeus, 1758), Tripterygion melanurus Guichenot, 1850 e Tripterygion tripteronotum (Risso, 1810). Parole chiave: pesci ossei, criptobentonici, specie native, Nord Africa, censimento visivo ANNALES · Ser. hist. nat. · 35 · 2025 · 2 246 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 INTRODUCTION Coastal waters ecosystems are increasingly en- dangered by anthropogenic factors that often lead to habitat destruction and biodiversity loss (Macura et al., 2019). Blennies (suborder Blennioidea) are among the most abundant fishes in shallow coastal waters, including tidal pools and intertidal zone, with only a few species recorded in deeper waters (Golani et al., 2014; Tiralongo et al., 2016). The narrow and shal- low depth range makes them particularly vulnerable to habitat loss, as these strata are the most directly impacted by human activities (Piazzolla et al., 2015). Blennies show a preference for rocky shelters covered by algae, where they are found residing in holes and crevices, and sometimes inhabiting empty barnacle and bivalve shells or polychaete tubes (Zander, 1986a; Lipej & Orlando-Bonaca, 2006; Tiralongo et al., 2016). However, due to their cryptobenthic behaviour, there is still limited information on their ecology (Tiralongo, 2015; Kesici & Dalyan, 2019). According to Eschmeyer et al. (2025), the family Blenniidae comprises 58 genera and 406 species distrib- uted worldwide, with the highest abundance in tropical and subtropical waters (Tiralongo, 2020). Blenniidae are identified by distinctive external features, including ce- phalic tentacles (ocular cirri) in most species, head and teeth morphology, and unique colour patterns (Lipej & Dulčić, 2010). The latter are especially pronounced in some males during the breeding season, such as the “reproductive head mask” of species within the genus Microlipophrys (De Jonge & Videler, 1989; Zander, 1986a; Tiralongo, 2020). A similar colour pattern is also displayed by the family Tripterygiidae, which comprises a total of 190 valid species and 29 genera distributed worldwide (Eschmeyer et al., 2025). Of the 23 blenniid species reported for the Mediterranean Sea (Vecchioni et al., 2019; Tiralongo, 2020), only six had been recorded in Libya prior to this study (Elbaraasi et al., 2019). By comparison, only four species of the genus Tripterygion (triplefin blennies) are known from the Mediterranean, none of which had been reported from Libyan waters. Blennies (suborder Blennioidea) are mostly small-sized fish, with a mean total length of about 5–7 cm. Members of the family Blenniidae (comb- tooth blennies) are typically scaleless and slender (Randall, 1995), exhibiting carnivorous, omnivorous, or herbivorous feeding habits (Tiralongo, 2020). While they are not of interest to fisheries, they are worldwide commonly used as ornamental fish in public and domestic aquariums and play a relevant ecological role (Townsend & Tibbetts, 2004; Ditty, 2005). Despite numerous records of combtooth blennies in the Mediterranean Sea, with 21 species documented in Italy alone (Relini & Lanteri, 2010; Tiralongo, 2015; Azzurro et al., 2018), only the fol- lowing six had been recorded in Libyan waters: Blen- nius ocellaris Linnaeus, 1758, Lipophrys trigloides (Valenciennes, 1836), Parablennius incognitus (Bath, 1968), Parablennius sanguinolentus (Pallas, 1814), Salaria basilisca (Valenciennes, 1836), and Salaria pavo (Risso, 1810) (Tab. 1). Following are brief descriptions of the nine spe- cies recorded in Libya for the first time. Aidablennius sphynx (Valenciennes, 1836) is a blenny that inhabits shallow waters, typically from 0–1.5 m in depth and often well exposed to wave action (Tiralongo, 2015). This species is widespread across the Mediterranean Sea (Zander, 1986a). Coryphoblennius galerita (Linnaeus, 1758) is an intertidal and semi-amphibious blenny that resides in holes, where it remains during low tide (Martin & Bridges, 1999). Its diet includes copepods and algae (Zander, 1986a). Native to the eastern Atlantic from the western British Islands southward to the Canary Islands, the species also occurs in the Mediterranean Sea (Zander, 1986a) and was recently reported from the Black Sea (Khutornoy & Kvach, 2019). Microlipophrys canevae (Vinciguerra, 1880) is a blenny that inhabits shallow waters, at depths of 0 to 1 m (Tiralongo et al., 2016), showing a prefer- ence for steep and sub-horizontal rocks and typically dwelling in holes. The species has an elongated and laterally compressed body, reaching a maximum to- tal length of 7.5 cm (Froese & Daniel, 2025). Its diet consists mainly of small invertebrates, especially crustaceans, but it also feeds on algae. Considered an endemic Mediterranean species, it is also found in the northeast Atlantic along the southern Portuguese coast (Zander, 1986a). Microlipophrys dalmatinus (Steindachner & Kolombatović, 1883) is a very elongated and slender combtooth blenny with a small body, rarely exceed- ing 4 cm in total length (Zander, 1986a). It occurs in the northeastern Atlantic and the Mediterranean Sea (Almada et al., 2001). The species prefers horizontal to sub-horizontal rocky habitats covered by algal growth, typically at depths around 1.5 m (Bilecenoglu et al., 2013; Tiralongo, 2020), and is often found living in holes. As an omnivore, it feeds on a variety of food items, including small crustaceans and algae (Gold- schmid et al., 1984). This species has been recorded along the Tyrrhenian coast (Relini & Lanteri, 2010), in the central Mediterranean Sea (Falzon, 2009), and in the Ionian Sea (Bilecenoglu et al., 2013). Parablennius gattorugine (Linnaeus, 1758) is the largest blenny of the Mediterranean Sea, reaching a total length of 30 cm (Zander, 1986a). It has a brownish to reddish body with six to seven irregular dark transverse bands and is characterised by thick and highly branched supraocular tentacles. This species is typically found on rocky bottoms at depths between 3 and 32 m, where it rarely shelters in holes. It feeds on benthic invertebrates (Bauchot, 1987). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 247 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 Parablennius zvonimiri (Kolombatović, 1892) is a medium-sized combtooth blenny found in various parts of the Mediterranean Sea (Zander, 1986a; Tira- longo et al., 2016). It has an infralittoral distribution and occurs at depths ranging from 0 m (Pallaoro & Števčić, 1989) to 12 m (Zander, 1986a). This species shows a preference for slopes with algal cover at depths of 0.5 to 2 m, where it feeds by grazing on periphyton (Zander, 1986a; Tiralongo et al., 2016). Scartella cristata (Linnaeus, 1758) is a species found both in the Mediterranean and the Atlantic (Springer, 1993). It inhabits very shallow waters and tide pools that are well exposed to wave action (Randall, 1967; Tiralongo et al., 2016). Among other food items, this omnivorous fish feeds on filamentous algae and invertebrates (Mendes et al., 2009). Tripterygion melanurus Guichenot, 1850 is a small triplefin blenny (family Tripterygiidae), reach- ing a total length of 5.3 cm (Zander, 1986b). It has a thin, elongated and scaled body. Mature males are characterised by a red body with a black head marked with irregular blue stripes, while females are less brightly coloured. Tripterygion tripteronotum (Risso, 1810) is an- other small species of triplefin blenny, reaching a maximum total length of approximately 6 cm. Its body is thin, elongated, and scaled. Mature males exhibit a distinctive red body and black head, particularly marked during the bearding season, which extends from March to August (De Jonge & Videler, 1989). A bottom-dwelling species, it inhabits depths from the intertidal zone down to a maximum depth of 12 m (Zander, 1986b). The newly recorded seven combtooth blennies (Blenniidae) and two triplefin blennies (Tripterygii- dae) expand Libya’s ichthyological checklist and provide additional information on their habitat and mating season. Tab. 1: Updated list of Blenniidae (N = 12) and Tripterygiidae (N = 2) species recorded in Libyan waters. Abbreviation: NS= Not specified (location where the sample was taken from was not specified). Tab. 1: Posodobljen seznam vrst iz družin Blenniidae (N = 12) in Tripterygiidae (N = 2), zabeleženih v libijskih vodah. Okrajšava: NS = Ni določeno (lokacija odvzema vzorca ni bila navedena). Species Family Location Fig. Reference Aidablennius sphynx (Valenciennes, 1836) Blenniidae Regatta, Tripoli; Surman 2A; 2B Present Blennius ocellaris Linnaeus, 1758 Blenniidae Benghazi no Al-Hassan & El-Silini (1999) Coryphoblennius galerita (Linnaeus, 1758) Blenniidae Regatta, Tripoli 2C Present Lipophrys trigloides (Valenciennes, 1836) Blenniidae Benghazi; Regatta, Tripoli 2D Al-Hassan & El-Silini (1999) Microlipophrys canevae (Vinciguerra, 1880) Blenniidae Regatta, Tripoli 3A-D Present Microlipophrys dalmatinus (Steindachner & Kolombatovic, 1883) Blenniidae Regatta, Tripoli 4A&B Present Parablennius gattorugine (Linnaeus, 1758) Blenniidae Regatta, Tripoli 5A Present Parablennius incognitus (Bath, 1968) Blenniidae Benghazi, Surman 6A Al-Hassan & El-Silini (1999) Parablennius sanguinolentus (Pallas, 1814) Blenniidae NS; Regatta, Tripoli, Surman 6B Elbaraasi et al. (2019) Parablennius zvonimiri (Kolombatovic, 1892) Blenniidae Regatta, Tripoli 6C-F Present Salaria basilisca (Valenciennes, 1836) Blenniidae Benghazi no Al-Hassan & El-Silini (1999) Salaria pavo (Risso, 1810) Blenniidae Benghazi no Al-Hassan & El-Silini (1999) Scartella cristata (Linnaeus, 1758) Blenniidae Surman 7A Present Tripterygion melanurus Guichenot, 1850 Tripterygiidae Surman 7B-C Present Tripterygion tripteronotum (Risso, 1810)  Tripterygiidae Regatta, Tripoli 7D-F Present ANNALES · Ser. hist. nat. · 35 · 2025 · 2 248 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 MATERIAL AND METHODS Snorkelling surveys were conducted during the day (typically between 9 am and 12 pm) at two natural bays along the Libyan coast, both characterised by mixed rocky and sandy substrates. The first site, Surman, locat- ed approximately 70 km west of Tripoli (32°47’46.7”N 12°33’59.0”E; Fig. 1A, B), was surveyed in August 2012 and from 2024-2025. The second site, Regatta, the other natural bay off the coast of Tripoli (32°51’13.9”N 13°03’15.6”E; Fig. 1A, C), was surveyed intermittently from 2018 to 2024; survey efforts were suspended in 2020 due to the global COVID-19 pandemic and re- gional armed conflict. In situ photographs were taken using an Olympus Tough TG-4 Underwater Camera. Specimens were collected on a single occasion in Surman in 2012 using a hand net. Morphological identification was based on descriptions provided by Bauchot (1987) and Tiralongo (2015, 2020). Mature males of M. canevae and M. dalmatinus were identi- fied based on a “reproductive head mask” that the two species develop during the breeding season; specifically, a black head and snout and bright yellow cheeks in mature M. canevae (De Jonge & Videler, 1989; Tiralongo et al., 2016; Froese & Daniel, 2025), and yellow cheeks, a head that gradually darkens to a uniform black in M. dalmatinus; a distinctive feature in the latter was also a markedly slender body (Zander, 1986; Bilecenoglu et al., 2013). Species nomenclature was verified using FishBase (Froese and Pauly, 2025; https://www.fishbase.se/search. php) and the World Register of Marine Species (WoRMS Editorial Board, 2025; https://www.marinespecies.org/). RESULTS The seven blenniids and two tripterygiids were ob- served at shallow depths, ranging from 20 cm to 1 m (Tab. 1; Figs. 2–7). The following records summarize the sampling events and observations of these species. Fig. 1: Map of the survey area showing the locations of Regatta (black circle) and Surman (triangle) off the coast of Libya. Insets B (Surman) and C (Regatta) show both natural bays during low tide (photo: J. Rizgalla). Sl. 1: Zemljevid obravnavanega območja, ki prikazuje lokaciji Regatta (črni krog) in Surmana (trikotnik) ob obali Libije. Vstavka B (Surman) in C (Regata) prikazujeta oba naravna zaliva med oseko (foto: J. Rizgalla). Fig. 1: ANNALES · Ser. hist. nat. · 35 · 2025 · 2 249 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 Fig. 2: Fig. 2: (A) Aidablennius sphynx in shallow waters in Regatta. (B) A. sphynx at a shallow depth in Surman. (C) Coryphoblennius galerita inside a hole in the shallow waters of Regatta bay. (D) Lipophrys trigloides among algae, at a depth of 20 cm in Regatta (photo: J. Rizgalla). Sl. 2: (A) Aidablennius sphynx v plitvi vodi v zalivu Regatta. (B) A. sphynx na majhni globini v zalivu Surman. (C) Coryphoblennius galerita v rovu v plitvini zaliva Regatta. (D) Lipophrys trigloides med algami, na globini 20 cm v zalivu Regatta (foto: J. Rizgalla). A Fig. 3: Fig. 3: Microlipophrys canevae in shallow waters in Regatta. (A, B) Male individual displaying the characteristic reproductive head mask, with bright yellow cheeks and a black head. (C) A pair of M. canevae on an algae-covered rocky bottom (indicated by white circle), at a depth of approxi- mately 20 cm. (D) Close-up of an additional M. canevae specimen (photo: J. Rizgalla). Sl. 3: Vrsta Microlipophrys canevae v plitvi vodi v zalivu Regatta. (A, B) Samec z značilno razmnoževalno masko na glavi, s svetlo rumenimi lici in črno glavo. (C) Par primerkov vrste M. canevae na z algami pokritem skalnatem dnu (označeno z belim krogom), na globini približno 20 cm. (D) Posnetek od blizu še enega primerka vrste M. canevae (foto: J. Rizgalla). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 250 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 On 18 August 2012, three specimens of A. sphynx were collected from the sloping side of an island in the natural bay of Surman, at a depth of 30–40 cm (Fig. 2B). Subsequently, on 31 August 2018, a fourth specimen of A. sphynx was observed at a depth of 20–30 cm in the bay of Regatta, Tripoli (Fig. 2A). On 11 June 2019, a single specimen of C. galerita was observed peeking its head out of a hole in a rock wall in the Regatta natural bay (Fig. 2C). On 25 August 2018, a single specimen of M. canevae was observed within its shelter – a hole on the sloping side of an algae-covered rock in Regatta natural bay, at a depth of 20–30 cm. The individual exhibited yellow cheeks with black coloration on the head, snout and dorsal area (Fig. 3A–D), which indicated a male speci- men in breeding season. On 5 September 2018, at a depth of 20–30 cm, two M. canevae were observed close to one another; both individuals were similar in size, measuring approxi- mately 5–6 cm TL. On 30 June 2021, one specimen of M. dalmatinus was observed in a hole in a sub-horizontal flat rock plate, with only its head visible, in the natural bay of Regatta (Fig. 4A, B). The blenny exhibited a typical Fig. 4: (A, B) A male Microlipophrys dalmatinus sheltering in a hole at shallow depth, in Regatta. This individual displays the typical reproductive head mask, characterised by yellow cheeks and a black dorsal area of the head (photo: J. Rizgalla). Sl. 4: (A, B) Samec vrste Microlipophrys dalmatinus se skriva v plitvem rovu v zalivu Regatta. Ta osebek ima tipično razmnoževalno masko na glavi, za katero so značilni rumena lica in črn hrbtni del glave (foto: J. Rizgalla). Fig. 4: Fig. 5: (A, B) Parablennius gattorugine observed in Regatta natural bay (photo: J. Rizgalla). Sl. 5: (A, B) Parablennius gattorugine, opažen v naravnem zalivu Regatta (foto: J. Rizgalla). Fig. 5: ANNALES · Ser. hist. nat. · 35 · 2025 · 2 251 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 Fig. 6: (A) A Parablennius incognitus specimen collected in Surman. (B) Parablennius sanguinolen- tus near a crevice in an algae-covered rocky slope in Regatta natural bay; the algal community includes Padina pavonica. (C–F) Parablennius zvonimiri on an algae-covered rock in Regatta, retreating into its hole when approached; the algal cover includes P. pavonica (photo: J. Rizgalla). Sl. 6: (A) Primerek vrste Parablennius incognitus, ujet v Surmanu. (B) Parablennius sanguinolentus blizu razpoke v z algami poraščenem skalnem pobočju v naravnem zalivu Regatta; združba alg vključuje vrsto Padina pavonica. (C–F) Parablennius zvonimiri na z algami poraščeni skali v zalivu Regatta, ki se ob približevanju umakne v svoj rov; med algami je tudi P. pavonica (foto: J. Rizgalla). Fig. 6: ANNALES · Ser. hist. nat. · 35 · 2025 · 2 252 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 reproductive head mask, and the hole was surrounded by various algae. On 6 June 2019, one specimen of P. gattorugine was found on the sea floor at a depth of 50–60 cm among algae and seagrasses, in the natural bay of Regatta (Fig. 5A). On 23 June 2023, a specimen of P. zvonimiri was observed on a rocky slope covered in algae, in the natural bay of Regatta (Fig. 6C). When approached, the fish quickly retreated into its burrow. On 29 May 2021, another specimen of P. zvonimiri was observed on a rock covered with algae, at a depth of 30 cm (Fig. 6D–F). On 18 August 2012, a single specimen of S. cristata was collected from the natural bay of Surman, at a depth of 30–40 cm (Fig. 7A). On 19 August 2025, two male specimens of T. mela- nurus were observed in the natural bay of Surman, at a depth of 30–40 cm. They were identified by the typical coloration of territorial adult males: a predominantly bright red body with a black head marked by light, irregular stripes (Fig. 7B, C). The fish were seen from August to October 2025 at similar depths and always in proximity of holes and crevices. On 19 May 2019, two specimens of T. tripteronotum were found at a depth of 30 cm in the natural bay of Regatta. They were identified as mature males by their markedly black heads and reddish background colora- tion of the body (Fig. 7B, D). On 8 June 2019, two individuals of T. tripteronotum were found in the natural bay of Regatta, at a depth of 30–40 cm. They both exhibited a reddish background col- oration, while the head appeared almost greyish (Fig. 7E). All specimens where consistently observed through- out the survey period and across years. In addition to the recently recorded species men- tioned above, Lipophrys trigloides (Valenciennes, 1836) was frequently observed in the natural bay of Regatta, hiding among various algae and rocks or within little holes (Fig. 2D), with Parablennius sanguinolentus (Pal- las, 1814) was also found at similar depths, in proximity to the other species reported here, in both Regatta and Surman (Fig. 6B). DISCUSSION Microlipophrys canevae, M. dalmatinus, T. melanurus, and T. tripteronotum reported herein displayed the typical chromatic dimorphism of mature males during the breeding season. In M. canevae and M. dalmatinus, this was charac- terised by a black coloration of the head, dorsal area, and snout, contrasted with bright yellow cheeks – a pattern also known as the “reproductive head mask” (Tiralongo et al., 2015). In T. melanurus and T. tripteronotum, it included a dark blackish head and a reddish body (De Jonge & Videler, 1989). In the observed M. dalmatinus specimens, the body was not entirely black, though the black discoloration of the head was clearly visible (Zander, 1986a). Based on the present observation, the mating season for M. canevae, M. dalmatinus, and T. tripteronotum was estimated to range from May to August. This aligns with the previous reports for M. canevae, and T. tripteronotum, where mating season starts in March and lasts approximately five months (De Jonge & Videler, 1989). Sheltered among algae-covered slopes in the natural bay of Regatta, the habitat and depth in which P. zvonimiri specimens were found align with similar observations made on this species (Tiralongo et al., 2016). The sea level in the part of the bay where specimens of P. zvonimiri were found never dropped below 40 cm. The two-year interval between these records demonstrates a consistent presence of this species in the study area. Similarly, M. dalmatinus and C. galerita were also observed in shallow waters at depths of approximately 50 cm. The limited species diversity of Blennioidea in Libya, compared to other Mediterranean regions, is likely at- tributable to a lack of extensive scientific research. This scarcity of studies is due to the country’s ongoing political instability, extensive coastline, and limited funding for scientific research (Rizgalla, 2021). Moreover, blennies are not targeted by commercial fisheries, which contrib- utes to their underrepresentation in checklists of Libyan bony fish (see Al-Hassan & El-Silini, 1999; Elbaraasi et al., 2019). Prior to this study, six combtooth blennies (Blenniidae) had been known from Libyan waters (Al- Hassan & El-Silini, 1999; Elbaraasi et al., 2019). The addition of A. sphynx, C. galerita, M. canevae, M. dal- matinus, P. gattorugine, P. zvonimiri, and S. cristata thus increases the number of documented Blenniidae species to thirteen. Furthermore, we report the first records of two triplefin blennies (Tripterygiidae), T. melanurus and T. tripteronotum, in Libyan waters. Further surveys are needed to explore the richness and distribution of these species along Libya’s 1,770 km coastline to improve our understanding of the bio- diversity of Libyan waters. CONCLUSIONS Nine species of blennies (Blennioidea) were documented at shallow depths in two natural bays along the western coast of Libya. Individuals were often observed near or within holes and rock crevices. Several species, including M. canevae, T. melanurus, and T. tripteronotum, displayed a marked sexual dichromatism. The discovery of these species highlights the need for additional targeted surveys to fully assess blenny biodiversity along the Libyan coastline. ACKNOWLEDGMENTS The first author would like to thank Ernesto Azzurro for his suggestions. The authors also wish to thank Victor Falzon and the anonymous reviewer for their suggestions and comments. The first author would like to thank the security personnel of Regatta and Surman for providing a safe en- vironment during the surveys in the most difficult of times. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 253 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 Fig. 7: (A) Scartella cristata observed in Surman. (B, C) Male Tripterygion melanurus among algae in Regatta, displaying sexual dichromatism. (D, E) Male Tripterygion tripteronotum among algae in Regatta, featur- ing sexual dichromatism. (F) Two males T. tripteronotum exhibiting less pronounced sexual dichromatism (photo: J. Rizgalla). Sl. 7: (A) Scartella cristata, opažena v Surmanu. (B, C) Samec vrste Tripterygion melanurus med algami v zalivu Regatta kaže spolni dikromatizem. (D, E) Samec Tripterygion tripteronotum med algami v zalivu Re- gatta kaže spolni dikromatizem. (F) Dva samca T. tripteronotum kažeta manj izrazit spolni dikromatizem (foto: J. Rizgalla). Fig. 7: ANNALES · Ser. hist. nat. · 35 · 2025 · 2 254 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 PRVI ZAPISI O POJAVLJANJU BABIC (PODRED BLENNIOIDEA) OB LIBIJSKI OBALI Jamila RIZGALLA Department of Aquaculture, Faculty of Agriculture, University of Tripoli, Tripoli, Libya e-mail: jamilarizagalla@gmail.com Amani FITORI Department of Marine Resources, Faculty of Natural Resources, University of Tobruk, Tobruk, Libya Francesco TIRALONGO Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy National Research Council (CNR), Institute for Biological Resources and Marine Biotechnologies (IRBIM), Messina, Italy Abdalh BEN ABDALAH Department of Zoology, Faculty of Science, University of Tripoli, Tripoli, Libya POVZETEK Na opazovalnih popisih na dveh območjih vzdolž zahodne obale Libije, ki so bili izvedeni leta 2012 in od leta 2018 do 2024, so prvič potrdili devet vrst babic (podred Blennioidea) v libijskih vodah. Sedem vrst, ki je pripadalo družini Blenniidae in dve, ki sta pripadali družini Tripterygiidae, so bile Aidablennius sphynx (Valenciennes, 1836), Coryphoblennius galerita (Linnaeus, 1758), Microlipophrys canevae (Vinciguerra, 1880), Microlipophrys dalmatinus (Steindachner & Kolombatovic, 1883), Parablennius gattorugine (Linnaeus, 1758), Parablennius zvonimiri (Kolombatovic, 1892), Scartella cristata (Linnaeus, 1758), Tripterygion melanurus Guichenot, 1850 in Tripterygion tripteronotum (Risso, 1810). Ključne besede: kostnice, kriptobentoške vrste, domorodne, Severna Afrika, opazovalni popis ANNALES · Ser. hist. nat. · 35 · 2025 · 2 255 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 REFERENCES Almada, V.C., R.F. Oliveira, E.J. Gonçalves, A.J. Almeida, R.S. Santos & P. Wirtz (2001): Patterns of diversity of the northeastern Atlantic blenniid fish fauna (Pisces: Blenniidae). Glob. Ecol. Biogeogr., 10, 411-422. Al-Hassan, L.A.J. & O.A. El-Silini (1999): Check-list of bony fishes collected from the Mediterranean coast of Benghazi, Libya. Rev Biol Mar Oceanogr., 34(2), 291- 301. Azzurro, E., K. Zannaki, F. Andaloro, F. Giardina & F. Tiralongo (2018): First record of Ophioblennius atlanticus (Valenciennes, 1836) in Italian waters, with considerations on effective NIS monitoring in Mediter- ranean Marine Protected Areas. BioInvasions Records, 7, 437-440. Bauchot, M.L. (1987): Poissons osseux. In Fischer WM, L Bauchot, M Schneider (ed.): Fiches FAO d’identification pour les besoins de la pêche. (rev. 1). Méditerranée et mer Noire. Zone de pêche 37. Vol. II. Rome, Commission des Communautés Européennes and FAO. 891-1421 Bilecenoglu, M., J.E.F. Alfaya, E. Azzurro, R. Balda- cconi, Ö. Boyaci, V. Circosta, L.J.V. Compagno, F. Cop- pola, A. Deidun, H. Durgham, F. Durucan, D. Ergüden, F.Á. Fernández-Álvarez, P. Gianguzza, G. Giglio, M. Gökoğlu, M. Gürlek, S. Ikhtiyar, H. Kabasakal, P.K. Karachle, S. Katsanevakis, D. Koutsogiannopoulos, E. Lanfranco, P. Micarelli, Y. Özvarol, L. Peña-Rivas, D. Poursanidis, J. Saliba, E. Sperone, D. Tibullo, F. Tira- longo, S. Tripep, C. Turan, P. Vella, M.B. Yokeş & B. Zava (2013): New Mediter ranean marine biodiversity records (December, 2013). Mediterr. Mar. Sci., 14(2), 463-480. De Jonge, J. & J.J. Videler (1989): Differences between the reproductive biologies of Tripterygion tripteronotus and T. delaisi (Pisces, Perciformes, Trip- terygiidae): The adaptive significance of an alternative mating strategy and a red instead of a yellow nuptial colour. Mar. Biol., 100(4), 431-437. Ditty, G., L.A. Fuiman & R.F. Shaw (2005): Larval Development of Five Species of Blenny (Teleostei: Blen- niidae) from the Western Central North Atlantic, with a Synopsis of Blennioid Family Characters. J. Fish. Biol., 66(5), 1261-1284. Elbaraasi, H, B. Elabar, S. Elaabidi, A. Bashir, O. El- silini, e. Shakman & E. Azzurro (2019): Updated check- list of bony fishes along the Libyan coasts (Southern Mediterranean Sea). Mediterr. Mar. Sci., 20(1), 90-105. Eschmeyer, W.N., R. Fricke & R. van der Laan (2025): Catalog of Fishes: Genera, Species, References. Retreaved April 24. 2025. From. https://researcharchive. calacademy.org/research/ichthyology/catalog/fishcat- main.asp 2018. Froese, R. & D. Pauly (2025): “Microlipophrys cane- vae”. FishBase. Retreaved April 24. 2025. from https:// fishbase.mnhn.fr/physiology/Microlipophrys_canevae. Falzon, M.A. (2009): Lipophrys dalmatinus (Pisces Perciformes Blenniidae), a new species for Malta (Cen- tral Mediterranean). Nat. Sicil., 33: 279–282. Golani, D., R. Reef-Motro, S. Ekshtein, A. Baranes & A. Diamant (2014): Ichthyofauna of the rocky coastal littoral of the Israeli Mediterranean, with refer- ence to the paucity of Red Sea (Lessepsian) migrants in this habitat. Mar. Biol. Res., 3(5), 333–341. Goldschmid, A., K. Kotrschal & P. Wirtz (1984): Food and gut length of 14 Adriatic blenniid fish (Blen- niidae; Percomorpha; Teleostei). Zool. Anz., 213, 145-150. Kesici, N.B. & C. Dalyan (2020): Habitat Preferences and Spatial Distribution of the Cryptobenthic Fish As- semblages around the Gökçeada Island (North Aegean Sea). J. Ichthyol., 60, 263-271. Khutornoy, S. & Y. Kovach (2019): First record of the Montague’s blenny (Coryphoblennius galerita (L., 1758) (Actinopterygii: Blenniidae) in the mesohaline waters of the North-Western Black Sea, Ukraine. Bioinvasions. Rec., 8(4), 917-923 Lipej, L. & J. Dulčić (2010): Checklist of the Adriatic Sea Fishes. Zootaxa, 2589(1), 1-92. Lipej, L. & M. Orlando-Bonaca (2006): Assessing blennioid fish populations in the shallow Gulf of Trieste: a comparison of four in situ methods. Period. Biol., 108(2), 151-157. Macura, B., P, Byström, L. Airoldi, B.K. Eriksson, L. Rudstam & J. Støttrup (2019): Impact of structural habitat modifications in coastal temperate systems on fish recruitment: a systematic review. Environmental Evidence, 8, 14. Martin, K.L.M. & C.R. Bridges (1999): Respiration in water and air. In: Horn MH, Martin KLM, Chotkowski MA (ed), Intertidal fishes: life in two worlds. Academic Press, San Diego, pp 54-78. Mendes, T.C, R.C. Villac & C.E.L. Ferreira (2009): Diet and trophic plasticity of an herbivorous blenny Scartella cristata of subtropical rocky shores. J. Fish. Biol., 75, 1816-1830. Pallaoro, A. & Z. Števčić (1989): A check-list of species of Adriatic Blennioidea (Pisces, Teleostei, Perci- formes). Stud. Mar., 20, 51-74. Piazzolla, D., S. Scanu, F.M. Frattarelli, E. Mancini, F. Tiralongo, M.V. Brundo, D. Tibullo, R. Pecoraro, C. Copat, M. Ferrante & M. Marcelli (2015): Trace-Metal Enrichment and Pollution in Coastal Sediments in the Northern Tyrrhenian Sea, Italy. Arch. Environ. Contam. Toxicol., 69, 470-481. Randall, J.E. (1995): Coastal fishes of Oman. United States: Crawford House Publishing Pty Ltd. Randall, J.E. (1967): Food habits of reef fishes of the West Indies. Trop. Oceanogr., 5, 665-847. Relini, G. & L. Lanteri (2010): Osteichthyes. Biol. Mar. Mediterr., 17(1), 649-674. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 256 Jamila RIZGALLA et al.: FIRST RECORDS OF BLENNIES (SUBORDER BLENNIOIDEA) OFF THE COAST OF LIBYA, 245–256 Rizgalla, J. (2021): Can social media platforms play a role in sea turtle conservation efforts in Libya in times of war and political/economic instability? J. Black. Sea/ Medit. 27(1), 1-23. Springer, V.G. (1993): Definition of the suborder Blennioidei and its included families (Pisces: Perci- formes). Bull. Mar. Sci., 52, 472-495. Tiralongo, F. (2015): Blennidi delle acque italiane. Guida alla conoscenza e all’identificazione delle spe- cie. Ireco, Rome. Tiralongo, F. (2020): Blennies of the Mediterranean Sea: Biology and identification of Blenniidae, Clinidae, Tripterygiidae. Independently Published, Italy. Tiralongo, F. D., M. Tibullo, V. Brundo, F. Paladini De Mendoza, C. Melchiorri & M. Marcelli (2016): Habitat preference of combtooth blennies (Actin- opterygii: Perciformes: Blenniidae) in very shallow waters of the Ionian Sea, south-eastern Sicily, Italy. Acta. Ichthyol. Piscat., 46(2), 65-75. Townsend, K.A. & I.R. Tibbetts (2004): The eco- logical significance of the combtoothed blenny in a coral reef ecosystem. J. Fish Biol., 65(1), 77-90. Vecchioni, L, F. Marrone, E. Belaiba, F. Tiralongo & L. Bahri-Sfar (2019): The DNA barcoding of Medi- terranean combtooth blennies suggests the paraphyly of some taxa (Perciformes, Blenniidae). J. Fish. Biol., 94(2), 339-344. Zander, C.D. (1986a): Blenniidae. In: Whitehead P.J.P, M.L Bauchot, J.C Hureau, J. Nielsen, E Torton- ese (ed.): Fishes of the North-eastern Atlantic and the Mediterranean. Paris, UNESCO, 1096-1112. Zander, C.D. (1986b): Tripterygiidae. In: White- head P.J.P, M.L Bauchot, J.C Hureau, J. Nielsen, E Tortonese (ed.): Fishes of the North-eastern Atlantic and the Mediterranean. Paris, UNESCO, 1118-1121. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 257 received: 2025-08-20 DOI 10.19233/ASHN.2025.27 CONFIRMED OCCURRENCE OF THE MEDITERRANEAN SPEARFISH TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) FROM THE ALGERIAN COAST (SOUTHWESTERN MEDITERRANEAN SEA) Farid HEMIDA & Sara LADOUL École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), BP 19, Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2, place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France Christian CAPAPÉ Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr ABSTRACT The paper reports on the capture of two specimens of the Mediterranean spearfish Tetrapturus belone Rafinesque, 1810. Each specimen measured about 1110 mm in total length and weighed 20 kg. They were captured off Annaba, on the eastern Algerian coast. The specimens were described in detail and constitute the first well-documented T. belone in this area, confirming the presence of the species and supporting its inclusion in the local ichthyofauna. Key words: Tetrapturus belone, records, Algerian coast, description, local status PRESENZA CONFERMATA DELL’AGUGLIA IMPERIALE TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) LUNGO LA COSTA ALGERINA (MEDITERRANEO SUD-OCCIDENTALE) SINTESI L’articolo riporta la cattura di due esemplari dell’aguglia imperiale Tetrapturus belone Rafinesque, 1810. Ciascun esemplare misurava circa 1110 mm di lunghezza totale e pesava 20 kg. Sono stati catturati al largo di Annaba, lungo la costa orientale dell’Algeria. Gli esemplari sono stati descritti in dettaglio e costituiscono i primi esemplari ben documentati di T. belone provenienti da questa zona, confermando la presenza della specie e sostenendone l’inclusione nell’ittiofauna locale. Parole chiave: Tetrapturus belone, segnalazioni, costa algerina, descrizione, stato locale ANNALES · Ser. hist. nat. · 35 · 2025 · 2 258 Farid HEMIDA et al.: CONFIRMED OCCURRENCE OF THE MEDITERRANEAN SPEARFISH TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) ..., 257–262 INTRODUCTION The Mediterranean spearfish Tetrapturus be- lone Rafinesque, 1810, is, as its name suggests, a species endemic to the Mediterranean Sea, where it occurs in relatively high abundance, particular- ly in the central basin (Nakamura, 1986; Quignard & Tomasini, 2000). T. belone is commonly caught in Italian waters (Tinti et al., 2019; Di Natale, 2020) but is considered a rare species in the Adriatic Sea (Dulčić & Soldo, 2004). To the east, the species is reported from parts of the north- eastern Aegean Sea (Akyol, 2020) and throughout Turkish marine waters but remains unrecorded in the Black Sea (Bilecenoǧlu et al., 2014). While the distribution range of T. belone seems to have expanded to include the Levant Basin—with the species documented in Israel (Golani, 2005), Leb- anon (Bariche & Fricke, 2020), and Syria (Saad et al., 2023)—this may either be attributable to the warming of Mediterranean waters (Francour et al., 1994) or, possibly, to previous regional underreporting. In the central Mediterranean Sea, historical records of T. belone are sporadic. A mounted skeleton of an individual collected in the Strait of Messina by Gabriel Bibron around year 1824, which is deposited in the National Museum of Natural History of Paris, constitutes the only representative specimen of the species in the ich- thyological collection of that museum (Chagnoux, 2025). While Tortonese (1975) documented cap- tures of large individuals in the Straits of Messina and Malara et al. (2020) reported a predation event involving a tagged spearfish in that area more recently, the species was absent from sev- eral other regional checklists. It was not reported from the Tunisian (Bradai et al., 2004) nor Algeri- an coast (Dieuzeide et al., 1954; Derbal & Kara, 2001; Refes et al., 2010). While Bourjot (1870) did not report any occurrence of T. belone along the Algerian coast either, he suggested that the species could be captured in the western region, a pattern that should be taken into consideration by future researchers. However, the recent inclu- sion of T. belone in the ichthyofauna of Malta and the surrounding waters (Borg et al., 2023) and a new report of the species’ occurrence from the Algerian coast (Alkhalili et al., 2025) suggest a changing distribution. The capture of individuals off eastern Algeria provided an opportunity to ob- serve and describe T. belone and perhaps reassess its status in the region. MATERIAL AND METHODS The two specimens of Tetrapturus belone were observed at the main fish market of Algiers, which receives landings from across the Algerian coast, from the Moroccan to the Tunisian bor- der. On August 25, 2008, two specimens were captured by drift nets off Annaba, in the eastern region, at 35°42’35’’ N and 1°22’17’’ W (Fig. 1). The examined specimens of T. belone were captured within the boundaries of the GFCM Geographical Subarea 4 (FAO, 2019). They were carefully examined and identified using field guides and ichthyological references (see below). The specimens were photographed and selected morphometric measurements, and mer- istic counts were recorded. Total body weight was kindly provided by the fishmongers, as the specimens were rapidly sliced and sold, primari- ly for local consumption. Fig. 1: Map of the Algerian coast showing the capture site (black star) of Tetrapturus belone off Annaba. Sl. 1: Zemljevid alžirske obale z označeno lokaliteto ulova (črna zvezdica) primerkov vrste Tetrapturus belone blizu Annabe. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 259 Farid HEMIDA et al.: CONFIRMED OCCURRENCE OF THE MEDITERRANEAN SPEARFISH TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) ..., 257–262 RESULTS AND DISCUSSION According to information provided by the fishmongers, each specimen of T. belone mea- sured 1100 mm TL and weighed 20 kg. Given that the species can reach a maximum size of 2.4 m (Nakamura, 1986), the specimens were likely juveniles. They were identified as Tetrapturus belone based on a combination of key morpholog- ical characters (Fig. 2): body elongate and fairly compressed, bill rather short and slender, round in cross-section; nape almost straight; both jaws and palatines (roof of mouth) with small, file-like teeth; two dorsal fins, base of first long, extending from above posterior margin of preopercle to just anterior to the origin of second, first fin exhibiting 43 rays, second 6 rays; two anal fins, first with 11 rays, second with 7, the latter fin very similar in size and shape to second dorsal fin; pectoral fins short with curved upper margins, nearly straight lower margins and pointed tips; pelvic fins long and slender, slightly less than twice the pectoral fin length and depressible into deep ventral grooves; caudal peduncle prominently compressed laterally and slightly depressed dorsoventrally, with strong double keels on each side and a shallow notch on both (Fig. 3); anus located far anterior to first anal fin origin; lateral line single and visible; body color dark bluish grey to nearly black dorsally and silvery white ventrally (Fig. 2). The general morphology, meristic counts, and coloration of both specimens are consistent with previous descriptions of the species provided by Tortonese (1975), Nakamura (1985, 1986), Soldo & Dulčić (2004), Collette & Graves (2019), Saad et al. (2023), thereby confirming their identification as T. belone. General knowledge on the species’ biology and ecology remains limited (Collette & Heessen, 2015), but specific aspects have been documented, such as its piscivorous diet (Romeo et al., 2009). While the observations on the species’ presence in Algerian waters made by Alkhalili et al. (2025), whether obtained directly or from the local fishermen, should not be doubted, it appears that no specimen was described or was available for confirmation. The specimens presented herein therefore constitute the first well-documented records of T. belone from the Algerian coast. The scarcity of records likely reflects a low population density in the area, as modern fishing methods would otherwise facilitate more frequent captures. These efficient fishing techniques could potentially result in a further decrease of local stocks, threatening the Mediterranean spearfish, a Fig. 2: Tetrapturus belone captured off Annaba. The two specimens measured 1100 mm in total length. Scale bar = 200 mm (Photo by F. Hemida). Sl. 2: Vrsta Tetrapturus belone ujeta pri Annabi. Primerka sta merila približno 1100 mm celotne dolžine. Merilo = 200 mm (Foto: F. Hemida). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 260 Farid HEMIDA et al.: CONFIRMED OCCURRENCE OF THE MEDITERRANEAN SPEARFISH TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) ..., 257–262 species highly valued by local consumers. Given this scarcity, the species may also be vagrant in the area, a hypothesis that remains plausible. Although the IUCN classifies T. belone as a spe- cies of Least Concern (LC) globally, its population in Algerian waters warrants a management and preservation plan within the local fisheries frame- work that will engage the assistance of fishermen to help protect any potentially viable population of this species in Algerian waters. ACKNOWLEDGEMENTS The authors wish to thank two anonymous referees for their valuable and useful comments allowing to improve the scientific quality of the manuscript. Fig. 3: Tail of a Tetrapturus belone specimen, with the white arrow indicating a pronounced double keel on each side and a shallow notch on both. Scale bar = 200 mm (Photo by F. Hemida). Sl. 3: Rep primerka vrste Tetrapturus belone z označeno belo puščico, ki kaže izrazit dvojni greben na obeh straneh in plitko zajedo. Merilo = 200 mm (Foto: F. Hemida). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 261 Farid HEMIDA et al.: CONFIRMED OCCURRENCE OF THE MEDITERRANEAN SPEARFISH TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) ..., 257–262 POTRJENO POJAVLJANJE SREDOZEMSKE JADROVNICE, TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) IZ ALŽIRSKE OBALE (JUGOVZHODNO SREDOZEMSKO MORJE) Farid HEMIDA & Sara LADOUL École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), BP 19, Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2, place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France Christian CAPAPÉ Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr POVZETEK Prispevek poroča o ulovu dveh primerkov sredozemske jadrovnice, Tetrapturus belone Rafinesque, 1810. Vsak primerek je meril okoli 1110 mm celotne dolžine in tehtal 20 kg. Ujeta sta bila v vodah pri Annabi na vzhodni alžirski obali. Primerka sta bila natančno opisana in predstavljata prvi potrjeni zapis o pojavljanju T. belone v tem predelu, ki dokazuje da je bila vrsta na obravnavanem območju prisotna in dopolnjuje seznam lokalne ihtiofavne. Ključne besede: Tetrapturus belone, zapisi o pojavljanju, alžirska obala, opis, lokalni status ANNALES · Ser. hist. nat. · 35 · 2025 · 2 262 Farid HEMIDA et al.: CONFIRMED OCCURRENCE OF THE MEDITERRANEAN SPEARFISH TETRAPTURUS BELONE (OSTEICHTHYES: ISTIOPHORIDAE) ..., 257–262 REFERENCES Akyol, O. (2020): Additional record of Mediterra- nean spearfish, Tetrapturus belone Rafinesque, 1810 (Istiophoridae) from Izmir Bay (northern Aegean Sea). COMU J. Mar. Sci. Fish., 3(2), 146-148. Alkhalili, H., A.A. Taleb Bendiab, B. Séret, L. Ben- sahla-Talet, N.Benaissa & M. Bouderbala (2025): Bony fish of Algerian marine fauna: a historical review with an updated checklist and new records. Appl. Ecol. Environ. Res., 23(4),7957-7995. Bariche, M. & R. Fricke (2020): The marine ichthyo- fauna of Lebanon: an annotated checklist, history, bio- geograpphy, and conservation status. Zootaxa, 4775(1), 1-157. Bilecenoǧlu, M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38(6), 901-929. Borg, J.A., D. Dandria, J. Evans, L. Knittweis & P.J. Schembri (2023): A critical checklist of the marine fish- es of Malta and surrounding waters. Diversity, 15, 225. https://doi.org/10.3390/d15020225. Bourjot, A. (1870): Liste des poissons que l’on ren- contre la plus souvent au marché d’Alger ou guide à la pêcherie. Opuscule destiné à faire connaître les espèces les meilleures pour la table, leur apprêt culinaire, etc. Bull. Soc. Climatol. Algérienne, 1, 1-432. Bradai, M.N., J.P. Quignard, A. Bouaïn, O. Jarboui, A. Ouannes-Ghorbel, L. Ben Abdallah, J. Zaouali & S. Ben Salem (2004): Ichtyofaune Autochtone et exotique des côtes tunisiennes: recensement et biogéographie. Cybium, 28(4), 315-328. Chagnoux, S. (2025): The fishes collection (IC) of the Muséum national d’Histoire naturelle (MNHN - Paris). Version 57.423. MNHN - Museum national d’Histoire naturelle. Occurrence datas et https://doi.org/10.15468/ tm7whu. Accessed via GBIF.org on 14 August 2025. Collette, B. & H. Heessen (2015): Tetrapturus be- lone. The IUCN Red List of Threatened Species 2015:e. T170334A48680954. Accessed: 18 August 2025. Collette, B. & J. Braves (2019): Tunas and billfishes of the world. John Hopkins University Press, 352 pp. Collette, B., A. Di Natale, J. Graves, B. Pohlot & J. Schratvieser (2023): Tetrapturus belone. The IUCN Red List of Threatened Species 2023: e.T170334A204737590. https://dx.doi.org/10.2305/IUCN.UK.2023-1.RLTS. T170334A204737590.en. Accessed 30 September 2025. Derbal, F. & M.H. Kara (2001): Inventaire des pois- sons des côtes de l’est algérien. Rapp. Comm. inter. mer Médit., 36, 258. Di Natale, A. (2020): The Italian annotated bibliogra- phy on the Mediterranean spearfish (Tetrapturus belone, Rafinesque, 1810), on other billfish and spearfish pecies, including a comprehensive review. Coll. Vol. Sci. Pap. ICCAT, 77(9), 112-128. Dulčić, J. & A. Soldo (2004): The Mediterranean spearfish, Tetrapturus belone Rafinesque, 1810, in the Adriatic waters: new records and a review of Adriatic records. Annales, Ser. Hist. Nat., 4(1), 45-48. FAO (2019): Report of the forty-second session of the General Fisheries Commission for the Mediterra- nean (GFCM), FAO headquarters, Rome, Italy, 22–26 October 2018. GFCM Report No.42. Rome, 146 pp. Francour, P., C.F. Boudouresque, J.G. Harmelin, M.L. Harmelin-Vivien & J.-P. Quignard (1994): Are the Mediterranean waters becoming warmer? Mar. Poll. Bul., 28(9), 523-526. Golani, D. (2005): Check-list of the Mediterranean Fishes of Israel. Zootaxa, 2005(947): 1-200. Malara, D., P. Battaglia, P. Consoli., E. Arcadi, S. Canese, S. Greco, F. Andaloro & T. Romeo (2020): Evi- dence of a predation event on a tagged Mediterranean spearfish (Tetrapturus belone; Pisces, Istiophoridae), inferred from pop-up satellite tagging data. Aquat. Living Resour., 33, 23. https://doi.org/10.1051/ alr/2020024. Nakamura, I. (1985): FAO species catalogue. Vol. 5. Billfishes of the world. An annotated and illustrat- ed catalogue of marlins, sailfishes, spearfishes and swordfishes known to date. FAO Fish. Synop. Rome: FAO. 125(5), 65 pp. Nakamura, I. (1986): Istiophoridae. In: White- head, P.J.P., M.L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 1000-1007. Quignard, J.-P. & J.-A. Tomasini (2000): Mediterra- nean fish biodiversity. Biol. Mar. Medit, 7, 1-66. Refes, W., N. Semahi, M. Boulahdid & J.-P. Quig- nard (2010): Inventaire de la faune ichthyologique du secteur oriental de la côte algérienne (El Kala; Skikda; Jijel; Bejaïa). Rapp. Comm. inter. mer Médit., 39, 646. Romeo, T., P. Consoli, L. Castriota & F. Andaloro (2009): An evaluation of resource partitioning be- tween two billfish, Tetrapturus belone and Xiphias gladius, in the central Mediterranean Sea. J. Mar. Biol. Assoc. U K., 89(4), 849-855. Saad, A., L. Khrema, A. Alnesser, I. Barakat & C Capapé (2023): First substantiated record of Mediter- ranean spearfish Tetrapturus belone (Istiophoridae) from the Syrian coast (Eastern Mediterranean Sea). Thalassia Sal., 45, 11-16. Tinti, F., P. Addis, A. Di Natale, F. Garibaldi & C. Piccinetti (2019): The Italian annotated bibliography on Mediterranean spearfish (Tetrapturus belone, Rafinesque, 1810) and other billfish and spearfish species. Coll. Vol. Sci. Pap., ICCAT, 76(4), 293-310. Tortonese, E. (1975): Fauna d’Italia, Vol. XI. Osteichthyes (Pesci ossei). Parte seconda. Calderini, Bologna, 636 pp. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 263 received: 2025-05-11 DOI 10.19233/ASHN.2025.28 FIRST SUBSTANTIATED RECORD OF BLACKFISH CENTROLOPHUS NIGER (CENTROLOPHIDAE) FROM THE SYRIAN COAST (EASTERN MEDITERRANEAN SEA) Lana KHREMA Department of Basic Sciences, Faculty of Agriculture, 1 Latakia University, Lattakia, Syria Adib SAAD Directorate of Scientific research and publishing, Al- Manara University, Lattakia, Syria Christian CAPAPÉ University of Montpellier, 34095 Montpellier, France e-mail: capape@orange.fr ABSTRACT A specimen of blackfish, Centrolophus niger (Gmelin, 1789), was caught on 13 April 2025 by trawl gear at a depth of 30 m off Baniya, Syria (eastern Mediterranean Sea). The specimen, measuring 281 mm in total length and weighing 195 g, is the first confirmed record of C. niger recorded to date in the coastal waters of Syria. Its description, including morphometric measurements and meristic counts, is provided in this study. This finding fills a distributional gap in the Levant Basin and suggests a viable population may be present in the region. Key words: Centrolophus niger, distribution, population, extension range, Levant Basin PRIMA SEGNALAZIONE CONFERMATA DELLA RICCIOLA DI FONDALE CENTROLOPHUS NIGER (CENTROLOPHIDAE) AL LARGO DELLA COSTA SIRIANA (MEDITERRANEO ORIENTALE) SINTESI Un esemplare della ricciola di fondale, Centrolophus niger (Gmelin, 1789), è stato catturato il 13 aprile 2025 con una rete a strascico a una profondità di 30 m al largo di Baniya, in Siria (Mediterraneo orientale). L’esemplare, che misura 281 mm di lunghezza totale e pesa 195 g, è il primo esemplare confermato fino ad oggi di C. niger nelle acque costiere della Siria. Lo studio fornisce la sua descrizione, comprese le misurazioni morfometriche e i conteggi meristici. Questa scoperta colma una lacuna nella distribuzione nel bacino del Levante e suggerisce che nella regione potrebbe essere presente una popolazione vitale. Parole chiave: Centrolophus niger, distribuzione, popolazione, estensione dell’areale, bacino del Levante ANNALES · Ser. hist. nat. · 35 · 2025 · 2 264 Lana KHREMA et al.: FIRST SUBSTANTIATED RECORD OF BLACKFISH CENTROLOPHUS NIGER (CENTROLOPHIDAE) FROM THE SYRIAN COAST, ..., 263–268 INTRODUCTION The blackfish, Centrolophus niger (Gmelin, 1788), is a teleost species widely distributed in temperate and warm-temperate marine waters and typically found at depths between 200 and 400 m (Haedrich, 1986). It displays a near-circumglobal distribution – from the Atlantic Ocean (includ- ing the western Baltic Sea and North Sea) to the Mediterranean Sea, as well as the Indian and Pacific oceans (Haedrich, 1990) – but is notably absent from the northern Pacific (Fricke et al., 2025). This pelagic, mesopelagic, and epibenthic deep-water species inhabits the edge of the continental shelf. While larvae occur in the plankton, juveniles and young adults commonly associate with pelagic medusae or floating objects such as boxes or bar- rels, and feed on jellyfish, crustaceans, sparids, and small fishes (Carpenter & De Angelis, 2016). Little is known about the species’ reproductive biology, a notable exception being the thorough study by Kennedy et al. (2024) on specimens collected in Icelandic waters. C. niger is one of the four species in the family Centrolophidae recorded to date in the Mediter- ranean Sea, where it has been mostly reported in western basins (Haedrich, 1986). More recently, its range has expanded into the central Mediterranean (Capapé et al., 2017; Hattour & Koched, 2017; Ben Amor et al., 2018) and eastward into the Adriatic Tab. 1: Morphometric measurements (in mm and as percentages of standard length, %SL), meristic counts, and total body weight (in grams) of the Centrolophus niger specimen from Banias, Syria, compared with records from other marine areas. SL = standard length. Tab. 1: Morfometrične meritve (v mm in kot odstotki standardne dolžine, %SL), meristično štetje in skupna telesna teža (v gramih) osebka vrste Centrolophus niger iz Baniasa v Siriji v primerjavi z zapisi iz drugih morskih območij. SL = standardna dolžina. References MSL 1/2025 Ayas et al., 2018 Hattour & Koched, 2017 Ben Amor et al., 2018 Sapture area Syria Türkiye Tunisia Tunisia Measurements mm SL% mm SL% mm SL% mm SL% Total Length 281 122.1 51.9 119.5 801 114.5 271 130.9 Fork Length 262 113.9 47.6 109.6 750 107.2 226 109.2 Standard Length 230 100 43.4 100 699 100 207 100 Body Depth 60 26 10.8 24.8 147 21 93 44.9 Head Length 57 24.7 10.3 23.7 186 26.6 57 27.5 Eye Diameter 11 4.7 2.1 4.8 38 5.4 15 7.2 Snout Length 170 73.9 2.3 5.2 31 4.4 23 11.1 Pre-dorsal length 67 29.1 18.4 42 254 36.3 102 49.3 Pre-pectoral length 60 26 - - 178 25.4 71 34.3 Pre-pelvic length 62 26.9 11.5 26.4 165 23.6 - - Pre-anal length 134 58.2 23.8 54.8 399 57 167 80.7 Meristic counts Dorsal fin IV +34 D, V-37-41 VI+36 V+38 Anal fin III+23 III, 20-24. III+23 III+21 Pectoral fin rays 20 - 21 22 Pelvic fin 6 - I+5 5 Total body weight Gram 195 - - 195.9 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 265 Lana KHREMA et al.: FIRST SUBSTANTIATED RECORD OF BLACKFISH CENTROLOPHUS NIGER (CENTROLOPHIDAE) FROM THE SYRIAN COAST, ..., 263–268 Sea (Dulčić & Lipej, 2002; Mersinaj, 2024) and the Aegean Sea (Akyol, 2008; Ceyhan & Akyol, 2011; Cengiz et al., 2019, 2023). To date, C. niger has not been recorded in the Black Sea or Marmara Sea (Bilecenoǧlu et al., 2014). In the southern Mediter- ranean, C. niger has been recorded off the Egyptian coast (El Sayed et al., 2017), with juvenile forms also reported from Algeria (Dieuzeide et al., 1955). Its presence has also been documented in the Levant Basin, including Iskenderun Bay (Türkiye), Raouché in Beirut (Lebanon), and Isreal (Golani, 2005; Ergüden et al., 2012; Farrag, 2016; Badred- dine & Bitar, 2020). Previous studies indicated an absence of the species from the Syrian coast (Saad, 2005; Ali, 2018), but recently, during investigations regularly conducted in this area, a specimen of blackfish was collected. The present study provides a description of the specimen and discusses this unusual finding. MATERIAL AND METHODS The present study follows the methodology for reporting first records of fish species as outlined by Bello et al. (2014). On 13 April 2025, a single specimen of Centrolophus niger was captured off the coast of Banias, Syria (35°06’14.4” N, 35°53’08.0” E; Fig. 1) using a trammel net at a depth 30 m. The morphometric measurements recorded to the nearest millimeter and expressed as percentages of standard length (SL), along with meristic counts and total body weight (in grams) are presented in Table 1. The specimen was preserved in 10% buffered formalin and deposited in the Ichthyological Col- lection of the Marine Sciences Laboratory, Faculty of Agriculture, Tishreen University, under reference number MSL 1/2025. RESULTS AND DISCUSSION The blackfish specimen (MSL 1/2025) measured 281 mm in total length (TL), 230 mm in standard length (SL), and weighed 195 g (Fig. 2). It was identified as C. niger based on the following combi- nation of morphological characters: body elongate, slightly compressed, with a long and compressed caudal peduncle, maximum body depth approxi- mately 30% SL; head small, brownish to bluish- black, with pores visible in the naked skin; snout obtuse and rounded, slightly longer than the eye diameter; mouth small with small and sharp teeth distributed on jaws in a single row, no teeth on pal- ate; operculum thin, fine denticulations on edge of preoperculum; 19 gill rakers on first gill arch; me- dian fin spines weak, hardly distinguishable from rays; a single continuous dorsal fin usually behind the beginning of pectoral fins, dorsal fin spines plus soft rays 40, (IV+34), anal fin beginning a little behind mid-body, anal fin spines plus soft rays 24 (III+22), pectoral fin pointed rays 21, pelvic fins inserted under the base of pectoral fins, connected to the abdomen by a small membrane and folding into a shallow groove; caudal fin broad, moder- ately forked. Median and pelvic fins darker than the body, lateral line very slightly arched anteriorly then straight, extending onto the caudal peduncle. The general morphology, morphometric measure- ments, meristic counts, and coloration of the present specimen are consistent with previous descriptions of C. niger (Haedrich, 1986; Fischer et al., 1987; Car- penter & De Angelis, 2016; Ben Amor et al., 2018; Cengiz et al., 2019). This confirmation supports the inclusion of C. niger in the documented ichthyofauna of Syrian waters. Fig. 1: Map of the Syrian coast indicating the capture site of Centrolophus niger (black star). Sl. 1: Zemljevid sirske obale z oznako lokalitete, kjer je bil ulovljen primerek vrste Centrolophus niger (črna zvezda). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 266 Lana KHREMA et al.: FIRST SUBSTANTIATED RECORD OF BLACKFISH CENTROLOPHUS NIGER (CENTROLOPHIDAE) FROM THE SYRIAN COAST, ..., 263–268 This finding represents the first substantiated record of C. niger in the area, filling a known dis- tribution gap along the Levant Basin shore and suggesting a viable local population may be estab- lished. It also constitutes additional evidence of the species’ range expansion within the Mediter- ranean Sea, likely influenced by climate change and the resulting alterations in the environmental characteristics of the region’s marine waters (Ben Rais Lasram & Mouillot, 2009). The phenomenon was previously suggested by Ben Amor et al. (2018), who noted a migration of the fish from northern to southern Tunisian marine waters. Conversely, the reported capture of the species off Iceland remains questionable (see Kennedy et al., 2024). The fact that such atypical records have been reported in this northern region locally suggests the possibility of local environmental changes – a hypothesis that cannot be entirely dismissed. Throughout the Mediterranean Sea C., niger is considered rare even in the regions where it has been reported. This rarity is likely due to the fact that the species inhabits deep areas that are poorly exploited by commercial fisheries. Furthermore, misidentification with closely related species cannot be ruled out, and due to the species’ low commercial value, small speci- mens are probably discarded at sea after capture. In this context, dedicated monitoring studies are needed to assess the continued presence of this rare fish and its potential breeding sites. This study will contribute to future studies on fisheries management and biodi- versity conservation in Syria and broader Levant Basin. ACKNOWLEDGEMENTS The authors wish to thank three anonymous refer- ees for their helpful and valuable comments on the paper allowing to enlarge and improve its scientific quality. Fig. 2: Specimen of the Centrolophus niger caught off Banias. Scale bar = 50 mm. Sl. 2: Primerek vrste Centrolophus niger, ulovljen pri Baniasu. Lestvica = 50 mm. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 267 Lana KHREMA et al.: FIRST SUBSTANTIATED RECORD OF BLACKFISH CENTROLOPHUS NIGER (CENTROLOPHIDAE) FROM THE SYRIAN COAST, ..., 263–268 PRVI POTRJEN ZAPIS ČRNUHA, CENTROLOPHUS NIGER (CENTROLOPHIDAE), S SIRSKE OBALE (VZHODNO SREDOZEMSKO MORJE) Lana KHREMA Department of Basic Sciences, Faculty of Agriculture, 1 Latakia University, Lattakia, Syria Adib SAAD Directorate of Scientific research and publishing, Al- Manara University, Lattakia, Syria Christian CAPAPÉ University of Montpellier, 34095 Montpellier, France e-mail: capape@orange.fr ABSTRACT Avtorji poročajo o primerku črnuha, Centrolophus niger (Gmelin, 1789), ki je bil ulovljen 13. aprila 2025 z vlečno mrežo na globini 30 m pri Baniji v Siriji (vzhodno Sredozemsko morje). Primerek, ki je v dolžino meril 281 mm in tehtal 195 g, je prvi potrjeni zapis o pojavljanju vrste C. niger v obalnih vodah Sirije. Avtorji podajajo njen opis, vključno z morfometričnimi meritvami in merističnim štetjem. Ta ugotovitev zapolnjuje vrzel v razširjenosti te vrste v Levantskem bazenu in nakazuje, da je v regiji morda prisotna viabilna populacija. Ključne besede: Centrolophus niger, razširjenost, populacija, razširjanje areala, Levantski bazen ANNALES · Ser. hist. nat. · 35 · 2025 · 2 268 Lana KHREMA et al.: FIRST SUBSTANTIATED RECORD OF BLACKFISH CENTROLOPHUS NIGER (CENTROLOPHIDAE) FROM THE SYRIAN COAST, ..., 263–268 REFERENCES Akyol, O. (2008): New record of the juvenile black- fish, Centrolophus niger (Centrolophidae), from the Aegean Sea (Izmir Bay, Turkey). Cybium, 32(1), 31-92. Ali, M. (2018): An updated checklist of marine fishes from Syria with an emphasis on alien species. Medit. Mar. Sci., 19, 388-393. Ayas, D., D. Ergüden, N. Çiftçi & M. Bakan (2018): The new locality record of Centrolophus niger (Gmelin, 1789), from Büyükeceli Coast (North-Eastern Mediter- ranean Sea). COMU J. Mar. Sci. Fish., 1(2), 48-52. Badreddine, A. & G. Bitar (2020): First record of the blackfish Centrolophus niger (Teleostei: Centrolophidae) from the Lebanese waters in the eastern Mediterranean Sea. Leb. Sci. J., 21(2), 262-265. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposal best practice approach to overcome unverified and unverifiable «first records» in ichthyology. Cybium, 38(1), 9-14. Ben Amor, M.M., K. Ounifi-Ben Amor & C. Capapé (2018): Additional records and extension of the range of blackfish, Centrolophus niger (Osteichthyes: Centrolophi- dae) from the Tunisian coast (Central Mediterranean Sea). Annales, Ser. Hist. Nat., 28(2), 123-128. Ben Raïs Lasram, F. & D. Mouillot (2009): Increas- ing southern invasion enhances congruence between endemic and exotic Mediterranean fish fauna. Biol. Inva- sions, 11(3), 697-711. Bilecenoǧlu, M., M. Kaya, B. Cihangir, & E. Ćiçek (2014). An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38(6), 901-929. Capapé, C., S. Rafrafi-Nouira & O. El Kamel-Moutal- ibi (2017): On the occurrence of blackfish Centrolophus niger (Osteichthyes: Centrolophidae). Cah. Biol. Mar., 58(1), 117-120. Carpenter, K.E. & N. De Angelis (2016): The living marine resources of the Eastern Central Atlantic. Volume 4: bony fishes, part 2 (Perciformes to Tetraodontiformes) and sea turtles. FAO Species Identification Guide for Fishery Purposes, Rome, FAO, pp. 2343-3124. Cengiz, Ö., S.S. Parug & B. Kızılkaya (2019): Occur- rence of rudderfish (Centrolophus niger Gmelin, 1789) in Saroz Bay (Northern Aegean Sea, Turkey). Turk. J. Agricul. Food Sci. Technol., 7(5), 799-801. Cengiz, Ö., S.S. Parug & K.B. Aydemir (2023): First occurrence of rudderfish Centrolophus niger (Gmelin, 1789) in the Edremit Bay (Northern Aegean Sea, Türkiye) with the maximum length record for Turkish Seas. Mo- mona Ethiop. J. Sci., 15(2), 177-188. Ceyhan, T. & O. Akyol (2011): Occurrence of the blackfish, Centrolophus niger (Gmelin, 1798) (Osteich- thyes: Centrolophidae), in Izmir Bay, Aegean Sea. J. Appl. Ichthyol., 27(2), 139-140. Dieuzeide, R., M. Novella & J. Roland (1955): Cata- logue des poissons des côtes algériennes, Volume III. Bull. Sta. Aquic Pêche Castiglione, n. sér., 6, 1-384. Dulčić, J. & L. Lipej (2002): Rare and little-known fishes in the Eastern Adriatic during last two decades. Periodicum Biologorum, 104, 185-194. El Sayed, H., K. Akel., P.K. Karachle (2017): The marine ichthyofauna of Egypt. Egypt. J. Aquat. Biol. Fish., 21(3), 81-116. Ergüden D., D. Yaghoǧlu, M. Gürlek & C. Turan (2012): An occurrence of the blackfish, Centrolophus niger (Gmelin, 1789), in Iskenderun Bay, (northeastern Mediterranean, Turkey). J. Black Sea/ Medit. Environ., 18(1), 97-102. Farrag, M.M. (2016): Deep-sea ichthyofauna from Eastern Mediterranean Sea, Egypt: Update and new re- cords. Egypt. J. Aquat. Res., 42(4), 479-489. Fischer, W., M.-L. Bauchot & M. Schneider (1987): Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Vol. II. Vertébrés. Pub. F A O , GCP/ INT/422/EEC). Rome, FAO, Vo1.2, 761-1530. Fricke, R., W.N. Eschmeyer & J. Fong, J. (2025): Eschmeyer’s Catalog of Fishes: Genera, Species, Refer- ences. http://researcharchive.calacademy.org/research/ ichthyology/catalog/SpeciesByFamily.asp [downloaded on 23 July 2025]. Golani, D. (2005): Check-list of the Mediterranean Fishes of Israel. Zootaxa, 2005(947), 1-200. Haedrich, R.L. (1986): Centrolophidae. pp. 1177- 1182. In: Whitehead P.J.P., Bauchot, M.L., Hureau J.C., Nielsen J. & Tortonese. E. (eds): Fishes of the North-western Atlantic and the Mediterranean. Vol III. UNESCO, Paris. Haedrich, R.L. (1990): Centrolophidae. pp. 1010- 1013. In: Quéro J.C., Hureau J.C., Nielsen J., Karrer C., Post A. & Slaldanha L.(eds): Check-list of the fishes of the eastern tropical Atlantic. Vol II. UNESCO, Paris. Hattour, A. & W. Koched (2017): Nouvelles occur- rence et signalisation d’espèces de la Famille des Cen- trolophidae (Actinoptérygiens, Perciformes) dans les eaux tunisiennes. Bull. Inst. Sci. Technol. Mer, Salammbô, 44, 195-202. Kennedy, J., A.H. Ólafsdóttir, S.E. Aradóttir, S. Egils- dóttir & C. Pampoulie (2024): Biological information on a rare pelagic fish, black ruff Centrolophus niger, caught in Icelandic waters: distribution, feeding, and otoliths. J. Fish Biol., 104, 598-610. Mersinaj, M. (2024): New occurrence of the black- fish, Centrolophus niger (Gmelin, 1789), in Albanian coast (South-East Adriatic Sea). Zoology, Fisheries, Medi- terranean Sea, Adriatic Sea, Ichthyology. DOI: 1013140/ RG.2.2.36087.43681 [downloaded on 22 July 2025]. Saad, A. (2005): Checklist of bony fish collected from the coast of Syria. Turk. J. Fish. Aquat. Sci., 5(2), 99-106. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 269 received: 2025-10-05 DOI 10.19233/ASHN.2025.29 MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST Amir IBRAHIM, Chirine HUSSEIN Department of Fisheries Resources, High Institute of Marine Research Lattakia University, Syria e-mail: amir.ali.ibrahim@latakia-univ.edu.sy Firas ALSHAWY Faculty of Veterinary medicine, AlFurat University, Syria Alaa ALCHEIKH AHMAD General Establishment of Fisheries: Coastal Area Branch, Tartous, Syria ABSTRACT An updated checklist of marine fishes (Teleostei / Osteichthyes) recorded to date in Syrian marine waters is presented here. Out of the 62 fish orders present in the whole oceans, 37 (60%) are found in the marine water of Syria. These orders comprise 303 species, 208 genera and 103 families. Sparidae is the most divers family (32 species), followed by Blenniidae (14 species) and Carangidae (13 species). Out of the 303 teleost species recorded in this checklist, 48 species were recorded during the period 2018-2025, accounting for 7 species per year and 17.1% of overall fish species previously recorded. This is noticeably higher than what was recorded by the previous checklist (32 species, 1.45%) during the entire period 2005-2018. Climate change, other environmental factors and human activities are thought to be the most acceptable reasons behind that. Key words: Levantine Basin, Teleost, Syrian coast, Lessepsian species, native species PESCI MARINI (TELEOSTEI / OSTEICHTHYES) DELLA SIRIA (MEDITERRANEO ORIENTALE): ELENCO AGGIORNATO SINTESI L’articolo presenta la lista aggiornata dei pesci marini (Teleostei / Osteichthyes) trovati fino ad oggi nelle acque marine siriane. Dei 62 ordini di pesci presenti in tutti gli oceani, 37 (60%) si trovano nelle acque marine della Siria. Questi ordini comprendono 303 specie, 208 generi e 103 famiglie. La famiglia più diversificata è quella degli Sparidae (32 specie), seguita dai Blenniidae (14 specie) e dai Carangidae (13 specie). Delle 303 specie di teleostei comprese in questa checklist, 48 specie sono state segnalate nel periodo 2018-2025, pari a 7 specie all’anno e al 17,1% delle specie ittiche complessivamente ritrovate in precedenza. Questo dato è notevolmente superiore a quello riportato dalla precedente checklist (32 specie, 1,45%) durante l’intero periodo 2005-2018. Si ritiene che i cambiamenti climatici, altri fattori ambientali e le attività umane siano le ragioni più plausibili alla base di tale fenomeno. Parole chiave: bacino del Levante, Teleostei, costa siriana, specie lessepsiane, specie autoctone ANNALES · Ser. hist. nat. · 35 · 2025 · 2 270 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 INTRODUCTION The Mediterranean Sea is a common biodiversity hotspot, hosting about 11% of marine species (more than 17,000) in less than 1% of the world’s oceans area. It is hosting 28% of endemic species, 7.5% of the world’s marine fauna, and 18% of its marine flora (UNEP/MAP & Bleu Plan, 2020). The Mediterranean Sea is rich in islands, unique habitats, major breeding areas and refuges for migratory species (Cheminée et al., 2021; Azzurro et al., 2022; Nota et al., 2025). The intense and increasing human activities around the Mediterranean basin, climate changes, and the resulted species migration and pollution have all led to the present destruction of biodiversity composition (Aurelle et al., 2022). Despite the extensive scientific studies, our under- standing of the biodiversity in the Mediterranean Sea remains incomplete, as new species are constantly be- ing revealed (Garcia-Bustos, 2025). FAO (2022) report indicated that the number of species introduced to the Mediterranean Sea from the Indian Ocean, Red Sea, and Atlantic Ocean reached about 1,000 species, of which about 400 are fish species. In this context, since Suez Canal opening in 1869 and its expansion in 2015 to include a second canal, the arrival of non-native marine organisms from the Red Sea to the Mediterra- nean Sea has increased. For these reasons, the eastern Mediterranean basin is considered as a biodiversity hotspot. To date, over 70% of the exotic fishes found in the Mediterranean are found in the eastern basin: they arrived from the Indo-Pacific region through the Red Sea and Suez Canal; i.e Lessepsian migrants (Zenetos et al., 2010). To a lesser extent, Atlantic spe- cies arrived from the western Mediterranean basin, and few species originating from the Black Sea, had been found in the eastern Mediterranean (Harmelin & Dhondt, 1993). Few studies have comprehensively surveyed the fish diversity of the Syrian coast: Gruvel (1931) identi- fied 88 bony fish species (Osteichthyes) and 6 carti- laginous fish species. A Korean cooperation mission in 1976 revealed the presence of 93 fish species (Anon., 1976), and Sbaihi (1994a) documented 150 species of bony fish, to which 8 species were later added (Saad, 1996). Ibrahim et al. (1999) had documented 5 new records from the sandy area of Jableh Bay – south of Lattakia city, bringing the number of bony fishes recorded until the year 1999 to 163 species. Two checklists of Syrian bony fish species have been later produced: they were prepared by Saad (2005), where 224 species were included, and by Ali (2018), where 256 species were included (along with 40 species of Elasmobranchii and 2 species of holo- cephali). In addition, Saad & Khrema (2023), although focused on non-endogenous marine fish, they had stated that a total of 292 Actinopterygii fish species (belonging to 98 families and 26 orders) present in Syrian marine water until the end of Aug. 2023; the majority of which are Teleost’s species. After 2018, (Ali, 2018), and even after 2023 (Saad & Khrema, 2023), many species were found in Syrian marine water and published in dispersed scientific journals. Therefore, the current work aimed to collect such newly published species and produce an updated comprehensive checklist of bony fishes available in Syrian marine water. MATERIAL AND METHODS The current checklist focuses on information col- lected on bony fish species (Teleostei: Osteichthyes) found in Syrian marine water, starting from Al- Badrusi- ya area in the north (35.913232° N and 35.886477° E) to Sheikh Jaber area near the Lebanese border in the south (34.62128° N and 35.97190° E), passing through the areas of Ras Al-Basit, Latakia, Jableh, Baniyas, Tar- tous, and al-Hamidiyah (Fig. 1). The present checklist is based on information previously published in various scientific journals. Species and other taxa classifica- tion was updated and revised according to the recent taxonomic developments. Species recording-primacy were checked and corrected, and those species missed from previous checklists were also added. For ease of Fig. 1: Locations of Syrian marine waters where fishes were collected (reproduced from surfer16 software). Sl. 1: Lokalitete v sirskih morskih vodah, kjer so bile potrjene ribe (reproducirano iz programske opreme surfer16). 34 35 36 31 32 33 34 35 36 37 36 36.5 34 34.5 35 35.5 36 36.5 Ras-Albaset Lattakia Jableh Baniyas Tartous N  0 0.2 0.4 0.6 0.8 1 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 271 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 inspection, various taxa were presented alphabetically. When applicable, the original author(s) of the basio- nyms, was put in parentheses to indicate that a species is reclassified or removed to a different genus or rank: the fishbase portal was used for this purpose. Overall, the following details are presented for each species: classification according to family and order, scientific name and first documentation. Some taxa, namely Carangaria, Eupercaria and Ovalentaria contain a series of families that are not yet definitively placed under a specific order; thus, the suffix “/misc”(i.e. mis- cellaneous) was assigned to those families that do not perfectly fit into any established order. RESULTS AND DISCUSSION The documented records of teleost fish species found in Syrian marine waters; their taxonomic af- filiation and their first documentation are presented in Appendix 1. Three hundreds and three fish species (Teleost/Osteichthyes) were so far documented from Syrian marine water (eastern Mediterranean). Com- pared to the previously recorded species (Ali, 2018 as an example), 48 species were added to the checklist, as during the period 2018-2025; accounting for 7 species per year and 17.1% of overall fish species previously recorded. Detailed local and global distributions of these newly recorded species are given in Ibrahim et al. (2025). This number of species (48 species) is notice- ably higher than what was recorded by Ali (2018) (32 species; 1.45%) during the entire period 2005-2018. This dramatic increase may due to climate change ac- celeration and the subsequent changes in water quality (Urdiales-Flores et al., 2023) and to species behavior (Valente et al., 2023), impact of human activities and/ or the noticeable monitoring intensification of fish diversity along the Syrian coast. In fact, the true number of fish species is most likely to be higher from what was stated in this article, since that some species were not considered here as they are not properly documented. In addition, many other species are already present in the neighboring eastern Mediterranean countries of similar environmental con- ditions (Golani et al., 2021; Turan et al., 2024; Golani, 2025) and most likely to exist in Syrian marine water. In addition to those added species, the current checklist introduces the following additions to the previously published lists: Assignment of fish species to their taxonomic categories according to the most recent developments in scientific taxonomy (Froese & Pauly, 2025), corrections related to the precedency in species documentation and corrections related to species misidentification (as many species were given false scientific names). Out of the 62 fish orders present in the global oceans (Froese & Pauly, 2025), 37 (60%) are found in the marine water of Syria (Appendix 1). These orders comprise 103 families (20.2%), 208 genera (4.59%) and 303 species (0.99%). Spread of such species, es- pecially those newly-arrived exotic species, over this wide range of families and genera indicates a pattern of successful adaptation and colonization to the new environment (Davidsen et al., 2021). Understanding the spread patterns and detailed factors contribut- ing to invasion is essential for developing effective and comprehensive management plan to control the spread of the exotic species (Marcolin et al., 2025). The content of Appendix 1 reveals that, Sparidae was the richest family in species composition (32 species), followed by Blenniidae (14 species), Caran- gidae (13 species) and each of Scombridae, Gobiidae and Labridae (12 species), besides Scorpaenidae and Epinephelidae (8 species each). Similarly, the fami- lies Triglidae, Mullidae, Mugilidae and Apogonidae have 7 species each, Tetraodontidae and Soleidae have 6 species each and Syngnathidae, Trachinidae and Sphyraenidae have 4 species each. Fourteen other families have 3 species each, 23 families have 2 species each and the remaining 49 families have 1 species each. The checklist produced in this article can be a complimentary one to those checklists of other Mediter- ranean countries (eg. Golani et al., 2012; Turan et al., 2024; Golani, 2025), especially those of the neighboring ones (eg. Turan et al., 2024; Bitar & Badreddine, 2021), to give a general updated view of the eastern Mediter- ranean fish fauna. This checklist would also be used for assessing the current state and monitoring potential future changes in fish diversity in the area. CONCLUSIONS A total of 303 teleost species (belong to 208 gen- era, 103 families and 37 orders) have been recorded in Syrian marine water by Oct. 2025, 48 of which have been categorized as exotic species documented for the first time during the period 2018-2025. These newly documented fish species account for 7 species per year and 17.1% of overall fish species previously recorded: this is noticeably higher than what was recorded by the previous checklist (32 species and 1.45%) during the entire period 2005-2018. Climate change (with the resulting changes in sea water char- acteristics) and human activities (such as Suez Canal opening and marine transportation) are thought to be the key reasons behind. ACKNOWLEDGEMENTS The authors would like to thank the High Commis- sion for Scientific Research (Damascus) and Latakia University / High Institute of Marine Research who provided the financial and logistic supports within the joint scientific cooperation program. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 272 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Appendix 1: Species recorded from Syrian marine water, their taxonomic affiliation and their first documentation. Priloga 1: Vrste, zabeležene v sirskem morju, njihova taksonomska pripadnost in prvi dokumentiran zapis o pojavljanju. 1st documentationSpeciesFamilyOrder Sbaihi (1994a)Capros aper (Linnaeus, 1758)Caproidae Acanthuriformes 1. Ali et al. (2017b)Chaetodon larvatus Cuvier, 1831 Chaetodontidae 2. Ibrahim et al. (2022)Heniochus intermedius Steindachner, 18933. Alshawy et al. (2016)Equulites berbis (Valenciennes, 1835) Leiognathidae 4. Gruvel (1931)Equulites klunzingeri (Steindachner, 1898)5. Ibrahim et al. (2020)Equulites popei (Whitley, 1932)6. Saad et al. (2022b)Lutjanus fulviflamma (Forsskål, 1775)Lutjanidae7. Gruvel (1931)Lobotes surinamensis (Bloch, 1790)Lobotidae8. Sbaihi (1994a)Chromis chromis (Linnaeus, 1758) Pomacanthidae 9. Capapé et al. (2023)Pomacanthus maculosus (Forsskål, 1775)10. Saad et al. (2018)Pomacanthus imperator (Bloch, 1787)11. Capapé et al. (2022)Priacanthus hamrur (Fabricius, 1775) Priacanthidae 12. Alshawy et al. (2019e)Priacanthus sagittarius Starnes, 198813. Ibrahim et al. (2010)Siganus javus (Linnaeus, 1766) Siganidae 14. Gruvel (1931)Siganus luridus (Ruppel, 1829)15. Gruvel (1931)Siganus rivulatus Forsskal & Niebuhr, 177516. Ali et al. (2017a)Champsodon nudivittis (Ogilby, 1895)Champsodontidae Acropomatiformes 17. Ibrahim et al. (2023)Epigonus denticulatus Dieuzeide, 1950 Epigonidae 18. Sbaihi (1994a)Epigonus constanciae (Giglioli, 1880)19. Sbaihi & Saad (1992) (as P. vanicolensis)Pempheris rhomboidea Kossmann & Rauber, 1877Pempheridae20. Gruvel (1931)Anguilla anguilla (Linaeus, 1758)Anguillidae Anguilliformes 21. Sbaihi (1994)Panturichthys fowleri (Ben-Tuvia, 1953)Heterenchelyidae22. Ibrahim et al. (2002a)Ariosoma balearicum (Delaroche, 1809) Congridae 23. Gruvel (1931)Conger conger (Linnaeus, 1758)24. Saad (2005)Enchelycore anatina (Lowe, 1838) Muraenidae 25. Ibrahim & Galiya (2004)Gymnothorax unicolor (Delaroche, 1809)26. Ibrahim et al. (2002b)Muraena helena Linnaeus, 175827. Ali (2018)Nettastoma melanurum Rafinesque, 1810Nettastomatidae28. Capapé et al. (2021)Dalophis imberbis (Delaroche, 1809)Ophichthidae29. Ibrahim et al. (2002b)Echelus myrus (Linnaeus, 1758)30. Alshawy et al. (2019f)Ophisurus serpens (Linnaeus, 1758)31. Sbaihi (1994)Argentina sphyraena Linnaeus, 1758 ArgentinidaeArgentiniformes 32. Sbaihi (1994)Glossanodon leioglossus (Valenciennes, 1848)33. Saad et al. (2002)Atherina boyeri Risso,A 1810Atherinidae Atheriniformes 34. Saad (2005)Atherinomorus forskalii (Ruppell, 1838)35. Othman et al. (2022)Atherinomorus lacunosus (Forster, 1801)36. Saad (2005)Aulopus filamentosus (Bloch, 1792)Aulopidae Aulopiformes 37. Ghanem et al. (2012)Chlorophthalmus agassizi Bonaparte, 1840Chlorophthalmidae38. Ali et al. (2014)Sudis hyalina Rafinesque, 1810Paralepididae39. Anon. (1976) (as S. undosquamis)Saurida lessepsianus Russell, Golani & Tikochinski, 2015Synodontidae40. Ibrahim et al. (2002b)Synodus saurus (Linneaus, 1758)41. Alshawy et al. (2019d)Ablennes hians (Valenciennes, 1846) Belonidae Beloniformes 42. Gruvel (1931)Belone belone (Linnaeus, 1760)43. Saad et al. (2002)Tylosurus choram (Ruppell, 1837)44. Saad (2005)Cheilopogon heterurus (Rafinesque, 1810) Exocoetidae 45. Sbaihi (1994)Hirundichthys rondeletii (Valenciennes, 1847)46. Ibrahim et al. (2002a), Saad et al. (2002)Parexocoetus mento (Valenciennes, 1847)47. Gruvel (1931)Hemiramphus far (Forsskal, 1775) Hemiramphidae 48. Saad (2005)Hyporhamphus affinis (Gunther, 1866)49. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 273 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Hallom et al. (2014)Aidablennius sphynx (Valenciennes, 1836) Blenniidae Blenniiformes 50. Galiya (2000)Blennius ocellaris Linnaeus, 175851. Saad (2005)Coryphoblennius galerita (Linaeus, 1758)52. Saad (2005)Lipophrys trigloides (Valenciennes, 1836)53. Saad (2005)Microlipophrys canevae (Vinciguerra, 1880)54. Saad (2005)Microlipophrys nigriceps (Vincigerra, 1883)55. Saad (2005)Parablennius incognitus (Bath, 1968)56. Saad (2005)Parablennius rouxi (Cocco, 1833)57. Saad (2005)Parablennius tentacularis (Brunnich, 1768)58. Galiya (2000)Parablennius gattorugine Linnaeus, 1758)59. Galyia (2000)Parablennius sanguinolentus (Pallas, 1814)60. Saad (2005)Petroscirtes ancylodon Ruppell, 183561. Gruvel (1931)Salaria pavo (Risso, 1810)62. Sbaihi (1994)Scartella cristata (Linnaeus, 1758)63. Sbaihi (1994)Clinitrachus argentatus (Risso, 1810)Clinidae64. Sbaihi (1994)Tripterygion delaisi Cadenat & Blanche, 1970 Tripterygiidae 65. Sbaihi (1994)Tripterygion melanurum Guichenot, 185066. Saad (2005)Tripterygion tripteronotum (Risso, 1810)67. Ibrahim et al. (2002b) (as L. aurata)Callionymus filamentosus Valenciennes, 1837CallionymidaeCallionymiformes68. Othman & Galiya (2024)Synchiropus phaeton (Günther, 1861)69. Ibrahim et al. (2002a) Saad (2002)Sphyraena chrysotaenia Klunzinger, 1884 SphyraenidaeCarangaria/misc 70. Saad et al. (2002)Sphyraena flavicauda Ruppell, 183871. Gruvel (1931)Sphyraena sphyraena (Linnaeus, 1758)72. Gruvel (1931)Sphyraena viridensis Cuvier, 182973. Gruvel (1931)Alectis alexandrina (Geoffroy Saint-Hilaire, 1817) Carangidae Carangiformes 74. Bauchot (1987)Alepes djedaba (Forsskal, 1775)75. Sbaihi (1994)Caranx crysos (Mitchill, 1815)76. Anon. (1976)Caranx rhonchus Geoffroy saint-Hilaire, 181777. Gruvel (1931)Lichia amia (Linnaeus, 1758)78. Ali-Basha et al. (2021)Naucrates ductor (Linnaeus, 1758)79. Saad (2005)Pseudocaranx dentex (Bloch & Schneider, 1801)80. Gruvel (1931)Seriola dumerili (Risso, 1810)81. Jawad et al. (2015)Seriola fasciata (Bloch, 1793)82. Gruvel (1931)Trachinotus ovatus (Linnaeus, 1758)83. Sbaihi (1994)Trachurus mediterraneus (Steindachner, 1868)84. Saad (2005)Trachurus picturatus (Bowdich, 1825)85. Anon. (1976)Trachurus trachurus (Linnaeus, 1758)86. Gruvel (1931)Coryphaena hippurus Linnaeus, 1758Coryphaenidae87. Gruvel (1931)Echeneis naucrates Linnaeus, 1758Echeneidae88. Saad et al. (2024)Tetrapturus belone Rafinesque, 1810Istiophoridae89. Gruvel (1931)Xiphias gladius Linnaeus, 1758Xiphiidae90. Saad (2005)Pelates quadrilineatus (Bloch, 1790) TerapontidaeCentrarchiformes 91. Saad (2005)Terapon puta (Cuvier, 1829)92. Gruvel (1931)Alosa fallax (Lacepede, 1803)Alosidae Clupeiformes 93. Saad (2005)Sardina pilchardus (Walbaum, 1792)94. Gruvel (1931)Sprattus sprattus (Linnaeus, 1758)Clupeidae95. Saad (2005)Herklotsichthys punctatus (Ruppell, 1837) Dorosomatidae 96. Gruvel (1931)Sardinella aurita Valenciennes, 184797. Fortič et al. (2023)Sardinella gibbosa (Bleeker, 1849)98. Gruvel (1931)Sardinella maderensis (Lowe, 1838)99. Saad (2002)Dussumieria elopsoides Bleeker, 1849 Dussumieriidae 100. Sbaihi (1994b), Ibrahim et al. (2002b) (as E. teres)Etrumeus golanii DiBattista, Randall & Bowen, 2012101. Gruvel (1931)Engraulis encrasicholus (Linnaeus, 1758)Engraulidae102. Saad (2005)Aphanius dispar dispar (Ruppell, 1829)AphaniidaeCyprinodontiformes103. Gruvel (1931)Dactylopterus volitans (Linaeus, 1758)DactylopteridaeDactylopteriformes104. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 274 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Saad (2005)Callanthias ruber (Rafinesque, 1810)Callanthiidae Eupercaria/misc 105. Sbaihi (1994)Cepola macrophthalma (Linnaeus, 1758)Cepolidae106. Sbaihi (1994)Pomadasys incisus (Bowdich, 1825) Haemulidae 107. Saad (2005)Pomadasys stridens (Forsskal, 1775)108. Saad (2005)Acantholabrus palloni (Risso, 1810) Labridae 109. Gruvel (1931)Coris julis (Linnaeus, 1758)110. Whitehead et al. (1984)Labrus merula Linnaeus, 1758111. Foulquié & Dupuy de la Grandrive (2003)Labrus mixtus Linnaeus, 1758112. Ibrahim et al. (2019b),Pteragogus trispilus Randall, 2013113. Khrema et al. (2022)Symphodus bailloni (Valenciennes, 1839)114. Saad (2005)Symphodus cinereus (Bonnaterre, 1788)115. Saad (2005)Symphodus mediterraneus (Linnaeus, 1758)116. Saad (2005)Symphodus roissali (Risso, 1810)117. Sbaihi (1994)Symphodus tinca (Linnaeus, 1758)118. Sbaihi (1994)Thalassoma pavo (Linnaeus, 1758)119. Anon. (1976)Xyrichtys novacula (Linnaeus, 1758)120. Sbaihi (1994)Dicentrarchus labrax (Linnaeus, 1758) Moronidae 121. Sbaihi (1994)Dicentrarchus punctatus (Bloch, 1792)122. Ali et al. (2013)Nemipterus randalli Russell, 1986Nemipteridae123. Ali (2018)Scarus ghobban Forsskal, 1775 Scaridae 124. Gruvel (1931)Sparisoma cretense (Linnaeus 1758)125. Saad (2005)Argyrosomus regius (Asso, 1801) Sciaenidae 126. Gruvel (1931)Sciaena umbra Linnaeus, 1758127. Gruvel (1931),Umbrina cirrosa (Linnaeus, 1758)128. Ibrahim et al. (2002b) (as S. sihama)Sillago suezensis Golani, Fricke & Tikochinski, 2013Sillaginidae129. Saad et al. (2022c)Acanthopagrus bifasciatus (Forsskål, 1775) Sparidae 130. Gruvel (1931)Boops boops (Linneaus, 1758)131. Sbaihi (1994)Centracanthus cirrus Rafinesque, 1810132. Saad et al. (2002)Crenidens crenidens (Forsskal, 1775)133. Anon. (1976)Dentex dentex (Linneaus, 1758)134. Anon. (1976)Dentex gibbosus (Rafinesque, 1810)135. Gruvel (1931)Dentex macrophthalmus (Bloch, 1791)136. Gruvel (1931)Dentex maroccanus Valenciennes, 1830137. Gruvel (1931)Diplodus annularis (Linneaus, 1758)138. Gruvel (1931)Diplodus cervinus (Lowe, 1838)139. Sbaihi (1994)Diplodus puntazzo (Walbaum, 1792)140. Gruvel (1931)Diplodus sargus (Linnaeus, 1758)141. Gruvel (1931)Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817)142. Saad (2005)Evynnis ehrenbergii (Valenciennes, 1830)143. Gruvel (1931)Lithognathus mormyrus (Linnaeus, 1758)144. Gruvel (1931)Oblada melanura (Linnaeus, 1758)145. Gruvel (1931)Pagellus acarne (Risso, 1827)146. Sbaihi (1994)Pagellus bellottii Steindachner, 1882147. Saad et al. (2020a)Pagellus bogaraveo (Brünnich, 1768)148. Gruvel (1931)Pagellus erythrinus (Linnaeus, 1758)149. Gruvel (1931)Pagrus auriga Valenciennes, 1843150. Sbaihi (1994)Pagrus caeruleostictus (Valenciennes, 1830)151. Saad et al. (2022d)Pagrus major (Temminck & Schlegel, 1843)152. Gruvel (1931)Pagrus pagrus (Linnaeus, 1758)153. Saad (2005)Rhabdosargus haffara (Forsskal, 1775)154. Hamwi & Ali-Basha (2021)Rhabdosargus sarba (Forsskål, 1775)155. Gruvel (1931)Sarpa salpa (Linnaeus, 1758)156. Gruvel (1931)Sparus aurata Linnaeus, 1758157. Sbaihi (1994)Spicara flexuosum Rafinesque, 1810158. Sbaihi (1994)Spicara maena (Linnaeus, 1758)159. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 275 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Gruvel (1931)Spicara smaris (Linnaeus, 1758)160. Gruvel (1931)Spondyliosoma cantharus (Linnaeus, 1758)161. Othman & Galiya (2019)Bregmaceros nectabanus Whitley, 194Bregmacerotidae Gadiformes 162. Sbaihi (1994)Gadiculus argenteus Guichenot, 1850 Gadidae 163. Sbaihi (1994)Micromesistius poutassou (Risso, 1827)164. Ali et al. (2016a), Hussein (2023)Coelorinchus caelorhincus (Risso, 1810) Macrouridae 165. Ali (2018)Hymenocephalus italicus Giglioli, 1884166. Othman & Galiya (2023)Nezumia aequalis (Günther, 1878)167. Anon. (1976)Merluccius merluccius (Linnaeus, 1758)Merlucciidae168. Anon. (1976)Phycis blennoides (Brünnich, 1768) Phycidae 169. Anon. (1976)Phycis phycis (Linnaeus, 1766)170. Sbaihi (1994)Lepadogaster candolii Risso 1810 GobiesocidaeGobiesociformes 171. Sbaihi (1994)Lepadogaster lepadogaster (Bonnaterre, 1788)172. Saad (2005)Aphia minuta (Risso, 1810) GobiidaeGobiiformes 173. Saad (2005)Chromogobius quadrivittatus (Steindachner, 1863)174. Saad (2005)Deltentosteus quadrimaculatus (Valenciennes, 1837)175. Gruvel (1931)Gobius cobitis Pallas, 1811176. Saad (2005)Gobius cruentatus Gmelin, 1789177. Saad et al. (2022a)Gobius geniporus Valenciennes, 1837178. Gruvel (1931)Gobius niger Linnaeus, 1758179. Saad (2005)Gobius paganellus Linnaeus, 1758180. Saad (2005) ,Lesueurigobius friesii (Malm, 1874)181. Saad (2005)Oxyurichthys petersii (Valenciennes, 1837)182. Sbaihi (1994)Silhouettea aegyptia (Chabanaud, 1933)183. Saad (2005)Zebrus zebrus (Risso, 1827)184. Anon. (1976)Sargocentron rubrum (Forsskal, 1775)HolocentridaeHolocentriformes185. Alshawy et al. (2019c)Apogon atradorsatus Heller & Snodgrass, 1903 ApogonidaeKurtiformes 186. Sbaihi (1994)Apogon imberbis (Linnaeus, 1758)187. Sbaihi & Saad (1992)Apogonichthyoides pharaonis (Bellotti, 1874)188. Ali et al. (2018)Cheilodipterus novemstriatus (Ruppell, 1838)189. Alshawy et al. (2019a)Ostorhinchus fasciatus (White, 1790)190. Alshawy et al. (2017)Jaydia smithi Kotthaus, 1970191. Alshawy et al. (2019g)Jaydia queketti (Gilchrist, 1903)192. Ali et al. (2021)Lophotus lacepede Giorna, 1809LophotidaeLampriformes193. Saad (2005)Lophius budegassa Spinola, 1807 LophiidaeLophiiformes 194. Saad (2005)Lophius piscatorius Linneaus, 1758195. Gruvel (1931), Ibrahim et al. (2002b) (as Liza aurata)Chelon auratus (Risso, 1810) MugilidaeMugiliformes 196. Gruvel (1931)Chelon labrosus (Risso, 1827)197. Saad (2005) (as Liza ramada)Chelon ramada (Risso, 1827)198. Gruvel (1931)Chelon saliens (Risso, 1810)199. Saad (1995)Liza carinata (Valenciennes, 1836)200. Ibrahim et al. (2002b)Mugil cephalus Linnaeus, 1758201. Gruvel (1931)Oedalechilus labeo (Cuvier, 1829)202. Gruvel (1931)Mullus barbatus barbatus Linnaeus, 1758 MullidaeMulliformes 203. Anon. (1976)Mullus surmuletus Linnaeus, 1758204. Ali et al. (2016b)Parupeneus forsskali (Fourmanoir & Gueze, 1976)205. Sabour & Masri (2022)Parupeneus rubescens (Lacepède, 1801)206. Baddour et al. (2025)Parupeneus spilurus (Bleeker, 1854)207. Gruvel (1931)Upeneus moluccensis (Bleeker, 1855)208. Sbaihi & Saad (1992) Upeneus pori Ben-Tuvia & Golani, 1989209. Saad (2005)Myctophum punctatum Rafinesque, 1810MyctophidaeMyctophiformes210. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 276 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Sbaihi (1994)Ophidion barbatum Linaeus, 1758Ophidiidae Ophidiiformes 211. Othman et al. (2020)Ophidion rochei Müller, 1845212. Saad et al. (2020a)Abudefduf vaigiensis (Quoy & Gaimard, 1825)PomacentridaeOvalentaria/misc213. Sbaihi (1994)Anthias anthias (Linnaeus, 1758)Anthiadidae Perciformes 214. Gruvel (1931)Epinephelus aeneus (Geoffroy Saint- Hilaire,1817) Epinephelidae 215. Hassan & Alchikh Ahmad (2023)Epinephelus areolatus (Forsskål, 1775)216. Gruvel (1931)Epinephelus costae (Steindachner, 1878)217. Ibrahim et al. (2002b) (as E. alexandrinus)Epinephelus fasciatus (Forsskal, 1775)218. Ibrahim & Galiya (2004)Epinephelus malabaricus (Bloch & Schneider, 1801)219. Gruvel (1931)Epinephelus marginatus (Lowe, 1834)220. Gruvel (1931) (As Epinephelus haifensis)Hyporthodus haifensis (Ben-Tuvia, 1953)221. Saad (2005)Mycteroperca rubra (Bloch, 1793)222. Ibrahim et al. (2002b)Peristedion cataphractum (Linnaeus, 1758)Peristediidae223. Saad et al. (2002)Platycephalus indicus (Linnaeus, 1758)Platycephalidae224. Sbaihi (1994)Serranus cabrilla (Linnaeus, 1758) Serranidae 225. Anon. (1976)Serranus hepatus (Linnaeus, 1758)226. Gruvel (1931)Serranus scriba (Linnaeus, 1758)227. Ibrahim et al. (2002b)Helicolenus dactylopterus (Delaroche, 1809)Sebastidae228. Ali et al. (2025)Parascorpaena mcadamsi (Fowler, 1938) Scorpaenidae 229. Ali et al. (2016a)Pterois miles (Bennet, 1828)230. Fandi et al. (2022)Pterois volitans (Linnaeus, 1758)231. Saad (2005)Scorpaena elongata Cadenat, 1943232. Saad (2005)Scorpaena maderensis Valenciennes, 1833233. Saad (2005)Scorpaena notata Rafinesque, 1810234. Sbaihi (1994)Scorpaena porcus Linnaeus, 1758235. Gruvel (1931)Scorpaena scrofa Linnaeus, 1758236. Ibrahim et al. (2019a)Synanceia verrucosa Bloch & Schneider, 1801Synanceiidae237. Saad (2005)Echiichthys vipera (Cuvier, 1829) Trachinidae 238. Gruvel (1931)Trachinus araneus Cuvier, 1829239. Gruvel (1931)Trachinus draco Linnaeus, 1758240. Saad (2005)Trachinus radiatus Cuvier, 1829241. Anon. (1976)Chelidonichthys cuculus (Linnaeus, 1758) Triglidae 242. Sbaihi (1994), Ibrahim et al. (2002b) (as Trigloporus lastoviza)Chelidonichthys lastoviza (Bonnaterre, 1788)243. Anon. (1976), Ibrahim et al. (2002b) (as Trigla lucerna)Chelidonichthys lucerna (Linnaeus, 1758)244. Saad (2005)Eutrigla gurnardus (Linnaeus, 1758)245. Anon. (1976) Saad (2005)Lepidotrigla cavillone (Lacepede, 1801)246. Gruvel (1931)Lepidotrigla dieuzeidei Blanc & Hureau, 1973247. Gruvel (1931)Trigla lyra Linnaeus, 1758248. Gruvel (1931)Uranoscopus scaber Linnaeus, 1758Uranoscopidae249. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 277 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Saad (2005)Arnoglossus kessleri Schmidt, 1915 Bothidae Pleuronectiformes 250. Ibrahim et al. (2002b)Arnoglossus laterna (Walbaum, 1792)251. Sbaihi (1994)Bothus podas (Delaroche, 1809)252. Sbaihi (1994)Citharus linguatula (Linnaeus, 1758)Citharidae253. Saad & Sbaihi (1992) Cynoglossus sinusarabici (Chabanaud, 1931)Cynoglossidae254. Saad (2005)Symphurus nigrescens Rafinesque, 1810255. Saad (2005)Lepidorhombus boscii (Risso, 1810) Scophthalmidae 256. Saad (2005)Lepidorhombus whiffiagonis (Walbaum, 1792)257. Sbaihi (1994)Scophthalmus rhombus (Linnaeus, 1758)258. Ali et al. (2015b)Dicologlossa cuneata (Moreau, 1881) Soleidae 259. Ibrahim & Galiya (2004)Microchirus ocellatus (Linnaeus, 1758)260. Ali et al. (2018)Pegusa impar (Bennett, 1831)261. Sbaihi (1994)Pegusa lascaris (Risso, 1810)262. Anon. (1976) (as S. vulgaris)Solea solea (Linnaeus, 1758)263. Ali et al. (2015a)Synapturichthys kleinii (Risso, 1827)264. Sbaihi (1994)Brama brama (Bonnaterre, 1788)Bramidae Scombriformes 265. Badran & Ghanem (2024)Schedophilus ovalis (Cuvier, 1833)Centrolophidae266. Gruvel (1931)Pomatomus saltatrix (Linnaeus, 1766)Pomatomidae267. Sbaihi (1994)Auxis rochei rochei (Risso, 1810) Scombridae 268. Othman et al. (2023a)Auxis thazard (Lacepède, 1800)269. Sbaihi (1994)Euthynnus alletteratus (Rafinesque, 1810)270. Sbaihi (1994)Katsuwonus pelamis (Linnaeus, 1758)271. Saad (2005)Orcynopsis unicolor (Geoffroy Saint- Hilaire, 1817)272. Gruvel (1931)Sarda sarda (Bloch, 1793)273. Sbaihi (1994) (as S. japonicus)Scomber colias Gmelin, 1789274. Othman et al. (2023b)Scomber indicus275. Gruvel (1931)Scomber scombrus Linnaeus, 1758276. Anon. (1976)Scomberomorus commerson (Lacepede, 1800)277. Hamwi (2024b)Thunnus obesus (Lowe, 1839)278. Hamwi (2024a)Thunnus thynnus (Linnaeus, 1758)279. Saad (2005)Lepidopus caudatus (Euphrasen, 1788)Trichiuridae280. Gruvel (1931)Trichiurus lepturus Linneaus, 1758281. Ali et al. (2015c)Plotosus lineatus (Thunberg, 1787)PlotosidaeSiluriformes282. Ali (2018)Stomias boa boa (Risso, 1810)StomiidaeStomiiformes283. Gruvel (1931)Macroramphosus scolopax (Linnaeus, 1758)Centriscidae Syngnathiformes 284. Galiya (2003)Fistularia commersonii Ruppell, 1838 Fistulariidae 285. Hussein et al. (2019)Fistularia petimba Lacepède, 1803286. Saad (2005)Hippocampus guttulatus Cuvier, 1829 Syngnathidae 287. Sbaihi (1994)Hippocampus hippocampus (Linnaeus, 1758)288. Saad (2005)Syngnathus abaster Risso, 1827289. Saad (2005)Syngnathus acus Linnaeus, 1758290. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 278 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Gruvel (1931), Ibrahim et al. (2002b) (as B. carolinensis)Balistes capriscus Gmelin, 1789Balistidae Tetraodontiformes 291. Ali et al. (2024)Odonus niger292. Saad (2005)Mola mola (Linneaus, 1758)Molidae293. Gruvel (1931)Stephanolepis diaspros Fraser-Brunner, 1940Monacanthidae294. Saad (2002)Tetrosomus gibbosus (Linnaeus, 1758)Ostraciidae295. Khalaf et al. (2014)Lagocephalus sceleratus (Gmelin, 1789) Tetraodontidae 296. Anon. (1976), Ibrahim et al. (2002b) (as L. spadiceus)Lagocephalus guentheri (Miranda Ribeiro, 1915)297. Alshawy et al. (2019b)Lagocephalus lagocephalus (Linnaeus, 1758)298. Saad et al. (2002)Lagocephalus suezensis Clark & Gohar, 1953)299. Rahman et al. (2014)Sphoeroides pachygaster (Muller & Troschel, 1848)300. Sabour et al. (2014)Torquigener flavimaculosus Hardy & Randall, 1983301. Gruvel (1931) Hoplostethus mediterraneus Cuvier, 1829TrachichthyidaeTrachichthyiformes302. Gruvel (1931)Zeus faber Linnaeus, 1758ZeidaeZeiformes303. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 279 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 MORSKE RIBE (TELEOSTEI / OSTEICHTHYES) SIRIJE (VZHODNO SREDOZEMSKO MORJE): POSODOBLJENI SEZNAM VRST Amir IBRAHIM, Chirine HUSSEIN Department of Fisheries Resources, High Institute of Marine Research Lattakia University, Syria e-mail: amir.ali.ibrahim@latakia-univ.edu.sy Firas ALSHAWY Faculty of Veterinary medicine, AlFurat University, Syria Alaa ALCHEIKH AHMAD General Establishment of Fisheries: Coastal Area Branch, Tartous, Syria POVZETEK Avtorji predstavljajo posodobljen seznam morskih rib (Teleostei / Osteichthyes), ki so bile do danes zabe- ležene v sirskih morskih vodah. Od 62 ribjih redov, ki so prisotni v oceanih, jih 37 (60%) najdemo v morskih vodah Sirije. Ti redovi obsegajo 303 vrste, 208 rodov in 103 družine. Najštevilčnejša družina je Sparidae (32 vrst), sledijo ji Blenniidae (14 vrst) in Carangidae (13 vrst). Od 303 vrst kostnic iz seznama morskih rib, je bilo v obdobju 2018–2025 zabeleženih 48 vrst, kar predstavlja 7 vrst na leto in 17,1% vseh prej zabeleženih vrst rib. To je znatno več kot je bilo zabeleženo na prejšnjem seznamu vrst (32 vrst, 1,45%) v celotnem obdobju 2005–2018. Podnebne spremembe, drugi okoljski dejavniki in človekove dejavnosti veljajo za najbolj sprejemljive razloge za to. Ključne besede: levantski bazen, kostnice, sirska obala, lesepske selivke, domorodne vrste ANNALES · Ser. hist. nat. · 35 · 2025 · 2 280 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 REFERENCES Ali, M., A. Saad, C. Reynaud & C. Capapé (2013): First Records Of Randall’s Threadfin Bream Nemip- terus Randalli (Osteichthyes: Nemipteridae) Off The Syrian Coast (Eastern Mediterranean). Annales, Ser. Hist. Nat., 23(2), 119-124. Ali, M., A. Saad, C. Reynaud & C. Capapé (2014): First records of barracudina Sudis hyalina (Osteichthyes: Paralepididae) off the Syrian coast (eastern Mediterranean). Journal of Ichthyology, 54, 786-789. Ali, M., A. Saad, M. Fadel, I. Issa, C. Reynaud & C. Capapé (2015a): First record of Klein’s sole Synaptu- richthys kleinii (Osteichthyes: Soleidae) off the Syrian coast (eastern Mediterranean). Journal of Ichthyology, 55(6), 918-921. Ali, M., A. Saad, C. Reynaud & C. Capapé (2015b): First record of wedge sole, Dicologlossa cuneata (Ac- tinopterygii: Pleuronectiformes: Soleidae), from the Levant Basin (eastern Mediterranean). Acta Ichthyo- logica et Piscatoria, 45(4), 417-421. Ali, M., A. Saad & A. Soliman (2015c): Expansion confirmation of the Indo-Pacific catfish, Plotosus lin- eatus (Thunberg, 1787),(Siluriformes: Plotosidae) into Syrian marine waters. American Journal of Biology Life Sciences, 3(1), 7-11. Ali, M., H. Alkusairy, A. Saad, C. Reynaud & C. Capapé (2016a): First record of Pterois miles (Os- teichthyes: Scorpaenidae) in Syrian marine waters: confirmation of its accordance in the eastern Mediter- ranean. Tishreen Univ. J. Res. Sci. Stud. Biol. Sci. Ser., 38, 307-313. Ali, M., Y. Diatta, H. Alkusairy, A. Saad & C. Capapé (2016b): First record of Red Sea goatfish Parupeneus forsskali (Osteichthyes: Mullidae) from the Syrian coast (eastern Mediterranean). Journal of Ichthyology, 56, 616-619. Ali, M., A. Saad, M. Alkhateeb, S. Rafrafi-Nouira & C. Capapé (2016c): First record of hollowsnout grenadier Coelorinchus caelorhincus (osteichthyes: Macrouridae) from the syrian coast (eastern mediter- ranean). Annales, Ser. Hist. Nat., 26(2), 200-205. Ali, M., A. Saad, R. Jabour, S. Rafrafi-Nouira & C. Capapé (2017a): First record of nakedband gaper Champsodon nudivittis (Osteichthyes: Champsodonti- dae) off the Syrian Coast (Eastern Mediterranean). Journal of Ichthyology, 57(1), 161-163. Ali, M., A. Saad, A. Soliman, S. Rafrafi-Nouira & C. Capape (2017b): Confirmed Occurrence in the Mediterranean Sea of the Red Sea Orange Face Butterflyfish Chaetodon larvatus (Osteichthyes: Chae- todontidae) and First Record from the Syrian Coast. Cahiers de Biologie marine, 58(3), 367-369. Ali, M.F. (2018): An updated Checklist of the Ma- rine fishes from Syria with emphasis on alien species. Mediterranean Marine Science, 19(2), 388-393. Ali, M., V. Hammoud, O. Fandi & C. Capapé (2021): First substantiated record of crested oarfish Lophotus lacepede (Osteichthyes: Lophotidae) from the Syrian coast (eastern Mediterranean Sea). Annales, Ser. Hist. Nat., 31(2), 205-210. Ali, M., A. Fandi & C. Capape (2024): The first mediterranean record of red-toothed triggerfish Odonus niger (Balistidae) Eastern Mediterranean sea from the syrian coast. Annales, Ser. Hist. Nat., 34(2), 173-178. Ali, M., A. Fandi, D. Ghanim & C. CapapÉ (2025): First Mediterranean record of McAdam’s scorpionfish Parascorpaena mcadamsi(Scorpaenidae) from the Syr- ian coast Cah. Biol. Mar, 66, 51-54. AliBasha, N., A. Saad, N. Hamwi & A. Tufahha (2021): First record of pilotfish Naucrates ductor (Lin- naeus 1758), Carangidae, in the syrian marine waters (Levantine Basin). Marine Biodiversity Records, 14, 1-4. Alshawy, F., M. Lahlah & C. Hussein (2016): First record of the Berber ponyfish Leiognathus berbis Va- lenciennes, 1835 (Osteichthyes: Leiognathidae) from Syrian marine waters (Eastern Mediterranean). Marine Biodiversity Records, 9, 98. Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019a): First Record of the Broadbanded cardinalfish Ostorhinchus fasciatus (White, 1790) from the Syr- ian Marine Waters (Eastern Mediterranean). SSRG International Journal of Agriculture & Environmental Science, 6(3),14-16. Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019b): First record of the oceanic puffer Lagocepha- lus lagocephalus (Linnaeus, 1758) from the Syrian marine waters (eastern Mediterranean). Marine Biodi- versity Records, 12,11. Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019c): First Record of the Blacktip Cardinalfish Apogon atradorsatus Heller & Snodgrass, 1903 from Syrian Marine Waters (Eastern Mediterranean). Inter- national Journal of Advanced Research in Science, Engineering and Technology, 6(3), 8299-8302. Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019d): First record of the flat needlefish Ablennes hians (Valenciennes, 1846) from Syrian marine waters (eastern Mediterranean). Marine Biodiversity Records, 12, 15. Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019e): First record of arrow bulleye, Priacanthus sagittarius Starnes, 1988 from the Syrian marine wa- ters (Eastern Mediterranean). FishTaxa, 4(2), 21-24. Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019f): New Distribution of the Serpent Eel Ophisu- rus serpens (Linnaeus, 1758) in Eastern Mediter- ranean: First Record from the Syrian Marine Waters. International Journal of Agriculture & Environmental Science, 6(3), 50-52. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 281 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Alshawy, F., A. Ibrahim, C. Hussein & M. Lahlah (2019g): First record of the spotfin cardinal fish Jaydia queketti (Gilchrist, 1903)(Teleostei: Apogonidae) from the Syrian marine waters (Eastern Mediterranean). Iranian Journal of Ichthyology, 6(2), 138-142. Alshawy, F.A., M.M. Lahlah & C.S. Hussein (2017): First Record of the Lessepsian Migrant Smith’s Cardi- nalfish Jaydia smithi Kotthaus, 1970 (Pisces: Apogo- nidae) from Syrian Marine Waters. Basrah Journal of Agricultural Sciences, 30(2), 45-49. Anon. (1976). The fishes and their characteristic in Syrian shore. Fisheries technical assistant delega- tion of the Democratic People’s Republic of Korea. Lattakia-Syria, 214 pp. Aurelle, D., S. Thomas, C. Albert, M. Bally, A. Bondeau, C.F. Boudouresque, A.E. Cahill, F. Carlotti, A. Chenuil & W. Cramer (2022): Biodiversity, climate change, and adaptation in the Mediterranean. Eco- sphere, 13(4), e3915. Azzurro, E., T. Ballerini, C. Antoniadou, G.D. Aversa, J.B. Souissi, A. Blašković, V. Cappanera, M. Chiappi, M.-F. Cinti & F. Colloca (2022): ClimateFish: A collaborative database to track the abundance of selected coastal fish species as candidate indicators of climate change in the Mediterranean sea. Frontiers in marine science, 9, 910887. Baddour, N.G., M.Y. Galiya & W.G. Sabour (2025): First record of the Goatfish Species Parupe- neus spilurus (Perciformes: Mullidae) in the Marine Waters of Syria, Eastern Mediterranean Sea. Species, 25, e30s3143. Badran, M. & W. Ghanem (2020): First record of Schedophilus ovalis (Covier,1833) from Syrian marine water. Latakia University Journal -Biological Sciences Series, 46(3), 25-30. Bauchot, M. (1987): Poissons osseux. In: W. Fis- cher, ML Bauchot and M. Schneider (eds.): Fiches FAO d’identification pour les besoins de la pêche.(rev. 1). Méditerranée et mer Noire. Zone de pêche 37. Rome, pp. 891-1421. Bitar, G. & A. Badreddine (2021): An updated checklist of the marine fishes in Lebanon. An answer to Bariche and Fricke (2020): “The marine ichthyo- fauna of Lebanon: an annotated checklist, history, biogeography, and conservation status”. Zootaxa, 5010, 1-128. 10.11646/zootaxa.5010.1.1. Capapé, C., A. Saad, A. Solaiman, I. Barakat & W. Sabour (2021): First Substantiated Record of Armless Snake Eel Dalophis imberbis (Osteichthyes: Ophich- thidae) From the Syrian Coast (Eastern Mediterranean Sea). Annals for Istrian and Mediterranean Studies, 31:1,101-106 . Capapé, C., V. Hammoud, A. Fandi & M. Ali (2022): First Record of Moontail Bullseye Priacanthus hamrur (Osteichthyes, Priacanthidae) From the Syrian Coast (Eastern Mediterranean Sea). Annales, Ser. Hist. Nat., 32(2), 317-322. Capapé, C., V. Hammoud, A. Fandi & M. Ali (2023): First record of yellowbar angelfish Poma- canthus maculosus (Pomacanthidae) from the Syrian coast (eastern Mediterranean Sea). Acta Adriatica, 64(1), 79-81. Cheminée, A., L. Le Direach, E. Rouanet, P. Astruch, A. Goujard, A. Blanfuné, D. Bonhomme, L. Chassaing, J.-Y. Jouvenel & S. Ruitton (2021): All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish. Scientific Reports, 11(1), 14631. Davidsen, J.G., X. Bordeleau, S.H. Eldøy, F. Whoriskey, M. Power, G.T. Crossin, C. Buhariwalla & P. Gaudin. (2021): Marine habitat use and feeding ecology of introduced anadromous brown trout at the colonization front of the sub-Antarctic Kerguelen archipelago. Scientific reports, 11(1), 11917. Fandi, A., V. Hammoud, A. Zeini & T. Arraj (2022): First record of the Indo-Pacific red lionfish Pterois volitans (Linnaeus, 1758) in the Syrian ma- rine waters (Banias). Journal of Hama University, 5(19), 114-125. FAO (2022): The State of Mediterranean and Black Sea Fisheries 2022. The Food and Agriculture Organization of the United Nations FAO, 2413-7049. Foulquié, M. & R. Dupuy de la Grandrive .(2003): First assignment concerning the development of Ma- rine Protected Areas on the Syrian coast, from 8-15 November 2002. RAC/SPA, 33 pp. Fortič, A., R. Al-Sheikh Rasheed, Z. Almajid, A. Badreddine, J. Carlos Báez, Á. Belmonte-Gallegos, N. Bettoso, D. Borme, F. Camisa, D. Caracciolo, M.E. Çinar, F. Crocetta, I. Ćetković, A. Doğan, M. Galiya, Á. García De Los Ríos Y Los Huertos, D. Grech, J. Guallart, G. Gündeğer, A. Kahrić, P.K. Karachle, D. Kulijer, A. Lombarte, O. Marković, E. Martínez Jiménez, E. Sukran Okudan, M. Orlando-Bonaca, S. Sartoretto, A. Spinelli, I. Tuney Kizilkaya & R. Virgili (2023): New records of introduced species in the Mediterranean Sea (April 2023). Mediterranean Marine Science, 24(1), 182-202. Froese, R. & D. Pauly (2025): FishBase. Fisheries Centre, University of British Columbia Vancouver, BC, 1/5 2025. Galiya, M. (2000): Contribution to study of six species of the Family (Blenniidae) in Lattakia,s shore. Latakia University journal for studies and scientific research – Basic science series, 22(9). Galiya, M. (2003): A New Record of Migrant Fish (Fistularia commersonii, Ruppell, 1835) to Mediter- ranean Syrian Coast. Latakia University Journal for Studies and Scientific Research- Basic Science Se- ries, 25(13), 135-143. Garcia-Bustos, V (2025): Conservation attitudes and perceived biodiversity among divers on the Spanish Mediterranean coast: insights from local ecological knowledge. Oceans, 6, 1. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 282 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Ghanem, W., A. Ibrahim, M. Baker & M. Lahlah (2012): Preliminary evaluation of Marine Fisheries in Relation to Water Quality & Fish Stocks in the Syr- ian Coast of Almontar –Tartus. Damascus University Journal of Basic Sciences, 28(2), 533-549 (In Arabic with English abstract). Golani, D., E. Azzurro, J. Dulčić, E. Massutí & L. Orsi-Relini (2021): Atlas of exotic fishes in the Mediterranean Sea. CIEZM, 2nd Edn. Golani, D. (2025): Update of Red Sea (Lessepsian) fish species in the Mediterranean Sea since the 2nd CIESM Atlas of Exotic Fish. Mediterranean Marine Science, 26(1), 149-155. Gruvel, A. (1931). Les états de Syrie: richesses marines et fluviales, exploitation actuelle-avenir. Hallom, N., A. Ibrahim & M. Galiya (2014): First record of the hen-like blenny Aidablennius sphynx (Blenniidae) from Syrian marine waters (eastern Mediterranean). Marine Biodiversity Records, 7, 73. Hamwi, N. & N. Ali-Basha (2021): First record of Goldlined seabream Rhabdosargus sarba (Forsskål 1775), Sparidae, in the Mediterranean Sea (Syrian waters). Marine Biodiversity Records, 14, 1. Hamwi, N. (2024a): Population Growth of Thun- nus thynnus and Vulnerability to Fishing along the Syrian Coast (Eastern Mediterranean Sea). Interna- tional Journal of Oceanography Aquaculture, 8(2), 000311. Hamwi, N.I. (2024b): A new distribution and confirmation record of Thunnus obesus in the Syr- ian coast (eastern Mediterranean Sea). Species, 25, e33s1691. Harmelin, J. & J. Dhondt (1993): Transfers of bryozoan species between the Atlantic Ocean and the Mediterranean Sea via the Strait of Gibraltar. Oceanologica Acta, 16(1), 63-72 pp. Hassan, M. & A. Alchikh Ahmad (2023): The first validated record of Epinephelus areolatus (Forsskål, 1775) (Perciformes: Serranidae) from Syrian marine waters. Journal of the Marine Biological Association of the United Kingdom, 103, e93. Hussein, C., A. Ibrahim & F. Alshawy (2019): First record of Red cornetfish, Fistularia petimba Lacepède, 1803 (Actinopterygii: Fistulariidae) from the Syrian coast. International Journal of Aquatic Biology, 7(3), 175-179. Hussein, C. (2023): Catch enlargement and distribution expansion of the alien fish Hollowsnout grenadier Coelorinchus caelorhincus in the Syr- ian marine waters (Eastern Mediterranean). Tishreen University Journal for Research and Scientific Studies - Biological Sciences Series, 45(3), 11-16. Ibrahim, A. & M. Galiya (2004): Marine biodiversity (Fisheries Section) in relation to environmental condi- tions along Syrian-Lebanese coasts, with emphasis on species migration 2002-2004. High Institute of Marine Research / Lattakia University, 113 pp. Ibrahim, A., M. Kroum & M. Lahleh (1999): Qualita- tive and quantitative composition of fish caught by land- based trawling nets in the marine waters off Lattakia city. Aleppo University Journal of Studies and Scientific Research, Basic Sciences Series, No. 30. Ibrahim, A., M. Karroum & M. Lahlah (2002a): Marine fish biodiversity of Syria: Nine new records. J. of Environmental Research and Sustainable Development: Arab Univ. Union, 5, 68-93. Ibrahim, A., M.Y. Kassabm & M. Karroum (2002b): Biodiversity Atlas of Syria (Marine Fish Section), State Ministry for Environmental Affairs & GEF-UNEP. Ibrahim, A., M. Lahlah, M. Kassab, W. Ghanem & S. Ogaily (2010): Signatus javus, a new record from the Syrian waters, with reference to growth and feeding of two Lessepsian fish. Rapport de la Commission interna- tional de la Mer Méditerranée, 39, 333. Ibrahim, A., F. Alshawy & C. Hussein (2019a): Stone- fish Synanceia verrucosa Bloch & Schneider, 1801 (Ac- tinopterygii: Synanceiidae): the first record in the Syrian coast and the fourth in the Mediterranean. International Journal of Aquatic Biology, 7(6), 383-386. Ibrahim, A., C. Hussein & F. Alshawy (2019b): New Distribution of Pteragogus trispilus Randall, 2013 (Actinopterygii: Labridae) in the Syrian Marine Waters (Eastern Mediterranean). SSRG International Journal of Agriculture & Environmental Science, 6(5), 24-26. Ibrahim, A., C. Hussein, F. Alshawy & A. Alcheikh Ahmad (2020): First Record of Pope’s ponyfish Equulites popei (Whitley, 1932),(Osteichthyes: Leiognathidae) in the Syrian Marine Waters (Eastern Mediterranean). Journal of Wildlife Biodiversity, Special issue, 1-5. Ibrahim, A., C. Hussein, F. Alshawy, M. Badran, W. Ghanem, A. Ahmad & A. Saleh (2022): First Record of the Red Sea Bannerfish Heniochus intermedius Stein- dachner, 1893,(Chaetodontidae) in the Syrian Marine Waters (Eastern Mediterranean). Species, 23(72), 459- 463. Ibrahim, A., F. Alshawy & C. Hussein (2023): Pencil cardinal Epigonus denticulatus Dieuzeide 1950, a western Mediterranean fish: Newly recorded from the Syrian marine waters (Eastern Mediterranean). Species, 24, e25s1025. Ibrahim, A., C. Hussein, F. Alshawy & S.A. Ahmad (2025): Checklist and Distribution of Exotic Teleost Fish Species Arrived in Syrian Marine Water (eastern Medi- terranean) from 2018 to 2025. In Press. Jawad, L., A. Mtawej, A. Ibrahim & M. Hassan (2015): First record of the lesser amberjack Seriola fas- ciata (Teleostei: Carangidae) in Syrian coasts. Cahiers de Biologie Marine, 56(1),81-84. Khalaf, G., A. Saad, S. Jemaa, W. Sabour, M. Lteif & S. Lelli (2014): Population structure and sexual maturity of the pufferfish Lagocephalus sceleratus (Osteichthyes, Tetraodontidae) in the Lebanese and Syrian marine waters (Eastern Mediterranean). Journal of Earth Science Engineering, 4, 4. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 283 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Khrema, L., A. Saad, A. Alnesser & C. Capapé (2022): First record of Baillon’s wrasse Symphodus bail- loni (Labridae) in the Eastern Mediterranean Sea coast of Syria. FishTaxa, 25, 26-30. Marcolin, F., P. Branco, J.M. Santos, L. Reino, J. San- tana, J. Ribeiro, D. Chamberlain & P. Segurado (2025): Species traits and invasion history as predictors of fresh- water fish’s invasion success in Europe. Management of Biological Invasions 16(1), 277-294. Nota, A., A. Santovito & F. Tiralongo (2025): Northern Refuge or New Thermophilic Hotspot? Citizen Science Evidence of Rare, Thermophilic, and Alien Fishes in the Ligurian Sea (NW Mediterranean). Oceans, 6(25), 1-16. Othman, R. & M. Galiya :(2019) The appearance of Smallscale Codlet, Bregmaceros nectabanus Whitley, 1941 (Bregmacerotidae) in Syrian marine waters. New Mediterranean Biodiversity Records . Medit. Mar. Sci., 20(2), 409-426. Othman, R., M. Galiya, Z. Almajid & W. Ghanem (2020): New record of the Roche’s snake blenny Ophidion rochei Müller, 1845 (Ophidiidae, Ophidii- formes) from the Syrian marine waters–Eastern Medi- terranean Sea. Sci. Res. in Biological Sciences, 7, 1. Othman, R., M. Galiya & Z. Almajid (2022): First description of Hardyhead silverside Atherinomorus lacunosus (Forster in Bloch an Schneider, 1801) from Syrian marine waters-Eastern Mediterranean. Species, 23(71), 173-177. Othman, R., M. Galiya, H. Laika & Z. Almajid (2023a): First record of frigate tuna Auxis thazard (Osteichthyes: Scombriformes: Scombridae) in the Syrian marine waters, the Eastern Mediterranean. Zoosystematica Rossica, 32(1), 23-26. Othman, R.M., M.Y. Galiya, H.E. Laika & Z.A. Almajid (2023b): First record of the lessepsian mi- grant mackerel, Scomber indicus (Scombridae) off the Syrian coasts, Eastern Mediterranean. Acta Biologica Turcica, 36(2), 1-5. Rahman, W., Galiya M & A. AK. (2014): First record of the blunthead puffer Sphoeroides pachygaster (Osteich- thyes: Tetraodontidae) in Syrian marine waters (eastern Mediterranean). Marine Biodiversity Records, e31. Saad, A. (1996): Biology and life cycles of small pelagic fish on the coast of Syria: Landings and catch profile for the Syrian coastal fleet. In: Se.condary Saad, A. (ed.) Field document TCP/SYR/, Assistance to Artisa- nal Fleet Project. Rome: FAO, 45 pp. Saad, A (2002):. Characterization of Lessepsian mi- grant fish at Syrian sea waters. Mediterranean Vermitid Terrace and Migratory/Invasive Organisms” INOC and SNRSL, Beirut/Lebanon, act of workshop. Saad, A., J. Hureau, V. Hammoud & M. Ali (2002):. Fish biodiversity and the impact of environmental factors and human activities in Syrian marine waters. Proceeding of 9th conference of Arab Union Biologists Aleppo, 1-6. Saad, A. (2005): Check – list of Bony Fish Collected from the Coast of Syria. Turkish Journal of Fisheries and Aquatic Sciences, 5(2), 99-106. Saad, A., H. Alkusairy & W. Sabour (2018): First record of the Emperor angelfish, Pomacanthus impera- tor (Acthenoptergii: Pomacanthidae) in the Syrian coast (Eastern Mediterranean). Marine Biodiversity Records, 11(1), 16. Saad, A., M. Masri & W. Sabour (2020a): First con- firmed record of Sparid Pagellus bogaraveo (Brünnich, 1768) in the Syrian marine waters (Levantine Basin). Marine Biodiversity Records, 13, 1-7. Saad, A., A. Soliama & H. Alkusairy (2020b): First re- cord of Abudefduf vaigiensis (Quoy and Gaimard, 1825) (Teleostei: Pomacentridae) in the Syrian coasts (eastern Mediterranean). Syrian Journal of Agricultural Research, 7(4), 485-478. Saad, A., N.A. Basha, N. Hamwi, A. Tufahha & C. Capapé (2022a): First substantiated record of slender goby Gobius geniporus (Osteichthyes: Gobiidae) from the Syrian coast (Eastern Mediterranean Sea). Acta Adri- atica, 63(1), 59-64. Saad, A., L. Khrema, A. Alnesser, I. Barakat & C. Capapé (2022b): First Substantiated Record Of Dory Snapper Lutjanus fulviflamma (Lutjanidae) From The Eastern Mediterranean Sea. Thalassia Sal, 44, 103-106. Saad, A., M. Masri & A. Tufahha (2022c): First sub- stantiated record of the towbar seabream, Acanthopagrus bifasciatus (TELEOSTEI: Sparidae), in the Syrian marine waters (eastern Mediterranean Sea). Asian Journal of Advances in Research, 17(3), 14-18. Saad, A., W. Sabour, M. Masri, I. Barakat & C. Capapé (2022d): On the occurrence of red seabream Pagrus major (Osteichthyes: Sparidae) in the eastern Mediterranean Sea, first record from the Syrian coast. Cah. Biol. Mar, 63, 89-92. Saad, A., L. Khrema, A. Alnesser, I. Barakat & C. Ca- papé (2024): First substantiated record of mediterranean spearfish Tetrapturus belone (Istiophoridae) from the Syrian Coast. Thalassia Salentina, 45, 11-16. Sabour, W. & M. Masri (2022): First record of the Rosy goatfish, Parupeneus rubescens (Lacepede, 1801) (Mullidae) in Syrian marine waters. Iraqi Journal of Aq- uaculture, 19(2), 191-198. Sbaihi, M. & A. Saad (1992):. Données nouvelles sure des espèces de poissons téleostéens pêchées pour la première fois dans les eaux terretoriales Syriennes. In: Secondary Sbaihi, M. & A. Saad (eds.) Proceeding des travaux de la semaine de science, . Damas: Damas Univ., 83-105. Sbaihi, M. (1994a): Biosystematic Study of teleostien fishes in Marine water of Syria (Eastern Mediterranean). MSc.Tishreen University; Faculty of Sciences, .264 pp. (in Arabic, with English abstract). Sbaihi, M. (1994b): Biosystematic study of teleostien fishes in Marine water of Syria (Eastern Mediterranean). Master Theses, Faculty of Sciences,Tishreen Univ. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 284 Amir IBRAHIM et al.: MARINE FISHES (TELEOSTEI / OSTEICHTHYES) OF SYRIA (EASTERN MEDITERRANEAN): AN UPDATED CHECKLIST, 269–284 Turan, C., D. Ergüden, M. Gürlek & S. Doğdu (2024): Checklist of Alien Fish Species in the Turkish Marine Ichthyofauna for Science and Policy Support. Tethys Environmental Science, 1(2), 50-68. Urdiales-Flores, D., G. Zittis, P. Hadjinicolaou, S. Osipov, K. Klingmüller, N. Mihalopoulos, M. Kanakidou, T. Economou & J. Lelieveld (2023): Drivers of acceler- ated warming in Mediterranean climate-type regions. npj Climate Atmospheric Science, 6(1), 97. Valente, S., S. Moro, M. Di Lorenzo, G. Milisenda, L. Maiorano & F. Colloca (2023): Mediterranean fish communities are struggling to adapt to global warming. Evidence from the western coast of Italy. Marine Envi- ronmental Research, 191, 106176. Whitehead, P.J.P., M.-L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (1984). Fishes of the north- eastern Atlantic and the Mediterranean. UNESCO, Vol. 1. Zenetos, A., S. Gofas, M. Verlaque, M.E. Çinar, J.E. García Raso, C.N. Bianchi, C. Morri, E. Azzurro, M. Bi- lecenoglu, C. Froglia, I. Siokou, D. Violanti, A. Sfriso, G. San Martín Peral, A. Giangrande, T. Katagan, E. Balles- teros, A.A. Ramos-Esplá, F. Mastrototaro, O. Ocaña, A. Zingone, M.C. Gambi & N. Streftaris (2010): Alien spe- cies in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterranean Marine Science, 11, 381-493. BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION ANNALES · Ser. hist. nat. · 35 · 2025 · 2 287 received: 2025-10-06 DOI 10.19233/ASHN.2025.30 CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT? Paola LEOTTA, Rocco CICCIARELLA, Ruben GARRANO Ente Fauna Marina Mediterranean, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy e-mail: pleotta1990@gmail.com; rocco.cicciarella@hotmail.it; ruben.garrano@gmail.com Enrico LA SPINA Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy e-mail: enricolaspina@outlook.it Daniele TIBULLO Ente Fauna Marina Mediterranean, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy e-mail: daniele.tibullo@unict.it Francesco TIRALONGO Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy Ente Fauna Marina Mediterranean, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy e-mail: francesco.tiralongo@unict.it ABSTRACT The Lessepsian jellyfish Cassiopea andromeda is an invasive scyphozoan originating from the Red Sea and In- do-Pacific region. It was first recorded in the Mediterranean at the beginning of the 20th century and has since expanded its distribution across the basin. The main goal of this contribution is to document the first and well-doc- umented record of this jellyfish from the Portopalo di Capo Passero area, which represents the southernmost tip of Italy (Sicily, Ionian Sea). The observation, made in October 2025, provides new evidence of the species’ expansion along the Sicilian Ionian coast. This finding raises questions about whether the species is a recent colonizer or an overlooked resident and highlights the biogeographical and ecological importance of this area as a potential hotspot for the monitoring of Lessepsian and thermophilic species. Key words: jellyfish, alien species, Ionian Sea, Mediterranean, Lessepsian migrant CASSIOPEA ANDROMEDA ALL’ESTREMO SUD D’ITALIA: UNA PRESENZA RECENTE O UNA SPECIE PASSATA INOSSERVATA? SINTESI La medusa lessepsiana Cassiopea andromeda è uno scifozoo invasivo originario del Mar Rosso e della regi- one indo-pacifica. È stata segnalata per la prima volta nel Mar Mediterraneo all’inizio del XX secolo e da allora ha progressivamente ampliato la propria distribuzione in tutto il bacino. Il principale obiettivo di questo studio è quello di documentare la prima segnalazione di questa specie nell’area di Portopalo di Capo Passero, estrema punta meridionale d’Italia (Sicilia, Mar Ionio). L’osservazione, effettuata nell’ottobre 2025, fornisce nuove evidenze dell’espansione della specie lungo la costa ionica siciliana. Questo ritrovamento solleva interrogativi sul fatto che si tratti di un colonizzatore recente o di una specie precedentemente passata inosservata, e sottolinea l’importanza biogeografica ed ecologica di quest’area come potenziale hotspot per specie lessepsiane e termofile. Parole chiave: medusa, specie aliena, Mar Ionio, Mediterraneo, migrante lessepsiano ANNALES · Ser. hist. nat. · 35 · 2025 · 2 288 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 INTRODUCTION The Mediterranean Sea, recognized as a global biodiversity hotspot, hosts an exceptionally rich marine fauna with over 17,000 recorded species, representing about 7% of the world’s marine ani- mals (Coll et al., 2010). Nowadays, this biodiversity is undergoing profound transformations driven by human activities, including both direct and in- direct species introductions (Stock et al., 2018). The spread of non-indigenous species (NIS), also referred to as alien, exotic, or non-native species, has become a key indicator of ecological imbalance and biodiversity decline (Katsanevakis et al., 2014; Tiralongo et al., 2020). Invasive alien species are now regarded as one of the primary threats to the integrity and functioning of Mediterranean marine ecosystems (Pyšek et al., 2020). In this context, the “upside-down jellyfish” Cas- siopea andromeda (Forskål, 1775) is a Lessepsian immigrant native to the Red Sea and is widely dis- tributed throughout the Indo-Pacific region. It en- tered the Mediterranean Sea through the Suez Canal and was first recorded off Cyprus in 1903 (Maas, 1903). Since then, it has progressively expanded westwards, with confirmed records of the species in the Levantine, Aegean and central Mediterranean sub-basins (Galil et al., 1990; Çevik et al., 2006; Schembri et al., 2010; Ramos-Pérez et al., 2025). More recently, dense aggregations of the jellyfish have been reported in semi-enclosed eutrophic en- vironments such as harbours and salt pans (Cillari et al., 2018; Deidun et al., 2018; Kleitou et al., 2025), while the westernmost Mediterranean record of the species was documented in Spain (Marambio et al., 2025). This species is highly tolerant to environmental fluctuations and is capable of asexual reproduction, which facilitates its rapid establishment in shallow coastal habitats (Thé et al., 2021). Species of the genus Cassiopea exhibit a mixotrophic lifestyle sus- tained by an intracellular symbiosis with dinoflagel- lates (Symbiodiniaceae), which are acquired from the environment during the polyp stage (Djeghri et al., 2019). This mutualistic association significantly shapes the holobiont’s biochemical composition, nutritional strategy and overall metabolism (De Domenico et al., 2025). Moreover, given the high Fig. 1: Specimens of C. andromeda observed inside the harbour of Portopalo di Capo Passero (Sicily, Ionian Sea) on 19 October 2025: (A) during measurements; (B) sampled specimens; (C) in situ individuals. Sl. 1: Primerki vrste C. andromeda, opaženi v pristanišču Portopalo di Capo Passero (Sicilija, Jonsko morje) 19. oktobra 2025: (A) med meritvami; (B) vzorčeni osebki; (C) osebki in situ. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 289 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 interspecific morphological similarity within the genus, accurate species identification of Cassiopea often requires an integrative taxonomic approach, combining both morphological and molecular data (Rowe et al., 2025). From a morphological per- spective, diagnostic characters such as the number and distribution of large appendages as well as the oral arm branching pattern have proven useful for species discrimination within the genus (Rowe et al., 2025). Following its introduction from the Red Sea into the Mediterranean through the Suez Canal, Cassio- pea andromeda has expanded its range under the influence of climate change and consequently to increasing seawater temperatures, now occurring more widely than previously recorded (Holland et al., 2004; Fumarola et al., 2025). Here, we report the first well-documented oc- currence of C. andromeda from the Portopalo di Capo Passero area (southeastern Sicily, Ionian Sea), providing new evidence of its range expansion within southern Italian waters. Preliminary data on individual size composition and on local abun- dance were also collected. MATERIAL AND METHODS On 19 October 2025, several individuals of Cassiopea andromeda were observed and photo- graphed by the authors in a sheltered coastal area inside the fishery harbour of Portopalo di Capo Passero (36.67095N, 15.12699E), at a depth of about 0.7 m (Fig. 1). The site is characterized by sandy and muddy substrates with reduced water circulation and elevated summer temperatures. Moreover, during the survey, two alien invasive crab species, namely Callinectes sapidus and Portunus segnis, were detected. A total of 42 specimens of C. andromeda were measured, re- cording the diameter of the exumbrella using a flexible measuring tape with a 0.1 cm precision. A total of 10 specimens were sampled in order to verify the identity of the species, whose general morphology clearly matched that of C. androme- da (Ames et al., 2020; Karunarathne et al., 2020). After the analyses, the specimens were preserved in alcohol for potential future laboratory exam- inations (e.g., molecular analysis) and deposited in the zoological collection of the Ente Fauna Marina Mediterranea in Avola (Sicily) under the code #EFMM191025. A species’ density (individ- uals/m2) estimation was carried out. Finally, an updated map (Fig. 2) based on our new record and on the data provided by Katsanevakis et al. (2020) was produced, using the recent model proposed for the Mediterranean by Ramos-Pérez et al. (2025). RESULTS AND DISCUSSION Specimens displayed the typical morphology and general colour pattern of Cassiopea andromeda: a flattened umbrella, whitish to brownish coloration, conspicuous white blotches on the exumbrella, and eight branched oral arms. However, although the general morphology and colour pattern clearly point to the genus Cassiopea, the absence of molecular analyses prevents a definitive species-level iden- tification (Gamero-Mora et al., 2022; Rowe et al., 2025). The bell diameters of specimens measured from 5 to 13 cm, with a mean value of 8.6±2.4 cm. This size variability reflects a population composed of both juvenile and adult individuals, suggesting that the species is able to complete different stages of its life cycle within the studied area. Individuals rested inverted on the seabed, with the oral arms oriented upward to maximize exposure of the zoo- xanthellae to light, an adaptive strategy associated with their mixotrophic feeding (Symbiodiniaceae symbiosis) (Arossa et al., 2021). The estimated mean jellyfish density in the area, where the species was unevenly distributed, was that of approximately 8 jellyfish individuals/m2. This record represents the southernmost occur- rence of C. andromeda in Italian waters, about 120 km south of the population recently documented in the Augusta salt pans (Kleitou et al., 2025). The environmental conditions of Portopalo’s harbour, with warm, eutrophic, and semi-enclosed calm waters, closely resemble habitats where the spe- cies has established stable aggregations elsewhere in the Mediterranean (Schembri et al., 2010; Cillari et al., 2018; Deidun et al., 2018; Kleitou et al., 2025). Given its broad thermal (6–39 °C, with an optimum at 35.7 °C; Fumarola et al., 2025) and moderate salinity tolerance (30–50, Aljbour & Agustí, 2025), Cassiopea andromeda is likely to be more widespread in the Mediterranean Sea than previously assumed. This suggests that transitional environments such as saltpans, coastal lagoons, and harbours are particularly suitable for the presence of the species and should therefore be carefully inspected and monitored. The finding also raises the possibility that the species had previously remained undetected due to a limited monitoring in shallow coastal lagoons and harbour areas. The location of Portopalo, near the conflu- ence of Ionian and Strait of Sicily currents, could act as an ecological “gateway” for a further dis- persal of the species towards western and northern Mediterranean waters. Several hypotheses can be considered regarding the putative introduction pathway responsible for bringing the species to Portopalo. The proximity of Portopalo to main ANNALES · Ser. hist. nat. · 35 · 2025 · 2 290 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 commercial shipping routes and its intense fishing and boating activities suggest that C. andromeda may have been introduced through shipping-relat- ed vectors, either via ballast water or as fouling - polyps attached to ship hulls. Alternatively, the species could have reached the area by natural dis- persal or through recreational vessel traffic from already-established populations in Malta or along the eastern Sicilian coast, supported by favourable currents and rising sea temperatures that enhance larval survival and transport. The latter pathway is especially plausible given the high volumes of rec- reational vessel traffic between Malta and Sicily during the summer season. The ability to exploit multiple energy sources, namely photosynthates provided by symbiotic dinoflagellates and hetero- trophic feeding, enables C. andromeda to thrive under a wide range of environmental conditions (Thé et al., 2023). Cassiopea genus can form high-density blooms when environmental condi- tions are favourable and anthropogenic pressures intensive, particularly with rising sea temperatures linked to climate change and coastal development. Such blooms may exert competitive pressure on seagrass and other vegetal communities, primarily by limiting the availability of space, light, and food (Rowe et al., 2025). Moreover, the trophic flexibili- ty of Cassiopea genus, linked to both heterotrophic feeding and photosynthetic symbionts, can influ- ence primary productivity, nutrient cycling, and local food web dynamics, potentially generating cascading ecological effects, as observed in other symbiotic jellyfish species (Djeghri et al., 2021). Continuous monitoring with the possibility to involve citizen science networks, will be essential to evaluate whether this population is ephemeral or self-sustaining, as well as to assess its eco- logical effects on local benthic communities and Fig. 2: Distribution map of Cassiopea andromeda records in the Mediterranean Sea. In red circles historical records, in light blue historical records from the Suez Canal (Red Sea), and the yellow one represents the new record from Portopalo di Capo Passero (modified from Ramos-Pérez et al., 2025 and updated with records in Katsanevakis et al., 2020). Sl. 2: Zemljevid razširjenosti vrste Cassiopea andromeda na podlagi zapisov o pojavljanju v Sredozemskem morju. V rdečih krogih so zgodovinski zapisi o pojavljanju, v svetlo modrih krogih zgodovinski zapisi o pojav- ljanju iz Sueškega prekopa (Rdeče morje), rumeni pa predstavlja nov zapis o pojavljanju iz Portopalo di Capo Passero (spremenjen po Ramos-Pérez in sod., 2025 in posodobljen z zapisi v Katsanevakis in sod., 2020). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 291 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 on dissolved oxygen dynamics. Considering the species’ long history of westward expansion in the Mediterranean (Fumarola et al., 2025), it re- mains uncertain whether its presence in Portopalo represents a recent colonization event favoured by climate warming or whether the species has re- mained undetected for years due to its occurrence in localised habitats and due to the lack of specific expert monitoring programs. In the context of this study, the harbour of Portopalo di Capo Passero can be regarded as a hotspot of alien biodiversity, as evidenced by the occurrence of several alien species, including the invasive portunid crabs Callinectes sapidus and Portunus segnis. The coexistence of these taxa high- lights the ecological susceptibility of this semi-en- closed coastal system to biological invasions and its potential role as an entry point and establishment site for thermophilic and Lessepsian species in the central Mediterranean. Indeed, such environments, often characterized by anthropogenic disturbance and intense maritime traffic, may act as stepping stones for the secondary dispersal of Lessepsian and thermophilic taxa along the Sicilian coast. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 292 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 TUJERODNI KLOBUČNJAK CASSIOPEA ANDROMEDA NA NAJJUŽNEJŠI KONICI ITALIJE: NEDAVNI PRIŠLEK ALI SPREGLEDAN PREBIVALEC? Paola LEOTTA, Rocco CICCIARELLA, Ruben GARRANO Ente Fauna Marina Mediterranean, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy e-mail: pleotta1990@gmail.com; rocco.cicciarella@hotmail.it; ruben.garrano@gmail.com Enrico LA SPINA Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy e-mail: enricolaspina@outlook.it Daniele TIBULLO Ente Fauna Marina Mediterranean, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy e-mail: daniele.tibullo@unict.it Francesco TIRALONGO Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy Ente Fauna Marina Mediterranean, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy e-mail: francesco.tiralongo@unict.it POVZETEK Lesepski klobučnjak Cassiopea andromeda je invazivna vrsta klobučnjakov, ki izvira iz Rdečega morja in indo-pacifiške regije. V Sredozemskem morju so jo prvič zabeležili na začetku 20. stoletja in od takrat se je razširila po celotnem bazenu. Glavni cilj tega prispevka je bil dokumentirati prvi in dobro dokumentiran zapis te klobučnjaške meduze z območja Portopalo di Capo Passero, ki predstavlja najjužnejšo konico Italije (Sicilija, Jonsko morje). Opazovanje primerkov te vrste v oktobru 2025 prinaša nove dokaze o širjenju vrste vzdolž sicilijansko-jonske obale. Ta ugotovitev sproža vprašanja o tem, ali je vrsta nedavni kolonizator ali spregledan prebivalec, in poudarja biogeografski in ekološki pomen tega območja kot potencialne žariščne točke za spremljanje lesepskih in toploljubnih vrst. Ključne besede: klobučnjaki, tujerodne vrste, Jonsko morje, Sredozemsko morje, lesepska selivka ANNALES · Ser. hist. nat. · 35 · 2025 · 2 293 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 REFERENCES Aljbour, S.M. & S. Agustí (2025): Salinity over source: Osmotic stress and metabolic plasticity in Cassiopea andromeda under desalination and runoff exposure. Regional Studies in Marine Sci- ence, 90, 104464. Ames, C.L., A.M.L. Klompen, K. Badhiwala, K. Muffett, A.J. Reft, M. Kumar, J.D. Janssen, J.N. Schultzhaus, L.D. Field, M.E. Muroski, N. Bezio, J.T. Robinson, D.H. Leary, P. Cartwright, A.G. Collins & G.J. Vora (2020): Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana . Communications Biology, 3, 67. Arossa, S., A. Barozzi, M. Callegari, S.G. Klein, A.J. Parry, S.-H. Hung, A. Steckbauer, M. Aranda, D. Daffonchio & C.M. Duarte (2021): The internal microenvironment of the symbiotic jellyfish Cassiopea sp. from the Red Sea. Fron- tiers in Marine Science, 8, 705915. Çevik, C., İ .L. Erkol & B. Toklu (2006): A new record of an alien jellyfish from the Levantine coast of Turkey - Cassiopea andromeda (Forss- kål, 1775) [Cnidaria: Scyphozoa: Rhizostomea]. Aquatic Invasions, 1(3), 196-197. Cillari, T., F. Andaloro & L. Castriota (2018): First documented record of Cassiopea cf andromeda (Cnidaria: Scyphozoa) in I talian waters. Cahiers de Biologie Marine, 59(2), 193- 195. Col l , M. , C . P i roddi , J . S teenbeek , K . Kaschner, F. Ben Ra i s Lasram, J . Aguzz i , E . Ba l les teros , C .N. B ianchi , J . Corbera , T. Dai - l ian i s , R . Danovaro , M. Es t rada , C . Frog l ia , B .S . Gal i l , J .M. Gaso l , R . Ger twagen, J . Gi l , F. Gui lhaumon, K . Kesner-Reyes , M. -S . K i t sos , A . Koukouras , N. Lampadar iou , E . Laxamana, C .M. López-Fé de la Cuadra , H.K . Lotze , D. Mart in , D. Moui l lo t , D. Oro, S . Ra icev ich , J . R ius -Bar i le , J . I . Sa iz -Sa l inas , C . San Vicente , S . Somot , J . Templado, X . Turon, D. Vaf id i s , R . Vi l lanueva & E . Voul t s iadou (2010) : The b iod iver s i ty o f the Medi te r ranean Sea : es t i - mates , pa t te rns , and th rea t s . PLoS ONE, 5 (8 ) , e11842. De Domenico, S., A. Toso, G. De Rinaldis, G. Tedesco, S. Mammone, A. Allegra, A. Spanò & F. Cammarata (2025): Wild or reared? Cassiopea andromeda jellyfish as a potential biofactory. Marine Drugs, 23, 19-23. Deidun, A., A. Gauci, A. Sciberras & S. Pi- raino (2018): Back with a bang – an unexpected massive bloom of Cassiopea andromeda (Forskal, 1775) in the Maltese Islands, nine years after its first appearance. BioInvasions Records, 7(4), 399-404. Djeghri, N., P. Pondaven, H. Stibor & M.N. Dawson (2019): Review of the diversity, traits, and ecology of zooxanthellate jellyfishes. Marine Biol- ogy, 166(11), 147. Djeghri, N., P. Pondaven, F. Le Grand, A. Bide- au, N. Duquesne, M. Stockenreiter, S. Behl, J.Y.-T. Huang, T. Hansen, S. Patris, G. Ucharm & H. Stibor (2021): High trophic plasticity in the mixotrophic Mastigias papua–Symbiodiniaceae holobiont. Ma- rine Ecology Progress Series, 666, 73-88. Fumarola, L.M., V. Leoni, G. Marchessaux, G. Sarà, S. Piraino & M. Bosch-Belmar (2025): Global warming and the spread of the introduced jellyfish Cassiopea andromeda: thermal niche and habitat suitability in the Mediterranean Sea. Global Change Biology, 31(10), e70548. Galil, B.S., E. Spanier & W.W. Ferguson (1990): The Scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranean. Zoologische Mededelingen, 64, 95-105. Gamero-Mora, E., A.G. Collins, S.R. Boco, S.M. Geson III & A.C. Morandini (2022): Revealing hidden diversity among upside-down jellyfishes (Cnidaria: Scyphozoa: Rhizostomeae: Cassiopea): distinct evidence allows the change of status of a neglected variety and the description of a new species. Invertebrate Systematics, 36, 63-89. Holland, B.S., M.N. Dawson, G.L. Crow & D.K. Hofmann (2004): Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology, 145, 1119-1128. Karunarathne, K.D., S.M. Liyanaarachchi & M.D.S.T. de Croos (2020): First record of up- side-down jellyfish Cassiopea andromeda (Forskål, 1775) (Cnidaria: Scyphozoa: Rhizostomeae: Cassio- peidae) from Sri Lanka. Sri Lanka Journal of Aquatic Sciences, 25(2), 57-65. Kleitou, P., D. Agius, S. Akalin, M. Albano, I.A. Ammar, C.M. Aydin, E. Azzurro, L. Bellomo, A. Boni- fazi, G. Capillo, F. Crocetta, I. Cvitković, A. Fortič, S. Giakoumi, D. Grech, H.B. Hasan, F. Laspina, M. Lezzi, P. Lucic, E. Mancini, W.M. Mayya, M.T. Olgüner, P. Ovalis, L. Pisani, V. Pitacco, A. Salman, L. Sandri, P. Slavinec, F. Tiralongo, F. Turano, A. Yildiz, A. Zenetos, A.H. Zieni & A. Žuljević (2025): New records of in- troduced species in the Mediterranean Sea (February 2025). Mediterranean Marine Science, 26(1), 175-198. Katsanevakis, S., M. Coll, C. Piroddi, J. Steenbeek, F. Ben Rais Lasram, A. Zenetos & A.C. Cardoso (2014): Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Frontiers in Marine Science, 1, 32. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 294 Paola LEOTTA et al.: CASSIOPEA ANDROMEDA AT THE SOUTHERNMOST TIP OF ITALY: A RECENT ARRIVAL OR AN OVERLOOKED RESIDENT?, 287–294 Katsanevakis, S., D. Poursanidis, R. Hoffman, J. Riz- galla, S.B.-S. Rothman, Y. Levitt-Barmats, L. Hadjioan- nou, D. Trkov, J.M. Garmendia, M. Rizzo, A.G. Bartolo, M. Bariche, F. Tomas, P. Kleitou, P.J. Schembri, D. Kletou, F. Tiralongo, C. Pergent, G. Pergent, E. Azzurro, M. Bi- lecenoglu, A. Lodola, E. Ballesteros, V. Gerovasileiou, M. Verlaque, A. Occhipinti-Ambrogi, E. Kytinou, T. Dailianis, J. Ferrario, F. Crocetta, C. Jimenez, J. Evans, M. Ragkou- sis, L. Lipej, J.A. Borg, C. Dimitriadis, G. Chatzigeorgiou, P.G. Albano, S. Kalogirou, H. Bazairi, F. Espinosa, J. Ben Souissi, K. Tsiamis, F. Badalamenti, J. Langeneck, P. Noel, A. Deidun, A. Marchini, G. Skouradakis, L. Royo, M. Sini, C.N. Bianchi, Y.-R. Sghaier, R. Ghanem, N. Doumpas, J. Zaouali, K. Tsirintanis, O. Papadakis, C. Morri, M.E. Çinar, J. Terrados, G. Insacco, B. Zava, E. Soufi-Kechaou, L. Piazzi, K. Ounifi Ben Amor, E. Andriotis, M.C. Gambi, M.M. Ben Amor, J. Garrabou, C. Linares, A. Fortič, M. Di- genis, E. Cebrian, M. Fourt, M. Zotou, L. Castriota, V. Di Martino, A. Rosso, C. Pipitone, M. Falautano, M. García, R. Zakhama-Sraieb, F. Khamassi, A.M. Mannino, M.H. Ktari, I. Kosma, M. Rifi, P.K. Karachle, S. Yapıcı, A.R. Bos, P. Balistreri, A.A. Ramos Esplá, J. Tempesti, O. Inglese, I. Giovos, D. Damalas, S. Benhissoune, M.F. Huseyinoglu, W. Rjiba-Bahri, J. Santamaría, M. Orlando-Bonaca, A. Izquierdo, C. Stamouli, M. Montefalcone, H. Cerim, R. Golo, S. Tsioli, S. Orfanidis, N. Michailidis, M. Gaglioti, E. Taşkın, E. Mancuso, A. Žunec, I. Cvitković, H. Filiz, R. Sanfilippo, A. Siapatis, B. Mavrič, S. Karaa, A. Türker, F. Monniot, J. Verdura, N. El Ouamari, M. Selfati & A. Zenetos (2020): Unpublished Mediterranean records of marine alien and cryptogenic species. BioInvasions Records, 9(2), 165-182. Maas, O. (1903): Die Scyphomedusen der Siboga Expedition. Siboga Expedition 1901, 1-91. Marambio, M., M. Pascual-Torner, U. Tilves, A. Pérez, A. Ballesteros & J.-M. Gili (2025): The western- most record of the Scyphomedusa Cassiopea androme- da (Forskål, 1775) in the Mediterranean: marine citizen science contributions to invasive species detection and monitoring. Environmental Management, 75, 3721- 3735. Pyšek, P., P.E. Hulme, D. Simberloff, S. Bacher, T.M. Blackburn, J.T. Carlton, W. Dawson, F. Essl, L.C. Foxcroft, P. Genovesi, J.M. Jeschke et al. (2020): Sci- entists’ warning on invasive alien species. Biological Reviews, 95, 1511-1534. Ramos-Pérez, P., J.I. Quispe-Becerra, J.A. Oliver, C. Marcos, A. Pérez-Ruzafa & A. Fernández-Alías (2025): Colonization of the Mediterranean Sea by the Lessepsian invasive jellyfish Cassiopea andromeda (Forskål, 1775) – a systematic review. Mediterranean Marine Science, 26(3), 714-730. Rowe, C.E., S.T. Ahyong, W.F. Figueira, I. Burghardt & S.J. Keable (2025): Identification of Cassiopea sp. in Lake Macquarie, Australia and revision of the taxonomic status of Cassiopea maremetens Gershwin, Zeidler & Davie, 2010 (Cnidaria: Scyphozoa: Cassio- peidae). PeerJ, 13, e19669. Schembri, P.J., A. Deidun & P.J. Vella (2010): First record of Cassiopea andromeda (Scyphozoa: Rhizos- tomeae: Cassiopeidae) from the central Mediterranean Sea. Marine Biodiversity Records, 3, e6. Stock, A., L.B. Crowder, B.S. Halpern & F. Micheli (2018): Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans. Conservation Biology, 32(6), 1368-1379. Thé, J., E. Gamero-Mora, M.V. Chagas da Silva, A.C. Morandini, S. Rossi & M. de Oliveira Soares (2021): Non-indigenous upside-down jellyfish Cassio- pea andromeda in shrimp farms (Brazil). Aquaculture, 532, 735999. Thé, J., M. Mammone, S. Piraino, A. Pennetta, G.E. De Benedetto, T.M. Garcia, M. de Oliveira Soares & S. Rossi (2023): Understanding Cassiopea andromeda (Scyphozoa) invasiveness in different habitats: a mul- tiple biomarker comparison. Water, 15, 2599. Tiralongo, F., F. Crocetta, E. Riginella, A.O. Lillo, E. Tondo, A. Macali, E. Mancini, F. Russo, S. Coco, G. Paolillo & E. Azzurro (2020): Snapshot of rare, exotic and overlooked fish species in the Italian seas: a citizen science survey. Journal of Sea Research, 164, 101930. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 295 received: 2025-09-25 DOI 10.19233/ASHN.2025.31 FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) FROM THE COAST OF TUNISIA (CENTRAL MEDITERRANEAN SEA) Mourad CHÉRIF & Rimel BENMESSAOUD Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia Sihem RAFRAFI-NOUIRA Université de Carthage, Unité de Recherches Exploitation des Milieux Aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, BP 15, 7080 Menzel Jemil, Tunisia Mohamed Nouri AYADI Association TunSea de Sciences participatives, Tunis, Tunisia Christian CAPAPÉ Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr ABSTRACT From a lot of mullid species captured around the Kerkennah Islands, 35 specimens of the golde.n-banded goatfish Upeneus moluccensis (Bleeker, 1855) were randomly collected. The present sample comprised 17 females, 7 males and 11 individuals of undetermined sex, with total lengths ranging between 99 and 153 mm and the total body weights between 31.2 and 65.2 g. Some morphometric measurements and meristic counts were also carried out in two specimens, preserved in an ichthyological collection. These specimens constitute the first substantiated record of the species from the Tunisian marine waters. Their occurrence suggests that a viable population of U. moluccensis is at present successfully established in the area. Key words: Upeneus moluccensis, substantiated record, extension range, distribution, population PRIMO AVVISTAMENTO CONFERMATO DELLA TRIGLIA DORATA UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) AL LARGO DELLA COSTA DELLA TUNISIA (MEDITERRANEO CENTRALE) SINTESI Da un gran numero di specie di mullidi catturate intorno alle isole Kerkennah, sono stati raccolti in modo casuale 35 esemplari della triglia dorata Upeneus moluccensis (Bleeker, 1855). Il campione comprendeva 17 femmine, 7 maschi e 11 individui di sesso indeterminato, con lunghezze totali comprese tra 99 e 153 mm e pesi corporei totali compresi tra 31,2 e 65,2 g. Sono state inoltre effettuate alcune misurazioni morfometriche e conteggi meristici su due esemplari conservati in una collezione ittiologica. Questi esemplari costituiscono la prima segnalazione comprovata della specie nelle acque marine tunisine. La loro presenza suggerisce che una popolazione vitale di U. moluccensis si sia attualmente stabilita con successo nella zona. Parole chiave: Upeneus moluccensis, segnalazione comprovata, estensione dell’areale, distribuzione, popolazione ANNALES · Ser. hist. nat. · 35 · 2025 · 2 296 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 INTRODUCTION The golden-banded goatfish, Upeneus moluccensis (Bleeker, 1855) is widely distributed range which extends from the Red Sea to the western Indian Ocean (Mozambique, Madagascar and Réunion), and eastward to the Caroline Islands and New Guinea. Its range ex- tends from southern Japan to Queensland and Western Australia (Fricke et al., 2018). The western Indian Ocean populations were reviewed and compared with other species by Uiblein & Heemstra (2010). Randall & Kulbicki (2006) reported the first record of U moluccensis for New Caledonia, using experimental trawling over mud bottoms in bays. Since commercial trawling being banned in New Caledonia, the species is not present in fishmarkets, but occurs from depths of at least 80 m, but most often found in New Caledonia between 9 and 50 m, and conversely it has not been reported from the Chesterfield area (Randall & Kulbicki, 2006). Upeneus moluccensis migrated from the Red Sea through Suez Canal into the Mediterranean Sea where it has been first reported off the coast of Israel by Haas & Steinitz (1947), though misidentified as Mulloides auriflamma (non Forsskål, 1775) and then by Ben-Tuvia (1953). Since then, the species was recorded around Cyprus Island (Iglésias & Frotté, 2015), in the broader Levant Basin (Gücü et al., 1994; Torcu & Mater, 2000; Ali et al., 2018; Barish & Fricke, 2020; Golani et al., 2021), the Aegean Sea (Aydin & Akyol, 2016) and to the north in the Sea of Marmara (Artüz &Fricke, 2019). To the southern region of the Mediterranean Sea, the spe- cies was reported from the coasts of Egypt (El- Sayed et al. (2017) and Libya (El-Drawany, 2016). U. moluccensis was first recorded from the Tunisian coast by Bradai et al. (2019), based on observations of over one hundred specimens landed at the fishing site of Teboulba, located in the southern area of the Gulf of Hammamet. Investigations conducted in the Gulf of Gabès with the assistance of local fishermen allowed to collect other specimens which are described in the present paper along with some comments on U. moluc- censis distribution in the Mediterranean Sea. MATERIAL AND METHODS On 17 May 2025, numerous specimens, from the family Mullidae, were captured around Kerkennah Islands in north-eastern area of the Gulf of Gabès, south- ern Tunisia (34° 39’ 29’’ N, 11 ° 04 ‘07’’ E). The fishes were caught by trawler at a depth of approximately 20 m, over soft bottoms, and landed at a fishing site on these islands (Fig. 1). The location falls within the boundaries of GFCM geographical subarea GSA 14 (FAO, 2019). From these fishes, 35 specimens of U. molucensis were randomly collected, delivered to the laboratory for examination. They were measured for total length (TL) to the nearest millimetre and weighed to the nearest decigram for total body weight (TBW), sex was deter- mined when possible. Morphometric measurements and meristic counts were recorded in two specimens of this sample (Tab. 1) which were then photographed (Fig. 2) and preserved in 10% buffered formaldehyde. These voucher specimens were deposited in the Ichthyological Collection of the «Institut des Sciences et Technologies de la Mer of Salammbô» (Tunisia), receiving the cata- logue numbers, INSTM U-mol 01 and INSTM U-mol 02, respectively. The protocol of Bello et al. (2014) for a first fish record and this of Salameh et al. (2012) for a first substantiated record were followed. Fig. 1: Map of the Tunisian coast, in the central Mediterranean Sea, with black stars indicating the capture sites of Upeneus moluccensis. 1. Off the Teboulba region (Bradai et al., 2019). 2. Around the Kerkennah Islands (this study). GG = Gulf of Gabès, GH = Gulf of Hammamet, GT =Gulf of Tunis, KI = Kerkennah Islands. Sl. 1: Zemljevid tunizijske obale v osrednjem Sre- dozemskem morju s črnimi zvezdicami, ki označujejo mesta ulova primerkov vrste Upeneus moluccensis. 1. Ob regiji Teboulba (Bradai et al., 2019). 2. Okoli otokov Kerkennah (ta študija). GG = Gabeški zaliv, GH = Hammametski zaliv, GT = Tuniški zaliv, KI = otoki Kerkennah. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 297 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 Tab. 1: Morphometric measurements in millimetre with percentages of standard length (SL), meristic counts and total body weight in gram recorded in two specimens of Upeneus moluccensis collected around the Kerkennah Islands [voucher INSTM U-mol 01 and INSTM U-mol 02]. Tab. 1: Morfometrične meritve v milimetrih z odstotki standardne dolžine (SL), merističnimi štetji in skupno telesno težo v gramih, zabeležene pri dveh primerkih vrste Upeneus moluccensis, zbranih okoli otokov Kerken- nah [bon INSTM U-mol 01 in INSTM U-mol 02]. References INSTM U-mol 01 INSTM U-mol 02 Area Kerkennah Islands (Southern Tunisia) Morphometric measurements mm %SL mm %SL Total length 133 111.9 151 111.1 Length to fork 119 107.2 142 106.3 Standard length 111 100.0 134 100 Head length 26.1 23.4 33 24.6 Snout length 8 7.2 10.1 7.5 Interorbital width 8.4 7.6 10.9 8.13 Eye diameter 8.3 7.5 9.7 7.2 Barbel length 17.8 16.1 20.8 15.5 Caudal fin height 21.5 19.4 27.9 20.8 Caudal peduncle length 27.1 24.4 31.1 23.2 Caudal peduncle depth 10.2 9.2 13.2 9.85 Predorsal length 35.4 31.9 43 32.1 Pectoral fin length 21.4 19.3 26 19.4 Pectoral fin base 7.2 6.5 8.9 6.6 First dorsal fin height 18.7 16.8 22 16.4 First dorsal fin base 15.1 13.6 18 13.4 Second dorsal fin height 12.8 11.6 16 11.9 Second dorsal fin base 16.4 14.7 20.5 15.3 Pelvic fin length 17.9 16.2 23 17.1 Pelvic fin base 6.7 6.1 8 5.9 Anal fin height 17.0 15.3 21.2 15.8 Anal fin base 12.6 11.4 14.9 11.2 Meristic counts INSTM U-mol 01 INSTM U-mol 02 Dorsal rays VIII+9 VIII+9 Pelvic rays I+5 I+5 Anal spines 1 1 Anal soft rays 7 7 Gill-rakers 7+19 7+19 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 298 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 A relation between TL and TBW was used as a com- plement following Froese et al. (2011) to assess if the spe- cies found sufficient resources in the wild. This relation is TBW = aTLb, and was converted into its linear regres- sion, expressed in decimal logarithmic co-ordinates and correlations were assessed by least-squares regression. as: log TBW= log a + b log TL. Significance of constant b differences was assessed to the hypothesis of isometric growth if b = 3, positive allometry if b > 3, negative allometry if b < 3 (Pauly, 1983). Correlations were as- sessed by least-squares regression. and performed by using logistic model STAT VIEW 5.0. RESULTS AND DISCUSSION The present sample of U. moluccensis comprised 35 specimens and among them, 17 females, 7 males and 11 individuals of undetermined sex. The total lengths ranged between 99 and 153 mm, the total body weights ranged between 31.2 and 65.2 g. The specimens were identified as U. moluccensis via the combination of main morphological characters: body moderately elongated, subcylindrical at the beginning of the first dorsal fin, mouth terminal, snout rounded with a pair of small barbels attached to tip of ceratohyal, behind symphysis of lower jaw not reaching posterior part of operculum margin, two dorsal fins well separated, first dorsal spine minute, second spine the largest, second dorsal fin opposite the anal fin, dorsal and anal fins basally with scaled area, caudal fin deeply forked, color of back pinkish-reddish, belly white, dorsal part of body with golden yellow longitudinal band as wide as pupil, extending from eye to caudal-fin base, barbels whitish, 3 orange stripes on first dorsal fin, 2 on second, 6 thin red bars on upper caudal-fin lobe, lower lobe of caudal fin with a broad rose longitudinal stripe. Fig. 2: Specimens of Upeneus moluccensis collected from the Kerkennah Islands. A. Specimen with catalogue number INSTM U-mol 01. B. Specimen with catalogue number INSTM U-mol 02. 1. Golden-yellow longitudinal band. 2. Thin red bars on the upper caudal-fin lobe. Scale bar = 100 mm. Sl. 2: Primerki vrste Upeneus moluccensis, ulovljeni na otokih Kerkennah. A. Primerek s kataloško številko INSTM U-mol 01. B. Primerek s kataloško številko INSTM U-mol 02. 1. Zlato rumen vzdolžni pas. 2. Tanke rdeče črte na zgornjem režnju repne plavuti. Merilo = 100 mm. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 299 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 The general morphology, morphometric meas- urements, meristic counts, and coloration of the present U. moluccensis are consistent with previous descriptions of the species, provided by Hureau (1986), Golani & Darom (1997), Randall & Kulbicki (2006), Aydin & Akyol (2016), Artüz & Fricke (2019), Bariche & Fricke (2020) and Golani et al. (2021). The present specimens of U. moluccensis [ref- erenced INSTM U-mol 01 and INSTM U-mol 02] constitute the first substantiated records of the spe- cies from the Tunisian coast, as no voucher material was preserved from the previous record reported by Bradai et al. (2019). Similarly, when Salameh et al. (2012) reported the occurrence of the yellowbar angelfish Pomacanthus maculosus (Forsskål, 1775) in the Levant Basin where specifically from Leba- non, the record was based on a photographed but unpreserved specimen preventing further examina- tion (Bariche, 2012). Therefore, the subsequent specimen recorded and described by Salameh et al. (2012), deposited in the Hebrew University Fish Collection, under the catalogue number HUJ 20102, became the first substantiated record of P. maculosus for the Mediterranean Sea. The observations of U. moluccensis by Bradai et al. (2019) and in this study show a westward extension range of the species in the Mediterranean Sea. They also suggest that a viable population is at present successfully established in the Tunisian marine waters. It is corroborated by the fact that the TL –TBW relationship displays a positive allometry expressed in logarithmic co-ordinates as follows log TBW = -5.375 + 3.292 * log TL; r = 0.994, n = 35. This positive allometry, indicates that the species found in the wild sufficient resources to develop and likely reproduce. Similar observations were reported by Bengil (2019) who noted a positive al- lometry of length-weight relationships in specimens of U. moluccensis collected from different regions of the Mediterranean Sea. In addition, Tikochinski et al. (2013) showed no significant genetic differences between populations of U. moluccensis from the Mediterranean Sea, Red Sea and Japan. Conversely, Pazhayamadom et al. (2017) noted significant differences in the body shape of the fish, reflecting their adaptations to swim and improve visibility in their respective environments indicating that the U. moluccensis populations in the Red Sea and the Mediterranean Sea represent two separate fish stocks. These ob- servations explain the wide distribution and abun- dance of the species everywhere, allowing to study some aspects of its life history in the Mediterranean, concerning age determination, growth, spawning season, and diet (Kaya et al., 1999; Saad, 2001; Torku-Koç & Erdogan, 2025). Hureau (1986), Kaya et al. (1999) and Golani et al. (2021) noted that U mluccensis feeds on benthic organisms, primarily crustacean species are the main preys and teleost species appear in the stom- ach of larger specimens. The diet of U. moluccensis is clearly like that of the red mullet Mullus barbatus Linnaeus, 1758 as reported from the Tunisian coast by Chérif et al. (2011). Galil (2007) and Aydin & Akyol (2016) suggested that an interspecific competition pressure for food between U. moluccensis and native Mullus barbatus cannot be totally ruled out in the Mediterranean re- gions where both species inhabit on soft bottoms, at depths between 50 and 200 m maximum. Aydin & Akyol (2016) reported that in the Levant Basin, the global warming of waters has been accompanied by an increase in captures of U. moluccensis and a concomitant decline in those of M. barbatus. Aydin & Akyol (2016) also noted that in the concerned ar- eas this phenomenon can be the cause of financial losses of fishermen, as the native M. barbatus com- mands a higher market value than U. moluccensis. The occurrence of U. moluccensis in Tunisian waters is relatively recent and at present no reports are available that detailing the abundance of the species and its economic contribution to local fish- eries. Interviews conducted with fishermen indicate that local consumers do not distinguish between the two species, which are sold at similar prices. Further investigations are needed to quantify the number and the abundance of the indigenous and non-indigenous mullid species in the Tunisian ma- rine waters, as these species should be monitored to prevent declines in captures and their potential depletion. The implementation of a management plan in collaboration with local fishermen would help to preserve and ensure the sustainability of viable populations in the area. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 300 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 PRVI POTRJEN ZAPIS O ZLATOPROGEM BRADAČU UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) Z OBALE TUNIZIJE (OSREDNJE SREDOZEMSKO MORJE) Mourad CHÉRIF & Rimel BENMESSAOUD Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia Sihem RAFRAFI-NOUIRA Université de Carthage, Unité de Recherches Exploitation des Milieux Aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, BP 15, 7080 Menzel Jemil, Tunisia Mohamed Nouri AYADI Association TunSea de Sciences participatives, Tunis, Tunisia Christian CAPAPÉ Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr POVZETEK Izmed številnih vrst bradačev (Mullidae), ujetih okoli otokov Kerkennah, je bilo naključno zbranih 35 primerkov zlatoprogega bradača Upeneus moluccensis (Bleeker, 1855). Vzorec, ki je osnova temu delu, je obsegal 17 samic, 7 samcev in 11 osebkov nedoločenega spola, s skupno dolžino med 99 in 153 mm in skupno telesno težo med 31,2 in 65,2 g. Pri dveh primerkih, ki sta shranjena v ihtiološki zbirki, so bile opravljene tudi nekatere morfometrične meritve in meristična štetja. Ti primerki predstavljajo prvi potrjen zapis o vrsti iz tunizijskih morskih voda. Njihova prisotnost kaže, da je na tem območju trenutno uspešno vzpostavljena viabilna populacija vrste U. moluccensis. Ključne besede: Upeneus moluccensis, potrjeni zapis o pojavljanju, širjenje areala, razširjenost, populacija ANNALES · Ser. hist. nat. · 35 · 2025 · 2 301 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 REFERENCES Ali, M. (2018): An updated checklist of the marine fishes from Syria with emphasis on alien species. Medit. Mar. Sci., 19, 388-393. Artüz, M.L. & R. Fricke (2019): First and northernmost record of Upeneus moluccensis (Actinopterygii: Perciformes: Mullidae) from the Sea of Marmara. Acta Ichthyol. Piscat., 49(1), 53- 58. Aydin, I. & O. Akyol (2016): Northernmost record of Upeneus moluccensis (Bleeker, 1855) (Osteichthyes: Mullidae) in the Turkish coasts of the Aegean Sea. Turk. J. Fish. Aquat. Sci., 16, 749- 752. Bariche, M. (2010): First record of the angelfish Pomacanthus maculosus (Teleostei: Pomacanthidae) in the Mediterranean. Aqua: Inter. J. Ichthyol., 16, 31-33. Bariche, M. & R. Fricke (2020): The marine ichthyofauna of Lebanon: an annotated checklist, history, biogeograpphy, and conservation status. Zootaxa, 4775(1), 1-157. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposal best practice approach to overcome unverified and unverifiable «first records» in ich- thyology. Cybium, 38(1), 9-14. Bengil, E.G.T. (2019): A regional evaluation of lessepsian migrant Upeneus moluccensis (Bleeker, 1855) length and weight relationships from the Mediterranean Sea. Ege J. Fish. Aquat. Sci., 36, 255-263. Ben-Tuvia, A. (1953): New Erythrean fishes from the Mediterranean coast of Israel. Nature, 172, 464- 465. Bradai, M.N., S. Enajjar & B. Saïdi (2019): New occurrence and new records of fish species of Tuni- sian coasts. Bull. Inst. Natn Tech. Mer, Salammbô, 46, 9-14. Chérif, M., M.M. Ben Amor, S. Selmi, H. Gharbi, H. Missaoui H. C. Capapé (2011): Food and feeding habits of the red mullet Mullus barbatus (Osteich- thyes: Mullidae) off the northern Tunisian coast (Central Mediterranean). Acta Ichthyol. Piscat., 41(2), 109-116. El-Drawany, M. (2013): Age, growth and repro- duction of the gold band goatfish, Upeneus moluc- censis off the Elkhoms coast of Libya. Delta J. Sci., 36(2), 1-5. El Sayed, H., K. Akel. & P.K. Karachle (2017): The marine ichthyofauna of Egypt. Egyptian J. Aquat. Biol. Fish., 21(3), 81-116. Fricke, R, J. Mahafina, F. Behivoke, H. Jaon- alison, M. Leopold & D. Pontoh (2018): Annotated checklist of the fishes of Madagascar, southwest- ern Indian Ocean, with 158 new records. FishTaxa 3(1), 1-432. Froese, R., A.C. Tsikliras & K.I. Stergiou (2011): Editorial note on weight-length relations of fishes. Acta Ichthyol. Piscat., 41, 261-263. Galil, B.S. (2007): Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Mar. Poll. Bull., 55, 314-322. Golani, D., E. Azzurro, J. Dulčić, E. Massuti & L. Orsi-Relini (2021): Atlas of Exotic Fishes in the Mediterranean Sea. Second edition. [F. Briand, Ed.]. CIESM Publishers, Paris, Monaco, 365 pp. Golani, D. & D. Darom (1997): Handbook of the fishes of Israel. Keter, Jerusalem, Israel, 269 pp. [In Hebrew] Gücü, A.C., F. Bingel, D. Avșar & N. Uysal (1994): Distribution and occurrence of Red Sea fish at the Turk ish Mediterranean coast - northern Cili- cian Basin. Acta Adriat., 34, 103-113. Haas, G.& H. Steinitz (1947): Erythrean fishes on the Mediterranean coast of Palestine. Nature, 160, 28. Hureau, J. C. (1986): Mullidae. In: P.J.P. White- head, M.L. Bauchot, J.C. Hureau., J. Nielsen J.& Tortonese. E. (Editors), pp. 877-882. Fishes of the North-western Atlantic and the Mediterranean, Vol II, UNESCO, Paris. Iglésias, S.P. & L. Frotté (2015): Alien marine fishes in Cyprus: update and new records. Aquat. Inv., 10, 425-438. Kaya, M., H. Avni Benli, T. Katagan & O. Ozaydin (1999): Age, growth, sex-ratio, spawning season, and food of golden banded goatfish, Upeneus moluccen- sis Bleeker (1855) from the Mediterranean and south Aegean Sea coasts of Turkey. Fish. Res., 41, 317-328. Pauly, D. (1983): Some simple methods for as- sessment of tropical fishes. FAO Fish. Tech. Papers, 234, 3-10. Pazhayamadom, D.G., L.A. Jawad & M. Hassan (2017): Stock differentiation of goldband goatfish Upeneus moluccensis from the Red Sea and the Mediterranean Sea using morphometric analysis. Inter. J. Mar. Sci., 7(5), 37-50. Randall, J.E. & M. Kulbicki (2006): A review of the goatfishes of the genus Upeneus (Perciformes: Mullidae) from New Caledonia and the Chesterfield Bank, with a new species and four new records. Zool. Stud., 45(3), 298-307. Saad, A. (2001): Cycle de reproduction et fécon- dité chez Upeneus moluccensis, (Mullidae), espèce indo-pacifique, dans les eaux de Syrie. Leb. Sci. J., 2, 59-67. Salameh, P., O. Sonin O., D. Edelist & D. Golani (2012): The first substantiated record of the yellowbar angelfish, Pomacanthus maculosus (Actinopterygii: Perciformes: Pomacanthidae) in the Mediterranean. Acta Ichthyol. Piscat. 42, 73-74. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 302 Mourad CHÉRIF et al.: FIRST SUBSTANTIATED RECORD OF THE GOLDEN-BANDED GOATFISH UPENEUS MOLUCCENSIS (OSTEICHTHYES: MULLIDAE) ..., 295–302 Tikochinski, Y., M. Friling, N. Harush, R. Lizarovich, N. Manor, A. Horsky, B. Appelbaum- Golani & D. Golani (2013): Molecular comparison of geographically extreme populations of fish spe- cies of wide Indo-Pacific distribution. Isr. J. Ecol. Evol., 59, 197-200. Torcu, H. & S. Mater (2000): Lessepsian fishes spreading along the coasts of the Mediterranean and the Southern Aegean Sea of Turkey. Turk. J. Zool., 24, 139-148. Torku-Koç, H. & Z. Erdogan (2025): Aspects of growth of the lessepsian goldband goatfish Upeneus moluccensis (Bleeker, 1855) population living in Iskenderun Bay, Türkiye. Period. Biol., 126, 33-42. Uiblein, F. & P. Heemstra (2010): A taxonomic view of the western Indian Ocean goatfishes of the genus Upeneus (Family Mullidae), with descrip- tions of four new species. Smithiana Bull., 11, 35-71. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 303 received: 2025-10-07 DOI 10.19233/ASHN.2025.32 NEW RECORD OF THE LONG-JAWED SQUIRRELFISH, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), IN THE ADRIATIC SEA Nikola DJORDJEVIĆ, Slavica PETOVIĆ, Ilija ĆETKOVIĆ Institute of Marine Biology, I Bokeljske brigade 68, 85330 Kotor, Montenegro Borut MAVRIČ & Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Fornače 41, Slovenia e-mail: Lovrenc.Lipej@nib.si ABSTRACT On 16 October 2025, a specimen of the long-jawed squirrelfish, Holocentrus adscensionis (Osbeck, 1765), was caught in the waters of Porto Montenegro, Tivat (Boka Kotorska, Montenegro). This finding represents the first record of this non-indigenous species in the inventory of Montenegrin marine fish fauna and the second record in the Adriatic Sea. Key words: Holocentrus adscensionis, Holocentridae, bioinvasion, Boka Kotorska, Adriatic Sea NUOVO AVVISTAMENTO DEL PESCE SCOIATTOLO, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), NEL MAR ADRIATICO SINTESI Il 16 ottobre 2025, un esemplare di pesce scoiattolo, Holocentrus adscensionis (Osbeck, 1765), è stato cat- turato nelle acque di Porto Montenegro, Tivat (Boka Kotorska, Montenegro). Questa scoperta rappresenta la prima registrazione di questa specie non autoctona nell’inventario della fauna ittica marina montenegrina e la seconda registrazione nell’Adriatico. Parole chiave: Holocentrus adscensionis, Holocentridae, bioinvasione, Boka Kotorska, Adriatico ANNALES · Ser. hist. nat. · 35 · 2025 · 2 304 Nikola DJORDJEVIĆ et al.: NEW RECORD OF THE LONG-JAWED SQUIRRELFISH, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), IN THE ADRIATIC SEA, 303–308 INTRODUCTION Climate change has been recognised as a ma- jor factor influencing Mediterranean biodiversity, alongside Atlantic influx, Lessepsian migration, and the introduction of exotic species by humans (Turan et al., 2016). A similar trend is evident in the Adriatic Sea, where rapid biodiversity changes are occurring due to the increasing arrival of non-in- digenous fishes and other taxa (Dulčić et al., 1999; Lipej & Dulčić, 2004). The number of established alien species is expected to increase further in the near future, largely through the natural spread of populations already established in the central Medi- terranean (Zenetos, 2010). This paper presents a record of a non-indigenous fish species caught in the study area and explores possible explanations for its occurrence. MATERIAL AND METHODS Boka Kotorska is an 87 km² fjord-like bay in the eastern part of the southern Adriatic Sea, with a coastline of 105.7 km. It comprises three distinct areas – the outer bay (Herceg Novi Bay), the mid- dle bay (Tivat Bay), and the inner bay (Kotor-Risan Bay) – and is characterised by unique hydrological, geomorphological, climatological, and biotic fac- tors (Gamulin-Brida, 1983) (Fig. 1). On 16 October 2025, Zoran Ćuk, a local fisherman, captured a specimen of an unknown fish while stick-float fishing at night near the Porto Montenegro marina (42.431497° N and 18.691224° E) in Tivat, located in the middle bay (Boka Kotorska, Montenegro). The catch occurred at a depth of approximately 11 m over a muddy bottom. The fisherman photographed the specimen – which had a total length of approxi- mately 24 cm – and released it alive. The photo- graph was subsequently provided to the authors for analysis. RESULTS AND DISCUSSION The specimen (Fig. 2) exhibited all the typical characteristics that allowed it to be identified as Holocentrus adscensionis (Osbeck, 1765): body Fig. 1: Map showing the location (Porto Montenegro, Tivat Bay, Montenegro) where the specimen of the long-jawed squirrelfish, Holocentrus adscensionis, was caught. Sl. 1: Zemljevid z označeno lokaliteto (lokaliteta Porto Montenegro, Tivatski zaliv, Črna gora), kjer je bil ujet primerek veveričjaka Holocentrus adscensionis. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 305 Nikola DJORDJEVIĆ et al.: NEW RECORD OF THE LONG-JAWED SQUIRRELFISH, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), IN THE ADRIATIC SEA, 303–308 oblong and laterally compressed, reddish with alternating red and white horizontal stripes; head pointed, with large eyes; upper jaw longer than the lower and extending beyond the centre of the eye; area between preopercle and opercle bearing rows of serrations; dorsal fin lacking the white spots behind the spine tips that are characteristic of the congeneric species H. rufus (Greenfield, 2003). The photograph obtained from the fisherman clearly shows the typical striped coloration, the eleven dorsal spines of subequal length lacking the white spots, and the evident preopercular spine. The cau- dal lobes are elongate, with the upper lobe mark- edly longer than the lower (sensu Woods, 1955). The species H. adscensionis is a reef-associated fish of the family Holocentridae, occurring in the western Atlantic ranges from North Carolina (USA) and Bermuda to Brazil (Woods & Greenfield, 1978), and in the eastern Atlantic from Gabon to Ascen- sion Island (Ben-Tuvia, 1990). It inhabits depths from shallow tide pools to 180 m, most commonly between 8 and 30  m (Wyatt, 1983). It is a typi- cally nocturnal species, spending the day hiding in crevices and cavities, and emerging at night to feed, mainly on crabs and other small crustaceans (Greenfield, 1981). The Porto Montenegro is a large, modern marina; however, its piers, overgrown with rich epibenthic fauna, contain many crevices and cracks that offer potential shelter for squirrelfish. It is also possible that the species occurs in adjacent areas, but due to its nocturnal behaviour it could easily be overlooked. Prior to this study, there were no records of H. adscensionis from Montenegrin waters. In the Mediterranean Sea, the species had previ- ously been reported only twice: first by Vella et al. (2016) in Maltese waters, and later by Ciriaco et al. (2022) from the Gulf of Trieste in the Adriatic Sea. The arrival of H. adscensionis is likely related to the gradual warming of the Mediterranean Sea (Occhipinti-Ambrogi & Galil, 2010). Novel arriv- als via Atlantic influx are relatively uncommon in Fig. 2: Specimen of the long-jawed squirrelfish, Holocentrus adscensionis, caught on 16 October 2025 in the waters of Porto Montenegro (Tivat, Boka Kotorska, Montenegro) (photo: Z. Ćuk). Sl. 2: Primerek veveričjaka, Holocentrus adscensionis, ujet 16. oktobra 2025 v vodah marine Porto Montenegro (Tivat, Boka Kotorska, Črna gora) (foto: Z. Ćuk). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 306 Nikola DJORDJEVIĆ et al.: NEW RECORD OF THE LONG-JAWED SQUIRRELFISH, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), IN THE ADRIATIC SEA, 303–308 the Adriatic Sea, since the main recognised entry route for non-indigenous fishes is the Suez Canal, through which more than 100 immigrant species have entered the Mediterranean Sea (Golani et al., 2021). Vella et al. (2016) also considered the possibility that this species might have been intro- duced into Maltese waters through maritime ac- tivities in major ports. Given that H. adscensionis typically inhabits tropical and subtropical waters with temperatures ranging from approximately 23°C to 30°C (Reef Life Survey, 2025), we assume that winter water temperatures in Boka Kotorska are too low for the species to survive and become established. To date, only records of seven alien fish species have been published in Montenegrin waters – in- cluding Pterois miles (Tomanić et al., 2022) – which is relatively few compared to other Mediterranean regions. Based on the three occasional findings of the long-jawed squirrelfish in geographically dis- parate areas of the Mediterranean Sea (Malta, the Gulf of Trieste, and Boka Kotorska), it is too early to speculate on its spread or potential establishment in the area. However, the experience with its close relative, the redcoat,  Sargocentron rubrum  (For- sskål, 1775), first detected in the basin eighty years ago off Palestine marine waters ((Haas & Steinitz, 1947) and now considered one of the most success- ful colonisers in the Mediterranean Sea (Azzurro et  al., 2014) demonstrates that some species can rapidly find a niche in a new environment, establish themselves, and begin to spread. Furthermore, two new squirrelfish species have been reported for the first time in the Mediterranean Sea in recent years, namely Neoniphon sammara (Forsskål, 1775) (Deef, 2021; Mehanna & Osman, 2022) from Egyptian waters and S. caudimaculatum (Rüppell, 1838) from Tunisian waters (Ghanem et al., 2022). Although the specimen described here was not preserved in a formal museum collection, as rec- ommended by best-practice guidelines (sensu Bello et al., 2014), high-quality photographic evidence provided reliable documentation for confirming the species’ presence (Dulčić et al., 2006; Kovačić et al., 2020). This case underscores the important role of citizen science in contributing data on alien species. ACKNOWLEDGMENTS The authors thank fisherman Zoran Ćuk for providing the photographic evidence and Nikša Miljanić for sharing the sighting of the squirrelfish. They also extend their gratitude to Tihomir Makovec and Branislav Lazarević for their support. The paper is a result of a bilateral scientific project between the Republic of Montenegro and the Republic of Slovenia (ARIS-BI/2024/205). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 307 Nikola DJORDJEVIĆ et al.: NEW RECORD OF THE LONG-JAWED SQUIRRELFISH, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), IN THE ADRIATIC SEA, 303–308 NOVI ZAPIS O POJAVLJANJU VEVERIČJAKA VRSTE HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) V JADRANSKEM MORJU Nikola DJORDJEVIĆ, Slavica PETOVIĆ, Ilija ĆETKOVIĆ Institute of Marine Biology, I Bokeljske brigade 68, 85330 Kotor, Montenegro Borut MAVRIČ & Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Fornače 41, Slovenia e-mail: Lovrenc.Lipej@nib.si POVZETEK Ribič je 16. oktobra 2025 ujel primerek tujerodnega veveričjaka vrste Holocentrus adscensionis (Osbeck, 1765) v vodah marine Porto Montenegro (Tivat, Boka Kotorska, Črna gora). Gre za prvi zapis o pojavljanju te vrste za črnogorsko morsko ribjo favno in drugi zapis o pojavljanju v Jadranu. Ključne besede: Holocentrus adscensionis, Holocentridae, bioinvazija, Boka Kotorska, Jadransko morje ANNALES · Ser. hist. nat. · 35 · 2025 · 2 308 Nikola DJORDJEVIĆ et al.: NEW RECORD OF THE LONG-JAWED SQUIRRELFISH, HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765), IN THE ADRIATIC SEA, 303–308 REFERENCES Azzurro E., V.M. Tuset, A. Lombarte, F. Maynou, D. Simberloff, A. Rodríguez-Pérez & R.V. Solé (2014): External Morphology Explains the Success of Biological Invasions. Ecol. Lett., 17, 1455-1463. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposed best practice approach to overcome unverified and unverifiable “first records” in ichthy- ology. Cybium, 38(1), 9-14. Ben-Tuvia, A. (1990): Holocentridae. In: J.C. Quéro, J.C. Hureau, C. Karrer, A. Post and L. Saldanha (eds.): Check-list of the fishes of the eastern tropical Atlantic (CLOFETA), Vol. 2: pp. 627- 628. JNICT, Lisbon; SEI and UNESCO, Paris. Ciriaco, S., M. Segarich, V. Cirinà & L. Lipej (2022): First Record of the Long-Jawed Squirrelfish Holocentrus adscensionis (Osbeck, 1765) in the Adriatic Sea. Annales, Ser. Hist. Nat., 32(2), 309-316. Deef, L.E.M. (2021): First Record of Two Squirrelf- ishes, Sargocentron spinosissimum and Sargocentron tiereoides (Actinopterygii, Beryciformes, Holocentri- dae) From the Egyptian Mediterranean Coast. Acta Ichthyol Piscat., 51(1), 107-112. Dulčić, J., B. Grbec & L. Lipej (1999): Informa- tion on the Adriatic ichthyofauna-effect of water warming? Acta Adriatica, 40, 33-43. Dulčić, J., B. Furlan & L. Lipej (2006): First con- firmed record of Lapanella fasciata (Cocco, 1833) in the Adriatic Sea. J. Applied Ichthyol., 22, 536-537. Gamulin-Brida, H. (1983): Crnogorsko primorje– specifični dio Jadrana s gledišta bentoskih biocenoza i njihove zaštite. Studia Marina, 13-14, 205-214. Ghanem, R., W. Bahri, A. Chaffai, J. Zaouali, B. Hassen, S. Karray, M. El Bour, J. Souissi & E. Azzurro (2022): First Record of the Silverspot Squirrelfish Sargocentron caudimaculatum (Rüppell, 1838) in Mediterranean Waters. Front. Mar. Sci., 9, 869138. doi: 10.3389/fmars.2022.869138 Greenfield, D.W. (1981): Holocentridae. In: W. Fischer, G. Bianchian, W.B. Scott (eds.) FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34, 47. Department of Fisheries and Oceans Canada and FAO, 2. Golani, D., E. Azzurro, J. Dulčić, E. Massutí, & L. Orsi Relini (2021): Atlas of exotic fishes in the Mediterranean Sea (2nd  edition). CIESM Publishers, 365 pp. Haas, G. & H. Steinitz (1947): Erythrean fishes on the Mediterranean coast of Palestine. Nature, 160, 28. Kovačić, M., L. Lipej & J. Dulčić (2020): Evidence approach to checklists: critical revision of the checklist of the Adriatic Sea fishes. Zootaxa, 4767(1), 1-55. https:// doi.org/10.11646/zootaxa.4767.1.1. Lipej, L. & J. Dulčić (2004): The current status of Adriatic fish biodiversity. In: Balkan Biodiversity: Pat- tern and Process in the European Hotspot; Griffiths, H.I., Kryštufek, B., Reed, J.M., Eds.; Kluwer Academic: Dordrecht, The Netherlands; London, UK, 2004; pp. 291-306. Mehanna, S.F. & Y.A. Osman (2022): First record of the Lessepsian Sammara Squirrelfish, Neoniphon sam- mara (Forsskål, 1775), in the Egyptian Mediterranean waters. Medit. Mar. Sci., 23(3), 664-667. Occhipinti Ambrogi, A. & B. Galil (2010): Marine alien species as an aspect of global change. Advances in Oceanography and Limnology, 1, 199-218. doi: 10.1080/19475721003743876. Reef Life Survey (2025): assessed on 30.10.2025 (www. https://reeflifesurvey.com) Tomanić, J., I. Ćetković, P. Simonović, Z. Ikica, A. Joksimović & A. Pešić (2022): New species of fish and crustaceans in Montenegrin waters (South Adriatic Sea). Acta Adriatica, 63, 109-122. Turan, C., D. Ergüden & M. Gürlek (2016): Climate Change and Biodiversity Effects in Turkish Seas. Natural and Engineering Sciences, 1, 15-24. Vella, A., N. Vella & S.A. Darmanin (2016): The first record of the longjaw squirrelfish, Holocentrus adscensionis (Osbeck, 1765) (Holocentriformes: Holocentridae), in the Mediterranean Sea. Natural and Engineering Sciences, 1(3), 78-85. doi: 10.28978/nes- ciences.286371. Woods, L.P. (1955): Western Atlantic species of the genus Holocentrus. Fieldiana. Zoology, 37(4), 91-119. Woods, L.P. & D.W. Greenfield (1978): Holocen- tridae. In: W. Fischer (ed.) FAO species identification sheets for fishery purposes. Western Central Atlantic (Fishing Area 31). Vol. 3. FAO, Rome. Wyatt, J.R. (1983): The biology, ecology and bionomics of the squirrelfishes, Holocentridae. In: J.L. Munro (ed.) Caribbean coral reef fishery resources. ICLARM Stud., 7, 50-58. Zenetos, A. (2010): Trend in Alien species in the Mediterranean. An answer to Galil, 2009 ‘Taking stock: inventory of alien species in the Mediterranean Sea. Biol Invasions, 12, 3379-3381. MORSKA FAVNA FAVNA MARINA MARINE FAVNA ANNALES · Ser. hist. nat. · 35 · 2025 · 2 311 received: 2025-10-06 DOI 10.19233/ASHN.2025.33 NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ON THE ROCKY OUTCROPS IN THE GULF OF TRIESTE (NORTHERN ADRIATIC SEA) Nicola BETTOSO & Lisa FARESI Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia (ARPA FVG), via Cairoli 14, 33057 Palmanova (UD), Italy e-mail: nicola.bettoso@arpa.fvg.it Saul CIRIACO Area Marina Protetta di Miramare, Trieste, Italy Marco FANTIN & Marco SEGARICH Shoreline Soc. Coop Padriciano 99, Trieste, Italy ABSTRACT The cup-shaped demosponge Calyx nicaeensis (Risso, 1826) is an endemic Mediterranean species. It is considered to be a rare species, which needs to be included into international conservation protocols. Between 2023 and 2025, 17 specimens were recorded on the rocky outcrops in the Gulf of Trieste for the first time, within a Site of Community Importance (SCI) of the European Natura 2000 network. Key words: Cup-shaped sponge, northern Adriatic Sea, rocky outcrops, SCI, Natura 2000 NUOVE SCOPERTE DELLA SPUGNA CALICE CALYX NICAEENSIS (RISSO, 1826) SUGLI AFFIORAMENTI ROCCIOSI NEL GOLFO DI TRIESTE (ALTO ADRIATICO) SINTESI La spugna calice Calyx nicaeensis (Risso, 1826) è una specie endemica del Mediterraneo. Viene considerata una specie rara, la quale dovrebbe essere inclusa all’interno dei protocolli internazionali per la conservazione. Tra il 2023 e il 2025, 17 esemplari di questa specie sono stati trovati per la prima volta sugli affioramenti rocciosi nel Golfo di Trieste, all’interno di un Sito di Importanza Comunitaria (SIC) della rete Natura 2000. Parole chiave: spugna calice, Alto Adriatico, affioramenti rocciosi, SIC, Natura 2000 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 312 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 INTRODUCTION The cup-shaped demosponge Calyx nicaeensis (Risso, 1826) (Haplosclerida: Phloeodictyidae) is an endemic Mediterranean species, as suggested by its specific name, with the type locality in the Gulf of Nice in France. It is widely regarded as a rare spe- cies undergoing regression in the NW Mediterranean (Pronzato, 2003; Cerrano et al., 2013). Within the EU Marine Strategy Framework Directive, it has been identified as an epimegazoobenthic structuring spe- cies in coralligenous habitats (Trainito et al., 2020). In some areas of the eastern Mediterranean Sea, the sponge is still fairly common, and old sponge fisher- men employ a small piece of C. nicaeensis moistened in seawater: simply scrubbing the small piece on the inside of the mask ensures prevent mask fogging dur- ing dives (Baldacconi, 2010). C. nicaeensis exhibits a distinctive calyx mor- phology (Fig. 1) that is occasionally characterised by an irregular, massive shape with several thick extensions, each measuring 1–2 cm in diameter, and has a hard, fibrous consistency. It is notable that the diameter can reach up to 20 cm. The colour varies from beige to dark brown. The skeleton con- sists of a network of tiny siliceous needles (spicules) that occur in two sizes: large and small (100–150 and 35–80 µm, respectively) (Baldacconi, 2010). C. nicaeensis shows a peculiar strategy of asexual reproduction by producing buds from the sponge base. The larval stage of this species has never been found, nor has that of any other species of this family (Maldonado, 2006). Cup-shaped sponges inevitably trap coarse sediments, and C. nicaeensis is thought to collapse its osculum when it is filled with sediment (Cerrano et al., 2013). C. nicaeensis occurs across a wide bathymetric range (up to 400 metres) (Vacelet, 1960), but it is most commonly found at depths between 5 and 55 m in many areas of the Mediterranean Sea. It inhabits both Posidonia oceanica meadows and coralligenous concretions. In shallower areas, it is found in pre-cave conditions (Cerrano et al., 2013). In the monograph on sponges of the Adriatic Sea (1862), Schmidt reported it as Reniera calix Nobis., although the author expressed uncertainty about the classification, as evident from the way he described the species (from the original German description): “Nardo classified it as Esperia but later informed me that it should form its own genus. It cannot be classified as an Esperia since the cupped sponge does not possess any of the characteristics Fig. 1: Calyx nicaeensis on coarse sand in the Gulf of Trieste (photo: L. Faresi) Sl. 1: Calyx nicaeensis na grobem pesku v Tržaškem zalivu (foto: L. Faresi) ANNALES · Ser. hist. nat. · 35 · 2025 · 2 313 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 typical of the needle forms of that genus. However, its simple spicules, which are pointed at both ends, correspond to those of several species of Reniera and are connected by strong organic fibres. This mode of connection, however, is completely alien to other Reniera. Undoubtedly, Reniera is the genus to consider first, as the morphological relationship is undeniable: the large bowl cavity, into which individual outflow orifices flow, becomes a channel like that of Reniera aquaeductus, which, along its course, takes on the characteristics of aquifer open- ings”. Nevertheless, he stated that this species was not rare in the Kvarner region of Croatia. Cerrano et al. (2013) reported 30 localities where the species has been recorded since its description in a checklist of their findings along the Mediter- ranean coasts. The fragmented distribution in time and space highlights the need for closer attention to be paid to this species in order to better understand its life strategy and environmental role (Trainito et al., 2020). The rocky outcrops are regarded as one of the most peculiar features of the northern Adriatic Sea representing small-scale island-like geomorpho- logical elements (Casellato et al., 2007; Casellato & Stefanon, 2008). Since 2015, a limited number of biogenic outcrops in the Gulf of Trieste have been placed under legal protection according to the European Habitats Directive (92/43/CEE) (Bandelj et al., 2020). To our knowledge, this represents the first recorded finding of C. nicaeensis in the Gulf of Trieste. MATERIAL AND METHODS The study site, referred as “Trezze San Pietro e Bardelli” (IT3330009), is included in the European Natura 2000 network as a Site of Community Impor- tance (SCI) under Commission Implementing Deci- sion (EU) 2015/69 of 3 December 2014. Currently, regional legislation (D.G.R. of the Friuli Venezia Giulia Region no. 1701 of 4 October 2019) estab- Fig. 2: Study area with outcrops investigated and Sites of Community Importance (red polygons). The name of outcrops with Calyx nicaeensis record are reported (map adapted by Google Earth). Sl. 2: Obravnavano območje z raziskanimi osamelci in najdišči, pomembnimi za habitatno direktivo (rdeči poligoni). Navedena so imena skalnih osamelcev z najdbami primerkov vrste Calyx nicaeensis (zemljevid prilagojen z Google Earth). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 314 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 lishes conservation measures for the site, as well as monitoring the state of the habitats’ conservation. Anthropic activities such as anchoring, trawling and hydraulic dredge fishing on the outcrops within the SCI are prohibited. Since 2020, photographic monitoring of two rocky outcrops (identified as San Pietro and Sud Pi- astre) has been conducted seasonally using SCUBA equipment, while 8 outcrops outside and other 6 outcrops inside the SCI were monitored at least twice a year (Fig. 2). Specimens of Calyx nicaeensis were identified based on the morphological description provided by Desqueyroux-Faúndez and Valentine (2002). All specimens were photographed, and ca- lyx diameter was estimated using a measuring tape. In addition, a piece of sponge was collected from specimen A (Table 1) for spicules identification. The soft tissue was dissolved using 69% nitric acid, and the isolated spicules were observed under a micro- scope (40x magnification). RESULTS AND DISCUSSION A total of 17 Calyx nicaeensis specimens were recorded at 4 of the 16 monitored outcrops. All individuals occurred within the SCI area (Fig. 2) at depths of 16–19.9 m (Tab. 1), either on rocky substrate or adjacent coarse sand. Sponge diam- eters ranged from 2.5 to 23 cm. The first record was made on 16 March 2023 (specimen A), and some specimens were observed repeatedly. This was the case for specimen L, a 23-cm massive form with nine cups, first recorded on 7 Febru- ary 2024 (Fig. 3a). It was photographed again on 16 December 2024 and 5 March 2025, when the calyx appeared damaged (Fig. 3b–c) and a ghost gillnet was detected nearby. On 3 September 2025, the calyx had regenerated, although one cup was missing (Fig. 3d). Spicules were oxeas; the length of the largest oxeas ranged from 170.5 to 190.4 μm. Tab. 1: Specimens of Calyx nicaeensis recorded on the rocky outcrops in the Gulf of Trieste. Tab. 1: Primerki vrste Calyx nicaeensis, zabeleženi na skalnih osamelcih v Tržaškem zalivu. date outcrop site depth (m) specimens major diameter (cm) 16.03.2023 Mina 17,5 A 8 23.03.2023 Mina 17,5 A 8 17.08.2023 Sud Piastre 19,9 B, C, D (2 cups) B 5, C 8, D 15 17.08.2023 S. Pietro 16 E 9 7.02.2024 Sud Piastre 19,9 F, G, H, I, L (9 cups) F 5, G 8, L 23 (n.d. for H and I) 9.07.2024 Sepa 17,7 M, N M 13, N 6 12.08.2024 Sud Piastre 19,7 O, P O 5, P 9 16.12.2024 Sud Piastre 19,9 L (9 cups) 23 5.03.2025 Sud Piastre 19,5 L (9 cups), O, P L 23, O 5, P 9 19.07.2025 Mina 17 Q 4.5 3.09.2025 Sud Piastre 19,5 L (9 cups) 23 3.09.2025 Sepa 17,3 M, N, R, S R 2.5, S 5 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 315 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 The C. nicaeensis specimens found on outcrops in the Gulf of Trieste represent the northernmost records in the Adriatic Sea and the Mediterranean. Except for the first record by Schmidt (1862) in the Kvarner Gulf, most Adriatic records come from Montenegro or the Apulia region of the southern basin (Tab. 2). Nevertheless, our findings represent the most numerous records of this species in the Adriatic Sea in recent times and probably in the Mediterranean as well. According to Trainito et al. (2020), its distribution in the Mediterranean extends across the entire basin; the species shows no depth preference and appears to be ecologically versatile. The rocky outcrops in the Gulf of Trieste are mesophotic biogenic habitats (Bandelj et al., 2020) that are scattered across the seafloor in a mosaic pattern (Falace et al., 2015) and are poorly connected to the different subregions of the Mediterranean Sea (Ingrosso et al., 2018). A survey of benthic macrofauna on 45 outcrops between 2013 and 2015 (including those in the present study) recorded 58 Porifera species. C. nicaeensis was not detected, consistent with earlier surveys (Bettoso et al., 2023). The occurrence of this species exclusively on protected rocky outcrops, three years after the SCI site conservation measures came into effect, is unlikely to be coincidental. Yet, effective monitoring and protection of these sites located at least 3 nautical miles offshore remains challenging due to il- legal activities. Besides the risks of mechanical damage or harvesting, the species may also be preyed upon by spongivorous sea slugs. For instance, Umbraculum um- braculum ([Lightfoot], 1786) feeds on C. nicaeensis at mesophotic depths in the Aegean Sea (Özalp & Evcen, 2025). Nevertheless, U. umbraculum is still considered rare in the northern Adriatic (Turk, 2000; Zenetos et al., 2016) and has not yet been reported in the Gulf of Trieste (Lipej et al., 2025). Therefore, the data here reported confirm: i) the unpredictability of the distribu- tion of the species and ii) its actual rarity, despite a 22.3% increase in the number of specimens known for the Mediterranean basin (90). Trainito et al. (2020) con- cluded that the rarity of C. nicaeensis, combined with Tab. 2: Records of Calyx nicaeensis in the Adriatic Sea (note reports number of individuals and/or depth). N.B. past records are based on Trainito et al. (2020). Tab. 2: Zapisi o pojavljanju vrste Calyx nicaeensis v Jadranskem morju (opomba navaja število osebkov in/ali globino). Opomba: pretekli zapisi o pojavljanju temeljijo na viru Trainito in sod. (2020). Author Year Site Nation Note Schmidt 1862 Kvarner Gulf Croatia   Vitale 2011 Otranto Italy 10 m Vitale 2011 Otranto Italy 18 m Molinari & Bernat 2011 Lustica Peninsula Montenegro 14 m Mačić & Molinari 2012 Lustica Peninsula Montenegro 12 m Frijsinger & Vestjens 2012 Kvarner Gulf, Selce Croatia   Mescalchin P. 2014 Tegnue di Chioggia Italy 1 ind. Mačić & Trainito 2014 Verige Strait, Boka Kotorska Montenegro 2 ind. Faresi 2018 Orlec, Cres Croatia 1 ind. 18 m Terlizzi 2019 Giovinazzo Italy 14 m Mačić 2019 Opatovo Montenegro 2 ind. 18 m Mačić 2019 Opatovo Montenegro 1 ind. 21 m this work 2023-2025 Gulf of Trieste Italy 17 ind. 16-19,9 m ANNALES · Ser. hist. nat. · 35 · 2025 · 2 316 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 its unique characteristics, highlights the importance of including this species in international conservation protocols, as well as the need for further in-depth studies. Its finding on legally protected rocky outcrops in the Gulf of Trieste suggests that current measures may support habitat conservation in an area marked by unstable environmental conditions. Continued monitoring is therefore essential to better understand the species’ dynamics in the whole Mediterranean Sea. ACKNOWLEDGEMENTS We thank the anonymous referees for their valuable suggestions, Stefano (Nino) Caressa for logistical support, and Dr. A. Acquavita for critical review. This work has been made possible thanks to the financial support provided by the Friuli Venezia Giulia Region to the Miramare Marine Protected Area for annual monitoring of the SCI. Fig. 3: A massive form of Calyx nicaeensis with 9 cups (specimen L): yellow circles indicate the damaged cups (Photos: L. Faresi) a) 07 February 2024; b) 16 December 2024; c) 05 March 2025; d) 03 September 2025. Sl. 3: Masivna oblika vrste Calyx nicaeensis z 9 čašicami (vzorec L): rumeni krogi označujejo poškodovane čašice (fotografije: L. Faresi) a) 7. februar 2024; b) 16. december 2024; c) 5. marec 2025; d) 3. september 2025. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 317 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 NOVE NAJDBE MORSKEGA KELIHA CALYX NICAENSIS (RISSO, 1826) NA SKALNIH OSAMELCIH V TRŽAŠKEM ZALIVU (SEVERNO JADRANSKO MORJE) Nicola BETTOSO & Lisa FARESI Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia (ARPA FVG), via Cairoli 14, 33057 Palmanova (UD), Italy e-mail: nicola.bettoso@arpa.fvg.it Saul CIRIACO Area Marina Protetta di Miramare, Trieste, Italy Marco FANTIN & Marco SEGARICH Shoreline Soc. Coop Padriciano 99, Trieste, Italy POVZETEK Čašasta kremenasta spužva morski kelih Calyx nicaeensis (Risso, 1826) je endemična sredozemska vrsta. Sma- trajo jo za redko vrsto, ki jo je treba vključiti v mednarodne protokole za ohranjanje. Med letoma 2023 in 2025 je bilo na skalnih osamelcih v Tržaškem zalivu prvič zabeleženih 17 primerkov te vrste znotraj območja, pomembnega za habitatno direktivo (SCI) evropskega omrežja Natura 2000. Ključne besede: morski kelih, severni Jadran, skalni osamelci, SCI, Natura 2000 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 318 Nicola BETTOSO et al.: NEW FINDINGS OF THE CUP-SHAPED DEMOSPONGE CALYX NICAEENSIS (RISSO, 1826) ..., 311–318 REFERENCES Baldacconi, R. (2010): A peculiar calyx sponge found in the sea of Porto Cesareo (Apulia – Italy). https://www.reefcheckmed.org/2010/02/16/a-pecu- liar-calyx-sponge-found-in-the-sea-of-porto-cesareo- apulia-italy/. Bandelj, V., C. Solidoro, C. Laurent, S. Querin, S. Kaleb, F. Gianni & A. Falace (2020): Cross-scale con- nectivity of macrobenthic communities in a patchy network of habitats: the mesophotic biogenic habitats of the northern Adriatic Sea. Estuar. Coast. Shelf Sci., 245, 1-14. Bettoso, N., L. Faresi, V. Pitacco, M. Orlando-Bo- naca, I.F. Aleffi & L. Lipej (2023): Species richness of benthic macrofauna on rocky outcrops in the Adriatic Sea by using Species-Area Relationship (SAR) tools. Water, 15(2), 318. https://www.mdpi.com/2073- 4441/15/2/318. Casellato, S., L. Masiero, E. Sichirollo & S. Soresi (2007): Hidden secrets of the northern Adriatic: “Teg- núe”, peculiar reefs. Cent. Eur. J. Biol., 2, 122-136. Casellato, S. & A. Stefanon (2008): Coralligenous habitat in the northern Adriatic Sea: an overview. Mar. Ecol., 29, 321-341. Cerrano, C., A. Molinari, P. Bernat, R. Baldac- coni, B. Calcinai & V. Mačić (2013): Calyx nicaeensis (Risso, 1826) (Porifera, Demospongiae). Is it a rare and threatened species? Rapp. Comm. Int. Mer Médit., 40. Commission Implementing Decision (EU) 2015/69 of 3 December 2014 adopting an eighth update of the list of sites of Community importance for the Conti- nental biogeographical region. OJEU L 18, 23.1.2015, 297 pp. Desqueyroux-Faúndez, R. & C. Valentine (2002): Family Phloeodictydae Carter, 1882. In: Hooper, J.N.A. & R.W.M. van Soest (eds.): Systema Porifera: A guide to the classification of sponges, Vol. 1-B. Kluwer Academic /Plenum Publishers, New York, pp. 893-905. European Habitats Directive (92/43/CEE) of 21May 1992 on the conservation of natural habitats and of wild fauna and flora. OJ L 206, 22.7.1992, p. 7-50. Falace, A., S. Kaleb, D. Curiel, C. Miotti, G. Galli, S. Querin, E. Ballesteros, C. Solidoro & V. Bandelj (2015): Calcareous bio-concretions in the northern Adriatic Sea: Habitat types, environmental factors that influence habitat distributions, and predictive modeling. PLoS ONE, 10, e0140931. Ingrosso, G., M Abbiati, F. Badalamenti, G. Baves- trello, G. Belmonte, R. Cannas, L. Benedetti-Cecchi, M. Bertolino, S. Bevilacqua, C.N. Bianchi et al. (2018): Chapter Three—Mediterranean bioconstruc- tions along the Italian coast. In: Sheppard (eds.): Advances in Marine Biology, Academic Press, Cam- bridge, MA, USA, Volume 79, pp. 61-136. Lipej, L., A. Fortič, D. Trkov, B. Mavrič & D. Ivajnšič (2025): Faunistic, ecological and zoogeographical survey of heterobranch fauna in the Adriatic Sea: experiences from Slovenia. Medit. Mar. Sci., 26(3), 455–471. https://doi.org/10.12681/mms.40525. Maldonado, M. (2006): The ecology of the sponge larva. Can. J. Zool., 84, 175-194. Özalp, H.B. & A. Evcen (2025): Spongivore ecol- ogy in the Turkish seas: notes on the first in-situ record of Umbraculum umbraculum ([Lightfoot], 1786) on Demosponge Calyx nicaeensis (Risso, 1826) popula- tions from the mesophotic depths of Bozcaada (Ae- gean Sea, Türkiye). J. Black Sea/Medit. Environ., 31(2), 130-141. Pronzato, R. (2003): Mediterranean sponge fauna: a biological, historical and cultural heritage. Bioge- ogr., 24, 91-99. Schmidt, O. (1862): Die Spongien des Adriatischen Meeres. Leipzig, Verlag von Wilhelm Engelmann, 88 pp. Trainito, E., R. Baldacconi & V. Mačić (2020): All-around rare and generalist: countercurrent signals from the updated distribution of Calyx nicaeensis (Risso, 1826) (Porifera, Demospongiae). Stud. Mar., 33(1), 5-17. Turk, T. (2000): The opistobranch mollusks (Ceph- alaspidea, Saccoglossa, Notaspidea, Anaspidea and Nudibranchia) of the Adriatic Sea with special refer- ence to the Slovenian coast. Annales, Ser. Hist. Nat., 21(2), 161-172. Vacelet, J. (1960): Éponges de la Méditerranée Nord-Occidentale récoltées par le “Président Théo- dore Tissier” (1958). Rev. Trav. Inst. Pêches marit., 24(2), 258-272. Zenetos, A., V. Mačić, A. Jaklin, L. Lipej, D. Pour- sanidis, R. Cattaneo-Vietti, S. Beqiraj, F. Betti, D. Poloniato, L. Kashta, S. Katsanevakis & F. Crocetta (2016): Adriatic ‘opistobranchs’ (Gastropoda, Hetero- branchia): shedding light on biodiversity issues. Mar. Ecol., 37(6), 1239-1255. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 319 received: 2025-06-05 DOI 10.19233/ASHN.2025.34 FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ZONE OF THE CRIMEAN COAST (BLACK SEA) Aleksandra V. BORODINA A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011, Sevastopol, Nakhimov Avenue, 2, Russian Federation e-mail: borodinaav@mail.ru Yuri O. VELYAEV Sevastopol State University, Sevastopol, 299053, st.Universitetskaya, 33, Russian Federation ABSTRACT Seasonal lipid studies in shellfish are critical for assessment of metabolic lipid profiles and body condition. The aim of this study was to investigate the seasonal patterns of total lipid accumulation, identify the lipid classes, and determine the fatty acid composition of the striped venus clam Chamelea gallina from the sublittoral zone along the Crimean coast of the Black Sea. The highest levels of total lipids (TLs), including triacylglycerols (storage lipids), were observed during the winter–spring period, during which the fatty acid (FA) composition consisted of 23 species. The FA composition of C. gallina from the Crimean coast differed from that of populations in other regions of the World Ocean. The results can be used for a comprehensive assessment of environmental impacts on organisms in biomonitoring research and for evaluating the potential nutritional value of these clams. Key words: Venus clam, Chamelea gallina, Black Sea, lipids, fatty acids, seasonality CARATTERISTICHE DELL’ACCUMULO DI LIPIDI NELLA VONGOLA LUPINO CHAMELEA GALLINA NELLA ZONA SUBLITORALE DELLA COSTA CRIMESE (MAR NERO) SINTESI Gli studi stagionali sui lipidi nei molluschi sono fondamentali per valutare i profili metabolici dei lipidi e le condizioni fisiche. Lo scopo di questo studio era quello di indagare i modelli stagionali di accumulo di lipidi totali, identificare le classi di lipidi e determinare la composizione degli acidi grassi della vongola lupino Chamelea gallina proveniente dalla zona sublitorale lungo la costa crimeana del Mar Nero. I livelli più elevati di lipidi totali (TL), compresi i triacilgliceroli (lipidi di riserva), sono stati osservati durante il periodo invernale-primaverile, durante il quale la composizione degli acidi grassi (FA) era costituita da 23 specie. La composizione degli acidi grassi di C. gallina lungo la costa della Crimea differiva da quella delle popolazioni di altre regioni degli oceani. I risultati possono essere utilizzati per una valutazione completa dell’impatto ambientale sugli organismi nella ricerca di biomonitoraggio e per valutare il potenziale valore nutrizionale di queste vongole. Parole chiave: vongola lupino, Chamelea gallina, Mar Nero, lipidi, acidi grassi, stagionalità ANNALES · Ser. hist. nat. · 35 · 2025 · 2 320 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 INTRODUCTION The striped venus clam, Chamelea gallina (Lin- naeus, 1758), a marine bivalve mollusk of the family Veneridae, is widely distributed in the Mediterranean Sea, Adriatic Sea, Black Sea, and along the eastern Atlantic coasts of Europe (Öztürk & Altinok, 2021). In the Black Sea, although comparable to commer- cially harvested species in abundance and biomass, these clams remain understudied and unexploited (Panayotova et al., 2020; Merdzhanova et al., 2021). Lipids and fatty acids (FAs) are not only indicators of nutritional value but also crucial for ecological monitoring. The lipid composition of bivalves varies depending on geographical distribution (Ricardo et al., 2017). For instance, differences in total lipids (TLs) and FA composition have been observed be- tween C. gallina from the western Black Sea (Bul- garia) (Merdzhanova et al., 2021) and the Adriatic Sea (Orban et al., 2007). Similarly, variations exist between specimens from the Marmara Sea (Türkiye) (Colakoglu et al., 2011) and the western Black Sea (Bulgaria) (Merdzhanova et al., 2021). Lipid composition is influenced by adaptive processes in animals, a phenomenon extensively documented in the literature (Hochachka & Somero, 2002). Lipids in mollusks respond to habitat changes, abiotic factors (e.g., salinity, temperature, recreational pressure, anoxia), and other stressors (Hochachka & Somero, 1971; Fokina et al., 2018, Fokina & Chesnokova, 2021). Under stress, physico- chemical modifications of cell membranes—primar- ily involving phospholipids and cholesterol (struc- tural lipids)—occur to maintain optimal viscosity. During temperature drops, often accompanied by anoxia (e.g., during low tides), mollusks utilize tria- cylglycerols as an alternative energy source (Fokina et al., 2018, Fokina & Chesnokova, 2021). Sublittoral mollusks face greater abiotic stress, resulting in lipid profiles that are distinct from those of deeper-water counterparts or individuals from other oceanic regions. This study aimed to investigate TLs and major lipid classes – phospholipids (PLs), monoacylglycerols (MGs), diacylglycerols + sterols (DGs+st), free fatty acids (FFAs), and triacylglycerols (TAGs) – in C. gallina from the sublittoral zone of Sev- astopol Bay (Black Sea) over an annual cycle, with a particular focus on FA composition in spring, a period of favorable feeding conditions. MATERIAL AND METHODS Study Object, Sample Collection, and Processing Specimens of Chamelea gallina were collected monthly from December to May and September to December 2021–2022 from three stations in the sublittoral zone of Kazachya Bay, Sevastopol (Fig. 1). The sediment was sandy-silt sediment. The sampling regime covered the winter, spring, and autumn sea- sons; summer was excluded due to high temperatures, which compromised lipid stability during sample transport, reducing the accuracy of lipid determina- tion. Each month, 5–7 adult clams (shell length 15–25 mm) were collected and their soft tissues pooled for analysis. Total Lipids and Thin-Layer Chromatography (TLC) TLs were extracted using the Folch method (Folch et al., 1957). Lipid classes—including PLs (phospholipids), MGs (monoacylglycerols), DGs+st Fig. 1: Map of sampling in Kazachya Bay. Sl. 1: Zemljevid obravnavanega območja. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 321 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 (diacylglycerols + sterols), FFAs (free fatty acids), and TAGs (triacylglycerols)—were separated via two- dimensional TLC using the “chamber-in-chamber” principle (Borodina et al., 2023). This technique employs a solvent polarity gradient for fractionation, utilizing a three-solvent system: Chamber 1: Chloro- form; Chamber 2: Hexane: diethyl ether (9:1, v/v); Chamber 3: n-hexane. The Sorbfil Plates ПТСХ-АФ-А (Krasnodar, Russia) were used as the stationary phase. Prior to analysis, the plates were washed with ethyl acetate and activated with an alcoholic solution of phosphomolybdic acid (PMA). Quantification of Lipid Fractions Separated lipid bands were quantified densito- metrically using an HP Scanjet 200 scanner. Acquired images (in JPEG format) were processed using TLC Manager 4.0.2.3D software for peak integration and quantitative analysis. Preparation of Fatty Acid Methyl Esters (FAMEs) Total lipid extracts were subjected to derivatization (Chen et al., 2023; Juarez et al., 2008) prior to analy- sis. The lipid extract was dissolved in a mixture of 180 µL dimethyl sulfoxide (DMSO; CAS 67-68-5, Panreac) and 20 µL of 25% methanolic tetramethylammonium hydroxide (TMAH; CAS 75-59-2, Sigma-Aldrich), then vortexed for 2 min. Subsequently, 30 µL of iodometh- ane (CAS 74-88-4, Sigma-Aldrich) was added for methylation. The reaction mixture was incubated at room tem- perature for 20 min, after which n-hexane (CAS 110- 54-3, Panreac) was added for liquid-liquid extraction. The mixture was vigorously agitated for 5 min using a PE-6300 laboratory shaker. The organic phase was then separated by centrifugation (10,000 RPM) using a Microspin FV-2400 vortex centrifuge. The hexane layer, containing fatty acid methyl esters (FAMEs), was carefully transferred to a gas chromatography vial for subsequent analysis. Gas Chromatography-Mass Spectrometry (GC/MS) The chromatographic-mass spectrometric analysis was performed at the Scientific Research Laboratory “Molecular and Cellular Biophysics” of Sevastopol State University using a Chromatec-Crystal 5000 GC/MS sys- tem equipped with a mass spectrometric detector. Chromatographic conditions: injection volume: 1 µL; column: HP-5MS UI capillary column (Agilent; 30 m × 0.25 mm ID, 0.25 µm film thickness) con- taining (5%-phenyl)-methylpolysiloxane stationary phase; carrier gas: grade 6.0 helium at a constant flow rate of 1 mL/min; temperature program: initial temperature: 80°C (held for 2 min), ramp rate: 5°C/ min to 280°C; injector: temperature: 280°C, split ratio: 20:1. Mass spectrometric conditions: ioniza- tion mode: electron impact (EI) at 70 eV; ion source temperature: 230°C; transfer line temperature: 280°C; mass range: 30–650 m/z. Data processing: The acquired data were processed using Chro- matec Analytic 3.1 software (version 3.1.2211.3). Fig. 2: A) Organ mass distribution in C. gallina individuals; B) Total lipid (TL) content in C. gallina. Sl. 2: Porazdelitev mase organov pri primerkih vrste C. gallina; B) celokupna vsebnost lipidov (TL) pri primerkih vrste C. gallina. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 322 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 Compound identification was performed using NIST MS Search v.3.0 against the NIST 2023 mass spectral library (database updated April 18, 2023). Quantification and Statistical Analysis Lipid fractions were quantified as percentages of total lipids (% TLs) for: PLs (phospholipids), DGs+St (diacylglycerols + sterols), FFAs (free fatty acids), and TAGs (triacylglycerols). All data are presented as mean ± standard error of mean (M±SEM). Significance threshold was established at p≤ 0.05. FA composition data were analyzed using the Mann-Whitney U-test (for non-parametric comparison). RESULTS Lipid Distribution and Seasonal Dynamics in C. gallina Tissue-Specific Lipid Distribution (Early Winter) At the beginning of winter, the distribution of total lipids across mollusk tissues was analyzed in relation to the organ mass-size characteristics (Fig. 2). The hepatopancreas emerged as the primary lipid reservoir, accounting for >50% of TL, which under- scores its metabolic centrality in energy storage and mobilization. Seasonal Dynamics of Lipids in Mollusks Analysis of pooled tissues demonstrated marked seasonal fluctuations in TL content (Fig. 3). The high- est lipid concentrations were observed during winter (6.1–8.3 g/100 g wet wt), with a secondary, more modest peak occurring in late spring (May: 5.9 g/100 g wet wt). During other sampling months, TL content fluctuated between 2.6–5.5 g per 100 g of wet tissue weight (wet wt). The accumulation of major lipid classes—PLs, DGs+st, FFAs, and TAGs—exhibited distinct seasonal trends. Structural lipids, particularly PLs and sterols, dominated the TL pool throughout the year, accounting for 44.3% to 67.7% of TLs (in February and September, respectively), with an annual mean of 54.3 ± 2.56%. Storage lipids (predominantly TAGs) showed a dif- ferent pattern: peak accumulation: 37.5 ± 2.41% of TLs occurred in April, coinciding with plankton blooms and diversified food availability, while minimum levels (3.0 ± 0.50% of TLs) were recorded in October (autumn). The combined contribution of cholesterol (21.14 ± 1.06%) and PLs to TLs was comparable to TAG accumulation levels in April (Fig. 3, Tab. 1). This equilibrium between structural (PL+st) and storage (TAG) lipids suggests an active membrane maintenance despite seasonal resource shifts. Therefore, the FA study was conducted during the winter–spring period. Fig. 3: Dynamics of TL and lipid classes – PLs, DGs+st, FFAs, and TAGs – in tissues of C. gallina clams in different periods of the annual cycle. Sl. 3: Dinamika celokupnih lipidov in razredi lipidov – PLs, DGs+st, FFAs, in TAGs – v tkivih primerkov školjk C. gallina v različnih periodah letnega cikla. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 323 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 Tab. 1: Winter–spring FA and sterol composition in C. gallina. *Retention time - This is the time required for the substance to pass through the column (from the injector to the detector). Corresponds to the time when the peak maximum appears on the chromatogram. **Peak area, (% of the total) - his is the percentage of a given substance, which is calculated by determining the area of the corresponding peak as a percentage of the total area of all peaks detected in the sample. In this case, unmarked peaks corresponding to solvents, reagents, impurities, as well as the mobile phase or matrix of the sample are not taken into account. Tab. 1: Zimsko-pomladna sestava maščobnih kislin in sterolov v C. gallina. *Retencijski čas - To je čas, ki je potreben, da snov preide skozi kolono (od injektorja do detektorja). Ustreza času, ko se na kromatogramu pojavi maksimum vrha. **Površina vrha (% od celotne površine) - To je odstotek dane snovi, ki se izračuna tako, da se površina us- treznega vrha določi kot odstotek celotne površine vseh vrhov, zaznanih v vzorcu. V tem primeru se ne upoštevajo neoznačeni vrhovi, ki ustrezajo topilom, reagentom, nečistočam, kot tudi mobilna faza ali matrica vzorca. № Lipid formula Retention time*(min) Peak area** (% of the total) 1 11:0 7.426 0.146±0.007 2 12:0 8.064 0.894±0.045 3 iso-14:0 9.028 0.400±0.020 4 14:0 9.232 3.433±0.172 5 4,8,12-tri-Me 13:0 9.512 1.140±0.057 6 anteiso-15:0 9.583 0.127±0.006 7 15:0 9.773 1.644±0.082 8 iso-16:0 10.103 1.216±0.061 9 16:0 10.289 21.459±1.073 10 iso-17:0 10.601 1.831±0.092 11 anteiso-17:0 10.648 1.423±0.071 12 17:0 10.780 1.972±0.099 13 18:0 11.250 7.923±0.396 ΣSFAs 43.608±2.180 14 16:1ω-5 10.200 2.258±0.113 15 18:1ω-9t 11.149 7.044±0.352 16 18:1ω-9c 11.174 3.556±0.178 17 20:1ω-7 12.045 2.600±0.130 18 20:1ω-9 12.070 2.218±0.111 ΣMUFAs 17.676±0.884 19 18:2ω-6 11.131 1.178±0.059 20 20:4ω-6 11.891 3.275±0.164 21 20:5ω-3 11.927 2.415±0.121 22 22:6ω-3 12.794 1.901±0.095 ΣPUFAs 8.769±0.438 23 22:4ω-6,9,12,18 12.801 2.346±0.117 ΣNMIFAs 2.346±0.117 24 22-Dehydrocholesterol 18.700 1.707±0.085 25 Cholesterol 19.313 21.136±1.057 26 Brassicasterol 20.101 4.758±0.238 ΣSterols 27.601±1.380 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 324 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 FA Composition In the winter–spring samples (collected from Feb- ruary through March), a total of 23 FAs and 3 sterols were detected (Tab. 1). In total, 13 saturated fatty acids (SFAs) were identified, with the major contributors— together comprising over one-third of all FAs)—being 16:0 (21.5%), 18:0 (7.9%), and 14:0 (3.4%). Five monounsaturated FAs (MUFAs) were identified, col- lectively accounting for less than one-fifth of total FAs. Among the MUFAs, the ω-9 FAs were of particular interest: 18:1ω-9c (3.6%) and 20:1ω-9 (2.2%), as well as the ω-7 FA 20:1ω-7 (2.6%). Four polyunsaturated FAs (PUFAs) were present, with the highest contribu- tions from 20:4ω-6 (3.3%) and 20:5ω-3 (2.4%). No- tably, one non-methylene-interrupted fatty acid (NMI FA)—22:4ω-6,9,12,18—was detected in appreciable quantity (2.4%). Quantitatively, PUFAs constituted one-tenth of the total FA and sterol content. Among the sterols, cholesterol was the most abundant (21.1%), with smaller quantities of 22-dehydrocholesterol (1.7%) and brassicasterol (4.8%) also detected and identified. DISCUSSION The primary factors governing the seasonal dynam- ics of lipid composition in bivalve mollusks include water temperature, salinity, food resource availabil- ity and quality, as well as reproductive cycle stages (Hochachka & Somero, 1971; Fokina et al., 2018). Of particular interest is the adaptation of mollusks inhabiting the sublittoral zone, where they experi- ence significant fluctuations in temperature, salinity, and periodic hypoxia induced by wave action during low tides. Biochemical adaptation mechanisms to such conditions are primarily mediated through lipid metabolism (Hochachka & Somero, 1971; Fokina et al., 2018). PLs, cholesterol, SFAs, and PUFAs play piv- otal roles in this process, as the primary response to environmental stressors involves modification of the cell membrane structure, whose main component is the lipid bilayer (Fokina et al., 2018). One of the most significant adaptive mechanisms is homeoviscous ad- aptation, which maintains optimal membrane fluidity (Hochachka & Somero, 2002). This process entails re- modeling of the membrane lipid composition, includ- ing adjustments to the cholesterol-to-phospholipid ratio and modifications of the fatty acid profile within phospholipids (Fokina et al., 2018). In C. gallina, seasonal variations in total lipid (TL) content demonstrate a predominance of structural lipids (PLs and cholesterol) consistent with this adap- tation mechanism. The reduction in TAGs (storage li- pids) can be explained not only by adaptive responses to peak coastal temperatures, anthropogenic pressure, and hypoxia events, but also by active reproductive phases. In bivalves (Bivalvia), storage lipids are primarily accumulated in the gonads; thus, their significant decrease during autumn–winter coincides with completion of the reproductive cycle (Fokina et al., 2018). Against the background of PL dynamics (the quantitatively dominant structural lipid class), in- creased storage lipids may indicate either greater food diversity or reduced metabolic expenditure. As shown in Fig. 3, TAG accumulation begins in late winter with increasing daylight and gradual warming of coastal waters. During the winter–spring period, a natural reduction in coastal anthropogenic pressure occurs alongside phytoplankton succession, which enriches the dietary spectrum for filter-feeding mollusks. Con- currently, the onset of the reproductive cycle involves active TAG accumulation in generative tissues. The combined effect of these factors likely explains the comparable proportions of structural and storage li- pids observed in C. gallina in April, though TL content did not peak during this period. Maximum TL values occurred in winter, coinciding with dormancy and tissue restoration. A distinct TL peak in May tissues likely reflects spring dietary diversification. Our prior research on seasonal carotenoid dynamics supports this: significant carotenoid ester accumulation in spring months (Borodina et al., 2021) indicates diverse food resources. The amplitude of seasonal TL fluctua- tions in C. gallina populations from the Crimean coast was 1.5–3.5 times greater than in specimens from the Mediterranean and the Bulgarian Black Sea (Orban et al., 2007; Panayotova et al., 2020; Merdzhanova et al., 2021). These differences may stem from more pronounced seasonal abiotic variations and distinct trophic conditions in the northwestern Black Sea. Elevated TLs during colder seasons may be driven by food availability (diatoms, dinoflagel- lates), as indicated by the predominance of palmitic acid (16:0), eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA) in the lipid profile (Table 1)—established biomarkers for these algal groups (Zhukova, 2019). Similar FA assimilation patterns occur in mussels during up- welling (Irisarri et al., 2014). These biomarker FAs constituted 27.39% of TLs. The FA analysis period coincided with elevated levels of structural lipids (PLs and sterols). stearic acid (18:0; 7.9% of total FA pool) and arachidonic acid (20:4ω-6; 3.3%) were particularly significant for membrane formation. FA profiling identified multiple sources: Zooplankton: 20:1ω-9, 20:4ω-6, 20:5ω-3 Bacteria/detritus: 15:0, 17:0, 18:1ω-9(t) Endogenous biosynthesis: 16:0, 18:0, 16:1ω-5, 20:1ω- 9 (Zhukova, 2019). High SFA content (especially 16:0 and 18:0) may reflect accumulation for conversion into 20:1ω-9, 18:2ω-6, prostaglandin precursor 20:4ω-6, and 22:6ω- 3 (Brett et al., 1997). Key PUFAs—EPA and DHA— indicate specific adaptive mechanisms maintaining ANNALES · Ser. hist. nat. · 35 · 2025 · 2 325 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 membrane functionality under temperature and salin- ity shifts (Copeman & Parrish, 2004; Zhukova, 2019). Notably, 22:6ω-3 may originate from dietary sources or endogenous synthesis from 20:5ω-3 (1.9% of FA pool) (Pollero et al., 1979). The presence of 22:4ω- 6,9,12,18 (2.4% of FA pool), classified as an NMI FA (non-methylene-interrupted fatty acid), demonstrates enhanced oxidative stress resistance due to isolated double bonds (Fokina et al., 2018), indicating effective protective mechanisms against environmental chal- lenges (Fokina et al., 2018; Zakhartsev et al., 1998). Methylene-interrupted fatty acids (MI-FAs) derived from mollusks hold significant potential for applica- tions in the food and pharmaceutical industries due to their unique structure and bioactivity. In the food industry, they can be used: in developing functional foods enriched with PUFAs (omega-3: EPA, DHA) and other rare MI-FAs, such as yogurts, bread, and sports nutrition products; as an alternative to fish oil, thus reducing dependence on traditional fisheries; for lipid stabilization in food products, as some MI-FAs possess antioxidant properties that can extend shelf life; in formulating dietary foods that support cardiovascular and cognitive health, leveraging their low saturated fat content and high levels of DHA. In the pharmaceutical industry, they can be utilized: as anti-inflammatory and cardioprotective agents in combating chronic inflam- mation, since MI-FAs can modulate cyclooxygenase (COX) and lipoxygenase (LOX) activity, reducing the production of pro-inflammatory eicosanoids, and miti- gate atherosclerosis risks by regulating lipid profiles; to shield against neurodegenerative diseases through in- fluences on synaptic plasticity and exert antidepressant effects by modulating serotonergic and dopaminergic systems; to suppress certain pathogenic bacteria, with specific MI-FAs exhibiting activity against Helicobacter pylori and Staphylococcus aureus; to induce apoptosis in cancer cells (e.g., in leukemia and breast cancer); in developing dietary supplements (DSs) with enhanced bioavailability and creating novel lipid-based nanocar- riers for targeted drug delivery. Thus, these mollusk- derived methylene-interrupted fatty acids possess multifunctional potential, ranging from the creation of enriched foods to the development of novel anti- inflammatory, neuroprotective, and anti-tumor drugs. Their application can drive advancements in these industrial sectors and personalized medicine. 22-Dehydrocholesterol in sterol composition may reflect phytoplankton-related dietary specificity. Bras- sicasterol—a product of sterol metabolism in animals and microorganisms (Costa, 2025)—may also enter this hydrobiont through diet (Leblond, 2023). MUFA/SFA and PUFA/SFA ratios were 0.41±0.04 and 0.25±0.02, respectively. The ω-3/ω-6 ratio (0.63) in C. gallina exceeds the health-beneficial threshold (>0.25; Raes et al., 2004) and is substantially higher than in Western diets (Simopoulos, 2003), highlighting its nutritional value. CONCLUSIONS In the sublittoral zone, the striped venus clam Cha- melea gallina—subjected to elevated anthropogenic pressure—exhibited year-round dominance of struc- tural lipids (PLs and sterols) over storage lipids (TAGs). Significant peaks in TL dynamics occurred during late winter and early spring. The fatty acid profile comprised 23 distinct compounds: 13 SFAs, 5 MUFAs (including one NMI FA), and 4 PUFAs. The sterol profile included three compounds, with cholesterol predominating (21.14±1.06%). Thus, C. gallina holds significant potential as a source of specific lipids (unique NMI FAs, cholesterol) and due to its favorable ω-3/ω-6 ratio. Primary applica- tions include nutraceuticals (production of dietary sup- plements), pharmaceuticals (cholesterol utilization and NMI FA extraction), and specialized PUFA-enriched foods (using raw materials harvested during optimal seasons). Realizing this potential requires ensuring the environmental safety of raw materials (considering anthropogenic pressure), developing efficient process- ing technologies, and validating biological activity of target components in clinical studies. FUNDING This work was supported by ongoing institutional funding of the Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences (State as- signment no. 124030100137-6). No additional grants to carry out or direct this particular research were ob- tained. The part of this work was also financially sup- ported by the Ministry of Science and Higher Education of Russian Federation during the implementation of the project FEFM-2023-0005 (State assignment no. 123021300156-4). ACKNOWLEDGMENTS Scientific Research Laboratory “Molecular and Cellular Biophysics” of Institute for Advanced Studies of the Federal State Educational Institution of Higher Education “Sevastopol State University” The authors would like to express their gratitude to the junior researcher fellow of the Scientific Research Laboratory “Bioresource Potential of Coastal Territo- ries,” Alexander Ruzeviltovich Osokin, for his assis- tance in conducting the analysis using the “Chromatec- Crystal 5000GC/MS” chromatography system. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 326 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 ZNAČILNOSTI KOPIČENJA LIPIDOV V NAVADNI VENERICI (CHAMELEA GALLINA) V OBREŽNEM PASU KRIMSKE OBALE (ČRNO MORJE) Aleksandra V. BORODINA A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011, Sevastopol, Nakhimov Avenue, 2, Russian Federation e-mail: borodinaav@mail.ru Yuri O. VELYAEV Sevastopol State University, Sevastopol, 299053, st.Universitetskaya, 33, Russian Federation POVZETEK Sezonske študije lipidov pri školjkah so ključne za oceno presnovnih lipidnih profilov in telesnega stanja. Cilj te študije je bil raziskati sezonske vzorce skupnega kopičenja lipidov, identificirati razrede lipidov in določiti sestavo maščobnih kislin navadne venerice (Chamelea gallina) iz obrežnega pasu vzdolž krimske obale Črnega morja. Najvišje ravni skupnih lipidov (TL), vključno s triacilgliceroli (zaloge lipidov), so bile opažene v zimsko-pomladnem obdobju, v katerem je sestava maščobnih kislin (FA) obsegala 23 vrst. Sestava maščobnih kislin navadne venerice se je razlikovala od sestave populacij v drugih regijah sve- tovnega oceana. Rezultate je mogoče uporabiti za celovito oceno vplivov okolja na organizme v raziskavah biomonitoringa in za oceno potencialne hranilne vrednosti teh školjk. Ključne besede: navadna venerica, Chamelea gallina, Črno morje, lipidi, maščobne kisline, sezonskost ANNALES · Ser. hist. nat. · 35 · 2025 · 2 327 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 REFERENCES Borodina, A.V. & P.A. Zadorozhny (2021): Seasonal dynamics of carotenoids in the Black Sea bivalve mollusk Chamelea gallina (Linnaeus, 1758). J. Evol. Biochem. Physiol., 57(3), 503-510. https:// doi.org/10.1134/S0022093021030054. Borodina, A.V., Yu.O. Veliaev, & A.R. Osokin (2023): Comprehensive methodological approach to determining lipids in clams. Food Processing: Tech- niques and Technology, 53(4), 662-671. (In Russ.). https://doi.org/10.21603/2074-9414-2023-4-2464. Brett, M.T., & D.C. Muller-Navarra (1997): The role of fatty acids in aquatic food web processes. Freshwater Biology, 38, 483-499. https://faculty. washington.edu/mtbrett/1997_Brett_FWB.pdf. Chen, C., R. Li & H. Wu (2023): Recent progress in the analysis of unsaturated fatty acids in bio- logical samples by chemical derivatization-based chromatography-mass spectrometry methods. Jour- nal of Chromatography B, 1215, 123572. https:// doi.org/10.1016/j.jchromb.2022.123572. Colakoglu, F.A., H. Ormanci, N. Berik, I.E. Kunili, & S. Colakoglu (2011): Proximate and elemental composition of Chamelea gallina from the Southern Coast of the Marmara Sea (Turkey). Biological Trace Element Research, 143, 983-991. https://doi.org/10.1007/s12011-010-8943-3. Copeman, L.A., & C.C. Parrish (2004): Lipid (cor- rected) classes, fatty acids, and sterols in seafood from Gilbert Bay, southern Labrador. J. Agric. Food Chem., 52(15), 4872-4881. https://doi.org/10.1021/ jf034820h. Costa, F. da, M. Mathieu-Resuge, F. Le Grand, C. Quéré, G.V. Markov, G.H. Wikfors, & P. Soudant (2025): Sterol biosynthesis and phytosterol biocon- version in Crassostrea gigas larvae: new evidence from mass-balance feeding studies. Biochimie. https://doi.org/10.1016/j.biochi.2025.05.005. Fokina, N. & I. Chesnokova (2021): An integrated approach to assessing the effects of environmental factors on mussels in the Black Sea. Integration processes in the Russian and international research domain: experience and prospects. Petrozavodsk, Russia, 47-54. https://doi.org/10.18502/kss. v7i3.10422. Fokina, N.N., T.R. Ruokolainen, & N.N. Nemova (2018): The effect of intertidal habitat on seasonal lipid composition changes in blue mus- sels Mytilus edulis L., from the White Sea. Polar Record, 54(2), 133-151. https://doi.org/10.1017/ S0032247418000293. Folch, J., M. Lees, & G.H.S. Stanley (1957): A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226(1), 497-500. https://doi.org/10.1016/S0021- 9258(18)64849-5. Hochachka, P.W. & G.N. Somero (2002): Cel- lular Metabolism, Regulation, and Homeostasis, Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford University Press. 466 pp. https://doi.org/10.1093/ oso/9780195117028.003.0002. Irisarri, J., M.-J. De Fernandez-Reiriz, M. Troch, & U. Labarta (2014): Fatty acids as tracers of trophic interactions between seston, mussels and biodeposits in a coastal embayment of mussel rafts in the proximity of fish cages. Comparative Biochemistry and Physiology, Part B: Biochem- istry and Molecular Biology, 172-173, 105-115. https://doi.org/10.1016/j.cbpb.2014.04.006. Juarez, M., O. Polvillo, & M. Conto (2008): Comparison of four extraction/methylation ana- lytical methods to measure fatty acid composi- tion by gas chromatography in meat. Journal of Chromatography A, 1190, 327-332. https://doi. org/10.1016/j.chroma.2008.03.004. Leblond, J.D., K. Sabir & H.L. Whittemore (2023): Sterol Composition of the Peridinin-Con- taining Dinoflagellate Gertia stigmatica, a Mem- ber of the Kareniaceae without a Canonical Hap- tophyte-Derived Plastid. Protist, 174(2), 125939. https://doi.org/10.1016/j.protis.2023.125939. Meireles, L.A., A.C. Guedes, & F.X. Malcata (2003): Lipid class composi t ion of the micro- alga Pavlova luther i : eicosapentaenoic and docosahexaenoic acids. J . Agric. Food Chem., 51 (8) , 2237-2241. ht tps: / /doi .org/10.1021/ j f025952y. Merdzhanova, A., V. Panayotova, D.A. Dobre- va & K. Peycheva (2021): Can fish and shellfish species from the Black Sea supply health ben- eficial amounts of bioactive fatty acids? Biomol- ecules, 11 (1661), 1-22. https://doi.org/10.3390/ biom11111661. Orban, G.E., G. Di Lena, T. Nevigato, I. Casini, R. Caproni, & G. Santaroni (2007): Nu- tritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic Sea. Food Chemistry, 101 (3), 1063-1070. https:// doi.org/10.1016/J.FOODCHEM.2006.03.005. Öztürk, R.Ç. & I. Altinok (2021): Genetic population structure of the striped venus clam Chamelea gallina across its range. Fisheries Re- search, 234, 105758. https://doi.org/10.1016/j. fishres.2020.105758. Panayotova, V., A. Merdzhanova, D.A. Do- breva, K. Bratoeva, & L. Makedonski (2020): Nutritional composition, bioactive compounds and health-beneficial properties of Black Sea shellfish. J. IMAB, 26(3), 3293-3297. https://doi. org/10.5272/jimab.2020263.3293. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 328 Aleksandra V. BORODINA & Yuri O. VELYAEV: FEATURES OF LIPID ACCUMULATION IN STRIPED VENUS CLAM CHAMELEA GALLINA IN THE SUBLITTORAL ..., 319–328 Pollero, R.T., M.E. Re, & R.R. Brenner (1979): Seasonal changes of the lipids of the mollusk Chlamys tehuelcha. Comparative Biochemistry and Physiology Part A: Physiology, 64(2), 257-263. https://doi.org/10.1016/0300-9629(79)90658-3. Raes, K., S. De Smet, & D. Demeyer (2004): Effect of dietary acids on incorporation of long chain poly- unsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Animal Feed Science and Technology, 113, 199-221. https://doi. org/10.1016/j.anifeedsci.2003.09.001. Ricardo, F., T. Pimentel, E. Maciel, A.S.P. Moreira, M.R. Domingues, & R. Calado (2017): Fatty acid dynamics of the adductor muscle of live cockles (Cerastoderma edule) during their shelf-life and its relevance for traceability of geographic origin. Food Control, 77, 192-198. https://doi.org/10.1016/j.food- cont.2017.01.012. Simopoulos, A.P. (2003): Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Review of Nutrition and Dietetics, 92, 1-22. https://doi.org/10.1159/000073788. Somero, G.N. & P.W. Hochachka (1971): Bio- chemical Adaptation to the Environment. American Zoologist, 11(1), 159-167. https://doi.org/10.1093/ icb/11.1.159. Zakhartsev, M.V., N.V. Naumenko, & V.P. Chelo- min (1998): Non-methylene-interrupted fatty acids in phospholipids of the membranes of the mussel Creno- mytilus grayanus. Russian Journal of Marine Biology, 24, 183-186. http://113.160.249.209:8080/xmlui/ handle/123456789/11078. Zhukova, N.V. (2019): Fatty acids of marine mol- lusks: impact of diet, bacterial symbiosis and biosyn- thetic potential. Biomolecules, 9(12), 857. https://doi. org/10.3390/biom9120857. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 329 received: 2025-07-02 DOI 10.19233/ASHN.2025.35 RECENT OBSERVATIONS ON MONACHUS MONACHUS (PHOCIDAE) AT SEA-CAGE FISH FARMS IN IZMIR (TURKISH AEGEAN SEA) Okan AKYOL Ege University Faculty of Fisheries, 35440 Urla, Izmir, Türkiye e-mail: okan.akyol@ege.edu.tr Oğuzhan TAKICAK Ege University Urla Maritime Vocational School, 35440 Urla, Izmir, Türkiye ABSTRACT On 8 February, 3 May, and 9 May 2025, three specimens of Monachus monachus were photographed by a staff diver at two fish farms rearing sea bass and sea bream in Gerence Bay, Izmir, in the Aegean Sea. A comprehensive set of behavioural data on Mediterranean monk seals was obtained from the diver via an interview. The findings confirm the near-permanent presence of monk seals in the study area. The paper also suggests that excessive dependence on fish farms could alter the monk seals’ feeding behaviour and potentially even lead to their domestication. Key words: Mediterranean monk seal, feeding behaviour, interaction, Mediterranean Sea OSSERVAZIONI RECENTI SU MONACHUS MONACHUS (PHOCIDAE) PRESSO IMPIANTI DI ACQUACOLTURA IN GABBIE A MARE NELL’AREA DI IZMIR (MAR EGEO TURCO) SINTESI L’8 febbraio, il 3 maggio e il 9 maggio 2025, tre esemplari di Monachus monachus sono stati fotografati da un subacqueo del personale presso due impianti di allevamento di spigole e orate situati nella baia di Gerence, a Izmir, nel Mar Egeo. Un ampio insieme di dati comportamentali sulle foche monache del Mediterraneo è stato raccolto dal subacqueo tramite un’intervista. I risultati confermano la presenza quasi permanente di foche mona- che nell’area di studio. L’articolo suggerisce inoltre che una dipendenza eccessiva dagli impianti di acquacoltura potrebbe modificare il comportamento alimentare delle foche e persino portare, potenzialmente, a una loro domesticazione. Parole chiave: foca monaca, comportamento alimentare, interazione, Mediterraneo ANNALES · Ser. hist. nat. · 35 · 2025 · 2 330 Okan AKYOL & Oğuzhan TAKICAK: RECENT OBSERVATIONS ON MONACHUS MONACHUS (PHOCIDAE) AT SEA-CAGE FISH FARMS IN IZMIR ..., 329–334 INTRODUCTION The Mediterranean monk seal (Monachus monachus) is regarded to be one of the rarest marine mammals in the world, with a current global population estimated at no more than 800 individuals (Dendrinos et al., 2022). The species has registered a marked recovery over the past decade and is now classified as Vulnerable by the International Union for Conservation of Nature (IUCN). The largest subpopulation – estimated at 444–600 mature individuals – is currently found in the eastern Mediterranean Sea (Karamanlidis et al., 2023; Karamanlidis, 2024). Other groups in the eastern Mediterranean consist of small, loosely structured aggregations, usually comprising fewer than 20 individuals. A recent study reported thirty- four sightings along the Syrian coast between 2001 and 2023 (Ibrahim et al., 2024). The Mediterranean monk seal is the sole resi- dent pinniped species in the Mediterranean Sea (Karamanlidis, 2024). Sporadic sightings have been recorded primarily in the eastern part of the basin, including the islands of the Ionian and Aegean Seas, the mainland coast of Greece, the western and southern coasts of Türkiye, and the coasts of Cyprus (Dendrinos et al., 2022). A recent study re- ported a total of 361 monk seal sightings in Cyprus between 2009 and 2018, with the vast majority (95%) involving juvenile and adult individuals, and only 18 sightings being of newborn pups (Nicolaou et al., 2021). Additionally, Mediterranean monk seals were monitored in caves along the northern coast of Cyprus between November 2016 and May 2019, and seven individuals were confirmed: three pups and four juvenile-subadult-adult seals (Beton et al., 2021). The extirpation of the Mediterranean monk seal from the Black Sea is believed to have occurred as recently as 1997, though a small population persists in the Sea of Marmara (Dendrinos et al., 2022), including two individuals recorded near Karabiga (Inanmaz et al., 2014). Despite sporadic observations reported from this region, the only known active breeding populations are located in the Aegean Sea, the northeastern Mediterranean Sea, the Greek Ionian Sea, Madeira, and off the coast of Mauritania (Bundone et al., 2019; Panou et al., 2023). The monk seal is strictly protected under Turk- ish law, European Directives, and International Conventions. In Türkiye, a national strategy for the conservation of the species was adopted in 1991, followed by the establishment of a national seal committee to coordinate conservation ac- tivities (Güçlüsoy et al., 2004). In spite of these measures, the primary threats to the species in the Mediterranean persist and can be categorised as follows: terrestrial and marine habitat loss and degradation resulting from increased human pressure, including tourism and pollution; nega- tive interactions with fisheries and aquaculture, which occur even in countries and regions where the species is legally protected; and other unpre- dictable threats (Karamanlidis, 2024). The Mediterranean monk seal spends most of its life at sea, primarily foraging for food (Dendrinos et al., 2022). It is widely considered an opportunistic predator that feeds mostly on the continental shelf, with a diet dominated by fish, crustaceans, and cephalopods (Karaman- lidis, 2024). Recent studies have confirmed that Mediterranean monk seals can successfully for- age independently in the wild from as early as five months of age (Kıraç & Ok, 2019). Since the 1980s, the widespread expansion of mariculture in the Mediterranean has provided the species with a new and abundant food source, rivalling the availability of wild fish (Akyol & Ceyhan, 2020). This has led to monk seal attacks on sea-cages at fish farms, which have been docu- mented. Güçlüsoy & Savaş (2003), for instance, reported 40 such attacks at 11 fish farms in the Turkish Aegean Sea between 1992 and 2000, which caused cage net damage and the escape of farmed fish. Similarly, Gerovasileiou et al. (2017) captured photographic evidence of seven Mediterranean monk seals at four different fish farms in the Aegean Sea. This study provides further photographic evidence of M. monachus at two sea-cage fish farms in the Aegean Sea, thereby expanding our knowledge on the adapting feeding behaviour of this rare species. MATERIAL AND METHODS On 8 February, 3 May, and 9 May 2025, three M. monachus individuals (Fig. 1) were photographed by a staff diver using GoPro Hero 8 at two fish farms rearing sea bass and sea bream in Gerence Bay, Izmir (1st farm: 38.440312°N, 26.481155°E; 2nd farm: 38.449723°N, 26.417067°E, Fig. 2). The diver works at both fish farms, which are owned by the same company. The fish farms were deployed at depths of 70 m and 89 m, respectively, and are both located approximately 1 km from the main- land. They lie within the Chios and Turkish Coast IMMA (Important Marine Mammal Area) in the central eastern Aegean Sea, which encompasses an area bounded by Chios, Psarra, Çeșme, the Karaburun Peninsula, the Gulf of Izmir, and Foça, extending offshore towards the 200 m isobath (IUCN-MMPATF, 2017). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 331 Okan AKYOL & Oğuzhan TAKICAK: RECENT OBSERVATIONS ON MONACHUS MONACHUS (PHOCIDAE) AT SEA-CAGE FISH FARMS IN IZMIR ..., 329–334 The sex of Mediterranean monk seals was esti- mated based on their coloration across different life stages (Samaranch & González, 2000; Quintana Martín Montalvo & Muñoz Cañas, 2025). RESULTS AND DISCUSSION According to the diver we interviewed, the Mediter- ranean monk seals appeared occasionally during the harvest period, especially in summer. This occurred when a fish transfer bridge – made of a net and ropes – was installed between a large cage containing reared fish (50 m in diameter) and a small, empty cage (20 m in diameter). The seals were observed entering the open-top net and stealing fish (Fig. 1a). In general, they would be seen reposing on the cage floats, exhibiting a curious but timid attitude, often observing people from a distance. Sightings increased in frequency in the spring and summer months, typically during daylight hours. The diver also reported that the seals did not display any aggressive behaviour and were never seen entering the cages themselves (D. Aydın, pers. comm.). Fig. 1: Recent observations of Monachus monachus at sea-cage fish farms in Gerence Bay (i.e., Chios and the Turkish coast of the IMMA) include the following: (a) an adult female with a fish in its mouth, recorded on 8 February 2025 at the first fish farm; (b) an underwater view of a subadult specimen captured on 3 May 2025 at the second fish farm; and (c) an adult female observed eating fish at the sea surface on 9 May 2025 at the second fish farm (all courtesy of Davut Aydın). Sl. 1: Nedavna opažanja vrste Monachus monachus v ribogojnicah v kletkah v zalivu Gerence (tj. Hios in turška obala IMMA) vključujejo naslednje: (a) odrasla samica z ribo v ustih, posneta 8. februarja 2025 v prvi ribogojnici; (b) podvodni pogled na mladostni primerek, posnet 3. maja 2025 v drugi ribogojnici; in (c) odrasla samica, opažena pri prehranjevanju z ribami na morski gladini 9. maja 2025 v drugi ribogojnici (vse z dovoljenjem Davuta Aydına). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 332 Okan AKYOL & Oğuzhan TAKICAK: RECENT OBSERVATIONS ON MONACHUS MONACHUS (PHOCIDAE) AT SEA-CAGE FISH FARMS IN IZMIR ..., 329–334 Gerovasilieou et al. (2017) documented an individual of M. monachus attacking a sea-cage fish farm in Izmir on 15 December 2016, further confirming the behaviour previously observed by Güçlüsoy & Savaş (2003). It is evident that Medi- terranean monk seals are able to locate ample sustenance in the vicinity of fish farms, which act as Fish Aggregating Devices (FADs), and in the fish bridges formed during harvesting operations. This trend is problematic as it fosters negative in- teractions between the seals and man-made struc- tures. Potential adverse consequences include Mediterranean monk seals abandoning open-sea foraging, increased attacks on fish farms, or harm inflicted upon the seals by unscrupulous fishers. It is therefore imperative that fishers, including fish farm employees, understand the behaviour exhibited by Mediterranean monk seals. To sup- port the conservation of this species, human interaction, such as feeding, should be actively discouraged. Moreover, since Mediterranean monk seals represent an important component of our natural heritage, their populations should be continuously monitored. ACKNOWLEDGEMENTS We would like to express our gratitude to staff diver Davut Aydın, who kindly provided the photo- graphic material, and to two anonymous reviewers, whose valuable contributions to an earlier version of this paper are gratefully acknowledged. Fig. 2: Map showing the locations of the sea-cage fish farms (1: first fish farm, 2: second fish farm) in the Aegean Sea. Sl. 2: Zemljevid obravnavanega območja z ribogojnicami s kletkami (1: prva ribogojnica, 2: druga ribogojnica) v Egejskem morju. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 333 Okan AKYOL & Oğuzhan TAKICAK: RECENT OBSERVATIONS ON MONACHUS MONACHUS (PHOCIDAE) AT SEA-CAGE FISH FARMS IN IZMIR ..., 329–334 NEDAVNA OPAŽANJA PRIMERKOV MONACHUS MONACHUS (PHOCIDAE) V RIBOGOJNICAH Z MORSKIMI KLETKAMI V IZMIRJU (TURŠKO EGEJSKO MORJE) Okan AKYOL Ege University Faculty of Fisheries, 35440 Urla, Izmir, Türkiye e-mail: okan.akyol@ege.edu.tr Oğuzhan TAKICAK Ege University Urla Maritime Vocational School, 35440 Urla, Izmir, Türkiye POVZETEK Potapljač je 8. februarja, 3. maja in 9. maja 2025 fotografiral tri primerke vrste Monachus monachus na dveh ribogojnicah, kjer gojijo brancine in orade v zalivu Gerence v Izmirju v Egejskem morju. S pomočjo in- tervjujev je pridobil obsežen nabor vedenjskih podatkov o sredozemskih medvedkah. Ugotovitve potrjujejo, da je na preučevanem območju sredozemska medvedka skoraj stalno prisotna. Poleg tega prispevek tudi nakazuje, da bi lahko pretirana odvisnost od ribogojnic spremenila prehranjevalne navade sredozemskih medvedk in morda celo privedla do njihove udomačitve. Ključne besede: sredozemska medvedka, prehranjevalno vedenje, interakcije, Sredozemsko morje ANNALES · Ser. hist. nat. · 35 · 2025 · 2 334 Okan AKYOL & Oğuzhan TAKICAK: RECENT OBSERVATIONS ON MONACHUS MONACHUS (PHOCIDAE) AT SEA-CAGE FISH FARMS IN IZMIR ..., 329–334 REFERENCES Akyol, O. & T. Ceyhan (2020): Wild fish com- munities associated with sea-cage fish farms in the Aegean Sea. In: Çoban, D., M.D. Demircan, & D.D. Tosun (Eds.): Marine Aquaculture in Turkey: Advance- ments and Management. Turkish Marine Research Foundation (TUDAV) Publication No: 59, İstanbul. pp. 401-415. Beton, D., A.C. Broderick, B.J. Godley, E. Kolaç, M. Ok, & R.T.E. Snape (2021): New monitoring con- firms regular breeding of the Mediterranean monk seal in Northern Cyprus. Oryx, 55(4), 522-525. Bundone, L., A. Panou, & E. Molinaroli (2019): On sightings of (vagrant?) monk seals, Monachus monachus, in the Mediterranean Basin and their im- portance for the conservation of the species. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(4), 554-563. Dendrinos, P., S. Adamantopoulou, E. Tounta, K. Koemtzopoulos, & A.A. Karamanlidis (2022): The Mediterranean Monk Seal (Monachus monachus) in the Aegean Sea. “The Living Myth of the Sirens”. In: Anagnostou, C.L., A.G. Kostianoy, I.D. Mariolakos, P. Panayotidis, M. Soilemezidou, & G. Tsaltas (Eds): The Aegean Sea Environment. The Handbook of Envi- ronmental Chemistry, Vol. 129. Springer, Cham. pp. 211-233. Gerovasileiou, V., E.H.Kh. Akel, O. Akyol, G. Alongi, F. Azevedo, N. Babali, et al., (2017): New Mediterranean Biodiversity Records (July 2017). Med. Mar. Sci., 18(2), 355-384. Güçlüsoy, H. & Y. Savaş (2003): Interaction be- tween monk seal, Monachus monachus (Hermann, 1779) and marine fish farms in the Turkish Aegean and management of the problem. Aquac. Res., 34, 777-783. Güçlüsoy, H., C.O. Kıraç, N.O. Veryeri & Y. Savaş (2004): Status of the Mediterranean monk seal, Mona- chus monachus (Hermann, 1779) in the coastal waters of Turkey. Ege J. Fish. & Aquat. Sci., 2, 201-210. Ibrahim, A., C. Hussein, F. Alshawy, & A.A. Ahmad (2024): Distribution and habitats of the Mediterranean Monk Seal (Monachus monachus): In the Syrian Coast (Eastern Mediterranean). Species, 25, e2s1624. Inanmaz, Ö.E., Ö. Degirmenci, & A.C. Gücü (2014): A new sighting of the Mediterranean monk seal, Mona- chus monachus (Hermann, 1779), in the Marmara Sea (Turkey). Zool. Middle East, 60(3), 278-280. IUCN-MMPATF (2017): Chios and Turkish Coast IMMA. Full Accounts of Mediterranean IMMA Factsheet. IUCN Joint SSC/WCPA Marine Mammal Protected Areas Task Force, 2017. Available at https:// www.marinemammalhabitat.org/portfolioitem/chios- and-turkish-coast/. Karamanlidis, A.A., P. Dendrinos, P. Fernandez de Larrinoa, C.O. Kıraç, H. Nicolaou & R. Pires (2023): Monachus monachus. The IUCN Red List of Threatened Species 2023: e.T13653A238637039. https://dx.doi.org/10.2305/IUCN.UK.2023-1.RLTS. T13653A238637039.en. Accessed on 25 Aug. 2025. Karamanlidis, A.A. (2024): Current status, biology, threats and conservation priorities of the Vulnerable Mediterranean monk seal. Endanger. Species Res., 53, 341-361. Kıraç, C.O. & M. Ok. (2019): Diet of a Mediterra- nean monk seal Monachus monachus in a transitional post-weaning phase and its implications for the con- servation of the species. Endanger. Species Res., 39, 315-320. Nicolaou, H., P. Dendrinos, M. Marcou, S. Michaelides, & A.A. Karamanlidis (2021): Re-estab- lishment of the Mediterranean monk seal Monachus monachus in Cyprus: priorities for conservation. Oryx, 55(4), 526-528. Panou, A., M. Giannoulaki, D. Varda, L. Lazaj, G. Pojana, & L. Bundone (2023): Towards a strategy for the recovering of the Mediterranean monk seal in the Adriatic-Ionian Basin. Front. Mar. Sci., 10, 1034124. Quintana Martín Montalvo, B. & M. Muñoz Cañas (2025): Mediterranean monk seal. A comprehensive set of monitoring and research techniques for the study and conservation of Monachus monachus in the Mediterranean Sea (1st ed.). Gland, Switzerland: IUCN., pp.1-77. Samaranch, R. & L.M. González (2000): Changes in morphology with age in Mediterranean monk seals (Monachus monachus). Marine Mammal Science, 16(1), 141-157. FLORA FLORA FLORA ANNALES · Ser. hist. nat. · 35 · 2025 · 2 337 received: 2025-07-22 DOI 10.19233/ASHN.2025.36 LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO Amelio PEZZETTA Via Monteperalba 34, 34149 Trieste e-mail: fonterossi@libero.it Marco PAOLUCCI Contrada Sant’Antonio 24 – 66041 Atessa (Ch) e-mail: majella@virgilio.it SINTESI Il presente lavoro segue un altro del 2012 ed è finalizzato a riportare un elenco floristico aggiornato dei taxa presenti nell’ambito di studio. La compilazione di una nuova check-list è indispensabile poiché i recenti studi hanno portato a rimaneggiamenti tassonomici, nuove segnalazioni e l’esclusione di altri considerati presenti. L’elenco floristico attuale comprende 1535 taxa tra cui 162 specie endemiche che accrescono l’importanza fitogeografica dell’area di studio. Lo spettro corologico mostra che i taxa censiti appartengono a 47 diversi corotipi, ripartiti in 9 contingenti geografici. Parole chiave: Palena, Abruzzo, flora, fiume Aventino THE FLORA OF PALENA (MAJELLA NATIONAL PARK): FLORISTIC UPDATE ABSTRACT This work follows another from 2012 and aims to provide an updated floristic list of the taxa present in the study area. The compilation of a new checklist is essential as recent studies have led to taxonomic reorganiza- tions, new reports of other taxa and the exclusion considered to be present. The current floristic list includes 1535 taxa including 162 endemic species which increase the phytogeographic importance of the study area. The chorological spectrum shows that the recorded taxa belong to 47 different chorotypes, divided into 9 geographical contingents. Key words: Palena, Abruzzo, flora, Aventino river ANNALES · Ser. hist. nat. · 35 · 2025 · 2 338 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 INTRODUZIONE Nel territorio di Palena Pezzetta et al. (2012) se- gnalarono 1201 taxa. In seguito, i rimaneggiamenti tassonomici e le nuove ricerche hanno ampliato le conoscenze esistenti con l’aggiunta di nuove entità e l’esclusione di altre che si consideravano presenti. Alla luce di questi fatti si rende necessario compilare un nuovo elenco floristico che riporti tutte le novità riscontrate. Di conseguenza con il presente articolo presenta una nuova check-list comprendente tutte le specie di piante vascolari presenti nel territorio comunale di Palena e un saggio analitico e di discus- sione con i seguenti aspetti fitogeografici: 1) l’insieme dei corotipi a cui appartengono i taxa rinvenuti; 2) quali sono endemici, rari, invasivi, rappresentanti di importanti migrazioni floristiche avvenute in epoche passate e/o al limite del loro areale di distribuzione. Queste conoscenze nel loro insieme: dimostrano l’im- portanza naturalistica dell’ambito di studio e risultano fondamentali per una corretta gestione del territorio. Esse permettono di tutelare le specie vulnerabili e di favorire il turismo naturalistico, poiché la presenza di boschi, pascoli, prati e altri ambienti ricchi di specie vegetali accresce il valore paesaggistico, l’attrattiva turistica, oltre all’importanza scientifica e ricreativa del territorio. Inquadramento dell’area d’indagine Palena è un Comune abruzzese della Provincia di Chieti (Fig. 1) ubicato nell’alta valle del fiume Aventino e sulle pendici del versante sud-orientale del massiccio della Majella. Il suo centro abitato sorge su un pianoro leggermente ondulato situato all’altitudine media di 767 metri ed è costituito da un nucleo d’origine medioevale che si sviluppò at- torno a un castello e in seguito si allargò nelle zone circostanti. Ad esso si arriva percorrendo la Strada Statale Frentana n° 84 che collega Roccaraso (Prov. L’Aquila) con Lanciano (prov. Chieti). Il territorio comunale copre la superficie di 91.61 Kmq e si estende lungo l’asse NO-SE, tra la quota minima di 603 metri e quella massima di 2565. In un ambito locale detto “Capo Di Fiume” affio- rano le sorgenti dell’Aventino che attraversa il centro abitato e dopo circa 40 km s’immette nel Sangro, il secondo fiume d’Abruzzo. Il versante palenese settentrionale, situato sulla sinistra orografica del fiume Aventino, presenta una morfologia accidentata e raggiunge la quota massima di 2.575 metri. Esso si estende dal massiccio della Majella fino alle alture che circondano il vallone di Femmina Morta e comprende il Monte Porrara (2.136 m; Fig. 2) e la Tavola Rotonda (2.402 m), separati tra loro dal Guado di Coccia. In particolare, il Monte Porrara rappresenta l’estremità meridionale del massiccio della Majella. Ha un andamento longitudinale nord-sud e culmina con l’ultima dorsale, che termina alla quota di 1.260 m pres- so Forchetta Palena. La sua lunga cresta segna inoltre il confine tra le province di Chieti e L’Aquila. Al territorio palenese appartiene anche l’altopia- no di Quarto Santa Chiara, una conca endoreica di origine tettonico-carsica che fa parte dei cosiddetti “Altipiani Maggiori d’Abruzzo” e si trova alla quota media di 1250 metri. Esso è attraversato da vari rivo- li superficiali e dal torrente La Vera che nell’ultima parte del suo percorso forma una serie di meandri e defluisce in un inghiottitoio presente nel punto più depresso del piano (Fig. 3). Una volta infiltrate, le acque attraversano il sistema carsico del Monte Porrara, e dopo circa tre ore fuoriescono a Capo di Fiume nelle sorgenti dell’Aventino (portata media 1.200 l/s). Dopo il disgelo primaverile l’altopiano si allaga e si forma un laghetto con dimensioni e profondità variabili. Con il ritiro delle acque il pianoro ritorna asciutto, tranne nelle vicinanze dei vecchi meandri del torrente ove l’acqua ristagna anche nella stagio- ne estiva. Fig. 1: La Provincia di Chieti con il territorio di Palena (in rosso). Sl. 1: Provinca Chieti z ozemljem Palena (v rdeči barvi). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 339 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Fig. 3: L'inghiottitoio dell'altipiano di Quarto Santa Chiara. Sl. 3: Vrtača na planoti Quarto Santa Chiara. Fig. 2: Il Monte Porrara. Sl. 2: Monte Porrara. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 340 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Dal punto di vista geologico il territorio palenese è molto eterogeneo. La parte a ridosso del Monte Porrara e della Majella è costituita in prevalenza da rocce calcaree del Meso-Cenozoico. Nel versante orografico destro della valle dell’Aventino prevalgono depositi marini mio-pliocenici costituiti da formazioni argillose e arenacee. L’altipiano di Quarto di Santa Chiara, a sua volta è costituito da depositi fluvio-lacustri plio-plei- stocenici: argille, sabbie, ghiaie e conglomerati poco cementati intercalati a livelli torbosi. Per quanto riguarda il clima, a causa dell’elevata escursione altitudinale, nell’ambito in esame sono individuabili diverse tipologie climatiche. I dati termo-pluviometrici relativi al centro abitato evidenziano che Palena presenta un clima di transi- zione tra il mediterraneo e il temperato-fresco, con le seguenti caratteristiche (Pezzetta, 1998): precipitazioni medie annue pari a 990 mm; massime precipitazioni in inverno (301 mm) e minime in estate (151 mm); valore massimo mensile a novembre con 127 mm. La temperatura media annua giornaliera è di 11,5 °C, con una media di 20,9 °C nel mese più caldo (luglio) e di 4 °C nel mese più freddo (gennaio). L’escursione termica media annua è pari a 17 °C. La porzione territoriale che va sino a 800 metri d’altitudine e comprende il centro abitato, in base alla classificazione climatica di Rivas Martinez (1996) rientra nel termotipo Mesotemperato superiore e nell’ombrotipo Umido/Subumido. La fascia altitudinale compresa tra 900 e 1500 metri d’altitudine rientra nel termotipo Collinare-Montano e nell’ombrotipo Umido con le seguenti caratteristiche: precipitazioni di oltre 1000 mm annui; temperatura media annua di circa 10 °C; due mesi annui con tem- perature medie inferiori a 0°C. La fascia altitudinale oltre 2200 metri appartiene al termotipo Orotemperato inferiore e all’ombrotipo Iperumido inferiore con le seguenti caratteristiche locali: precipitazioni medie superiori a 1200 mm; temperatura media annua di circa 2°C; copertura media nevosa da 5 a 8 mesi annui. Alcune particolari caratteristiche climatiche del piano alpino magellense che interessano anche parte dell’ambito in esame sono fornite dalle intense nebbie e dai forti venti che facilmente raggiungono velocità superiori a 100 Km/h. Il territorio palenese è caratterizzato anche da una notevole eterogeneità floro-vegetazionale. Nel suo complesso è costituito da boschi (54 %), pascoli (21 %), estesi prati stabili (15%) e, il resto (circa il 10% della superficie territoriale), da ambiti coltivati, aree urbanizzate e terreni incolti. Le particolari formazioni vegetali locali osservabili nel luogo cambiano con l’altitudine, il tipo di substrato, l’esposizione solare e la pressione antropica esercitata con il pascolo e il taglio degli alberi. Alle quote inferiori della Majella e negli ambiti molto riparati dalle correnti fredde e favorevolmente esposti alla luce solare attecchiscono specie tipiche di ambienti caldi e soleggiati tra cui Quercus ilex, Osyris alba, Anemone hortensis ed altre entità termo- file appartenenti a diverse famiglie vegetali, tra cui le cistacee, hypericacee, leguminose, brassicacee e crassulacee. Lungo il fiume Aventino si sviluppa una vegetazione ripariale con varie specie di salici, pioppi e ontani (Alnus glutinosa, Populus nigra, Salix alba, etc.). Alla sinistra idrografica, si rinvengono alcuni querceti misti con varie specie arboree. Il piano mon- tano è dominato dalla faggeta che costituisce oltre il 70 % dei boschi locali. Nell’altopiano del Quarto di S. Chiara attecchiscono diverse formazioni erbacee tipiche di ambienti umidi che comprendono entità molto rare. Nella fascia subalpina al limite della vegetazione arborea, sono presenti piccoli nuclei di Pinus mugo Turra subsp. mugo e arbusteti con Junipe- rus communis L. e Arctostaphylos uva-ursi (L.) Spreng. Alle quote più elevate si alternano le praterie primarie e secondarie con gli ambienti rocciosi e glareicoli sommitali in cui si rinvengono importantissime specie vegetali relittiche, endemiche e rare che sono incluse nelle liste rosse e protette. Le ricerche botaniche a Palena Le esplorazioni floristiche dell’ambito di studio iniziarono nel XIX secolo con Michele Tenore che nel 1831, durante le sue ricerche sulla flora della Majella lo visitò. Altrettanto fecero nella seconda metà del XIX secolo Cesati (1872) e all’inizio del nuovo secolo Abbate (1901) che segnalarono en- trambi nuovi ritrovamenti floristici. Tuttavia, le segnalazioni più consistenti si ebbe- ro agli inizi degli anni 80 del secolo scorso, con la pubblicazione di due ricerche di Feoli-Chiapella (1981, 1982) e una di Baltisberger (1981). Qualche anno dopo Tammaro (1986a) in un saggio citò oltre 250 specie presenti a Palena. Altre notizie sulla flo- ra e/o vegetazione di tale località sono riportate nei saggi dei seguenti autori: Tammaro (1986b, 1998), Conti (1987, 1997, 1998), Conti et al. (1990, 2008, 2019, 2020), Manzi (1993, 1999, 2006), Conti & Manzi (1997), Conti & Pellegrini (1988, 1990), Galetti (1995, 2002, 2008), Daiss & Daiss (1997), Pirone (1997), Di Cecco (1999), Hennecke & Hen- necke (1999), Di Renzo (2004), Blasi et al. (2005 Di Fabrizio (2006), Di Pietro et al. (2008), Gottschlich (2009), Griebl (2010), Wagensommer et al. (2011) Di Cecco & Pezzetta (2012), Gallo (2012), Cia- schetti et al. (2015), Bartolucci et al. (2019). All’incremento delle conoscenze floristiche ha contribuito anche il personale dei Giardini Botanici Michele Tenore e Daniela Brescia che annualmente pubblicano in rete un index seminum in cui ri- portano i semi delle piante coltivate negli stessi e spontanee di varie località tra cui Palena. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 341 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Tab. 1: Corotipi della flora di Palena. Tab. 1: Horotipi flore Palene. Contingenti geografici Numero taxa % Contingenti geografici Numero taxa % Endemico e Subendemico 162 10,5 Orof. Europeo 1 Endemico 149 Orof. Sud-Europeo 47 Subendemico 13 Orof. Sud-Est-Europeo 22 Mediterraneo 410 26,7 Orof. Sud-Ovest-Europeo 8 Eurimediterraneo 225 Ovest-Europeo 3 Stenomediterraneo 76 Sud-Est-Europeo 21 Mediterraneo-Macaronesico 3 Sud-Europeo 16 Mediterraneo-Montano 56 Sud-Ovest-Europeo 4 Mediterraneo-Orientale 8 Atlantico 28 1,8 Mediterraneo-Occidentale 14 Atlantico 5 Nord-Mediterraneo 13 Mediterraneo-Atlantico 8 Nord-Est-Mediterraneo 7 Subatlantico 15 Nord-Ovest-Mediterraneo 3 Nordico 103 6,7 Sud-Mediterraneo 4 Artico-Alpino 23 Sud-Ovest-Mediterraneo 1 Circumboreale 80 Eurasiatico 414 27 Cosmopolita 87 5,7 Eurasiatico s. s. 158 Cosmopolita 38 Europeo-Caucasico 50 Subcosmopolita 49 Eurosiberiano 51 Avventizio ed Extraeuropeo 29 1,9 Mediterraneo-Turaniano 20 Avventizio 9 Orof. Eurasiatico 6 Asiatico 3 Paleotemperato 78 Asiatico-Orientale 3 Pontico 40 Sud-Ovest-Asiatico 1 Sud-Europeo-Sud-Siberiano 11 Americano 1 Europeo 302 19,7 Nord-Americano 3 Appennino-Balcanico 75 Sud-Americano 4 Centro-Europeo 28 Paleosubtropicale 4 Europeo s. s. 73 Pantropicale 1 Orof. Centro-Europeo 4 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 342 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 MATERIALI E METODI L’elenco floristico attuale con tutti i suoi aggiorna- menti è stato realizzato considerando: le ricerche sul campo degli autori effettuate dopo il 2012; i dati rica- vati della rilettura di vari saggi precedentemente con- sultati e dalla nuova letteratura; le segnalazioni inedite fornite da Centurione Nicola e Mirella Di Cecco. Esso comprende le specie, le sottospecie e alcuni ibridi che sono stati riconosciuti. Non sono state considerate le varietà cromatiche e morfologiche. Nell’elenco floristico sono stati adottati i simboli che seguono con i seguenti significati: * specie nuova per Palena non riportata in Pezzetta et al., 2012; ## specie nuova per il Parco Nazionale della Majella; °° Il taxon raggiunge nel Parco della Majella il limite meridionale di distribuzione geogra- fica in Italia. La nomenclatura adottata e l’ordine di elencazione delle famiglie e specie presenti seguono Conti et al. (2020) con l’eccezione di alcuni taxa per i quali essa è stata rivista recentemente. Accanto ad ogni taxon sono riportati: il tipo corologico, le sigle degli autori che l’hanno segnalato, eventuali note e/o osservazioni. Per le entità alloctone si riportano le definizioni secondo Celesti-Grapow et al. (2010). Per l’assegnazione dei tipi corologici si è tenuto conto di quanto riportato nel sito internet di Acta Plantarum (https://www.actaplan- tarum.org) e in Pignatti et al. (2017-2019) tranne i seguenti tre casi: • al corotipo Avventizio sono stati assegnati i taxa d’origine ignota che si sono naturalizzati nell’ambito di studio; • al corotipo Subendemico sono state assegnate le specie contraddistinte da un areale limitato comprendente l’Abruzzo, talvolta altre regioni italiane e qualche stato europeo confinante con l’Italia; • al corotipo Appennino-Balcanico sono stati as- segnati i taxa presenti solo nel territorio delimi- tato dai seguenti confini fisici (Pezzetta, 2010): a) per la Penisola Italiana, le isole e l’arco ap- penninico dalla Liguria all’Aspromonte; b) per la Penisola Balcanica, Creta, le isole dell’Egeo e il territorio continentale posto a sud dell’asse fluviale che va dalle sorgenti della Sava alle foci del Danubio e dal Mar Nero all’Adriatico-Ionio. Nella compilazione della Tabella 1 è stato utilizzato il concetto di “Contingente Geografico” che comprende più corotipi e in tale voce stati fatti dei raggruppamenti tenendo conto del seguente schema: • nel contingente “Endemico e Subendemico” sono inclusi i corotipi con la stessa dicitura; • nel contingente “Mediterraneo” sono inclusi i corotipi Eurimediterraneo, Mediterraneo-Ma- caronesico, Mediterraneo-Occidentale, Me- diterraneo-Orientale, Mediterraneo-Montano, Nord-Mediterraneo, Nord-Est-Mediterraneo, Nord-Ovest-Mediterraneo, Stenomediterraneo, Sud-Mediterraneo e Sud-Ovest-Mediterraneo; • nel contingente “Eurasiatico” sono inclusi i corotipi Europeo-Caucasico, Eurasiatico s.s., Eurosiberiano, Mediterraneo-Turaniano, Orofita Eurasiatico, Paleotemperato, Pontico e Sud-Eu- ropeo-Sud-Siberiano; • nel contingente Nordico sono inclusi i corotipi Artico-Alpino e Circumboreale; • nel contingente “Europeo” sono inclusi i corotipi Centro-Europeo, Europeo s.s., Orofita Centro-Europeo, Orofita Europeo, Orofita Sud- Europeo, Orofita Sud-Est-Europeo, Oro- fita Sud-Ovest-Europeo, Centro-Europeo, Sud-Est-Europeo, Sud-Europeo, Sud-Ovest-Eu- ropeo e Appennino-Balcanico; • nel contingente “Atlantico” sono inclusi i corotipi Atlantico, Mediterraneo-Atlantico e Subatlantico; • nel contingente Avventizio ed Extraeuropeo sono inclusi i corotipi Africano, Americano, Nord-Americano, Sud-Americano, Avventizio, Asiatico, Asiatico-Occidentale, Asiatico-Orien- tale, Neotropicale, Paleotropicale, Pantropicale e Subtropicale; • nel contingente Cosmopolita sono inseriti i corotipi Cosmopolita e Subcosmopolita. • Al fine di ricavare altre importanti informazioni ecologiche e fitogeografiche, in accordo con Poldini (1991), sono stati fatti i seguenti tre raggruppamenti di corotipi: • macrotermico costituito da piante tipiche di ambienti caldo-temperati con temperature me- die annue di oltre 20 °C; • mesotermico che comprende piante che hanno bisogno di una temperatura media annuale di 15-20°C; • microtermico che a sua volta è costituito da piante che attecchiscono in territori con tempe- rature medie annue comprese tra 0° e 15°. La bibliografia comprende tutti i saggi consultati che riportano segnalazioni floristiche riguardanti il territorio in esame. Per specie nuova per il territorio di Palena s’inten- de un taxon che in precedenza non è stato riportato nella letteratura botanica consultata. Al fine di non ripetere troppe volte gli autori delle segnalazioni, si è deciso di utilizzare al loro posto delle sigle costituite da lettere maiuscole riportate dopo la nomenclatura e il corotipo di ogni taxon. Esse hanno i seguenti significati: AH: Tenore, 1831; AK: Cesati, 1872; AX: Abbate, 1903; AY: Feoli-Chiapella, 1981; AW: Baltisberger, 1981; BH: ANNALES · Ser. hist. nat. · 35 · 2025 · 2 343 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Feoli-Chiapella, 1982; BK: Feoli-Chiapella, 1983; BQ: Conti et al., 1986; BX: Tammaro, 1986a; BY: Conti, 1987; CH: Kalteisen & Reinhard, 1987; CX: Conti & Pellegrini, 1988; CY: Petriccione, 1988; CW: Conti et al., 1990; DH: Conti & Pellegrini, 1990; DX: Manzi, 1992; DY: Manzi & Pellegrini, 1992; DW: Galetti, 1995; DZ: Manzi, 1993; EH: Daiss & Daiss, 1996; EK: Conti, 1997; EX: Pirone, 1997; EY: Conti, 1998; EW: Tammaro, 1998; FH: Di Cecco, 1999; FK: Hennecke &. Hennecke, 1999; FX: Manzi, 1999; FY: Galetti, 2002; FW: Di Renzo, 2004; HH: Blasi et al., 2005; HY: Di Fabrizio, 2005; HW: Bongiorni et al., 2005; GH: Simeone et al., 2006; IK: Galetti, 2008; IX: Gottschlich, 2009; IY: Hertel & Presser, 2009; IW: Griebl, 2010; JH: Conti et al., 2011; JK: Romolini & Soca, 2011; JW: Wa- gensommer et al., 2011; JX: Di Cecco & Pezzetta, 2012; JY: Gallo, 2012; KH: Index seminum Giardi- no Botanico Daniela Brescia, 2012; KK: Peccenini, 2012; KX: Index seminum Giardino Botanico M. Tenore, 2012; KY: Pezzetta et al., 2012; LH: Romo- lini & Souche, 2012; LK: Tandè, 2012; LW: Index seminum Giardino Botanico Daniela Brescia, 2013; LX: Index seminum Giardino Botanico M. Tenore, 2013; LY: Peruzzi et al., 2013; MH: Index seminum Giardino Botanico Daniela Brescia, 2014; MK: In- dex seminum Giardino Botanico M. Tenore, 2014; MW: Ciaschetti et al., 2015; MX: Hertel & Presser, 2015; MY: Index seminum Giardino Botanico Da- niela Brescia, 2015; NH: Index seminum Giardino Botanico M. Tenore, 2015, NK: Pirone, 2015; NW: Peccenini & Polatschek, 2016; NX: Index seminum Giardino Botanico M. Tenore, 2016; NY: Ciaschetti et al., 2017; OH: Index seminum Giardino Botanico Daniela Brescia, 2017; OK: Index seminum Giar- dino Botanico M. Tenore, 2017; OW: Soca, 2017a; OX: Soca, 2017b; OY: Bergfeld; PH: Ciaschetti et al., 2018; PK: Index seminum Giardino Botanico Daniela Brescia, 2018; PW: Index seminum Giar- dino Botanico M. Tenore, 2018; PX: Ricceri et al., 2018; PY: Ciaschetti et al., 2019; QH: Conti et al., 2019; QK: Index seminum Giardino Botanico Da- niela Brescia, 2019; QW: Index seminum Giardino Botanico M. Tenore, 2019; QX: Pezzetta, 2019; QY: Conti et al., 2020; RH: Index seminum Giar- dino Botanico Daniela Brescia, 2020; RK: Index seminum Giardino Botanico M. Tenore, 2020; RW: Index seminum Giardino Botanico Daniela Brescia, 2021; RX: Index seminum Giardino Botanico M. Tenore, 2021; RY: Biagioli et al., 2022; SH: Index seminum Giardino Botanico M. Tenore, 2022; SK: Index seminum Giardino Botanico Daniela Brescia, 2022; SW: Paolucci, 2022; SX: Pezzetta et al., 2022; SY: Souche, 2022; SY: Ciaschetti & Di Cecco, 2023; TH: Index seminum Giardino Botanico Daniela Bre- scia, 2023; TK: Index seminum Giardino Botanico M. Tenore, 2023; TW: Pica et al., 2023; UK; Index seminum Giardino Botanico M. Tenore, 2024; UX: Index seminum Giardino Botanico Daniela Brescia, 2024; VB: Aspettando l’evento; VH: Centurione oss. pers.; VK: Di Cecco oss. pers.; VX: Pezzetta oss. pers.; VY: Paolucci oss. pers.; ZH: Naturgucker.De. RISULTATI E DISCUSSIONE L’elenco floristico del territorio di Palena riportato in appendice è costituito da 1535 taxa di cui 371 nuovi per l’area (Appendice 1). L’area esaminata nonostante rappresenti solo lo 0,014% dell’intero territorio italiano, ospita il 15,3% della sua flora che in base alle ricerche più recenti (Bartolucci et al., 2024, Galasso et al., 2024) raggiunge il valore di 10023 taxa. Questo semplice dato è un importante indice che conferma l’elevata ricchezza floristica e biodiversità del territorio palenese. La flora locale costituisce il 65,8% della flora del Parco Nazionale della Majella che ammonta comples- sivamente a 2331 taxa (Ciaschetti & Di Cecco 2023) e il 42,6% della flora abruzzese che a sua volta anno- vera 3604 entità (Bartolucci et al., 2024). La densità floristica è di circa17 taxa per km². Fig. 4: Ophrys passioni subsp. majellensis. Sl. 4: Ophrys passioni subsp. majellensis. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 344 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Le famiglie vegetali più rappresentate sono le seguenti: Asteraceae (183 taxa). Fabaceae (121), Poaceae (109), Orchidaceae (95; nel conteggio dei taxa sono compresi anche gli ibridi; Figg. 4-6), Bras- sicaceae (76), Caryophyllaceae (66), Lamiaceae (65), Apiaceae (62), Rosaceae (58), Ranunculaceae (52) e Plantaginaceae (44). Tra esse merita una particolare menzione la fami- glia delle orchidacee a cui appartengono 63 entità distinte tra specie e sottospecie e numerosi ibridi. Tale numero è superiore a quello osservato in alcune re- gioni italiane e, ha portato a definire Palena “Il paese delle orchidee”, facendo di questa famiglia di piante un importante emblema locale. Sono nuove per il Parco Nazionale della Majella le seguenti entità: Chaerophyllum nodosum (L.) Crantz. Euphorbia dulcis L. e Trigonella gladiata Steven ex M.Bieb. Le specie alloctone, avventizie, coltivate, natu- ralizzate e/o utilizzate per rimboschimenti, nel loro complesso ammontano a 51, pari al 3,3 % della flora locale, un valore molto piccolo che dimostra la bas- sa contaminazione floristica del territorio in esame. Dalla Tabella 1 si osserva come i taxa considera- ti si ripartiscono in 47 diversi corotipi raggruppati in 9 contingenti geografici, un dato che conferma che il massiccio della Majella e l’Abruzzo costi- tuiscono un importante crocevia di flussi floristici che ha ricevuto ondate migratorie di diversa origine geografica. Dalla tabella si rileva come tra i corotipi domini il contingente Eurasiatico con 414 taxa. Esso è seguito dai contingenti Mediterraneo con 410 taxa, Europeo con 302, Endemico con 162, Nordico con 103, Co- smopolita con 87, Avventizio-Extraeuropeo con 29 e Atlantico con 28 taxa. Fig. 5: Dactyllorhiza incarnata. Sl. 5: Dactyllorhiza incarnata. Fig. 6: Neotinea x dietrichiana. Sl. 6: Neotinea x dietrichiana. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 345 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 L’alta presenza di taxa mediterranei, eurasiatici, appennino-balcanici e sud-est-europei dimostra che l’area è dominata da una componente floristica a baricentro sud-orientale. Alla particolare configurazione arealica descritta nella tabella hanno contribuito: 1) le vicende geolo- giche passate che hanno concorso a formare i ponti terrestri attraversati da correnti migratorie floristiche pluridirezionali; 2) le diverse condizioni ambientali causate dall’ampia escursione altitudinale; 3) la presenza di aree esposte ai venti freddi settentrionali e nord-orientali e di altre riparate e molto soleggiate che nel loro insieme consentono l’attecchimento di piante con esigenze ecologiche molto varie, 4) l’uo- mo che con la sua attività ha contribuito alla forma- zione di nicchie e corridoi ecologici. In particolare, l’agricoltura e la pastorizia esercitate per millenni hanno favorito la diffusione delle archeofite, delle specie coltivate che si sono spontaneizzate e di quelle tipiche dei pascoli secondari presenti sul massiccio della Majella. A testimoniare l’importanza fitogeografica del territorio in esame concorrono anche i taxa endemici, rari, relittuali o al limite del loro areale di distribuzio- ne geografica. Le entità endemiche e subendemiche sono 162, corrispondenti a poco meno dell’11% della flora censita. Alcune di esse hanno una distribuzione più ampia lungo la penisola italiana, mentre altre occupa- no un areale più ristretto, limitato solo all’Appennino Centrale, all’Abruzzo o addirittura sono esclusive del massiccio magellense. Un altro gruppo di specie di particolare interesse è costituito dalle entità a carattere relittuale. In tale ambito si possono distinguere: • i relitti terziari costituiti dai taxa sopravvissuti alle glaciazioni e ampiamente diffusi durante l’Era Terziaria; • relitti glaciali, costituiti da entità microtermi- che che raggiunsero l’Abruzzo durante le fasi culminanti delle glaciazioni e al ritirarsi della calotta contrassero il loro areale e rimasero accantonate in ambiti idonei alla loro sopravvi- venza. Il loro areale comprende le regioni tem- perato-fredde dell’emisfero boreale e ambiti in genere montani dell’Europa centro-meridio- nale. Molti di essi in Abruzzo raggiungono il limite meridionale di distribuzione geografica lungo la penisola italiana. • i relitti xerotermici, costituti da piante tipiche di ambienti termofili, che dopo essere state confinate in stazioni di rifugio durante le glaciazioni, al loro termine risalirono lungo la Penisola e ora sono presenti in ambiti molto caldi e soleggiati. • Alcune importanti specie del primo gruppo presenti nel territorio di Palena sono: • Daphne laureola, un piccolo arbusto a distri- buzione subatlantica, tipico dei boschi di lati- foglie e degli aspetti più freschi della macchia mediterranea; • Ilex aquifolium, una pianta a portamento arboreo-arbustivo, anch’essa a distribuzione subatlantica, presente nei boschi di latifoglie, soprattutto faggete e cerrete; • Taxus baccata, una conifera a distribuzione pa- leotemperata che è presente nei boschi freschi, soprattutto faggete, ed è protetta dalle leggi regionali. Nel secondo gruppo, particolarmente interessanti sono le entità artico-alpine che nel territorio di studio sono presenti con 23 taxa e sopravvivono solo alle quote più elevate, in habitat molto simili alla tundra artica. Un gruppo di particolare interesse fitogeografico è costituito dalle entità appennino-balcaniche diffuse in modo esclusivo sui territori delle due penisole circumadriatico-ioniche che a loro volta sono le testimonianze vegetali di movimenti migratori tra le penisole italiane e balcaniche avvenuti coincidenza di ponti terrestri che si formarono durante le ere geologiche passate e che favorirono gli scambi di piante e animali. Ad avviso di Petriccione (1988) nella fascia mediterraneo-altomontana del massiccio della Majella, le specie orientali raggiungono le presenze massime tra tutti i gruppi montuosi dell’Appennino Centrale. La flora di Palena, come è visibile dalla tabella 1, comprende 75 taxa appennino-balcanici. Il quarto gruppo di piante interessanti è costituito dalle entità occidentali atlantiche e subatlantiche che a loro volta rappresentano esempi di migrazioni floristiche da ovest verso est avvenute in coincidenza di climi umidi con distribuzione delle precipitazioni più uniformi durante le varie stagioni. Alcuni relitti xerotermici presenti nella flora pale- nese sono: Phillyrea latifolia. Quercus ilex, Teucirum flavum subsp. flavum e Viburnum tinus subsp. tinus. Il sesto gruppo di piante dal profilo fitogeografico molto interessante è costituito dalle entità al limite del loro areale di distribuzione geografica che sono presenti nell’area in esame, un fatto che accresce l’importanza na- turalistica dell’ambito di studio. In particolare, i seguenti taxa presenti nel territorio palenese, raggiungono nel Parco della Majella il limite meridionale di distribuzione geografica in Italia: Anemonastrum narcissiflorum, subsp. narcissiflorum, Aster alpinus L. subsp. alpinus, Astragalus australis, A. danicus, Centranthus angustifolius subsp. angustifolius, Carex capillaris subsp. capillaris, Cherleria capillacea, Crepis pygmaea, Epilobium alsinifolium, Gen- tiana orbicularis, G. verna subsp. tergestina, Hieracium murorum subsp. amaurocymum, H. murorum subsp. pleiotrichum, Iberis saxatilis L. subsp. saxatilis, Isatis apen- nina, Leontodon hispidus subsp. dubius, Linaria alpina, Malcolmia orsiniana subsp. orsiniana, Oreomecon alpina subsp. alpina, Pilosella anchusoides, Primula intricata, ANNALES · Ser. hist. nat. · 35 · 2025 · 2 346 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Ranunculus polyanthemoides, R. seguieri subsp. seguieri, Saponaria bellidifolia, S. ocymoides subsp. ocymoides, Teucrium botrys e Valeriana saliunca. A loro volta i taxa presenti nel territorio palenese che aggiungono in Abruzzo il limite settentrionale di distribuzione geografica sono i seguenti: Athamanta sicula, Erysimum majellense e Saxifraga adscendens subsp. parnassica. I tre raggruppamenti che in accordo con Poldini (1991) tengono conto delle esigenze termiche delle entità rilevate dimostrano quanto segue. Il raggruppamento macrotermico che comprende i contingenti Mediterraneo (escluso il corotipo Medi- terraneo-Montano), Avventizio Extra-Europeo e i co- rotipi Sud-Est-Europeo, Sud-Europeo, Sud-Ovest-Eu- ropeo e Pontico nell’area in esame è rappresentato da 463 taxa (30,2%). Questo raggruppamento dimostra che nella flora palenese è presente un’importante componente termofila. Il raggruppamento mesotermico con i corotipi Appen- nino-Balcanico, Atlantico, Centro-Europeo, Cosmopolita, Europeo, Eurasiatico, Eurosiberiano, Mediterraneo-At- lantico, Mediterraneo-Turaniano, Ovest-Europeo, Euro- peo-Caucasico, Paleotemperato, Sud-Europeo-Sud-Sibe- riano, Subcosmopolita e Subendemico comprende 660 taxa (43%) ed è il più rappresentato, a dimostrazione della prevalenza di piante mesofile tipiche di ambienti temperato-freschi. Il raggruppamento microtermico in cui sono stati inclusi i corotipi Subatlantico, Circumboreale, Artico-Alpino, Mediterraneo-Montano, Orofita Centro-Europeo, Orof. Europeo, Orof. Eurasiatico, O. Sud-Europeo, O. Sud-Est-Europeo e O. Sud-O- vest-Europeo è rappresentato da 263 taxa (17,1%). Questo raggruppamento è caratterizzato dal minor numero di taxa, a dimostrazione che nel territorio palenese ci sono limitate aree in cui attecchiscono entità vegetali che prediligono temperature medie molto basse. Gli altri corotipi non sono stati considerati poi- ché di difficile collocazione in uno dei tre gruppi. In particolare, non sono stati considerati i taxa endemici poiché ci sono alcuni che prediligono gli ambiti microtermici delle alte quote, altri mesofili e/o spiccatamente termofili che si rinvengono più in basso. La presenza contemporanea dei tre raggruppamenti conferma che il territorio in esame appartiene a un ambito di transizione fitogeografico caratterizzato da varie tipologie ambientali, climatiche e di corrispon- denti fasce vegetazionali. RINGRAZIAMENTI Per le informazioni fornite si ringraziano Centurione Nicola, Mirella Di Cecco. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 347 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Appendice 1: L’elenco floristico del territorio di Palena riporta 1535 taxa di cui 371 nuovi per l’area. * Specie nuova per Palena non riportata in Pezzetta et al. (2012). ## Specie nuova per il Parco Nazionale della Majella. °° Il taxon raggiunge nel Parco della Majella il limite meridionale di distribuzione geografica in Italia. Priloga 1: Floristični seznam območja Palena poroča o 1535 taksonih, od katerih jih je 371 novih za to območje. * Vrste, ki so nove za Paleno in niso bile opisane v Pezzetta in sod. (2012). ## Vrste, ki so nove v narodnem parku Majella. °° Takson doseže južno mejo svoje geografske razširjenosti v Italiji v parku Majella. Elenco floristico TIPO COROLOGICO AUTORI E OSSERVAZIONI PTERIDOPHYTA EQUISETACEAE 1 Equisetum arvense L. ssp. arvense Circumboreale FX, KY, VY 2 Equisetum fluviatile L. Circumboreale CW, JH, KY, QH, QY 3 Equisetum hyemale L. Circumboreale * JH, QY, VY 4 Equisetum ramosissimum Desf. Circumboreale KY, VY 5 Equisetum palustre L. Circumboreale JH, KY. VY 6 Equisetum telmateia Ehrh Circumboreale JH, KY, VY OPHIOGLOSSACEAE 7 Botrychium lunaria (L.) Sw Subcosmopolita BX, HY, HH, KY 8 Ophioglossum vulgatum L. Circumboreale * JH DENNSTAEDTIACEAE 9 Pteridium aquilinum (L.) Kuhn ssp. aquilinum Cosmopolita JH, KY, VY PTERIDACEAE 10 Adiantum capillus-veneris L. Pantropicale KY CYSTOPTERIDACEAE 11 Cystopteris alpina (Lam.) Desv Cosmopolita KY 12 Cystopteris fragilis (L.) Bernh. Cosmopolita KY, VY ASPLENIACEAE 13 Asplenium ceterach L. ssp. bivalens (D.E.Mey.) Greuter & Burdet Eurimediterraneo FW, JH, KY, VY. ZH 14 Asplenium fissum Kit. ex Willd. Orof. Sud-Est-Europeo KY, VY 15 Asplenium lepidum C. Presl ssp. lepidum Orof. Sud-Est-Europeo KY 16 Asplenium onopteris L. Mediterraneo-Macaronesico * VY 17 Asplenium ruta-muraria L. ssp. ruta-muraria Circumboreale FW, JH, KY, VY 18 Asplenium trichomanes L. ssp. quadrivalens D.E. Mey Cosmopolita FW, JH, KY, VY 19 Asplenium viride Huds. Circumboreale KY ATHYRIACEAE 20 Athyrium filix-femina (L.) Roth Subcosmopolita KY DRYOPTERIDACEAE 21 Dryopteris dilatata (Hoffm) A. Gray, Manual (Gray) Europeo-Caucasico * JH 22 Dryopteris filix-mas (L.) Schott Cosmopolita BX, JH, KY, VY 23 Polystichum aculeatum (L.) Roth Eurimediterraneo * KY 24 Polystichum lonchitis (L.) Roth Circumboreale KY, VY 25 Polystichum setiferum (Forssk.) T.Moore ex Woyn. Circumboreale KY POLYPODIACEAE 26 Polypodium cambricum L. Eurimediterraneo * JH 27 Polypodium vulgare Circumboreale KY, VY PINACEAE 28 Abies alba Mill. Orof. Sud-Europeo KY, VY. Alloctona naturalizzata. 29 Abies cephalonica Loudon Avventizio KY. Alloctona naturalizzata. 30 Picea abies (L.) H.Karst. Eurosiberiano * VY. Alloctona naturalizzata. 31 Pinus halepensis Mill. ssp. halepensis Stenomediterraneo * VX 32 Pinus mugo Turra ssp. mugo Eurasiatico CY, HH, KY 33 Pinus nigra J. F. Arnold ssp. nigra Sud-Europeo FW, KY, VY, ZH CUPRESSACEAE 34 Cupressus sempervirens L. Mediterraneo-Orientale KY. Alloctona naturalizzata. 35 Juniperus communis L. Circumboreale BX, CY, KX, KY, LX, MK, OH, PK, QK 36 Juniperus deltoides R.P.Adams Eurimediterraneo * BX, KY, VY.In accordo con Conti et al. (2020) sono state assegnate al taxon le segnalazioni di Juniperus oxycedrus L. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 348 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 37 Juniperus sabina L. Circumboreale KY 38 Platycladus orientalis (L.) Franco Asiatico-Orientale * VY. Utilizzato per alberature ornamentali. TAXACEAE 39 Taxus baccata L. Paleotemperato BX, EX, FH, KY, NK, SK ANGIOSPERMAE LAURACEAE 40 Laurus nobilis L. Stenomediterraneo * VY. Coltivato e spontaneizzato. ARISTOLOCHIACEAE 41 Aristolochia lutea Desf. Eurimediterraneo BX, KY, VY 42 Aristolochia pallida Willd. Eurimediterraneo FK, KY, ZH 43 Aristolochia rotunda L. ssp. rotunda Eurimediterraneo * VY ARACEAE 44 Arum italicum Mill. ssp. italicum Stenomediterraneo KY, VY 45 Arum maculatum L. Europeo KY, VY 46 Lemna minor L. Subcosmopolita * DY, VY 47 Zamioculcas zamiifolia (G.Lodd.) Engl. Avventizio SY ALISMATACEAE 48 Alisma plantago-aquatica L. Subcosmopolita EX, KY JUNCAGINACEAE 49 Triglochin palustre L. Subcosmopolita KY, VY POTAMOGETONACEAE 50 Potamogeton berchtoldii Fieber Subcosmopolita KY, QH, QY 51 Potamogeton gramineus L. Circumboreale * VX 52 Potamogeton lucens L. Circumboreale * VX 53 Potamogeton natans L. Subcosmopolita KY, VY DIOSCOREACEAE 54 Dioscorea communis (L.) Caddick & Wilkins Eurimediterraneo IY, KH, KY, LW, NX, OK, VY COLCHICACEAE 55 Colchicum alpinum DC. Nord-Ovest-Mediterraneo AH, BX, KY, VH 56 Colchicum lusitanum Brot. Mediterraneo-Occidentale KY, VH, VY 57 Colchicum neapolitnum (Ten.) Ten. ssp. neapolitanum Endemico * KY MELANTHIACEAE 58 Paris quadrifolia L. Eurasiatico. IY, KY, VY 59 Veratrum album L. Eurasiatico. KY 60 Veratrum nigrum L. Eurasiatico. KY SMILACACEAE 61 Smilax aspera L. Paleosubtropicale * VY LILIACEAE 62 Lilium bulbiferum L. ssp. croceum (Chaix) Jan Orof. Centro-Europeo BX, DW, FH, KY, VY 63 Lilium candidum L. Eurimediterraneo * VY 64 Lilium martagon L. Eurasiatico DW, FH, IY, KH, KY, LW, LX, OK, PW, RK, VY 65 Streptopus amplexifolius (L.) DC. Circumboreale IK, KY ORCHIDACEAE 66 Anacamptis berica Doro Subendemico * SX, TW 67 Anacamptis coriophora (L.) R.M.Bateman, Pridgeon & M.W.Chase ssp. fragrans Eurimediterraneo * QX, SX 68 Anacamptis laxiflora (Lam.) R.M.Bateman, Pridgeon & M.W.Chase Eurimediterraneo IY, LQ, KY, PH, QH, QH, QX, QY, SX, VY 69 Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase Europeo-Caucasico DH, FK, IY, LQ, KY, NY, PH, QX, RY, SX, TW, ZH 70 Anacamptis pyramidalis (L.) Rich. Eurimediterraneo. FK, IY, LQ, KY, PH, QX, RY, SX, TW, VY, ZH 71 Anacamptis xalata (Fleury) H. Kretzschmar, Eccarius & H. Dietr. Nord-Mediterraneo * QX, SX 72 Cephalanthera damasonium (Mill.) Druce Eurimediterraneo FK, IY, LQ, KY, OK, PW, QX, RK, RY, SX, VY 73 Cephalanthera longifolia (L.) Fritsch Eurasiatico DW, IY, LQ, KY, QX, RY, SX, VY, ZH 74 Cephalanthera rubra (L.) Rich. Eurasiatico DW, IY, LQ, KY, QX, RY, SX, VY, ZH 75 Coeloglossum viride (L.) Hartm. Circumboreale LQ, KY, PH, QX, RY, SX, TW, VY 76 Corallorhiza trifida Châtel. Circumboreale * QX, SX 77 Dactylorhiza incarnata (L.) Soó Eurosiberiano EH, IY, LQ, QH, QX, QY, RY, SX, VY 78 Dactylorhiza maculata (L.) Soó ssp. fuchsii (Druce) Hyl. Eurasiatico * SX, ZH ANNALES · Ser. hist. nat. · 35 · 2025 · 2 349 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 79 Dactylorhiza maculata ssp. saccifera (Brongn.) Diklić Paleotemperato AY, BX, DW, IY, LQ, KY, PH, QX, RY, SX, TW, VY, ZH 80 Dactylorhiza sambucina (L.) Soó Europeo DW, IY, LQ, KY, NY, QX, SX, VY, ZH 81 Dactylorhiza ×guillaumeae Chr.Bernard Subendemico * QX, SX 82 Dactylorhiza ×serbica (H.Fleischm.) Soó Sud-Est-Europeo QX, SX 83 Epipactis atrorubens (Hoffm.) Besser Europeo IY, LQ, KY, QX, SX 84 Epipactis exilis P. Delforge Pontico DH, LQ, KY, QH, QH, QX, QY, RY, SX 85 Epipactis helleborine ssp. helleborine (L.) Crantz Paleotemperato DW, IK, IY, LQ, KY, QX, SX, VY 86 Epipactis lucana Presser, S.Hertel & V.A.Romano Endemico * MX, PY, QY, SX. Il taxon raggiunge nel Parco il limite settentrionale di distribuzione geografica. 87 Epipactis microphylla (Ehrh.) Sw. Europeo-Caucasico IY, LQ, KY, SX 88 Epipactis muelleri Godfery Centro-Europeo DH, EX, IK, LQ, KY, QH, QH, QY, SX, VY 89 Epipactis palustris (L.) Crantz Circumboreale * SX 90 Epipactis purpurata Sm. Subatlantico * HW, PY, QH, QX, QY, RY, SX, VH, vy 91 Epipogium aphyllum Sw. Eurosiberiano DH, LQ, KY, OY, QX, QY, RY, SX, VH, VY 92 Gymnadenia conopsea (L.) R. Br. in W.T. Aiton Eurasiatico FK, IY, LQ, KY, OY, PH, QH, QX, RY, SK, SX, TH, TW, VY, ZH 93 Himantoglossum adriaticum H. Baumann Eurimediterraneo AY, BX, FK,FW, IY, LQ, KY, PH, QX, RY, SX, VY, ZH 94 Limodorum abortivum (L.) Sw. Eurimediterraneo FK, EH, IY, LQ, KY, QX, SX, SX, VY, ZH 95 Neotinea maculata (Desf.) Stearn Mediterraneo-Atlantico EH, IY, LQ, KY, PH, QX, RY, SX, VY, ZH 96 Neotinea tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Chase Eurimediterraneo FK, FW, IY, LQ, KY, NY, PH, QX, RY, SX, VY 97 Neotinea ustulata (L.) R.M. Bateman, Pridgeon & M. W. Chase Europeo-Caucasico LQ, KY, NY, PH, QX, RY, SX, TW, VY, ZH 98 Neotinea ×dietrichiana (Bogenh.) H.Kretzschmar, Eccarius & H.Dietr. Sud-Est-Europeo * QX, PH, SX, VY 99 Neottia nidus-avis (L.) Rich. Eurasiatico IY, LQ, KY, PK, QK, QX, RY, SX, UX, VY, ZH 100 Neottia ovata (L.) Bluff & Fingerh. Eurasiatico IY, LQ, KY, PH, QX, SX, TW, VY, ZH 101 Ophrys apifera Huds. Eurimediterraneo IY, LQ, KY, PH, QX, SX, VY, ZH 102 Ophrys apifera ×O. majellensis Endemico * QX, SX 103 Ophrys apifera ×O. molisana Endemico * QX, SX 104 Ophrys bertolonii ssp. bertolonii Moretti Appennino-Balcanico FK, IY, LQ, KY,PH, QX, RY, SX, TW, VY, ZH 105 Ophrys bertolonii Moretti ssp. bertoloniiformis (O.Danesch & E.Danesch) H.Sund Endemico FH, LQ, KY, QY, SX, ZH. Ad avviso di Conti et al. (2019) il taxon non è presente in Abruzzo. 106 Ophrys fusca Link ssp. lucana (P.Delforge, Devillers-Tersch. & Devillers) Kreutz Endemico IY, LQ, KY, PH, QX, RY, SX, TW, VH, ZH 107 Ophrys holosericea (Burm. f.) Greuter ssp. appennina (Romolini & Soca ) Kreutz Endemico KY, LH, LQ, PH, QX, SX, TW 108 Ophrys holosericea (Burm. f.) Greuter ssp. dinarica (Kranjcev & P. Delforge) Appennino-Balcanico DH, LQ, KY, PH, QX, RY, SX, TW, VY, ZH 109 Ophrys holosericea ssp. gracilis (Büel, O. Danesch & E. Danesch) Büel, O. Danesch & E. Danesch Endemico KY, LH, LQ, LK, QX, SX 110 Ophrys holosericea (Burm. f.) Greuter ssp. pinguis (Romolini & Soca ) Kreutz Endemico JK, LH, LQ, KY, LK, QX, RY, SX 111 Ophrys holosericea ssp. tetraloniae (W.P. Teschner) Kreutz Appennino-Balcanico IY, LQ, KY, PY, QH, QH, QX, QY, RY, SX. Sono state ricondotte al taxon le segnalazioni di Ophrys serotina Rolli & Cortesi. 112 Ophrys dinarica ×O. gracilis Endemico * QX, SX, SY 113 Ophrys dinarica ×O. promontorii Endemico * QX, SX 114 Ophrys illyrica S. Hertel & K. Hertel Appennino-Balcanico * QX, RY, SX. Sono state ricondotte al taxon le segnalazioni di Ophys ausonia. 115 Ophrys illyrica × O. majellensis Endemico * MX, SX, SY, VB 116 Ophrys incubacea Bianca ssp. brutia (P.Delforge) Kreutz Endemico * PY, QH, QX, QY, RY, SX, ZH 117 Ophrys incubacea Bianca ssp. incubacea Stenomediterraneo IY, KH, KY, QX, RY, SX 118 Ophrys incubacea ×O. majellensis Endemico * QX, SX 119 Ophrys insectifera L. Europeo DH, LQ, KY, PY, QH, QX, QY, SX 120 Ophrys lutea Cav. ssp. corsica (Soleirol ex G.Foelsche & W.Foelsche) Kreutz Stenomediterraneo * VY 121 Ophrys molisana Delforge Endemico * OX, QX, RY, SX, ZH 122 Ophrys molisana × O. promontorii Endemico * OX, QX,SX 123 Ophrys passionis Sennen ssp. majellensis (Helga Daiss & Herm.Daiss) Romolini & Soca Endemico EH, IY, LH, LQ, KY, LK, PH, PY, QH, QX, QY, RY, SX, ZH 124 Ophrys passionis Sennen ssp. passionis Endemico FK, QH, QX, QY, SX, ZH 125 Ophrys majellensis × O. promontorii Endemico * IW, QX, SX 126 Ophrys majellensis × O. sphegodes Endemico * LH, QX, SX 127 Ophrys promontorii O. Danesch & E. Danesch Endemico FW, IY, LQ, KY, PH, QX, RY, SX, VY, ZH 128 Ophrys sphegodes ssp. minipassionis (Romolini & Soca) Biagioli & Grünanger Endemico SX 129 Ophrys sphegodes ssp. sphegodes Mill. Eurimediterraneo DH, FK, IY, LH, LQ, KY, QX, SX, SX, VY, ZH 130 Ophrys sphegodes ssp. tommasinii (Vis.) Soó Appennino-Balcanico FK, IY, LQ, KY, QX, SX, ZH 131 Ophrys ×bilineata Barla Appennino-Balcanico * FW, QX, SX ANNALES · Ser. hist. nat. · 35 · 2025 · 2 350 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 132 Ophrys ×brunamontei Soca Endemico * LH, NY, OW, SX, SY 133 Ophrys ×couloniana P. Delforge Endemico * IW, QX, SX, VB 134 Ophrys ×dekegheliana P. Delforge Endemico * IW, PH, QX, SX 135 Ophrys ×fucinis Soca Endemico * OX, QX, SX 136 Ophrys ×lociceroi Soca Endemico * LH, OW, QX, SX, SY 137 Ophrys ×marcoi Benigni, Mandozzi, Monaldi, Barigelli & Petroselli Endemico * SX 138 Ophrys ×marsilii Rempicci, Buono, Gransinigh, Antonj & Magrini Endemico * GK, SX 139 Ophrys ×metellae (Benigni, Barigelli & Petroselli) Soca Endemico * SX 140 Ophrys ×palenae Soca Endemico * OW, PX, PH, QX, SX, SY, VB 141 Ophrys ×piconei Soca Endemico * OW, PX, PH, QX, SX, SY, VB 142 Ophrys ×terrae laboris W. Rossi & Minutillo Endemico * QX, SX 143 Ophrys ×valparmensis J.J. Wood Endemico * QX, SX 144 Ophrys ×vernacchiae Soca Endemico * OW, SX, SY 145 Orchis anthropophora (L.) All. Mediterraneo-Atlantico FK, FW, IY, LQ, KY, PH, QX, RY, SX, TW, VY 146 Orchis italica Poir. Stenomediterraneo EH, LQ, KY, QX, SX, VY 147 Orchis mascula (L.) L. ssp. mascula Europeo-Caucasico PH, QX, SX 148 Orchis mascula (L.) L. ssp. speciosa (Mutel) Hegi Centro-Europeo IY, LQ, KY, QX, RY, SX, TW, VY 149 Orchis militaris L. Eurasiatico LQ, KY, QX, SX, ZH 150 Orchis pallens L. Europeo-Caucasico * RY, SX, VK 151 Orchis pauciflora Ten. Stenomediterraneo FK, IY, LQ, KY, QX, RY, SX, VY, ZH 152 Orchis provincialis Balb. ex Lam. Stenomediterraneo * SX, VK, ZH 153 Orchis purpurea Huds. Eurasiatico FK, IY, LQ, KY, PH, QX, RY, SX, TW,VY, ZH 154 Orchis simia Lam. Eurimediterraneo EH, LQ, KY, QX, SX, ZH 155 Orchis ×colemanii Cortesi Nord-Mediterraneo * IW, QX, SX 156 Platanthera bifolia (L.) Rchb. ssp. bifolia Paleotemperato EH, IY, LQ, KY, PH, QX, SX, TW, VY 157 Platanthera chlorantha (Custer) Rchb. Eurosiberiano AY, BX, DW, LQ, KY, PH, QX, SX, VY, ZH 158 Serapias cordigera L. Stenomediterraneo EH, KY, QX, SX 159 Serapias parviflora Parl. Stenomediterraneo DH, FK, IY, LQ, KY, QX, RY, SX, VY, ZH 160 Serapias vomeracea (Burm.f.) Briq. ssp. vomeracea Eurimediterraneo EH, IY, LQ, KY, QX, RY, SX, VY IRIDACEAE 161 Crocus neapolitanus (Ker Gawl.) Loisel. Eurimediterraneo DW, FH, KY, VY 162 Gladiolus dubius Guss. Sud-Europeo * PY, QH, QY 163 Gladiolus italicus Mill. Eurimediterraneo IY, KY, VY 164 Iris florentina L. Avventizio KY 165 Iris germanica L. Avventizio KY, VY 166 Iris marsica I. Ricci & Colas. Endemico QK, KY, QY 167 Limniris pseudacorus (L.) Fuss Eurasiatico BY, FH, KY, , VY ASPHODELACEAE 168 Asphodeline lutea (L.) Rchb. Mediterraneo-Orientale AX, BX, IY, KY, LX, VY 169 Asphodelus macrocarpus Parl. ssp. macrocarpus Mediterraneo-Montano FH, KY, MY, OH, OW, SW, VY AMARYLLIDACEAE 170 Allium calabrum (N.Terracc.) Brullo, Pavone & Salmeri Endemico * QH, QY. Il taxon raggaiunge in Abruzzo il limite settentrionale di diistribuzione geografica. 171 Allium lusitanicum Lam. Eurasiatico AY, KY 172 Allium ochroleucum Waldst. & Kit. Europeo * VH 173 Allium oleraceum L. ssp. oleraceum Eurasiatico BX, KY 174 Allium pendulinum Ten. Mediterraneo-Occidentale * VK, VY 175 Allium polyanthum Schult. & Schult.f. Sud-Ovest-Europoo * VY 176 Allium sphaerocephalon L. Paleotemperato IY, KX, KY, VY 177 Allium tenuiflorum Ten. Stenomediterraneo AY, KY, VY 178 Allium triquetrum L. Stenomediterraneo KY 179 Allium ursinum L. Eurasiatico IY, KY, VY 180 Allium vineale L. Eurimediterraneo IY, KY, VY 181 Galanthus nivalis L. Europeo-Caucasico FH, GH, KY, OH, PK, QY, VY 182 Narcissus poeticus L. Orof. Sud-Europeo DW, FH, FK, KX, KY, OH, PK, QK, VY 183 Narcissus x medioluteus Mill. Ovest-Europeo * VY. Alloctona naturalizzata ANNALES · Ser. hist. nat. · 35 · 2025 · 2 351 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 ASPARAGACEAE 184 Anthericum liliago L. Subatlantico KY, VY, ZH 185 Asparagus acutifolius L. Stenomediterraneo KY 186 Bellevalia romana (L.) Sweet Eurimediterraneo KY, SK, TH, VY 187 Convallaria majalis L. Circumboreale IY, KY, QY 188 Hyacinthus orientalis L. Mediterraneo-Orientale * VY. Alloctona naturalizzata: 189 Loncomelos brevistylum (Wolfner) Dostál Centro-Europeo * VY 190 Loncomelos pyrenaicum (L.) L. D. Hrouda Eurimediterraneo AY, BX, IK, IY, KY, VY 191 Muscari comosum (L.) Mill. Eurimediterraneo DW, KY, VY 192 Muscari neglectum Guss. ex Ten. & Sangiovanni Mediterraneo-Turaniano DW, FW, IY, KX, KY, VY, ZH 193 Ornithogalum comosum L. Mediterraneo-Montano BX, IK, KY 194 Ornithogalum divergens Boreau Sud-Europeo FW, KY, VY 195 Ornithogalum exscapum Ten. Endemico * QH, QY 196 Polygonatum multiflorum (L.) All. Eurasiatico DW, FK, IY, KX, KY, MK, NH, VY 197 Polygonatum odoratum Circumboreale FW, IY, KY, VY 198 Polygonatum verticillatum (L.) All. Eurasiatico IK, IY, KY, QY 199 Prospero autumnale (L) Speta ssp. autumnale Eurimediterraneo KY 200 Ruscus aculeatus L. Eurimediterraneo BX, KY, ZH 201 Scilla bifolia L. Europeo BX, FH, KY, VY TYPHACEAE 202 Sparganium emersum Rehmann Eurasiatico * IK, QH, QY, SW, VY 203 Sparganium erectum L. Eurasiatico DY, KY, VY 204 Sparganium neglectum Beeby Eurasiatico * EX 205 Typha latifolia L. Cosmopolita DY, KY, VY JUNCACEAE 206 Juncus acutiflorus Ehrh. ex Hoffm. Europeo * VX 207 Juncus articulatus L. Circumboreale EX, KY, VY 208 Juncus bufonius L. Cosmopolita * QH, QY 209 Juncus compressus Jacq. Eurasiatico KY, VY 210 Juncus effusus L. ssp. effusus Cosmopolita KY 211 Juncus fontanesii J.Gay ssp. fontanesii Paleousubtropicale * VY 212 Juncus inflexus L. Paleotemperato EX, KY, VY 213 Luzula campestris (L.) DC. Europeo KY, VY 214 Luzula forsteri (Sm.) DC. Eurimediterraneo * VY 215 Luzula multiflora (Ehrh.) Lej ssp. multiflora Appennino-Balcanico KY 216 Luzula spicata (L.) DC. ssp. bulgarica (Chrtek & Křísa) Gamisans Orof. Sud-Est-Europeo * BX, HY, SK. Sono state ricondotte al taxon le segnalazioni di Luzula spicata (L.) DC. ssp. italica (Parl.) Arcang. 217 Luzula sylvatica (Huds.) Gaudin ssp. sieberi (Tausch) K. Richt. Orof. Sud-Europeo * RH, RW, SK, VY 218 Oreojuncus monanthos (Jacq.) Záv.Drábk. & Kirschner Artico-Alpino * BX, HH 219 Oreojuncus trifidus (Jacq.) Záv.Drábk. & Kirschner Artico-Alpino KY CYPERACEAE 220 Blysmus compressus (L.) Panz. ex Link Eurosiberiano * SW, VY 221 Carex acuta L. Eurasiatico CW, DY, EX, KY, MH, MY, QK, RH, SK 222 Carex buxbaumii Wahlenb. Circumboreale CW, DY, EX, IK, KY, OH, PK, QH, QY 223 Carex canescens L. ssp. canescens Cosmopolita KY, QH, QY 224 Carex capillaris L. ssp. capillaris Artico-Alpino °° KY, QH, QY 225 Carex caryophyllea Latourr. Eurasiatico KY, VY 226 Carex digitata L. Eurasiatico * VY 227 Carex distans L. Eurimediterraneo BX, KY, VY 228 Carex disticha Huds. Eurosiberiano CW, DY, EX, KY, QH, QY, VY 229 Carex divisa Huds. Atlantico KY, QH, QY 230 Carex divulsa Stokes Eurimediterraneo * VY 231 Carex elata All. ssp. elata Europeo-Caucasico KY 232 Carex flacca Schreb. ssp. flacca Europeo KY, VY 233 Carex halleriana Asso Eurimediterraneo * FW, VY 234 Carex hirta L. Europeo-Caucasico EX, KY, QK, RH, SK, TH, VY 235 Carex humilis Leyss. Eurasiatico HH, KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 352 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 236 Carex kitaibeliana Degen ex Beck. Appennino-Balcanico HY, KY, OH 237 Carex leporina L. Eurosiberiano * OH, PK, QH, QY, SK, TH, VY 238 Carex liparocarpos Gaudin ssp. liparocarpos Sud-Est-Europeo * QH, QY 239 Carex macrolepis DC. Appennino-Balcanico BX, HY, KY, VY 240 Carex muricata L. Europeo * RH, RW 241 Carex nigra (L.) Reichard Subcosmopolita * SWY, VY 242 Carex otrubae Podp. Atlantico DY, KYY, VY 243 Carex pallescens L. Circumboreale * OH, PK, VY 244 Carex panicea L. Eurosiberiano * IK, IK, IK, OH, PK, QK 245 Carex paniculata L. ssp. paniculata Europeo-Caucasico BX, DY, KY, QH, QY 246 Carex pendula Huds. Eurasiatico KY, VY 247 Carex sylvatica Huds. Eurasiatico BX, KY, RH, RW, VY 248 Carex tomentosa L. Eurosiberiano CW, EX, KY, QH, QY 249 Carex vesicaria L. Circumboreale KY, MH, QH, QY, RW, SK 250 Carex vulpina L. Eurosiberiano * MH, MW, QH, QK, QY, RH, SK, TH 251 Eleocharis palustris (L.) Roem. & Schult. Subcosmopolita DY, EX, KYY, VY 252 Scirpoides holoschoenus (L.) Soják Eurimediterraneo * VY POACEAE 253 Achnatherum bromoides (L.) P. Beauv. Stenomediterraneo * VY 254 Agrostis canina L. Eurosiberiano KY 255 Agrostis capillaris L. ssp. capillaris Circumboreale BX, KY 256 Agrostis castellana Boiss. & Reut. Mediterraneo-Occidentale * QH, QY 257 Agrostis stolonifera L. ssp. stolonifera Circumboreale BX, KY 258 Agrostis viridis Gouan Paleosubtropicale * VY 259 Alopecurus aequalis Sobol. Eurasiatico EK, KY, VY 260 Alopecurus geniculatus L. Subcosmopolita KY 261 Alopecurus myosuroides Huds. ssp. myosuroides Paleotemperato KY 262 Alopecurus pratensis L. ssp. pratensis Eurosiberiano * QK, RH, SW, VY 263 Alopecurus rendlei Eig Eurimediterraneo * SW 264 Anisantha diandra (Roth) Tzvelev Eurimediterraneo * VY 265 Anisantha madritensis (L.) Nevski Eurimediterraneo * VY 266 Anisantha sterilis (L.) Nevski Mediterraneo-Turaniano BX. KY. VY 267 Anisantha tectorum (L.) Nevski Paleotemperato KY, QK, VY 268 Anthoxanthum odoratum L. Eurasiatico KY, MH, MY, RW,SK, TH, VY 269 Arrhenatherum elatius (L.) P. Beauv. Ex J. & C. Presl ssp. elatius Paleotemperato KY, MH, MY, RH, RW,SK, TH, VY 270 Arundo donax L. Subcosmopolita KY 271 Avena barbata Pott ex Link Eurimediterraneo KY, VY 272 Avena fatua L. ssp. fatua Eurasiatico KY 273 Avena sativa L. Avventizio KY 274 Avena sterilis L. Eurimediterraneo KY, VY 275 Bothriochloa ischaemum (L.) Keng Subcosmopolita * VY 276 Brachypodium distachyon (L.) P.Beauv. Stenomediterraneo * VY 277 Brachypodium genuense (DC.) Roem. & Schult. Orof. Sud-Europeo CY, KY, PK, QK, VY 278 Brachypodium retusum (Pers.) P.Beauv. Mediterraneo-Occidentale KY 279 Brachypodium rupestre (Host) Roem. & Schult. Subatlantico KY, VY 280 Brachypodium sylvaticum (Huds.) P.Beauv. ssp. sylvaticum Paleotemperato EX, KY, NX, VY 281 Briza media L. Eurosiberiano KY, LX, MH, MY 282 Bromopsis erecta (Huds.) Fourr. Paleotemperato FH, KY, OH, PK, QK, RH, TW, VY 283 Bromopsis inermis (Leyss.) Holub ssp. inermis Eurasiatico CX, KY 284 Bromopsis ramosa (Huds.) Holub ssp. ramosa Eurasiatico KY,VY 285 Bromus arvensis L. ssp. arvensis Eurosiberiano BX, KY 286 Bromus commutatus Schrad. ssp. commutatus Europeo * VY 287 Bromus hordeaceus L. ssp. hordeaceus Cosmopolita KY, VY 288 Bromus racemosus L. ssp. racemosus Europeo-Caucasico * TH. VY 289 Calamagrostis varia (Schrad.) Host Orof. Eurasiatico * VY 290 Catapodium rigidum (L.) C. E. Hubb. ex Dony ssp. rigidum Eurimediterraneo KY, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 353 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 291 Cynodon dactylon (L.) Pers. Cosmopolita KY, VY 292 Cynosurus cristatus L. Europeo-Caucasico KY, TW, VY 293 Cynosurus echinatus L. Eurimediterraneo BX, KY, VY 294 Dactylis glomerata L. ssp. glomerata Paleotemperato EX, KY, VY 295 Danthonia decumbens (L.) DC. ssp. decumbens Europeo * QH, QY, VY 296 Dasypyrum villosum (L.) P. Candargy Mediterraneo-Turaniano * VY 297 Deschampsia cespitosa (L.) P.Beauv. Subcosmopolita KX, KY, MH, OH, QK, RH, RW, SK, UX, VY 298 Deschampsia parviflora (Thuill.) P.Beauv. Appennino-Balcanico * 299 Digitaria sanguinalis (L.) Scop. Cosmopolita HY, KY, VY 300 Echinochloa crus-galli (L.) P.Beauv. ssp. crus-galli Subcosmopolita * VY 301 Elymus caninus L. Circumboreale EX, VY 302 Elymus repens (L.) Gould ssp. repens Circumboreale BH, FH, KY, VY 303 Festuca alfrediana Foggi & Signorini ssp. ferrariniana Foggi, Parolo & Gr. Rossi Endemico HY, KY 304 Festuca bosniaca Kumm. & Sendtn. ssp. bosniaca Appennino-Balcanico KY 305 Festuca circummediterranea Patzke Eurimediterraneo BX, KY, TW, VY 306 Festuca heterophylla Lam. Europeo-Caucasico KY, RH, RW,SK 307 Festuca inops De Not. Subendemico HY, KY 308 Festuca jeanpertii (St.-Yves) Markgr.-Dann. subsp. jeanpertii Dann. Appennino-Balcanico KY 309 Festuca laevigata Gaudin Orof. Sud-Ovest-Europeo HH, KY. Sono state riferite al taxon le precedenti segnalazioni di Festuca robustifolia Markgr. -Dann. 310 Festuca myuros L. ssp. myuros Subcosmopolita * VY 311 Festuca rubra L. ssp. commutata (Gaudin) Markgr. -Dann. Circumboreale BX, KY, QY 312 Festuca violacea Ser. ex Gaudin ssp. italica Foggi, Gr. Rossi & Signorini Endemico HY, HH, KY 313 Glyceria notata Chevall. Subcosmopolita BX, DY, KY, VY 314 Helictochloa praetutiana (Parl. ex Arcang.) Bartolucci, F. Conti, Peruzzi & Banfi ssp. praetutiana Endemico BX, KY 315 Holcus lanatus L. Circumboreale EX, KY, VY 316 Hordelymus europaeus (L.) Harz. Europeo-Caucasico BX, KY, VY 317 Hordeum murinum L. ssp. murinum Circumboreale BX, KY, VY 318 Hordeum secalinum Schreb. Subatlantico * EX 319 Koeleria splendens C. Presl Mediterraneo-Montano KY, VY 320 Lagurus ovatus L. Eurimediterraneo * VY 321 Leucopoa dimorpha (Guss.) H. Scholz & Foggi Subendemico FH, KY 322 Lolium arundinaceum (Schreb.) Darbysh. Paleotemperato EX, KY, VY 323 Lolium giganteum (L.) Darbysh. Eurasiatico KY 324 Lolium perenne L. Circumboreale * MH, MY 325 Lolium pratense (Huds.) Darbysh Eurasiatico BX, KY 326 Macrobriza maxima (L.) Tzvelev Paleosubtropicale BX, KY, VY 327 Melica ciliata L. ssp. ciliata Eurimediterraneo BX, KY, VY 328 Melica transsilvanica Schur Europeo * FW 329 Melica uniflora Retz Paleotemperato KY, VY 330 Milium effusum L. Circumboreale KY 331 Molinia caerulea (L.) Moench Circumboreale * VX 332 Nardus stricta L. Eurosiberiano BX, HY, HH, KY, MH, MY, OH, VY 333 Phalaris arundinacea L. Circumboreale DX, DY, KY, MH, MY, OH,QK, RH,SK, TH 334 Phalaris brachystachys Link Stenomediterraneo DZ, KY 335 Phleum hirsutum Honck. ssp. ambiguum (Ten.) Tzvelev Centro-Europeo * KY, QK, RH, RW,SK, VY 336 Phleum pratense L. ssp. pratense Centro-Europeo * QK, QY, RW,SK, TH, UX, VY 337 Phleum rhaeticum (Humphries) Rauschert Sud-Europeo HY, HH, KY 338 Phragmites australis (Cav.) Trin. ex Steud. ssp. australis Cosmopolita KY 339 Poa alpina L. ssp. alpina Circumboreale HY, HH, KY 340 Poa annua L. Cosmopolita KY, QH, QY, VY 341 Poa badensis Haenke ex Willd. Mediterraneo-Montano BX, KY 342 Poa bulbosa L. ssp. bulbosa Paleotemperato KY, VY 343 Poa compressa L. Circumboreale BX 344 Poa molinerii Balb. Orof. Sud-Est Europeo HH, KY 345 Poa nemoralis L. ssp. nemoralis Circumboreale KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 354 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 346 Poa palustris L. Circumboreale BX, KY, QH, QY 347 Poa pratensis L. ssp. pratensis Circumboreale BX, KY, VY 348 Poa sylvicola Guss. Eurimediterraneo * QH, QY 349 Poa trivialis L. Eurasiatico EX, KY 350 Rostraria cristata (L.) Tzvelev Subcosmopolita * VY 351 Sclerochloa dura (L.) P. Beauv. Eurimediterraneo * VY 352 Sesleria juncifolia Suffren ssp. juncifolia Appennino-Balcanico FW, HH, KY, PK, QK 353 Sesleria nitida ssp. nitida Ten. Endemico CY, FW, KY, PK, QK 354 Setaria italica (L.) P. Beauv. ssp. viridis (L.) Thell. Subcosmopolita KY,VY 355 Setaria pumila (Poir.) Roem. & Schult. Subcosmopolita * VY 356 Stipa dasyvaginata Martinovsky ssp. apenninicola Martinovsky & Moraldo Endemico KY, SW, VY 357 Tragus racemosus (L.) All. Cosmopolita KY 358 Trisetaria aurea (Ten.) Pignatti ex Kerguélen Mediterraneo-Orientale * QH, QY 359 Trisetum bertolonii Jonsell Endemico KY 360 Trisetum flavescens (L.) P.Beauv. ssp. flavescens Eurasiatico KY, MH, MY, QH, QY, SK, THY, VY 361 Triticum vagans (Jord. & Fourr.) Greuter Mediterraneo-Turaniano * VY RANUNCULACEAE 362 Aconitum lycoctonum L. emend. Koelle Orof. Sud-Europeo KY 363 Actaea spicata L. Eurasiatico IY. KX, KY, VY 364 Adonis distorta Ten. Endemico * BX, HY 365 Anemonastrum narcissiflorum (L.) Holub, ssp. narcissiflorum Artico-Alpino °° BX, KY 366 Anemone apennina L. ssp. apennina Sud-Est-Europeo KY, VY 367 Anemone hortensis L. ssp. hortensis Nord-Mediterraneo KY, VY 368 Anemonoides nemorosa (L.) Holub Circumboreale BY, KY, VY 369 Anemonoides ranunculoides (L.) Holub Europeo-Caucasico DW, FW, KY, VY 370 Aquilegia dumeticola Jord. Orof. Sud-Europeo * BK, BX, DW,IK, IY, KX, KY, QW, RH, RW, SK 371 Caltha palustris L. Circumboreale AH, EX, EY, FH, IK, KY 372 Clematis flammula L. Eurimediterraneo KY, VY 373 Clematis vitalba L. Europeo FX, KY, VY 374 Delphinium consolida L. Eurimediterraneo KY, VY 375 Delphinium fissum Waldst. & Kit. ssp. fissum Eurasiatico BX, KY, RW,SK, SW, VH, VY 376 Eranthis hyemalis (L.) Salisb. Sud-Europeo KY, VY 377 Ficaria verna Huds. ssp. verna Europeo KY, VY 378 Helleborus foetidus L. ssp. foetidus Subatlantico BX, IY, KY, ZH 379 Hepatica nobilis Mill. Circumboreale FH, IY, VY 380 Nigella damascena L. Eurimediterraneo KY, VY 381 Pulsatilla alpina (L.) Delarbre ssp. millefoliata (Bertol.) D.M. Moser Circumboreale DW, FH, HY, FY, HH, KY, OK 382 Ranunculus acris L. ssp. acris Cosmopolita KY, QK, RH, VY 383 Ranunculus apenninus (Chiov.) Pignatti Endemico BX, DW, FY, KY 384 Ranunculus arvensis L. Paleotemperato KY 385 Ranunculus breyninus Crantz Orof. Sud-Europeo CY, HY, KY 386 Ranunculus brevifolius Ten. Appennino-Balcanico BX, HY, HH, IY, KY 387 Ranunculus bulbosus L. Eurasiatico IY, KY, VY 388 Ranunculus garganicus Ten. Nord-Mediterraneo * BX, KY 389 Ranunculus illyricus L. Appennino-Balcanico BX, KY 390 Ranunculus lanuginosus L. Europeo-Caucasico KY, VY 391 Ranunculus lateriflorus DC. Paleotemperato EX, EY, KY. QH, QY 392 Ranunculus magellensis Ten. Endemico * HH 393 Ranunculus marsicus Guss. & Ten. Endemico BX, EY, FH, KY, OH, PK, SW 394 Ranunculus millefoliatus Vahl Mediterraneo-Montano BX, FW, KY, VY 395 Ranunculus monspeliacus L. Nord-Ovest-Mediterraneo KY, SW, VY 396 Ranunculus multidens Dunkel Endemico * QH, QY 397 Ranunculus neapolitanus Ten. Nord-Est-Mediterraneo KY 398 Ranunculus polyanthemoides Boreau Sud-Europeo °° AW, KY 399 Ranunculus repens L. Eurasiatico EX, KY, VY 400 Ranunculus sardous Crantz Eurimediterraneo KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 355 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 401 Ranunculus sartorianus Boiss. & Heldr. Appennino-Balcanico HH, IY, KY 402 Ranunculus seguieri Vill. ssp. seguieri Mediterraneo-Montano °° BX, HY, IY, KY 403 Ranunculus thora L. Orof. Sud-Europeo KY, VY 404 Ranunculus thomasii Ten. Endemico * QH, QY, VY 405 Ranunculus trichophyllus Chaix Europeo BY, IY, KY, VY 406 Ranunculus tuberosus Lapeyr. Europeo HH, IY, KY 407 Ranunculus velutinus Ten. Nord-Mediterraneo KY, QH, QY 408 Thalictrum aquilegiifolium L. ssp. aquilegiifolium Europeo FK, IY, KY, LX, MY, NH, RW,SK, SW, VY 409 Thalictrum flavum L. Eurasiatico * VY 410 Thalictrum foetidum L. ssp. foetidum Orof. Eurasiatico IK, IY, KY 411 Thalictrum minus L. ssp. minus Eurasiatico IY, KY 412 Thalictrum simplex L. ssp. simplex Eurosiberiano CW, DY, EX, EY, KX, KY, LX, MK, NH, QK, RW,SK, SW, VY 413 Trollius europaeus L. ssp. europaeus Artico-Alpino DW, EX, EY, FH, IY, KX, KY, LX, MK, MY, NH, VY, ecc. PAPAVERACEAE 414 Chelidonium majus L. Eurasiatico FW, HY, KY, LX, MK, NH, VY 415 Corydalis cava (L.) Schweigger & Kōrte ssp. cava Europeo DW, KY, VY 416 Corydalis pumila (Host) Rchb. Centro-Europeo * FW 417 Fumaria capreolata L. ssp. capreolata Eurimediterraneo * VY 418 Fumaria officinalis L. ssp. officinalis Paleotemperato KY, VY 419 Oreomecon alpina (L.) Banfi, Bartolucci, J. M. Tison & Galasso ssp. alpina Endemico °° DW, FH, FY, KY, SW 420 Papaver dubium L. ssp. dubium Mediterraneo-Turaniano KY, VY 421 Papaver rhoeas L. ssp. rhoeas Mediterraneo-Orientale FW, KY, VY 422 Pseudofumaria alba (Mill.) Lidén ssp. alba Appennino-Balcanico IY, KY 423 Roemeria apula (Ten.) Banfi, Bartolucci, J.-M.Tison & Galasso Nord-Est-Mediterraneo KY 424 Roemeria argemone (L.) C.Morales, R.Mend. & Romero García Mediterraneo-Turaniano * VX PAEONIACEAE 425 Paeonia officinalis L. ssp. italica N.G.Passal. & Bernardo Endemico DW, FH, KY, MY, OH, SW, VY CRASSULACEAE 426 Hylotelephium maximum (L.) Holub Centro-Europeo IY, KY, VY 427 Petrosedum montanum (Songeon & E.P. Perrier) Grulich Mediterraneo-Montano VH, VY 428 Petrosedum rupestre (L.) P.V. Heath Europeo IY, KX, KY, LX, MK, SK, VY, ZH 429 Petrosedum sediforme (Jacq.) Grulich Stenomediterraneo KY 430 Sedum acre L. Europeo HY, IY, KY, VY 431 Sedum album L. s. l. Eurimediterraneo BX, DW, IY, KY, VY 432 Sedum atratum L. Mediterraneo-Montano HY, HH, KY, QH, QY, VY 433 Sedum dasyphyllum L. ssp. dasyphyllum Eurimediterraneo DW, FK, IY, KY, VY 434 Sedum hispanicum L. Pontico KY, VY 435 Sedum magellense Ten. ssp. magellense Endemico BX, IY, KX, KY, LX, VY 436 Sedum monregalense Balb. Subendemico FK. Ad avviso di Conti et al. (2019) la segnalazione è dubbia. 437 Sedum rubens L. Eurimediterraneo * VY 438 Sedum sexangulare L. Europeo EY, KY, VY 439 Sempervivum arachnoideum L. Orof. Sud-Europeo FH, HY, HH, KY 440 Sempervivum riccii Iberite & Anzal. Endemico AY, EY, JY, KY, VY 441 Sempervivum tectorum L. Mediterraneo-Montano KY, PK, RW 442 Umbilicus horizontalis (Guss.) DC. Stenomediterraneo KY, VY HALOGARACEAE 443 Myriophyllum spicatum L. Subcosmopolita CW, EX, KY GROSSULARIACEAE 444 Ribes alpinum L. Eurosiberiano BX, FH, FX, KY, NK 445 Ribes multiflorum Kit. ex Roem. & Schult. Nord-Est-Mediterraneo EY, FH, KY, NK, UX 446 Ribes uva-crispa L. Eurasiatico FH, KY, VY SAXIFRAGACEAE 447 Saxifraga adscendens L. ssp. adscendens Mediterraneo-Montano BX, HY, HH, KY, VY 448 Saxifraga adscendens L. ssp. parnassica (Boiss. & Heldr.) Hayek Orof. Sud-Ovest-Europeo * BX,TH 449 Saxifraga bulbifera L. Sud-Est-Europeo IY, KY, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 356 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 450 Saxifraga caesia L. Mediterraneo-Montano BX, IY, KY 451 Saxifraga callosa Sm. ssp. callosa Orof. Sud-Ovest-Europeo IY, KY, VY 452 Saxifraga exarata Vill. ssp. ampullacea (Ten.) D. A. Webb Endemico BX, DW, KY, VY 453 Saxifraga granulata L. ssp. granulata Subatlantico FW, KY, VY 454 Saxifraga italica D. A. Webb Endemico BX,KY 455 Saxifraga oppositifolia L. ssp. oppositifolia Artico-Alpino BX, KY 456 Saxifraga oppositifolia L. ssp. speciosa (Dörfl. & Hayek) Engl. & Irmsch. Endemico * HH 457 Saxifraga paniculata Mill. Artico-Alpino BX, HH, KX, RH, RW, VY 458 Saxifraga porophylla Bertol. ssp. porophylla Endemico DW, FW, FY, IY, KY, VY 459 Saxifraga rotundifolia L. ssp. rotundifolia Mediterraneo-Montano IY, KY, VY 460 Saxifraga sedoides L. ssp. sedoides Orof. Sud-Ovest-Europeo KY\ 461 Saxifraga tridactylites L. Eurimediterraneo IY, KY, VY VITACEAE 462 Vitis vinifera L. ssp. vinifera Avventizio FH, VY. Coltivato e spontaneizzato FABACEAE 463 Anthyllis montana L. susbp. jacquinii (A Kern.) Rohlena Orof. Sud-Est-Europeo AY, BX, CY, HH, KY, VY 464 Anthyllis vulneraria L. ssp. maura (Beck) Maire Sud-Ovest-Mediterraneo HY, IY, KY 465 Anthyllis vulneraria L. ssp. nana (Ten.) Tammaro Endemico * BX 466 Anthyllis vulneraria L. ssp. pulchella (Vis.) Bornm. Sud-Est Europeo FW, HH, KY 467 Anthyllis vulneraria L. ssp. rubiflora (DC.) Arcang. Eurimediterraneo BX, IY, KY, ZH 468 Argyrolobium zanonii (Turra) P.W.Ball ssp. zanonii Mediterraneo-Occidentale * VY 469 Astragalus australis (L.) Lam. Eurasiatico °° HY, KY 470 Astragalus danicus Retz. Eurosiberiano * °° MW 471 Astragalus depressus L. ssp. depressus Eurasiatico HH, IY, KY, VY 472 Astragalus glycyphyllos L. Eurasiatico BX, KY, RH, RW, VX, VY 473 Astragalus hamosus L. Mediterraneo-Turaniano * VY 474 Astragalus monspessulanus L. ssp. monspessulanus Eurimediterraneo KY, VY, ZH 475 Astragalus sempervirens Lam. Mediterraneo-Montano BX, KY, OH, PK, VY 476 Astragalus sesameus L. Stenomediterraneo * VY 477 Bituminaria bituminosa (L.) C. H. Stirt Eurimediterraneo KY, VY 478 Colutea arborescens L. Eurimediterraneo KY, VY 479 Coronilla minima L. ssp. minima Mediterraneo-Occidentale IY, KY, VY 480 Coronilla scorpioides (L.) W. D. J. Koch Eurimediterraneo KY, VY, ZH 481 Coronilla vaginalis Lam. Sud-Est-Europeo. AY, BX, KY 482 Cytisophyllum sessilifolius (L.) O. Lang Sud-Ovest-Europeo HY, IY, KX, KY, MK, NH, VY 483 Cytisus decumbens (Durande) Spach Sud-Europeo IY, KY 484 Cytisus hirsutus L. Eurosiberiano BX, DW, KY, SK, TH, Vy 485 Cytisus spinescens Sieber ex Spreng. Appennino-Balcanico BX, FW, KY, TH, UX,VY, ZH 486 Cytisus villosus Pourr. Stenomediterraneo BX, KY 487 Emerus major Mill. ssp. emeroides (Boiss. & Spruner) Soldano & F. Conti Pontico KY, VY 488 Emerus major Mill. ssp. major Centro-Europeo * IY 489 Ervilia hirsuta (L.) Opiz Paleotemperato * FW, VY 490 Ervilia loiseleurii (M.Bieb.) H.Schaef., Coulot & Rabaute Eurimediterraneo * VY 491 Ervilia sativa Link Eurimediterraneo KY 492 Ervum gracile DC. Eurimediterraneo * VY 493 Galega officinalis L. Pontico BX, KY 494 Genista sagittalis L. Europeo KY, VY 495 Genista tinctoria L. Eurasiatico IY, KY, VH, ZH 496 Hippocrepis biflora Spreng. Eurimediterraneo * VY 497 Hippocrepis comosa L. ssp. comosa Europeo BX, FW, HY, IY, KY 498 Laburnum anagyroides Medik. ssp. anagyroides Sud-Europeo FH, IY. KY, MK, PK, QK, VY, ZH 499 Lathyrus annuus L. Eurimediterraneo KY, VY 500 Lathyrus aphaca L. ssp. aphaca Eurimediterraneo VY 501 Lathyrus cicera L. Eurimediterraneo KY, VY 502 Lathyrus hirsutus L. Eurimediterraneo * VY 503 Lathyrus digitatus (M.Bieb.) Fiori Pontico KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 357 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 504 Lathyrus latifolius L. Sud-Europeo KY 505 Lathyrus nissolia L. Eurimediterraneo * VY 506 athyrus ochrus (L.) DC. Stenomediterraneo * VY 507 Lathyrus pannonicus (Jacq.) Garcke ssp. asphodeloides (Gouan) Bässler Sud-Europeo-Sud-Siberiano BX, FH, IY, KY, OH, PK, SW, VY 508 Lathyrus pratensis L. Paleotemperato BX, KY, LW, MH, VY 509 Lathyrus setifolius L. Eurimediterraneo * VY 510 Lathyrus sphaericus Retz. Eurimediterraneo FW, KY, VY 511 Lathyrus sylvestris L. ssp. sylvestris Europeo IY, KY,VY 512 Lathyrus venetus (Mill.) Wohlf. Pontico EY, IY, KX, KY, LX, OH, VY 513 Lathyrus vernus (L.) Bernh. Eurasiatico FW, KX, KY, MK, NH, VY 514 Lotus corniculatus L. ssp. alpinus (DC.) Rothm. Orof. Sud-Europeo CY, KY 515 Lotus corniculatus L. ssp. corniculatus Paleotemperato FH, IY, KY, VY 516 Lotus dorycnium L. ssp. herbaceus (Vill.) Kramina & D.D.Sokoloff Pontico IY, KY, VY 517 Lotus hirsutus L. Eurimediterraneo KY 518 Lotus pedunculatus Cav. Paleotemperato EX 519 Lotus tenuis Waldst. & Kit. ex Willd. Paleotemperato * QH, QY, VY 520 Medicago arabica (L.) Huds. Eurimediterraneo KY, VY 521 Medicago falcata L. ssp. falcata Eurasiatico IY, KY,VY 522 Medicago lupulina L. Paleotemperato IY,KY,VY 523 Medicago minima (L.) L. Eurimediterraneo KY, VY 524 Medicago orbicularis (L.) Bartal. Eurimediterraneo KY, VY 525 Medicago polymorpha L. Eurimediterraneo BX, KY, VY 526 Medicago prostrata Jacq. ssp. prostrata Pontico KY, VY 527 Medicago rigidula (L.) All. Eurimediterraneo * VY 528 Medicago sativa L. Eurasiatico KY, VY, ZH 529 Onobrychis alba (Waldst. & Kit.) Desv. ssp. alba Appennino-Balcanico FW, IY, KY, VY 530 Onobrychis viciifolia Scop. Mediterraneo-Montano BY, IY, KY, VY, ZH 531 Ononis cristata MIll. ssp. apennina Tammaro & Catonica Endemico IY, KY, QH 532 Ononis pusilla L. ssp. pusilla Eurimediterraneo IY, KY, VY 533 Ononis reclinata L. Mediterraneo-Turaniano * VY 534 Ononis spinosa L. ssp. spinosa Europeo * BX, VY 535 Ononis viscosa L. ssp. breviflora (DC.) Nyman Sud-Mediterraneo * VY 536 Oxytropis campestris (L.) DC. ssp. campestris Circumboreale BX, HY, HH, KY, SW 537 Oxytropis neglecta Ten. Orof. Sud-Europeo HY, KY 538 Pisum sativum L. ssp. biflorum (Raf.) Soldano Eurimediterraneo IY, KY, VY, ZH 539 Robinia pseudacacia L. Nord-Americano KY, VY 540 Scorpiurus muricatus L. Eurimediterraneo * VY 541 Securigera varia (L.) Lassen Sud-Est Europeo IY, KY, VY, ZH 542 Spartium junceum L. Eurimediterraneo IY, KY, MY, VY 543 Sulla coronaria (L.) Medik. Mediterraneo-Occidentale BX, KY. 544 Trifolium alpestre L. Europeo KY, VY 545 Trifolium angustifolium L. ssp. angustifolium Eurimediterraneo * VY 546 Trifolium arvense L. ssp. arvense Paleotemperato KY, VY 547 Trifolium aureum Pollich ssp. aureum Europeo * QH, QY 548 Trifolium campestre Schreb. Paleotemperato IY, KY, VY 549 Trifolium fragiferum L. ssp. fragiferum Paleotemperato BX, KY, VY 550 Trifolium hybridum L. ssp. hybridum Atlantico * QH, QK, RH, VY 551 Trifolium incarnatum L. ssp. molinerii (Balb. ex Hornem.) Ces. Eurimediterraneo * QH, VY 552 Trifolium medium L. ssp. medium Eurasiatico KY 553 Trifolium montanum L. ssp. rupestre (Ten.) Nyman Mediterraneo-Montano IY, KY, VY 554 Trifolium nigrescens Viv. ssp. nigrescens Eurimediterraneo BX, KY 555 Trifolium ochroleucon Huds. Pontico * VX, VY 556 Trifolium pratense L. ssp. pratense Subcosmopolita BX, EX, KY, VY 557 Trifolium pratense L. ssp. semipurpureum (Strobl) Pignatti Endemico HH, HY, KY, SW 558 Trifolium repens L. ssp. repens Paleotemperato HY, KY, VY 559 Trifolium resupinatum L. Paleotemperato BX, VX, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 358 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 560 Trifolium scabrum L . ssp. scabrum Eurimediterraneo * VY 561 Trifolium stellatum L. Eurimediterraneo FW, KY, VY 562 Trifolium thalii Vill. Orof. Sud-Europeo BX, HY, HH, KY 563 Trifolium tomentosum L. Paleotemperato * VY 564 Trigonella alba (Medik.) Coulot & Rabaute Eurasiatico KY, VY 565 Trigonella gladiata Steven ex M.Bieb. Stenomediterraneo * ## VY 566 Trigonella officinalis (L.) Coulot & Rabaute Eurasiatico KY, VY 567 Trigonella sulcata (Desf.) Coulot & Rabaute Sud-Mediterraneo * VY 568 Trigonella wojciechowskii Coulot & Rabaute Stenomediterraneo * VY 569 Vicia angustifolia L. Stenomediterraneo IY, VY 570 Vicia bithynica (L.) L. Eurimediterraneo * VY 571 Vicia cracca L. Eurasiatico KY, ZH 572 Vicia dasycarpa Auct. an Ten. Eurimediterraneo KY, VY 573 Vicia ervoides (Brign.) Hampe Pontico * VK, VY 574 Vicia hybrida L. Eurimediterraneo * VY 575 Vicia incana Gouan Eurimediterraneo * SK, VY 576 Vicia lathyroides L. Eurimediterraneo * VY 577 Vicia lutea L. Eurimediterraneo * VY 578 Vicia narbonensis L. Eurimediterraneo KY, VY 579 Vicia onobrychioides L. Mediterraneo-Montano KY 580 Vicia peregrina L. Mediterraneo-Turaniano * VY 581 Vicia sativa L. ssp. sativa Eurimediterraneo KY, VY 582 Vicia sepium L. Eurosiberiano FW, KY, VY 583 Vicia tenuifolia Roth ssp. tenuifolia Eurasiatico * IY, VY POLYGALACEAE 584 Polygala alpestris Rchb. ssp. angelisii (Ten.) Nyman Endemico BX, HH, KY 585 Polygala amarella Crantz Europeo FY, KY 586 Polygala major Jacq. Pontico FW, IY, KY, VY 587 Polygala nicaensis W. D. J. Koch ssp. mediterranea Chodat Eurimediterraneo FW, KY, VY 588 Polygala vulgaris L. ssp. vulgaris Europeo DW, KY ROSACEAE 589 Agrimonia eupatoria L. ssp. eupatoria Subcosmopolita KY, VY 590 Alchemilla alpina L. Artico-Alpino BX, KY 591 Alchemilla colorata Buser Eurasiatico BX, KY 592 Amelanchier ovalis Medik. ssp. ovalis Mediterraneo-Montano BX, IY, VY 593 Aremonia agrimonoides (L.) DC. ssp. agrimonoides Sud-Europeo IY, KY, VY 594 Cotoneaster integerrimus Medik. Eurasiatico FW, KY, VY 595 Crataegus laevigata (Poir.) DC. Centro-Europeo FW, KY, OK, PK, QK, QW, RH, RW, TH, VY 596 Crataegus monogyna Jacq. Paleotemperato FH, FW, FX, KY, LX, MK, VY 597 Dryas octopetala L. ssp. octopetala Artico-Alpino BX, DW, FH, KY, VY 598 Filipendula ulmaria (L.) Maxim. Eurosiberiano DY, IK, KY, LX, SW, VY 599 Filipendula vulgaris Moench Centro-Europeo KY, LX, MK, MY, NH, OH, PK, QK, VY, ZH 600 Fragaria vesca L. ssp. vesca Cosmopolita BX, FH, FW, IY, KY, VY 601 Fragaria viridis Weston ssp. viridis Eurosiberiano KY 602 Geum molle Vis. & Pančić Appennino-Balcanico * QH, QY, VY 603 Geum rivale L. Circumboreale EX, IK, KY, LX, MK, NH, QY, VY 604 Geum urbanum L. Circumboreale BX, FW, KY, VY 605 Malus domestica (Borkh.) Borkh. Asiatico KY. Alloctona naturalizzata 606 Malus sylvestris (L.) Mill. Centro-Europeo BX, FH, KY, PK, QK, VY 607 Potentilla apennina Ten. ssp. apennina Appennino-Balcanico KY, VY 608 Potentilla caulescens L. ssp. caulescens Mediterraneo-Montano IY, KY 609 Potentilla crantzii (Crantz) Beck ex Fritsch ssp. crantzii Artico-Alpino HY, HH, IY,KY 610 Potentilla detommasii Ten. Appennino-Balcanico * VY 611 Potentilla erecta (L.) Raeusch. Eurasiatico KX, KY, LX, MK, NH 612 Potentilla micrantha Ramond ex DC. Eurimediterraneo BX, KY,VY 613 Potentilla pedata Willd. ex Hornem Eurimediterraneo KY, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 359 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 614 Potentilla recta L. ssp. recta Pontico KY 615 Potentilla reptans L. Paleotemperato EX, KY, VY 616 Potentilla rigoana Th. Wolf Endemico EY, KY, VY 617 Poterium sanguisorba L. ssp. balearicum (Bourg. ex Nyman) Stace Europeo IY, KY, VY 618 Prunus avium L. ssp. avium Pontico KY, VY 619 Prunus cerasifera Ehrh. – Pontico Pontico KY. Alloctona naturalizzata 620 Prunus cerasus L. Pontico KY. Alloctona naturalizzata 621 Prunus domestica L. Europeo-Caucasico KY, VY. Alloctona naturalizzata 622 Prunus dulcis (Mill.) D. A. Webb Eurimediterraneo KY. Alloctona naturalizzata 623 Prunus mahaleb L. Pontico BX, VY 624 Prunus persica (L.) Batsch Asiatico-Orientale * VY. Alloctona naturalizzata 625 Prunus spinosa L. ssp. spinosa Europeo BX, FX, FW, KY, LX, SK, VY 626 Pyracantha coccinea M. Roem. Stenomediterraneo BX, KX, KY, LX 627 Pyrus communis L. ssp. communis. Avventizio FW, GK, KY, LX, MK. Alloctona naturalizzata 628 Pyrus communis L. ssp. pyraster (L.) Ehrh. Eurasiatico BX, FH, FX, KY, VY 629 Rosa arvensis Huds. Mediterraneo-Atlantico BX, KY, SK, VY 630 Rosa canina L. Paleotemperato FH, KY, TK, UK 631 Rosa dumalis Bechst. Europeo-Caucasico BX, DW, KY 632 Rosa gallica L. Centro-Europeo * SK, SY 633 Rosa pendulina L. Orof. Sud-Europeo KY 634 Rosa montana Chaix Mediterraneo-Montano KY, QH, QY 635 Rosa subcollina (Christ) Vuk. Europeo * PK, QK 636 Rubus caesius L. Eurasiatico BX, KY, VY 637 Rubus canescens DC. Eurimediterraneo KY, VY 638 Rubus hirtus Waldst. & Kit. Centro-Europeo BX, KY 639 Rubus idaeus L. ssp. idaeus Circumboreale FH, KY, VY 640 Rubus saxatilis L. CIrcumboreale KY 641 Rubus ulmifolius Schott Mediterraneo-Atlantico BX, KY, VY 642 Sanguisorba officinalis L. Circumboreale BX, EY, KY, LX, MH, MK, MY, NH, QH, QY, VY 643 Sorbus aria (L.) Crantz ssp. aria Paleotemperato FH, KX, KY, NH, PK, QK, SH, UK, VY 644 Sorbus aucuparia L. ssp. aucuparia Europeo FH, KY, PK, QK, VY 645 Sorbus domestica L. Eurimediterraneo KY, VY 646 Sorbus torminalis (L.) Crantz Eurasiatico BX, IY, KY, LX, MK, NH, PK, QK, QW, RX. SH RHAMNACEAE 647 Atadinus alpinus (L.) Raf. Mediterraneo-Occidentale BX, FW, KY, TH, VY 648 Atadinus pumilus (Turra) Hauenschild ssp. pumilus Orof. Sud-Europeo HH, KY 649 Paliurus spina-christi Mill. Pontico BX, KY 650 Rhamnus cathartica L. Pontico KY, LX, MK, NX, RX, SH, UK, VY 651 Rhamnus saxatilis Jacq. – ssp. saxatilis Pontico KX, KY, LX, VY ULMACEAE 652 Ulmus glabra Huds. Europeo-Caucasico BX, FH, KY, VY 653 Ulmus minor Mill. ssp. minor Europeo-Caucasico BX, KY, VY, ZH MORACEAE 654 Ficus carica L. Eurimediterraneo KY, VY. Alloctona naturalizzata. 655 Morus alba L. Asiatico KY. Alloctona naturalizzata. 656 Morus nigra L. Sud-Ovest-Asiatico * VK. Alloctona naturalizzata. URTICACEAE 657 Parietaria judaica L. Eurimediterraneo KY, VY 658 Parietaria officinalis L. Europeo KY, VY 659 Urtica dioica L. Cosmopolita EX, KY, VY 660 Urtica urens L Subcosmopolita KY FAGACEAE 661 Fagus sylvatica L. Centro-Europeo EW, FH, FW, KX, KY, LX, MK, NH, VY, ZH 662 Quercus cerris L. Eurimediterraneo AH, BX, FH, KY, NK, UX, VY, ZH 663 Quercus ilex L. ssp. ilex Stenomediterraneo KY, VY, ZH 664 Quercus pubescens Willd. ssp. pubescens Pontico KY, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 360 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 JUGLANDACEAE 665 Juglans regia L. Asiatico BX, KY, VY. Alloctona naturalizzata. BETULACEAE 666 Alnus cordata (Loisel.) Duby Sud-Est Europeo EY, KY, VY 667 Alnus glutinosa L.Gaertn. Paleotemperato KY, RH, RW, VY 668 Carpinus betulus L. Europeo GK, KX, KY, LX, MK, NH, SK, VY 669 Carpinus orientalis Mill. ssp. orientalis Pontico KY VY 670 Corylus avellana L. Europeo KY, VY, ZH 671 Ostrya carpinifolia Scop. Pontico KY, OK, PW, QW, RK, VY, ZH CUCURBITACEAE 672 Bryonia dioica Jacq. Eurimediterraneo KY, OK, PW, QW, RK, VY 673 Ecballium elaterium (L.) A. Rich. Eurimediterraneo BX, KY, VY CELASTRACEAE 674 Euonymus europaeus L. Eurasiatico * VX, VY 675 Euonymus latifolius (L.) Mill. ssp. latifolius Mediterraneo-Montano FH, KX, KY, MK, NH, SK, TH, VY 676 Parnassia palustris L. ssp. palustris Eurosiberiano AH, BX, KY, LX OXALIDACEAE 677 Oxalis articulata Savigny Sud-Americano * VY. Alloctona naturalizzata 678 Oxalis corniculata L. Cosmopolita * VY. Alloctona naturalizzata VIOLACEAE 679 Viola alba Besser ssp. dehnhardtii (Ten.) W. Becker Eurimediterraneo KY, VY 680 Viola arvensis Murray ssp. arvensis Eurasiatico * KY, VY 681 Viola eugeniae Parl. ssp. eugeniae Endemico BX, DW, FH, HY, HH, IY, KY, PW, ZH 682 Viola eugeniae Parl. ssp. levieri (Parl.) Arcang. Endemico * PX 683 Viola majellensis Porta & Rigo ex Strobl Appennino-Balcanico * BX, DW, IW, OH 684 Viola odorata L. Eurimediterraneo KY, VY 685 Viola riechenbachiana Jord. ex Boreau Eurosiberiano IY, KY, MH, VY 686 Viola riviniana Rchb. Europeo * SH 687 Viola suavis Bieb. Sud-Europeo-Sud-Siberiano * QH, QY 688 Viola tricolor L. Eurasiatico BX, EY, KY, LW, VY SALICACEAE 689 Populus alba L. Paleotemperato BX, KY, VY 690 Populus nigra L. Paleotemperato BX, KY, VY 691 Populus tremula L. Eurosiberiano BX, GK, KY, VY 692 Salix alba L. Paleotemperato KY, VY 693 Salix amplexicaulis Bory Nord-Est-Mediterraneo KY 694 Salix apennina A. K. Skvortsov Endemico KY, VY 695 Salix caprea L. Eurasiatico KY, VY 696 Salix eleagnos Scop. ssp. eleagnos Orof. Sud-Europeo KY, VY 697 Salix purpurea L. ssp. purpurea Eurasiatico DY, KY, VY 698 Salix retusa L. Orof. Europeo KY 699 Salix triandra L. ssp. triandra Eurosiberiano KY LINACEAE 700 Linum alpinum Jacq. Mediterraneo-Montano DW, KY 701 Linum bienne Mill. Subatlantico KY, VY 702 Linum capitatum Kit. ex Schult. ssp. serrulatum (Bertol.) Hartvig Appennino-Balcanico IY, KY, OK, PW, RW, SK, VY 703 Linum catharticum L. Eurimediterraneo KY, MH, MY, OH, PK, VY 704 Linum corymbulosum Rchb. Stenomediterraneo * VY 705 Linum tenuifolium L. Pontico DW, IY, KY, VY, ZH 706 Linum tommasinii (Rchb.) Nyman Appennino-Balcanico KY, VY 707 Linum tryginum L. Eurimediterraneo EY 708 Linum viscosum L. Orof. Sud-Europeo DW, IY, KY, VY HYPERICACEAE 709 Hypericum hirsutum L. Paleotemperato KY, TH, UX, VY 710 Hypericum hyssopifolium Chaix Orof. Sud-Europeo * RW, SK ANNALES · Ser. hist. nat. · 35 · 2025 · 2 361 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 711 Hypericum montanum L. Europeo-Caucasico KY 712 Hypericum perfoliatum L. Stenomediterraneo KY, MK, VY 713 Hypericum perforatum L. ssp. perforatum Eurimediterraneo KY, NH 714 Hypericum richeri Vill. ssp. richeri Orof. Sud-Europeo KY 715 Hypericum tetrapterum Fr. Paleotemperato KY, VY EUPHORBIACEAE 716 Euphorbia amygdaloides L. Europeo BX, IY, KY, VY 717 Euphorbia characias L. Stenomediterraneo KY, VY, ZH 718 Euphorbia cyparissias L. Europeo BX, IY, KY, VY 719 Euphorbia dulcis L. Centro-Europeo * ## VY 720 Euphorbia falcata L. Mediterraneo-Turaniano * VY 721 Euphorbia gasparrinii Boiss. ssp. samnitica (Fiori) Pignatti Endemico FH 722 Euphorbia helioscopia L. ssp. helioscopia Cosmopolita BX, KY, VY, ZH 723 Euphorbia maculata L. Nord-Americano * VY. Alloctona naturalizzata. 724 Euphorbia myrsinites L. ssp. myrsinites Pontico AH, FW, IY, KY 725 Euphorbia nicaensis All. ssp. nicaensis Eurimediterraneo KY 726 Euphorbia peplus L. Cosmopolita * VY 727 Euphorbia spinosa L. ssp. spinosa Nord-Mediterraneo * VK 728 Euphorbia platyphyllos L. Eurimediterraneo IY, KY, VY 729 Euphorbia prostrata Aiton Nord-Americano * VY 730 Euphorbia spinosa L. ssp. spinosa Nord-Mediterraneo * VY 731 Mercurialis annua L. Paleotemperato KY, VY 732 Mercurialis ovata Sternb. & Hoppe Pontico IY, KY 733 Mercurialis perennis L. Europeo FW, IY, KY, VY GERANIACEAE 734 Erodium alpinum L’Hér. Endemico KY, VY 735 Erodium ciconium (L.) L'Hér. Eurimediterraneo KY, VY 736 Erodium cicutarium (L.) L’Hér. Cosmopolita KY, VY 737 Erodium malacoides (L.) L’Her. Eurimediterraneo KY, VY 738 Geranium austroapenninum Aedo Endemico IY, KY, QH, QY 739 Geranium columbinum L. Subcosmopolita IY, KY, VY 740 Geranium dissectum L. Eurasiatico KY, VY 741 Geranium lucidum L. Eurimediterraneo FW, IY, KY, VY 742 Geranium molle L. Eurasiatico BX, KY, VY 743 Geranium nodosum L. Mediterraneo-Montano AY, BX, IY, KY, VY 744 Geranium pratense L. ssp. pratense Eurosiberiano * UX 745 Geranium pyrenaicum Burm. f. ssp. pyrenaicum Eurimediterraneo * VX, VY 746 Geranium purpureum Vill. Eurimediterraneo * VY 747 Geranium pusillum L. Eurasiatico * VY 748 Geranium reflexum L. Appennino-Balcanico KY, VY 749 Geranium robertianum L. Cosmopolita FW, KY, VY 750 Geranium rotundifolium L. Paleotemperato KY, VY 751 Geranium sanguineum L. Europeo-Caucasico IY, KY, VY, ZH 752 Geranium sylvaticum L. Eurasiatico IK, KY, VY 753 Geranium tuberosum L. ssp. tuberosum Sud-Europeo-Sud-Siberiano * VY 754 Geranium versicolor L. Appennino-Balcanico AY, BX, IK, KY, VH, VY ONAGRACEAE 755 Chamaenerion angustifolium (L.) Scop. Circumboreale DW, KX, KY, LX, MK, NH, VY 756 Chamaenerion dodonaei (Vill.) Schur ex Fuss Europeo-Caucasico * SW 757 Circaea lutetiana L. ssp. lutetiana Circumboreale BX, KY, UX, VY 758 Epilobium alsinifolium Vill. Artico-Alpino °° KY 759 Epilobium hirsutum L. Paleotemperato * IY, LX, VX, VY 760 Epilobium montanum L. Eurasiatico KY, VY 761 Epilobium palustre L. Circumboreale KY 762 Epilobium parviflorum Schreb. Paleotemperato BY, KY, VY 763 Epilobium tetragonum L. ssp. tetragonum Eurimediterraneo BX, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 362 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 LYTHRACEAE 764 Lythrum salicaria L. Subcosmopolita BX, KY ANACARDIACEAE 765 Pistacia terebinthus L. ssp. terebinthus Eurimediterraneo KY, VY SAPINDACEAE 766 Acer campestre L. Europeo-Caucasico BX, FX, HY, KY, VY 767 Acer cappadocicum Gled. ssp. lobelii (Ten.) A.E.Murray Endemico BQ, BX, EX, FH, IY. KY, NK, QH, QY 768 Acer monspessulanus L. ssp. monspessulanus Eurimediterraneo BX, IY, KY, VY 769 Acer opalus Mill. ssp. obtusatum (Waldst. & Kit. ex Willd.) Gams Appennino-Balcanico FW, IY, KY, PK, QK, VY 770 Acer opalus Mill. ssp. opalus Sud-Est-Europeo FH, KY 771 Acer platanoides L. Europeo-Caucasico * VK, VY 772 Acer pseudoplatanus L. Europeo-Caucasico BX, FH, FW, IY, KY, LX, MK, NH, VY 773 Aesculus hippocastanum L. Sud-Est-Europeo BX, VY. Utilizzato per le alberature stradali RUTACEAE 774 Ruta graveolens L. Sud-Europeo-Sud-Siberiano KY THYMELACEAE 775 Daphne laureola L. Subatlantico IY, KY, VY 776 Daphne mezereum L. Eurosiberiano BX, DW, KY, NH, PK, QK, RK, SH, TK 777 Daphne oleoides Schreb. Eurasiatico FH, IY, KY, VY CISTACEAE 778 Cistus creticus L. ssp. eriocephalus (Viv.) Greuter & Burdet Stenomediterraneo KY, VY, ZH 779 Fumana procumbens (Dunal) Gren. & Godr. Pontico EY, FW, KY, VY 780 Fumana thymifolia (L.) Spach ex Webb Stenomediterraneo KY, VY 781 Helianthemum appeninum (L.) Mill. ssp. apenninum Sud-Ovest-Europeo DW, FK, FW, IY, KY, RH, RW, VY, ZH 782 Helianthemum nummularium (L.) Mill. ssp. glabrum (W.D.J.Koch) Wilczek Sud-Est-Europeo DW, KY 783 Helianthemum nummularium (L.) Mill. ssp. grandiflorum (Scop.) Schinz & Thell. Europeo-Caucasico DW, IY, KY, VY, ZH 784 Helianthemum nummularium (L.) Mill. ssp. obscurum (Celak) Holub Europeo-Caucasico EY, KY, VY 785 Helianthemum oleandicum (L.) Dum. Cours. ssp. alpestre (Jacq.) Ces. Orof. Sud-Europeo HH, IY, KY, VY 786 Helianthemum oleandicum (L.) Dum. Cours. ssp. incanum (Willk.) G. Lopez Europeo-Caucasico CY, FW, KY, VY 787 Helianthemum oelandicum (L.) Dum. Cours. ssp. italicum (L.) Ces. Orof. Sud-Ovest-Europeo * BX, VX, VY 788 Helianthemum salicifolium (L.) Mill. Eurimediterraneo * VY SIMAROUBACEAE 789 Ailanthus altissima (Mill.) Swingle Avventizio EX, FH, IY, KY, VY, ZH. Alloctona naturalizzata. MALVACEAE 790 Alcea rosea L. Avventizio KY. Alloctona naturalizzata. 791 Malope malacoides L. Eurimediterraneo LX, MK 792 Malva alcea L. Centro-Europeo KY, OK, PW, QW, RK 793 Malva cretica Cav. Stenomediterraneo KY 794 Malva moschata L. Eurimediterraneo KX, KY, LX, MK, NH, VY 795 Malva multiflora (Cav.) Soldano, Banfi & Galasso Stenomediterraneo * VY 796 Malva neglecta Wallr. Paleotemperato KY,VY 797 Malva pusilla Sm. Eurosiberiano KY 798 Malva setigera K.F.Schimp. & Spenn. Eurimediterraneo * VY 799 Malva sylvestris L. ssp. sylvestris Eurosiberiano BX, FH, KY, VY 800 Malca thuringiaca (L.) Vis. Sud-Europeo-Sud-Siberiano FW, KX, KY, LX, MK, NH, VH, VY 801 Tilia cordata Mill. Europeo-Caucasico BX, GK, KY, VY 802 Tilia platyphyllos Scop. ssp. platyphyllos Europeo KX, KY RESEDACEAE 803 Reseda lutea L. ssp. lutea Europeo KY, VY 804 Reseda luteola L. Circumboreale IY, KY, PK, QK, VY BRASSICACEAE 805 Aethionema saxatile (L.) R. Br. ssp. saxatile Mediterraneo-Montano FW, IY, KX, KY, VY 806 Alliaria petiolata (M. Bieb.) Cavara & Grande Eurasiatico KY, VY 807 Alyssum alyssoides (L.) L. Eurimediterraneo IY, KY 808 Alyssum cuneifolium Ten. Endemico FY, KY,SW 809 Alyssum diffusum Ten. ssp. diffusum Mediterraneo-Montano VX, VY 810 Alyssum montanun L. ssp. montanum Pontico KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 363 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 811 Alyssum simplex Rudolphi Mediterraneo-Turaniano KY, VY 812 Arabidopsis thaliana (L.) Heynh. Paleotemperato KY 813 Arabis alpina L. ssp. alpina Artico-Alpino IY, KY 814 Arabis alpina L. ssp. caucasica (Willd.) Briq. Mediterraneo-Montano KY, LX, MK, NH, VY 815 Arabis auriculata Lam. Orof. Sud-Europeo * FW, VY 816 Arabis bellidifolia Crantz ssp. stellulata (Bertol.) Greuter & Burdet Mediterraneo-Montano AY, KY 817 Arabis collina Ten. ssp. collina Mediterraneo-Montano FW, IY, KY, VY 818 Arabis collina Ten. ssp. rosea (DC.) Minuto Endemico * VY 819 Arabis hirsuta (L.) Scop. Orof. Sud-Europeo KY, VY 820 Arabis sagittata (Bertol.) DC. Sud-Est-Europeo KY 821 Arabis surculosa N. Terracc. Appennino-Balcanico BX, HH, KY 822 Aubrieta columnae Guss. ssp. columnae Endemico KY 823 Aurinia sinuata (L.) Griseb. Appennino-Balcanico BX, EY, KY, QH, QY 824 Ballota nigra L. ssp. meridionalis (Bég.) Bég. Eurimediterraneo KY, VY 825 Barbarea bracteosa Guss. Sud-Mediterraneo * VY 826 Barbarea stricta Andrz. Eurosiberiano KY 827 Barbarea vulgaris W.T.Aiton Eurosiberiano * VX, VY 828 Biscutella laevigata L. ssp. australis Raffaelli & Baldoin Endemico FW, IY, VY 829 Brassica gravinae Ten. Subendemico EY, KY, PK, QK, VY 830 Brassica nigra (L.) W. D. J. Koch Eurimediterraneo KY 831 Brassica oleracea (L.) Eurimediterraneo KY 832 Brassica rapa L. Eurimediterraneo * VY 833 Bunias erucago L. Eurimediterraneo KY, VY 834 Calepina irregularis (Asso) Thell. Mediterraneo-Turaniano * VY 835 Capsella bursa-pastoris (L.) Medik. ssp. bursa-pastoris Cosmopolita BX, KY 836 Capsella rubella Reut. Cosmopolita BX, KY, VY 837 Cardamine bulbifera (L.) Crantz Centro-Europeo BX, KY, VY 838 Cardamine chelidonia L. Subendemico * VK 839 Cardamine enneaphyllos (L.) Crantz Appennino-Balcanico KY, VY 840 Cardamine graeca L. Nord-Mediterraneo KY, VY 841 Cardamine hirsuta L. Cosmopolita KY, VY 842 Cardamine kitaibelii Bech. Orof. Sud-Est-Europeo KY, VY 843 Cardamine monteluccii Brilli-Catt. & Gubellini Endemico FW, KY, VY 844 Clypeola jonthlaspi L. ssp. jonthlaspi Stenomediterraneo KY, VY 845 Diplotaxis erucoides (L.) DC. ssp. erucoides Stenomediterraneo KY, VY 846 Diplotaxis muralis (L.) DC. Atlantico * VY 847 Diplotaxis tenuifolia (L.) DC. Subatlantico KY 848 Draba aizoides L. ssp. aizoides Mediterraneo-Montano HY, FY, HH, IY, KY, VY 849 Drava verna L. subsp verna Circumboreale BX, FW, KY, VY 850 Drabella muralis (L.) Fourr. Circumboreale * VY 851 Erysimum apenninum Peccenini & Polatschek Endemico * NW 852 Erysimum cheiri (L.) Crantz. Eurimedterraneo KY, VY 853 Erysimum majellense Polatscheck Endemico FH, IY, JX, KK, KX, KY, LX 854 Erysimum pseudorhaeticum Polatscheck Endemico AY, BX, IY, JX, KK, KY, VY 855 Fibigia clypeata (L.) Medik Orof. Sud-Est Europeo KY 856 Hesperis laciniata All. ssp. laciniata Nord-Mediterraneo FW, IY, KY, RW, SK, VY 857 Hornungia petraea (L.) Rchb. ssp. petraea Eurimediterraneo FW, KY, VY 858 Iberis saxatilis L. ssp. saxatilis Mediterraneo-Montano °° BX, DW, FY, HH, KY, OH, VY 859 Iberis violacea W.T.Aiton Mediterraneo-Montano * VY 860 Isatis apennina Ten. ex Grande Subendemico °° KY 861 Isatis tinctoria L. ssp. tinctoria Eurasiatico KY, VY, ZH 862 Lepidium campestre (L.) W.T. Aiton Europeo-Caucasico KY, VY 863 Lepidium draba L. ssp. draba Mediterraneo-Turaniano KY, VY 864 Lunaria annua L. Sud-Est Europeo IY, KY, VY 865 Lunaria rediviva L. Europeo KY 866 Malcolmia orsiniana (Ten.) Ten. ssp. orsiniana Appennino-Balcanico °° BX, IY, KY 867 Matthiola fruticulosa (L.) Maire Subendemico KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 364 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 868 Microthlaspi perfoliatum (L.) F. K. Mey Paleotemperato BX, KY, VY 869 Mummenhoffia alliacea (L.) Esmailbegi & Al-Shehbaz Subatlantico LX, VY 870 Noccaea stylosa (Ten.) Rchb. Endemico FH. HH, KY 871 Pseudoturritis turrita (L.) Al-Shehbaz. Stenomediterraneo KY, VY 872 Raphanus raphanistrum L. ssp. landra (Moretti ex DC.) Bonnier & Layens Stenomediterraneo * VY 873 Rapistrum rugosum (L.) Arcang. Eurimediterraneo KY, VY 874 Rorippa sylvestris (L.) Besser ssp. sylvestris Eurasiatico KY, VY 875 Sinapis alba L. ssp. alba Mediterraneo-Orientale * VY 876 Sinapis arvensis L. ssp. arvensis Stenomediterraneo * VY 877 Sisymbrium officinale (L.) Scop. Eurasiatico KY, VY 878 Sisymbrium orientale L. Eurimediterraneo * FW, VX, VY 879 Thlaspi arvense L. Subcosmopolita KY 880 Turritis glabra L. Artico-Alpino * VY LORANTHACEAE 881 Loranthus europaeus Jacq. Europeo KY, VY SANTALACEAE 882 Osyris alba L. Eurimediterraneo KY, VY 883 Thesium humifusum DC. Eurimediterraneo IY, KY, VY 884 Thesium linophyllon L. Sud-Est Europeo IY, KY, VY 885 Thesium parnassii A. DC. Appennino-Balcanico * BX, HH, KY 886 Viscum album L. ssp. album Eurasiatico KY, VY PLUMBAGINACEAE 887 Armeria gracilis Ten. ssp. gracilis Endemico HH, KY, LX, MK, SK, TH, UX, VY 888 Armeria gracilis Ten. ssp. majellensis (Boiss.) Arrigoni Endemico FH, HY, KY 889 Plumbago europaea L. Stenomediterraneo KY POLYGONACEAE 890 Bistorta officinalis Delarbre Circumboreale BX, KY, OH, PK, SK, VY 891 Bistorta vivipara (L.) Delarbre Artico-Alpino BX, KY 892 Fallopia convolvulus (L.) Á.Löve Cosmopolita * VY 893 Persicaria amphibia (L.) Delarbre Subcosmopolita IK, VY 894 Persicaria lapathifolia (L.) Delarbre Cosmopolita BX, KY, VY 895 Polygonum aviculare L. ssp. aviculare Cosmopolita EY, FH, KY, VY 896 Rumex acetosa L. ssp. acetosa Circumboreale BX, KY,SK. UX. VY 897 Rumex acetosella L. ssp. acetosella Subcosmopolita * VX 898 Rumex arifolius All. Eurasiatico KY, SW, VY 899 Rumex conglomeratus Murray Eurasiatico IY, KY 900 Rumex crispus L. Cosmopolita KY, MH, MY, SK, VY 901 Rumex nebroides Campd. Nord-Mediterraneo KY 902 Rumex obtusifolius L. ssp. obtusifolius Europeo-Caucasico KY, QK, RH 903 Rumex patientia L. ssp. patientia Europeo * QH, QY, VY 904 Rumex pulcher L. ssp. pulcher Subcosmopolita * VY 905 Rumex sanguineus L. Europeo-Caucasico * VY 906 Rumex scutatus L. ssp. scutatus Mediterraneo-Montano BX, FX, KY, VY CARYOPHYLLACEAE 907 Agrostemma githago L. Eurasiatico KY, SW 908 Arenaria bertolonii Fiori Endemico * BX 909 Arenaria grandifora L. ssp. grandifora Mediterraneo-Montano BX, HY, KY, OH 910 Arenaria serpyllifolia L. ssp. serpyllifolia Subcosmopolita FW, KY, VY 911 Cerastium arvense L. ssp. arvense Paleotemperato KY, SW, VY 912 Cerastium arvense L. ssp. suffruticosum (L.) Ces. Orof. Sud-Europeo HH, KY, VY 913 Cerastium brachypetalum Desp. ex Pers. ssp. roeseri (Boiss. & Heldr.) Nyman Mediterraneo-Turaniano * FW, VY 914 Cerastium cerastoides (L.) Britton Artico-Alpino HH 915 Cerastium glomeratum Thuill. Eurimediterraneo IY, KY, VY 916 Cerastium glutinosum Fr. Eurimediterraneo IY, KY 917 Cerastium holosteoides Fr. Eurasiatico VK, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 365 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 918 Cerastium pumilum Curtis Eurimediterraneo IY 919 Cerastium scaranoi Ten. Endemico * QH, QY, ZH 920 Cerastium thomasii Ten. Endemico HH, KY 921 Cerastium tomentosum L. Ovest-Europeo BX, CY, DW, FH, KY, NH, SK, TH, VY 922 Cherleria capillacea (All.) A.J. Moore & Dillenb. Orof. Sud-Europeo °° AY, BX, EY, IK, IY, KY 923 Dianthus barbatus L. ssp. compactus (Kit.) Heuff Orof. Sud-Europeo * VY 924 Dianthus brachycalyx A.Huet & É.Huet ex Bacch., Brullo, Casti & Giusso Endemico * SK, TH 925 Dianthus carthusianorum L. ssp. tenorei (Lacaita) Pignatti Endemico KY, OH, , SH 926 Dianthus ciliatus Guss. ssp. ciliatus Appennino-Balcanico KY, VY 927 Dianthus deltoides L. Eurasiatico BX, KY, SK, SW, VY, TH 928 Dianthus hyssopifolius L. Mediterraneo-Montano IY, KY, PK, VY 929 Dianthus virgineus L. Stenomediterraneo KY, SW, VY 930 Drypis spinosa L. ssp. spinosa Appennino-Balcanico BX, FH, KY, MY, OH, PK, VY 931 Gypsophila repens L. Orof. Sud-Europeo KY 932 Heliosperma pusillum (Waldst. & Kit.) Rchb. Mediterraneo-Montano. IY, KY 933 Herniaria bornmuelleri Chaudhri Endemico HY, KY 934 Herniaria glabra L. ssp. nebrodensis Nyman Orof. Sud-Est-Europeo HH 935 Herniaria incana Lam. Eurimediterraneo * SW, VY 936 Lychnis flos-cuculi L. ssp. flos-cuculi Europeo KY, OH, VY 937 Mcneillia graminifolia (Ard.) Dillenb. & Kadereit ssp. rosanoi (Ten.) F. Conti, Bartolucci, Iamonico & Del Guacchio Endemico KY, VY 938 Moehringia trinervia (L.) Clairv. Eurasiatico * VX, VY 939 Paronykia kapela (Hacq.) A. Kern. ssp. kapela Appennino-Balcanico BX, DW, KY, VY 940 Pethroragia prolifera (L.) P. W. Ball & Heywood Eurimediterraneo KY, VY 941 Pethroragia saxifraga (L.) Link ssp. saxifraga Eurimediterraneo IY, KY, VY, ZH 942 Polycarpon tetraphyllum (L.) L. ssp. tetraphyllum Eurimediterraneo * VY 943 Rabelera holostea (L.) M.T.Sharples & E.A.Tripp Eurasiatico KY, SW, VY 944 Sabulina glaucina (Dvořáková) Dillenb. & Kadereit Eurasiatico FW, KY 945 Sabulina tenuifolia (L.) Rchb.ssp. tenuifolia Paleotemperato FW, KY, VY 946 Sabulina verna (L.) Rchb. ssp. verna Eurasiatico HY, FY, HH, IY, LX, VY 947 Sagina glabra (Willd.) Fenzl Orof. Sud-Ovest-Europeo HH, IY, KY 948 Sagina procumbens L. ssp. procumbens Subcosmopolita * VY 949 Sagina saginoides (L.) H. Karst. ssp. saginoides Artico-Alpino * HY 950 Saponaria bellidifolia Sm. Appennino-Balcanico °° IY, KY, VY 951 Saponaria ocymoides L. ssp. ocymoides Mediterraneo-Montano °° BX, DW, KY 952 Saponaria officinalis L. Eurosiberiano KY, MK, NH. UX 953 Scleranthus annuus L. Paleotemperato * VY 954 Silene acaulis (L.) Jacq. ssp. bryoides (Jord.) Nyman Artico-Alpino HY, FY, HH, KY 955 Silene catholica (L.) W. T. Aiton Appennino-Balcanico AH, IY, KY 956 Silene conica L. Paleotemperato KY, VY 957 Silene dioica (L.) Clairv. Paleotemperato KY, SK 958 Silene italica (L.) Pers. ssp. italica Eurimediterraneo BX, FW, KY, OK, VY 959 Silene latifolia Poir. Paleotemperato BX, DW, KY, RK, RX, SH, TK, VY, ZH 960 Silene multicaulis Guss. ssp. multicaulis Appennino-Balcanico AY, KY 961 Silene nemoralis Waldst. & Kit. Eurimediterraneo. KY 962 Silene notarisii Ces. Endemico BX come Silene parnassica Boiss. & Spruner, FW, KY, MY, OH, PK, SW 963 Silene nutans L. Paleotemperato KY, VY 964 Silene otites (L.) Wibel ssp. otites Eurasiatico KY, VY 965 Silene saxifraga L. Orof. Sud-Europeo IY, VY 966 Silene tenuiflora Guss. Stenomediterraneo * ZH 967 Silene viridiflora L. Sud-Europeo * VY 968 Silene vulgaris (Moench) Garcke ssp. prostrata (Gaudin) Schinz & Thell. Orof. Sud-Ovest-Europeo AY, BX, KY 969 Silene vulgaris (Moench) Garcke ssp. vulgaris Paleotemperato BX, DW, KY, VY 970 Stellaria graminea L. Eurasiatico EY, IK, IY, KY,SW, VY 971 Stellaria media (L.) Vill. ssp. media Cosmopolita KY, VY 972 Stellaria nemorum L. ssp. montana (Pierrat) Berher Europeo-Caucasico KY, SW, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 366 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 AMARANTHACEAE 973 Amaranthus retroflexus L. Cosmopolita KY, VY 974 Atriplex patula L. ssp. patula Subcosmopolita * VY 975 Atriplex prostrata Boucher ex DC. Paleotemperato * VY 976 Beta vulgaris L. ssp. vulgaris Eurimediterraneo * VY 977 Blitum bonus-henricus (L.) Rchb. Circumboreale BX, FH, FX, HY, KY, VY 978 Chenopodiastrum hybridum (L.) S.Fuentes, Uotila & Borsch Circumboreale KY, VY 979 Chenopodiastrum murale (L.) S. Fuentes, Uotila & Borsch Subcosmopolita * VX 980 Chenopodium album L. ssp. album Cosmopolita BX, KY, VY 981 Chenopodium opulifolium Schrad. ex W.D.J.Koch & Ziz Europeo * VY 982 Chenopodium vulvaria L. Europeo * VY 983 Oxybasis urbica (L.) S.Fuentes, Uotila & Borsch Subcosmopolita * VY PORTULACACEAE 984 Portulaca trituberculata Danin, Domina & Raimondo Subcosmopolita KY, VY CORNACEAE 985 Cornus mas L. Pontico FH, IY, KY, MK, NH, NK, OK, VY 986 Cornus sanguinea ssp. hungarica (Kàrpàti) Soò Eurasiatico KY, NH, VY PRIMULACEAE 987 Androsace villosa L. ssp. villosa Orof. Eurasiatico BX, DW, HH, KY 988 Androsace vitaliana (L.) Lapeyr. ssp. praetutiana (Sund.) Kress Endemico BX, KY 989 Cyclamen hederifolium Aiton ssp. hederifolium Stenomediterraneo IY, KY, VH, VY 990 Cyclamen repandum Sm. ssp. repandum Nord-Mediterraneo IY, KY, VY, ZH 991 Lysimachia arvensis (L.) U. Manns & Anderb. ssp. arvensis Eurimediterraneo BX, KY, VY, ZH 992 Lysimachia linum-stellatum L. Stenomediterraneo * VY 993 Lysimachia vulgaris L. Eurasiatico * VY 994 Primula auricula L. ssp. ciliata (Moretti) Ludi Mediterraneo-Montano BX,DW, KY 995 Primula intricata Gren. & Godr. Orof. Sud-Europeo °° IK, KY 996 Primula veris L. ssp. columnae (Ten.) Maire & Petitm. Eurimediterraneo BX, FW, KY, UX 997 Primula vulgaris Huds. ssp. vulgaris Europeo BX, FH, IY, KY ERICACEAE 998 Arctostaphylos uva-ursi (L.) Spreng. Artico-Alpino CY, FH, FW, IIY, KY, RW, SK, VY 999 Orthilia secunda (L.) House Circumboreale KY, VY RUBIACEAE 1000 Asperugo procumbens L. Paleotemperato * VY 1001 Asperula arvensis L. Eurimediterraneo IY, KY 1002 Asperula laevigata L. Mediterraneo-Occidentale * VY 1003 Asperula taurina L. ssp. taurina Orof. Sud-Europeo IY, KY, VY 1004 Cruciata glabra (L.) C.Bauhin ex Opiz Eurasiatico IY, KY 1005 Cruciata laevipes Opiz Eurasiatico KY, VY 1006 Cruciata pedemontana (Bellardi) Ehrend. Eurimediterraneo * VY 1007 Cynanchica aristata (L.f.) P.Caputo & Del Guacchio Mediterraneo-Montano DW, KY, VY 1008 Cynanchica pyrenaica (L.) P.Caputo & Del Guacchio Eurimediterraneo KY, VY 1009 Galium album Mill. ssp. album Eurasiatico * BX 1010 Galium anisophyllon Vill. Orof. Centro-Europeo CY, KY 1011 Galium aparine L. Eurasiatico KY, VY 1012 Galium corrudifolium Vill. Stenomediterraneo FW, KY, VY 1013 Galium lucidum All. ssp. lucidum Eurimediterraneo AY, IY, KY 1014 Galium lucidum All. ssp. venustum (Jord.) Endemico AY, KY 1015 Galium magellense Ten. Endemico BX, DW, HY, HH, IY, KY 1016 Galium mollugo L. Eurasiatico BX, KY, VY 1017 Galium murale (L.) All. Stenomediterraneo * VY 1018 Galium odoratum (L.) Scop. Eurasiatico KY, VY 1019 Galium palustre L. Eurasiatico BX, KY, SK, TH, VY 1020 Galium parisiense L. Eurimediterraneo * VY 1021 Galium rotundifolium L. ssp. rotundifolium Eurasiatico KY 1022 Galium verum L. ssp. verum Eurasiatico BX, FH, IY, KY, QK, RH, RW, SK, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 367 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1023 Rubia peregrina L. ssp. peregrina Stenomediterraneo KY, VY 1024 Sherardia arvensis L. Eurimediterraneo FW, KY, VY 1025 Thliphthisa purpurea (L.) P.Caputo & Del Guacchio ssp. purpurea Orof. Sud-Est-Europeo KY, VY GENTIANACEAE 1026 Blackstonia perfoliata (L.) Huds. ssp. perfoliata Eurimediterraneo KY, VY 1027 Centaurium erythraea Rafn ssp. erythraea Paleotemperato KY, VY 1028 Centaurium tenuiflorum (Hoffmanns. & Link) Fritsch ssp. acutiflorum (Schott) Zeltner Paleotemperato * VY 1029 Gentiana cruciata L. ssp. cruciata Eurasiatico DW, KH, KX, KY, LX, MK, NH, VH 1030 Gentiana dinarica Beck Appennino-Balcanico BX, CY, IY, KY, OH, VY 1031 Gentiana lutea L. ssp. lutea Orof. Sud-Europeo DW, KH, KY, MY, OH, PK, PW, RH, VY, ecc. 1032 Gentiana nivalis L. Artico-Alpino SW 1033 Gentiana orbicularis Schur Orof. Sud-Europeo °° DW, KY 1034 Gentiana verna L. ssp. tergestina (Beck) Hayek Appennino-Balcanico °° BH, BX, KY 1035 Gentiana verna L. ssp. verna Orof. Eurasiatico DW, HY, KY, LW, VY 1036 Gentianella columnae (Ten.) Holub Endemico BX, HY, HH, KY, VY 1037 Gentianopsis ciliata (L.) Ma ssp. ciliata Mediterraneo-Montano KH, KY APOCYNACEAE 1038 Vinca major L. ssp. major Eurimediterraneo BX, KY, VY 1039 Vinca minor L. Europeo * KY, VY 1040 Vincetoxicum hirundinaria Medik. ssp. hirundinaria Eurasiatico BX, IY, KY, VY CONVOLVULACEAE 1041 Convolvulus arvensis L. Paleotemperato BX, KY, VY 1042 Convolvulus cantabrica L. Eurimediterraneo KY, VY 1043 Convolvulus sepium L. Eurasiatico KY 1044 Convolvulus silvaticus Kit. Sud-Europeo * VY 1045 Cuscuta europaea L. Paleotemperato KY, VY 1046 Cuscuta planiflora Ten. Eurimediterraneo AH, KY, VY SOLANACEAE 1047 Atropa bella-donna L. Mediterraneo-Montano BX, FH, HY, RX, SH, TK, VH, VY 1048 Datura stramonium L. ssp. stramonium Cosmopolita KY, PK, QH, QK 1049 Hyoscyamus niger L. Eurasiatico KY, VY 1050 Solanum dulcamara L. Paleotemperato KY, VY 1051 Solanum tuberosum L. Sud-Americano * VX, VY. Alloctona naturalizzata 1052 Solanum villosum Mill. Eurimediterraneo * VY BORAGINACEAE 1053 Aegonychon purpurocaeruleum (L.) Holub. Pontico IY, KY, VY, ZH 1054 Anchusa azurea Mill. Eurimediterraneo IY, KY 1055 Borago officinalis L. Eurimediterraneo KY 1056 Buglossoides arvensis (L.) I. M. Johnst. Eurimediterraneo KY, VY 1057 Cynoglossum apenninum L. Endemico BX, IY, KY, VY 1058 Cynoglossum columnae Ten. Appennino-Balcanico * VX 1059 Cynoglossum montanum L. Mediterraneo-Turaniano KY, VY 1060 Cynoglossum magellense Ten. Endemico FK, FY, IY, KY, VY 1061 Cynoglottiss barrellieri (All.) Vural & Kit Tan. ssp. barrellieri Appennino-Balcanico KY, SW, VY, ZH 1062 Echium italicum L. ssp. italicum Eurimediterraneo BX, KY, VY 1063 Echium plantagineum L. Eurimediterraneo * FW, VY, ZH 1064 Echium vulgare L. ssp. vulgare Europeo KY, VY, ZH 1065 Lithospermum offcinale L. Eurosiberiano KY 1066 Myosotis arvensis (L.) Hill ssp. arvensis Eurasiatico FW, KY, QH, VY 1067 Myosotis graui Selvi. Endemico DW, HY, FY, HH, IY, KY. Sono state ricondotte al taxon le segnalazioni di Myosotis alpestris F. W. Schmidt e M. ambigens (Bég.) Grau. 1068 Myosotis laxa Lehm. ssp. cespitosa (Schultz) Hyl. ex Nordh. Europeo * EX 1069 Myosotis nemorosa Besser Eurasiatico KY 1070 Myosotis ramosissima Rochel ssp. ramosissima Eurasiatico * VY 1071 Myosotis scorpioides L. ssp. scorpioides Europeo EX. KY 1072 Myosotis incrassata Guss. Appennino-Balcanico KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 368 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1073 Myosotis sylvatica Hoffm. ssp. sylvatica Paleotemperato IY, KY, VY 1074 Onosma echioides (L.) L. Appennino-Balcanico KY, VY 1075 Pulmonaria hirta L. Subendemico BX, IY, KY, PK, QK, VY HELIOTROPIACEAE 1076 Heliotropium europaeum L. Eurimediterraneo BX, KY, VY OLEACEAE 1077 Fraxinus angustifolia Vahl ssp. oxycarpa (M.Bieb. ex Willd.) Franco & Rocha Afonso Pontico * 1078 Fraxinus excelsior L. ssp. excelsior Europeo-Caucasico GK, KH, KX, KY, LW, LX, OK, VY 1079 Fraxinus ornus L. ssp. ornus Pontico IY, KY, VY 1080 Ligustrum lucidum W.T.Aiton Asiatico-Orientale * VY 1081 Ligustrum vulgare L. Europeo * FH, FW, LX, MK, NH, PW, OK, QW, RK, VY 1082 Olea europaea L. Stenomediterraneo KY 1083 Phillyrea latifolia L. Stenomediterraneo * VY 1084 Syringa vulgaris L. Orof, Sud-Est-Europeo * VY PLANTAGINACEAE 1085 Antirrhinum majus L. Mediterraneo-Occidentale KY 1086 Antirrhinum siculum Mill. Endemico * VY 1087 Chaenorhinum minus (L.) Lange ssp. minus Eurimediterraneo KY, VY 1088 Cymbalaria muralis Gaertn., B. Mey & Scherb. subsp muralis Subcosmopolita IY, KY, VY 1089 Cymbalaria pallida (Ten.) Wettst. Endemico BX, DW, KY 1090 Digitalis ferruginea L. Nord-Est-Mediterraneo DW, KX, KY, OK, PK, PW, QK, RK, VH, VY 1091 Digitalis micrantha Roth ex Schweigg. Endemico BX, DW, IK, KY, MK, OK, RX, SH, VY 1092 Erinus alpinus L. Mediterraneo-Montano * VK 1093 Globularia cordifolia L. ssp. bellidifolia (Nyman) Wettst. Appennino-Balcanico CY, KY, VY 1094 Globularia bisnagarica L. Mediterraneo-Montano KY 1095 Kickxia elatine (L.) Dumort. ssp. crinita (Mabille) Greuter Eurimediterraneo * VY 1096 Kickxia spuria (L.) Dumort. ssp. integrifolia (Brot.) R.Fern. Eurasiatico * VY 1097 Linaria alpina (L.) Mill. Mediterraneo-Montano °° BX, DW, KY 1098 Linaria purpurea (L.) Mill. Endemico BX, FH, FW, IY, KY 1099 Linaria simplex (Willd.) DC. Eurimediterraneo * VY 1100 Linaria vulgaris Mill. ssp. vulgaris Eurasiatico KY, VY 1101 Misopates orontium Raf. ssp. orontium Eurimediterraneo KY 1102 Plantago afra L. ssp. afra Stenonediterraneo * VY 1103 Plantago argentea Chaix ssp. argentea Sud-Europeo-Sud-Siberiano AY, BX, KY, VY 1104 Plantago atrata Hoppe ssp. atrata Mediterraneo-Montano HY, HH, IY, KY 1105 Plantago atrata Hoppe ssp. fuscescens (Jord.) Pilg Subendemico BX, KX, KY, MK 1106 Plantago lanceolata L. Cosmopolita BX, FW, KY, VY 1107 Plantago major L. Eurasiatico BX, IY, KY, VY 1108 Plantago media L. ssp. media Eurasiatico IY, KY, NX, OK, RX, SH, UX, VY 1109 Plantago sempervirens Crantz Eurimediterraneo KY 1110 Plantago subulata L. Mediterraneo-Occidentale IY, KY, SW, VY 1111 Veronica alpina L. Artico-Alpino * BX, IY 1112 Veronica anagallis-acquatica L. ssp. anagallis acquatica Cosmopolita EX, IK, KY, VY 1113 Veronica aphylla L. ssp. aphylla Orof. Centro-Europeo KY 1114 Veronica agrestis L. Europeo * VY 1115 Veronica arvensis L. Cosmopolita. BX, FW, KY, VY 1116 Veronica beccabunga L. Eurasiatico DW, EX, KY, VY 1117 Veronica catenata Pennell ssp. catenata Circumboreale * SW, VY 1118 Veronica chamaedrys L. Eurosiberiano IY, KY, SW, VY 1119 Veronica cymbalaria Bodard ssp. cymbalaria Eurimediterraneo BX, FW, KY 1120 Veronica hederifolia L. ssp. hederifolia Eurasiatico FW, KY 1121 Veronica kindlii Adamović Appennino-Balcanico * QH, QY 1122 Veronica montana L. Centro-Europeo KY, VY 1123 Veronica officinalis L. Orof. Eurasiatico * VY 1124 Veronica orsiniana Ten. ssp. orsiniana Orof. Sud-Europeo IY, KY, SW, VY 1125 Veronica persica Poir. Eurasiatico KY, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 369 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1126 Veronica polita Fr. Subcosmopolita KY, VY 1127 Veronica prostrata L. Eurasiatico IK, KY 1128 Veronica serpyllifolia L. Circumboreale KY, VY SCROPHULARIACEAE. 1129 Scrophularia canina L. Eurimediterraneo FK, KY, MK, VY 1130 Scrophularia juratensis Schleicher Orofita-Sud-Europeo KY 1131 Scrophularia nodosa L. Circumboreale KY, RH, RW, VY 1132 Scrophularia scopolii Hoppe ex Pers. Eurasiatico EX, KY, VY 1133 Scrophularia umbrosa Dumort. ssp. umbrosa Subatlantico KY, VY 1134 Scrophularia vernalis L. Europeo-Caucasico * VX, VY 1135 Verbascum densiflorum Bertol. Sud-Europeo DW, KY 1136 Verbascum longifolium Ten. Appennino-Balcanico AH, IY, KY, NH, VY 1137 Verbascum lychnitis L. Europeo-Caucasico * KY 1138 Verbascum macrurum Ten. Appennino-Balcanico * BX 1139 Verbascum mallophorum Boiss. & Heldr. Appennino-Balcanico BX, DW, KY, VY 1140 Verbascum nigrum L. Eurosiberiano BX, KY 1141 Verbascum phlomoides L. Eurimediterraneo AH, KY 1142 Verbascum pulverulentum Vill. Centro-Europeo KY 1143 Verbascum thapsus L. ssp. thapsus Europeo-Caucasico BX, DW, FH, KY, VY LAMIACEAE 1144 Ajuga chamaepitys (L.) Schreb. ssp. chia (Schreb.) Arcang. Eurimediterraneo AH, QH, QY 1145 Ajuga chamaepitys (L.) Schreb. ssp. chamaepitys Stenomediterraneo KY, VY 1146 Ajuga pyramidalis L. ssp. pyramidalis Europeo-Caucasico * ZH 1147 Ajuga reptans L. Europeo-Caucasico DW, IY, KY, NX, OK, VY 1148 Ajuga tenorei C.Presl Endemico KY 1149 Ballota nigra L. ssp. meridionalis (Bég.) Bég. Eurimediterraneo KY, VY 1150 Betonica alopecuros L. Orof. Sud-Europeo KY, VY 1151 Betonica officinalis L. Europeo-Caucasico FW, KY, VY 1152 Clinopodium nepeta (L.) Kuntze ssp. nepeta Mediterraneo-Montano BX, KY, VY 1153 Clinopodium vulgare L. ssp. vulgare Circumboreale KY 1154 Galeopsis angustifolia Hoffm. ssp. angustifolia Eurimediterraneo KY, VY 1155 Galeopsis ladanum L. Eurasiatico KY, SW 1156 Galeopsis tetrahit L. Eurasiatico KY 1157 Glechoma hirsuta Waldst. & Kit. Sud-Est-Europeo * QH, QY, VY 1158 Hyssopus officinalis L. ssp. aristatus (Godr.) Nyman Eurimediterraneo KY,VY, ZH 1159 Lamium album L. ssp. album Eurasiatico BX, KY 1160 Lamium amplexicaule L. Eurasiatico KY, VY 1161 Lamium bifidum Cirillo ssp. bifidum Stenomediterraneo * VY 1162 Lamium flexuosum Ten. Nord-Ovest-Mediterraneo KY 1163 Lamium galeobdolon (L.) L. ssp. montanum (Pers.) Hayek Europeo-Caucasico KY 1164 Lamium garganicum L. s.l. Mediterraneo-Montano IY, KY, VY 1165 Lamium maculatum L. Eurasiatico FW, IY, KY, KY 1166 Lamium purpureum L. Eurasiatico KY, VY 1167 Lycopus europaeus L. Circumboreale KY 1168 Marrubium incanum Desr. Sud-Est-Europeo BX, KY, SW, VY 1169 Melissa officinalis L. ssp. officinalis Eurimediterraneo * VY 1170 Melittis melissophyllum L. ssp. melissophyllum Europeo FW, IY, KY, VY, ZH 1171 Mentha arvensis L. Circumboreale DX, DZ, EX, KY, QY, VY 1172 Mentha longifolia (L.) Huds. Paleotemperato EX, IY, KY, SW, VY 1173 Mentha pulegium L. ssp. pulegium Subcosmopolita * VY 1174 Mentha spicata L. Eurimediterraneo IK, KY, VY 1175 Micromeria graeca (L.) Benth. ex Rchb. ssp. graeca Stenomediterraneo KY, VY 1176 Nepeta nuda L. ssp. nuda Sud-Europeo-Sud-Siberiano BX, IK, KY, NH, NX, QK, RH, RW, SK, TH, UX, VY 1177 Origanum vulgare L. ssp. vulgare Eurasiatico AK, KY, VY 1178 Prunella laciniata (L.) L. Eurimediterraneo KY, VY 1179 Prunella vulgaris L. Circumboreale KY, OK, PW, QW, RK, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 370 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1180 Salvia glutinosa L. Eurasiatico KY 1181 Salvia nemorosa L. ssp. nemorosa Sud-Europeo-Sud-Siberiano KY 1182 Salvia pratensis L. ssp. pratensis Eurimediterraneo FH, KY 1183 Salvia verbenaca L. Eurimediterraneo KY, VY 1184 Satureja montana L. ssp. montana Orof. Sud-Europeo IY, KY, VY 1185 Scutellaria alpina L. ssp. alpina Orof. Sud-Europeo IY, KY 1186 Scutellaria altissima L. Pontico * ZH 1187 Scutellaria columnae All. ssp. columnae Nord-Est-Mediterraneo KY, VY 1188 Scutellaria galericulata L. Circumboreale CX, EX, IK, KY, QH, QY, VY 1189 Stachys annua (L.) L. ssp. annua Eurimediterraneo IY, KY, VY 1190 Stachys italica Mill. Endemico AH, KY, VY 1191 Stachys germanica L. ssp. germanica Eurimediterraneo BX, IY, KY, LX, ZH 1192 Stachys germanica L. ssp. salviifolia (Ten.) Gams. Appennino-Balcanico BX, KY, VY 1193 Stachys recta L. ssp. recta Mediterraneo-Montano KY, SK, VY 1194 Stachys romana (L.) E. H. L. Krause Stenomediterraneo KY, VY 1195 Stachys sylvatica L. Eurosiberiano BX, KX, KY, NH, OK, PW, QW, RK, UX, VY 1196 Stachys tymphaea Hausskn. Appennino-Balcanico BX, KY, VY 1197 Stachys thirkei C. Koch Appennino-Balcanico * IK, QH, QY, VY 1198 Teucrium botrys L. Eurimediterraneo °° KY, VY 1199 Teucrium capitatum L. ssp. capitatum Stenomediterraneo BX, KY 1200 Teucrium chamaedrys L. ssp. chamaedrys Eurimediterraneo BX, KY,VY 1201 Teucirum flavum L. ssp. flavum Stenomediterraneo KY, VY 1202 Teucrium montanum L. Mediterraneo-Montano IY, KY, VY 1203 Teucrium scordium L. ssp. scordioides (Schreb.) Arcang. Europeo * VX 1204 Thymus longicaulis C. Presl. ssp. longicaulis Eurimediterraneo KY, ZH 1205 Thymus praecox Opiz ssp. polytrichus (Borbàs) Jalas Appennino-Balcanico BX, HY, HH, KY 1206 Thymus vulgaris L. ssp. vulgaris Stenomediterraneo KY 1207 Ziziphora acinos (L.) Melnikov Eurimediterraneo KY, VY 1208 Ziziphora granatensis (Boiss. & Reut.) Melnikov ssp. alpina (L.) Bräuchler & Gutermann Orof. Sud-Europeo BX, FH, FW, FY, HH, IY, KY, VY OROBANCHACEAE 1209 Euphrasia italica Wettst. Subendemico KY 1210 Euphrasia salisburgensis Funck ex Hoppe Europeo BX, KY 1211 Euphrasia stricta D.Wolff ex J.F.Lehm. Centro-Europeo * FW, VY 1212 Lathraea squamaria L. Eurasiatico KY 1213 Melampyrum arvense L. ssp. arvense Eurasiatico * FW, VX, VY 1214 Melampyrum barbatum Waldst. & Kit. ssp. carstiense Ronniger Appennino-Balcanico * VY 1215 Melampyrum italicum Soò Endemico KY 1216 Melampyrum nemorosum L. Eurasiatico IY, KY 1217 Odontites luteus (L.) Clairv. Eurimediterraneo KY 1218 Odontites vernus (Bellardi) Dumort. ssp. serotinus Corb. Eurasiatico KY, VY 1219 Orobanche caryophyllacea Eurimediterraneo FW, IY, KY, VY 1220 Orobanche crenata Forssk. Mediterraneo-Turaniano KY, VY 1221 Orobanche gracilis Sm. Europeo-Caucasico * FW, VY 1222 Orobanche hederae Vaucher ex Duby Eurimediterraneo * VY 1223 Orobanche minor Sm. Subcosmopolita * VY 1224 Orobanche reticulata Wallr. ssp. reticulata Centro-Europeo * QH, QY, VY 1225 Orobanche teucrii Holandre Orof. Sud-Europeo * VY 1226 Parentucellia latifolia (L.) Caruel Eurimediterraneo KY, VY 1227 Pedicularis comosa L. ssp. comosa Mediterraneo-Montano KY 1228 Pedicularis elegans Ten. Endemico BX, HY, KY, OH, SW, VY 1229 Pedicularis hoermanniana K. Malý Appennino-Balcanico HH, KY, LX, MK, MY, OH, OK, PK, QK, SW, VY, ecc. 1230 Pedicularis petoliaris Ten. Appennino-Balcanico IY, KX, KY 1231 Pedicularis verticillata L. ssp. verticillata Artico-Alpino VX 1232 Phelipanche purpurea (Jacq.) Soják Eurosiberiano * QH, QY, VY 1233 Rhinanthus alectorolophus (Scop.) Pollich ssp. alectorolophus Centro-Europeo KY, VY, ZH 1234 Rhinanthus minor L. Circumboreale IY, KY, LX, OH, PK, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 371 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1235 Rhinanthus wettsteinii (Sterneck) Soò Endemico * AY, BX VERBENACEAE 1236 Verbena officinalis L. Paleotemperato KY, VY AQUIFOLIACEAE 1237 Ilex aquifolium L. Subatlantico BX, EW, FH, FK, IY, KX, KY, LX, MK, NH, VY CAMPANULACEAE 1238 Campanula cochleariifolia Lam. Orof. Sud-Europeo * VX 1239 Campanula foliosa Ten. Orof. Sud-Est-Europeo * IK, KY, VY 1240 Campanula fragilis Cirillo ssp. cavolinii Ten. Endemico KX, KY, VH, VY 1241 Campanula glomerata L. Eurasiatico DW, FW, KX, KY, MK, NH, VY 1242 Campanula latifolia L. Europeo-Caucasico * ZH 1243 Campanula micrantha Bertol. Endemico * VY 1244 Campanula persicifolia L. ssp. persicifolia Eurasiatico KY, VY 1245 Campanula rapunculus L. Paleotemperato BX, DW, IY, KY, UX, VY, ZH 1246 Campanula scheuchzeri Vill. ssp. scheuchzeri Mediterraneo-Montano CY, DW, IY, KY, SW, VY 1247 Campanula tanfanii Podlech Endemico GH, KY 1248 Campanula trachelium L. ssp. trachelium Eurasiatico FW, IY, KY, LX, MK, OK, NH, RX, SH, TK, VY 1249 Edraianthus graminifolius (L.) A. DC. ssp. graminifolius Appennino-Balcanico HY, FY, HH, KX, KY, LX, RW, SK, VY 1250 Jasione montana L. Europeo-Caucasico * FK 1251 Legousia falcata (Ten.) Fritsch Stenomediterraneo * VY 1252 Legousia hybrida (L.) Delarbre Mediterraneo-Atlantico * VY 1253 Legousia speculum-veneris (L.) Chaix Eurimediterraneo KY, VY 1254 Phyteuma orbiculare L. Mediterraneo-Montano HY, HH, IY, KY, VY ASTERACEAE 1255 Achillea barrellieri Ten. ssp. barellieri Endemico DW, HY, HH, KY 1256 Achillea collina Becker ex Rchb. Sud-Est Europeo EY, KY 1257 Achillea millefolium L. ssp. millefolium Eurosiberiano BX, KY, VY 1258 Achillea setacea Waldst. & Kit. ssp. setacea Sud-Est-Europeo BX, IY, KY 1259 Achillea tenorei Grande Endemico IY, KH, KX, KY, LW, LX, MK, NH, RH, TH, VY, ecc. 1260 Adenostyles australis (Ten.) Iamonico & Pignatti Endemico IY, KX, KY, VY. E' stata ricondotta al taxon la segnalazione di Adenostyles alpina 1261 Antennaria dioica (L.) Gaertn. Circumboreale KY 1262 Anthemis arvensis L. ssp. arvensis Subcosmopolita KY, VY 1263 Anthemis cotula L. Eurasiatico * VX 1264 Anthemis cretica L. ssp. alpina (L.) R.Fern. Endemico KY 1265 Anthemis cretica L. ssp. petraea (Ten.) Greuter Endemico KY 1266 Arctium lappa L. Eurasiatico KY, NH, OK,VY 1267 Arctium minus (Hill) Bernh. Eurimediterraneo * VX 1268 Arctium nemorosum Lej. Subatlantico KY 1269 Artemisia absitnthium L. Subcosmopolita KY, VY 1270 Artemisia alba Turra Sud-Europeo AH, IY, KY, VY 1271 Artemisia eriantha Ten. Orof. Sud-Europeo DW, KY 1272 Artemisia vulgaris L. Circumboreale KY, VY 1273 Aster alpinus L. ssp. alpinus Circumboreale °° FY, HH, KY, OK, PW, QW, RK 1274 Bellidiastrum michelii Cass. Orof. Sud-Europeo * BX, VY 1275 Bellis perennis L. Circumboreale BX, KY,VY 1276 Bellis sylvestris Cirillo Stenomediterraneo FW, KY, VY 1277 Bombycilaeana erecta (L.) Smoljan Eurosiberiano * VX, VY 1278 Calendula arvensis L. Eurimediterraneo KY 1279 Calendula officinalis L. Mediterraneo-Occidentale * VY 1280 Carduus affinis Guss. ssp. affinis Endemico * VX 1281 Carduus chrysacanthus Ten. ssp. chrysacanthus Appennino-Balcanico FH, HH, KY 1282 Carduus corymbosus Ten. Endemico KY 1283 Carduus defloratus L. ssp. carlinifolius (Lam.) Ces. Orof. Sud-Europeo BH, BX, KY, VY 1284 Carduus nutans L. ssp. nutans Europeo KY, VY 1285 Carduus pycnocephalus L. ssp. pycnocephalus Eurimediterraneo IY, LX, VY 1286 Carlina acanthifolia Orof. Sud-Europeo FX, KY, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 372 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1287 Carlina acaulis L. ssp. caulescens (Lam.) Schubl. & G. Martens Europeo KY, VH, VY 1288 Carlina corymbosa L. Stenomediterraneo KY, SH, VY 1289 Carlina vulgaris L. ssp. spinosa (Velen.) Vandas Nord-Mediterraneo BX, KY, SH 1290 Carthamus lanatus L. ssp. lanatus Eurimediterraneo KY, VY 1291 Centaurea ambigua Guss. ssp. ambigua Endemico KY, VY 1292 Centaurea ambigua Guss. ssp. nigra (Fiori) Pignatti Endemico BX, KX, LX 1293 Centaurea calcitrapa L. Eurimediterraneo BX, KY. VY 1294 Centaurea ceratophylla Ten. ssp. ceratophylla Endemico KY, OH, PK, VY 1295 Centaurea cyanus L. Stenomediterraneo KY 1296 Centaurea deusta Ten. Eurimediterraneo KY 1297 Centaurea jacea L. ssp. gaudinii (Boiss. & Reut.) Gremli Orof. Sud-Europeo * QK, RH, RW, SK, UX, VY 1298 Centaurea jacea L. ssp. jacea Eurasiatico KY, MY, VH, VY 1299 Centaurea scabiosa L. ssp. scabiosa Eurasiatico HY, KY, VY 1300 Centaurea solstitialis L. ssp. solstitialis Stenomediterraneo BX, KY, VY 1301 Centaurea tenoreana Willk. Endemico BX, KY, VY 1302 Centaurea triumfetti All. Europeo-Caucasico BX, IY, KY, VY, ZH 1303 Chondrilla juncea L. Eurosiberiano BX, VY 1304 Cichorium intybus L. Paleotemperato KY, VY 1305 Cirsium acaulon (L.) Scop. ssp. acaulon Eurasiatico AH, EX, KY, VY 1306 Cirsium arvense (L.) Scop. Eurasiatico HY, KY, SH, SK, VY 1307 Cirsium creticum (Lam.) d'Urv. ssp. triumfettii (Lacaita) K.Werner Appennino-Balcanico * TK, UK 1308 Cirsium oleraceum (L.) Scop. Eurosiberiano KY 1309 Cirsium palustre (L.) Scop. Eurasiatico * QH, QY 1310 Cirsium vulgare (Savi) Ten. Paleotemperato KY, SH, TK, UK, VY 1311 Cota tinctoria (L.) J. Gaj ssp. tinctoria Pontico IY, KY, OH, PK,VY 1312 Crepis aurea (L.) Cass. ssp. glabrescens (Caruel) Arcang. Appennino-Balcanico HY, KY, SW, VY 1313 Crepis biennis L. Centro-Europeo KY, VY 1314 Crepis lacera Ten. Appennino-Balcanico AH, FH, FW, HY, KY, PK, QK, VY 1315 Crepis magellensis F. Conti & Uzunov Endemico * QH, QY, SW 1316 Crepis neglecta L. ssp. neglecta Eurimediterraneo HY, KY, VY 1317 Crepis pygmaea L. Orof. Sud-Ovest-Europeo °° KY 1318 Crepis sancta (L.) Babc. ssp. nemausensis (P. Fourn.) Babc. Mediterraneo-Turaniano KY,VY 1319 Crepis setosa Haller f. Mediterraneo-Orientale IY, KY 1320 Crepis vesicaria (L.) Subatlantico KY, VY 1321 Crupina crupinastrum (Moris) Vis. Stenomediterraneo * ZH 1322 Crupina vulgaris Cass. Eurosiberiano FK, IY, KY, VY, ZH 1323 Dittrichia viscosa (L.) Greuter ssp. viscosa Eurimediterraneo * VY 1324 Doronicum columnae Ten. Orof. Sud-Europeo FX, FY, Y, KX, KY, VY 1325 Echinops ritro L. ssp. ritro Stenomediterraneo KY 1326 Echinops siculus Strobl Endemico BX, KY, QH 1327 Echinops sphaerocephalus L. ssp. sphaerocephalus Eurasiatico BX, IK, KY, VH, VY 1328 Erigeron acris L. ssp. acris Circumboreale BX, VY 1329 Erigeron alpinus L. Orof. Eurasiatico * DW 1330 Erigeron bonariensis L. Americano BH, KY. Alloctona naturalizzata. 1331 Erigeron epiroticus (Vier.) Halàcsy Appennino-Balcanico HY, FY, HH, KY 1332 Erigeron sumatrensis Retz. Sud-Americano * VY. Alloctona naturalizzata. 1333 Erigeron uniflorus L. Artico-Alpino KY. VY 1334 Eupatorium cannabinum L. ssp. cannabinum Paleotemperato BX, KY, VY 1335 Helichrysum italicum (Roth) G. Don ssp. italicum Eurimediterraneo KX, KY, LX, VY, ZH 1336 Helminthotheca echioides (L.) Holub Eurimediterraneo KY, VY 1337 Hieracium acanthodontoides Arv.-Touv. & Belli Endemico * IX 1338 Hieracium bifidum Kit. ex Hornem. ssp. nummulariifolium Gottschl. Endemico IX, KY 1339 Hieracium huetianum Arv.-Touv. Appennino-Balcanico IX, KY 1340 Hieracium humile Jacq. ssp. brachycaule Vuk. ex Zahn Appennino-Balcanico IX, KY 1341 Hieracium hypochoeroides S.Gibson ssp. potamogetifolium Gottschl. Endemico IX, KY 1342 Hieracium montis-porrarae Gottschl. Endemico * IX, KY. QH ANNALES · Ser. hist. nat. · 35 · 2025 · 2 373 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1343 Hieracium murorum L. ssp. amaurocymum (Touton & Zahn ex Dalla Torre & Sarnth.) Greuter Orof. Sud-Est-Europeo °° BH, KY 1344 Hieracium murorum L. ssp. pleiotrichum (Zahn) Zahn Endemico * °° EY 1345 Hieracium murorum L. ssp. subintegerrimum Gottschl. Endemico IX, KY 1346 Hieracium orodoxum Gottschl. Endemico IX, KY, QH 1347 Hieracium pilosum Schleich. ex Froel. ssp. villosiceps Nägeli & Peter ex Gottschl. Orof. Sud-Est-Europeo BH, BX. KY 1348 Hieracium pseudogrovesianum Gottschl. ssp. circinans Gottschl. Endemico * IX 1349 Hieracium pseudopallidum Gottschl. Endemico IX, KY 1350 Hieracium racemosum Waldst. & Kit. ex Willd. ssp. crinitum (Sm.) Rouy Orof. Sud-Est-Europeo IX, KY 1351 Hieracium racemosum Waldst. & Kit. ex Willd. ssp. pulmonarifolium Endemico IX, KY 1352 Hieracium scorzonerifolium Vill. ssp. flexuosum Waldst. & Kit. ex Nägeli & Peter Orof. Sud-Est-Europeo IX, KY 1353 Inula helenium L. ssp. helenium Orof. Sud-Est-Europeo KY, QY, SH, TK, UK, VY 1354 Jacobaea alpina (L.) Moench ssp. samnitum (Nyman) Peruzzi Endemico EX, FH, LW, TH, UX, VY 1355 Jacobaea erucifolia (L.) G.Gaertn., B.Mey. & Scherb. ssp. erucifolia Eurasiatico * VY 1356 Jurinea mollis (L.) Rchb. ssp. mollis Sud-Est Europeo KY, VY 1357 Lactuca perennis L. Eurimediterraneo KY, VY 1358 Lactuca saligna L. Europeo * VX, VY 1359 Lactuca sativa ssp. serriola (L.) Galasso, Banfi, Bartolucci & Ardenghi Eurimediterraneo KY, VY 1360 Lactuca viminea (L.) J.& C. Presl. ssp. viminea Eurimediterraneo KY, MK, NH, VY 1361 Lactuca virosa L. Mediterraneo-Atlantico * VY 1362 Lapsana communis L. ssp. communis Paleotemperato KY, VY 1363 Leontodon crispus Vill. Sud-Europeo-Sud-Siberiano FW, HH, KY, VY 1364 Leontodon hispidus L. ssp. dubius (Hoppe) Pawłowska Orofita Sud-Europeo °° IY, KY, QY 1365 Leontodon hispidus L. ssp. hispidus Europeo-Caucasico VX, VY 1366 Leontodon rosanoi (Ten.) DC. Nord-Ovest-Mediterranaeo * VY 1367 Leontopodium nivale (Ten.) Huet ex Hand.-Mazz. Appennino-Balcanico FH, BX, DW, FY, KY 1368 Leucanthemum coronopifolium Vill. ssp. tenuifolium (Guss.) Vogt & Greuter Endemico BX, HY, KX, KY, LX, UX, VY 1369 Leucanthemum pallens (J.Gay ex Perreym.) DC. Eurimediterraneo * VX, VY 1370 Leucanthemum tridactylites (Kern. & Huter) Huter, Porta & Rigo Endemico HH, KY, SW 1371 Leucanthemum vulgare Lam. ssp. vulgare Eurimediterraneo FH. KY, ZH 1372 Lophiolepis eriophora (L.) Del Guacchio, Bureš, Iamonico & P.Caputo Centro-Europeo IW, KY 1373 Lophiolepis lobelii (Ten.) Del Guacchio, Bureš, Iamonico & P.Caputo Endemico FH, KY 1374 Lophiolepis tenoreana (Petr.) Del Guacchio, Bureš, Iamonico & P.Caputo Endemico KY, VH, VY 1375 Matricaria chamomilla L. Subcosmopolita KY. Alloctona naturalizzata. 1376 Mycelis muralis (L.) Dumort. Eurasiatico KY, RH, RW, SK, VY 1377 Omalotheca diminuta (Braun-Blanq.) Bartolucci & Galasso Appennino-Balcanico HY, HH, KY, SW 1378 Omalotheca sylvatica (L.) Sch.Bip. & F.W.Schultz Circumboreale * VY 1379 Onopordum acanthium L. Eurasiatico KY, RW, SK, SW, VH, VY, ZH 1380 Onopordum illyricum ssp. illyricum Stenomediterraneo KY 1381 Pallenis spinosa (L.) Cass. ssp. spinosa Eurimediterraneo BX, KY, VY 1382 Pentanema hirtum (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M.Mart.Ort. Sud-Europeo-Sud-Siberiano IY, KY 1383 Pentanema montanum (L.) D. Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M. Mart.Ort Mediterraneo-Occidentale KY, OH, PK, VY, ZH 1384 Pentanema salicinum (L.) D. Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M. Mart.Ort. Eurasiatico IY, KY, SH, VY 1385 Pentanema squarrosum (L.) D. Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M. Mart.Ort Centro-Europeo AH, EY, KY , VY 1386 Petasites albus (L.) Gaertn. Europeo KY 1387 Petasites hybridus (L.) P. Gaertn. B. Mey. & Scherb. Eurasiatico KY, VY 1388 Picnomon acarna (L.) Cass. Stenomediterraneo * VY 1389 Picris hieracioides L. ssp. hieracioides Eurosiberiano KY, VY 1390 Pilosella anchusoides Arv.-Touv. Europeo * °° IX 1391 Pilosella cymosa (L.) F.W. Schultz & Sch.Bip. Europeo * IX 1392 Pilosella hoppeana (Schult.) F.W.Schultz & Sch.Bip. ssp. macrantha (Ten.) S.Bräut. & Greuter Nord-Est-Mediterraneo BH, KY 1393 Pilosella officinarum Vaill. Europeo-Caucasico BH, HY, HH, IX, IY, KY 1394 Pilosella piloselloides (Vill.) Soják ssp. praealta (Vill. ex Gochnat) S. Bräut. & Greuter Europeo BH. IX, IY, KY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 374 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1395 Pilosella ziziana (Tausch) F.W. Schultz & Sch.Bip. Orof. Sud-Europeo IX. KY 1396 Prenanthes purpurea L. Europeo IX, KY, RH, RW, VY 1397 Ptilostemon strictus (Ten.) Greuter Appennino-Balcanico FW, KY, VY 1398 Pulycaria dysenterica (L.) Bernh. Eurimediterraneo KY, SH, TK, VY 1399 Reichardia picroides (L.) Roth Stenomediterraneo KY, VY 1400 Rhagadiolus stellatus (L.) Gaertn. Eurimediterraneo KY, VY 1401 Robertia taraxacoides (Loisel.) DC. Endemico FW, KY, VY 1402 Scolymus hispanicus L. Eurimediterraneo KY, VY 1403 Scorzonera cana (C.A. Mey.) Griseb. Pontico KY, VY 1404 Scorzonera laciniata L. ssp. laciniata Paleotemperato KY 1405 Scorzoneroides autumnalis (L.) Moench Paleotemperato BX, KY, MH, MY, OH, PK, SK, TH, VY 1406 Scorzoneroides montana (Lam.) Holub ssp. breviscapa (DC.) Greuter Endemico KY 1407 Scorzoneroides montana (Lam.) Holub ssp. melanotricha Orof. Sud-Est-Europeo HY, HH, IY, KY. Sono state ricondotte al taxon le segnalazioni di Leontodon montanus Lam. ssp. montanus. 1408 Senecio apenninus Tausch Endemico * VY 1409 Senecio doronicum (L.) L. Orof. Sud-Europeo KY, VY 1410 Senecio ovatus (G.Gaertn., B.Mey. & Scherb.) Willd. Centro-Europeo KY 1411 Senecio rupestris Waldst. & Kit. Orof. Sud-Est-Europeo * VX, VY 1412 Senecio scopolii Appennino-Balcanico KY, QY, VY 1413 Senecio vulgaris L. Eurimediterraneo FW, KY, VY 1414 Serratula tinctoria L. Eurosiberiano IK, KX, KY, LX, VY 1415 Silybum marianum (L.) Gaertn. Eurimediterraneo KY, VY 1416 Solidago virgaurea L. ssp. virgaurea Circumboreale KX, KY, VY 1417 Sonchus asper (L.) Hill. ssp. asper Eurasiatico BX, KY, VY, ZH 1418 Sonchus bulbosus (L.) N.Kilian & Greuter ssp. bulbosus Stenomediterraneo * VY 1419 Sonchus oleraceus L. Subcosmopolita KY 1420 Tanacetum corymbosum (L.) Sch.Bip. ssp. achilleae (L.) Greuter Sud-Est-Europeo IY, KY,VY, ZH 1421 Tanacetum parthenium (L.) Sch.Bip. Eurasiatico BX, KY, VY 1422 Taraxacum apenninum (Ten.) Ten. Endemico BX, HY, HH, KY, SW 1423 Taraxacum glaciale E. & A. Huet. ex Hand.-Mazz. Endemico HY, HH, KY 1424 Taraxacum officinale Weber Circumboreale FX, KY, VY 1425 Tephroseris integrifolia (L.) Holub ssp. integrifolia Artico-Alpino KY, VY 1426 Tragopogon crocifolius L. ssp. crocifolius Stenomediterraneo * VX 1427 Tragopogon eriospermus Ten. Eurimediterraneo * AY, BX, VH, VY 1428 Tragopogon porrifolius L. ssp. porrifolius Eurimediterraneo FK, IY, KY, SK, TH, VY, ZH 1429 Tragopogon pratensis L. Eurosiberiano FH, KY 1430 Tragopogon samaritanii Heldr. & Sartori ex Boiss. Appennino-Balcanico * VY 1431 Tripleurospermum inodorum (L.) Sch.Bip. Europeo KY, MW, QH, QK, QY, RH, VY 1432 Tussilago farfara L. Paleotemperato KY,VY 1433 Urospermum dalechampii (L.) F. W. Schmidt Eurimediterraneo KY, VY, ZH 1434 Urospermum picroides (L.) Scop. ex F.W.Schmidt Eurimediterraneo * VY 1435 Xanthium spinosum L. Sud-Americano * VY 1436 Xeranthemum cylindraceum Sm. Sud-Europeo-Sud-Siberiano KY, VY 1437 Xeranthemum inapertum (L.) Mill. Pontico KY, VY VIBURNACEAE 1438 Adoxa moschatellina L. subsp. moschatellina Eurasiatico * VX, VY 1439 Sambucus ebulus L. Eurimediterraneo KX, KY, LX, VY 1440 Sambucus nigra L. Europeo KY, VY 1441 Viburnum lantana L. Eurasiatico IY, KY, VY 1442 Viburnum tinus L. ssp. tinus Stenomediterraneo * PK, QK, VY, ZH CAPRIFOLIACEAE. 1443 Lonicera alpigena L. ssp. alpigena Orof. Sud-Europeo KY, MY, UX, VY 1444 Lonicera caprifolium L. Pontico BX, KY, NX, OK, SK, UX, VY 1445 Lonicera etrusca Santi Eurimediterraneo. KY, VY 1446 Lonicera implexa Aiton ssp. implexa Stenomediterraneo * VY 1447 Lonicera xylosteum L. Eurasiatico * VX ANNALES · Ser. hist. nat. · 35 · 2025 · 2 375 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 DIPSACACEAE 1448 Cephalaria leucantha (L.) Roem. & Schult. Sud-Europeo * BX, LX, VY 1449 Cephalaria transsylvanica (L.) Roem. & Schult. Pontico * VX, VY 1450 Dipsacus fullonum L. Eurimediterraneo BX, FX, OK, RX, SH, VH, VY 1451 Knautia calycina (C.Presl) Guss. Endemico * FW, VY 1452 Knautia dinarica (Murb.) Borbás ssp. silana (Grande) Ehrend. Endemico LY, QH, QY, VX, VY 1453 Lomelosia crenata (Cirillo) Greuter & Burdet ssp. crenata Sud-Mediterraneo BX, JW, QY, VY 1454 Lomelosia crenata (Cirillo) Greuter & Burdet subsp. pseudisetensis (Lacaita) Greuter & Burdet Endemico * QK, VY 1455 Lomelosia graminifolia (L.) Greuter & Burdet ssp. graminifolia Mediterraneo-Montano * PK, QK, VY 1456 Scabiosa columbaria L. ssp. columbaria Eurasiatico * VX 1457 Scabiosa holosericea Bertol. Orof. Sud-Est-Europeo * VX 1458 Scabiosa silenifolia Waldst. & Kit. Appennino-Balcanico * VY 1459 Scabiosa triandra L. Sud-Europeo KY 1460 Scabiosa uniseta Savi Endemico KY 1461 Sixalix atropurpurea (L.) Greuter & Burdet Stenomediterraneo * VX, VY VALERIANACEAE 1462 Centranthus angustifolius (Mill.) DC. ssp. angustifolius Mediterraneo-Occidentale °° KY, QH, QY 1463 Centranthus ruber (L.) DC. ssp. ruber Stenomediterraneo KY, VH, VY, ZH 1464 Valeriana montana L. Mediterraneo-Montano IY, KH, KX, KY, LW, VY 1465 Valeriana officinalis L. Europeo KY, MK, NH 1466 Valeriana saliunca All. Subendemico °° FY, HH, KY 1467 Valeriana stolonifera Czern. ssp. angustifolia Soó Centro-Europeo IY, KY 1468 Valeriana tripteris L. ssp. tripteris Mediterraneo-Montano KY 1469 Valeriana tuberosa L. Mediterraneo-Montano FW, KY, MK, VY 1470 Valerianella carinata Loisel. Mediterraneo-Orientale * FW 1471 Valerianella coronata (L.) DC. Eurimediterraneo KY 1472 Valerianella locusta (L.) Laterr. Subcosmopolita * VX ARALIACEAE 1473 Hedera helix L. ssp. helix Mediterraneo-Atlantico IY, KY, VY APIACEAE 1474 Aegopodium podagraria L. Eurosiberiano * RW, SK, SW, VY 1475 Aethusa cynapium L. Eurosiberiano * VY 1476 Anethum piperitum Ucria Mediterraneo-Macaronesico * VY 1477 Angelica sylvestris L. Eurosiberiano DY, KH, KY, VY 1478 Anethum foeniculum L. Eurimediterraneo KY 1479 Anethum piperitum Ucria Mediterraneo-Macaronesico * VK 1480 Anthriscus caucalis M.Bieb. Paleotemperato * FW 1481 Anthriscus nitida (Wahlenb.) Hazsl. Pontico IY, KY, QH, VY 1482 Anthriscus sylvestris (L.) Hoffm. Paleotemperato BX 1483 Apium graveolens L. Paleotemperato * VY 1484 Astrantia major L. ssp. involucrata (W.D.J.Koch) Ces. Europeo AY, BX. IY, KY, MK, NH, VY 1485 Bunium bulbocastanum L. Ovest-Europeo BX, KY, VY, ZH 1486 Bunium petraeum Ten. Endemico BX, KY 1487 Bupleurum baldense Turra Eurimediterraneo EY, IK, IY , KY, VY 1488 Bupleurum falcatum L. ssp. cernuum (Ten.) Arcang. Orof. Sud-Europeo AH, EY, IK, KY, VY 1489 Buplerurum praealtum L. Pontico KY, VY 1490 Carum carvifolium (DC.) Arcang. Appennino-Balcanico BX, KY, VY 1491 Carum heldreichii Boiss. Appennino-Balcanico * VX 1492 Caucalis platycarpos L. Mediterraneo-Turaniano KY 1493 Cervaria rivini Gaertn. Eurosiberiano * VY 1494 Chaerophyllum aureum Nord-Mediterraneo FH, IY, KY, OH, OK, PK, QK, VY 1495 Chaerophyllum hirsutum L. Orof. Centro-Europeo EX, KY, MK, VY 1496 Chaerophyllum magellense Ten. Endemico * EY 1497 Chaerophyllum nodosum (L.) Crantz Stenomediterraneo * ## VY 1498 Chaerophyllum temulum L. Eurasiatico BX, IY, KY, OH, VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 376 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 1499 Conium maculatum L. ssp. maculatum Eurimediterraneo KY, PK, QK, TH 1500 Coristospermum cuneifolium (Guss.) Bertol. Endemico IY, KY, VY 1501 Daucus carota L. ssp. carota Paleotemperato BX, FH, FX, HY, KY, OK, PW, QW, RK. SH. VY 1502 Eryngium amethystinum L. Sud-Est-Europeo BX, EY, IK , KY, PK, QK, SH, TK, UK, VH 1503 Eryngium campestre L. Eurimediterraneo BX, KY, TK, UK, VY 1504 Foeniculum vulgare Mill. ssp. vulgare Eurimediterraneo KY, VY 1505 Heracleum sibiricum L. ssp. ternatum (Velen.) Briq. Orof. Sud-Est-Europeo * PK, QK, RH, RW, SK, VY 1506 Heracleum sphondylium L. Paleotemperato KY, NH, OK, PW, QW, RK, VY 1507 Katapsuxis silaifolia (Jacq.) Reduron, Charpin & Pimenov Sud-Est-Europeo * VY 1508 Laserpitium latifolium L. Europeo IY, KY, VY 1509 Oenanthe fistulosa L. Eurasiatico KY 1510 Oenanthe pimpinelloides L. Mediterraneo-Atlantico * VY 1511 Opopanax chironium (L.) W.D.J.Koch Stenomediterraneo BX, IY, KY, OH, PK, RH, RW, SK, SW, VY 1512 Oreoselinum nigrum Delarbre Europeo-Caucasico * VX 1513 Orlaya grandiflora (L.) Hoffm. Centro-Europeo BX, KY, VY, ZH 1514 Orlaya platycarpos W.D.J. Koch. Stenomediterraneo BX, IY, VY 1515 Pastinaca sativa L. ssp. urens (Req. ex Godr.) Celak. Eurosiberiano BX, FX, KY, SH, VY 1516 Pimpinella major (L.) Huds. Europeo-Caucasico BX, KY 1517 Pimpinella saxifraga L. ssp. saxifraga Europeo KY, VY 1518 Pimpinella tragium Vill. Eurimediterraneo BX, KY, VY 1519 Sanicula europea L. Mediterraneo-Montano IY, KY, MK, NH, VY 1520 Scandix pecten-veneris L. Subcosmopolita * VK, VY 1521 Seseli libanotis (L.) W.D.J. Koch Centro-Europeo BX, IY, KY 1522 Seseli montanum L. ssp. montanum Mediterraneo-Montano IY, VY 1523 Seseli tommasinii Rchb. Appennino-Balcanico KY 1524 Siler montanum Crantz ssp. garganicum (Ten.) Iamonico, Bartolucci & F. Conti Mediterraneo-Turaniano AY, KY 1525 Siler montanum Crantz ssp. stabianum (Lacaita) F.Conti & Bartolucci Endemico IY, KY, VY 1526 Sison amomum L. Submediterraneo * VY 1527 Thapsia asclepium L. Stenomediterraneo * FW, VY 1528 Tordylium apulum L. Stenomediterraneo FK, KY, VY 1529 Tordylium maximum L. Eurimediterraneo * VY 1530 Torilis africana Spreng. Subcosmopolita * VY 1531 Torilis arvensis (Huds.) Link Subcosmopolita BX, KY, PK, QK, VY 1532 Torilis japonica (Houtt.) DC. Subcosmopolita * VY 1533 Trinia dalechampii (Ten.) Janch. Appennino-Balcanico HY, HH, IY, KY, OH, PK, SW, VY 1534 Trinia glauca (L.) Dumort. ssp. glauca Sud-Est-Europeo * KY 1535 Xanthoselinum venetum (Spreng.) Soldano & Banfi Sud-Ovest-Europeo * VY ANNALES · Ser. hist. nat. · 35 · 2025 · 2 377 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 FLORA PALENE (NACIONALNI PARK MAJELLA): FLORISTIČNA POSODOBITEV Amelio PEZZETTA Via Monteperalba 34, 34149 Trieste e-mail: fonterossi@libero.it Marco PAOLUCCI Contrada Sant’Antonio 24 – 66041 Atessa (Ch) e-mail: majella@virgilio.it POVZETEK To delo predstavlja nadaljevanje prispevku iz leta 2012 in prispeva posodobljen floristični seznam taksonov, ugotovljenih na preučevanem območju. Sestava novega kontrolnega seznama je bistvenega pomena, ker so nedavne študije privedle do taksonomskih revizij, novih zapisov in izključitve drugih takso- nov, ki so bili prej obravnavani kot prisotni. Trenutni floristični seznam vključuje 1535 taksonov, vključno s 162 endemičnimi vrstami, kar povečuje fitogeografski pomen preučevanega območja. Horološki spekter kaže, da pripadajo zabeleženi taksoni 47 različnim horotipom, razdeljenim v 9 geografskih kontingentov. Ključne besede: Palena, Abruci, flora, reka Aventino ANNALES · Ser. hist. nat. · 35 · 2025 · 2 378 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 BIBLIOGRAFIA Abbate, E. (1903): La flora. In: Guida d’Abruzzo. CAI, Roma, 115 pp. Ballelli, S. (1999): Aspetti ecologici e fitosociologici di Crepis bithynica Boiss. (Asteraceae): specie nuova per la flora italiana. Fitosociologia, 36, 97-102. Baltisberger, M. (1981): Verwandtschaftsbeziehun- gen zwischen der Gruppe des Ranunculus polyanthemos L. und R. repens L. sowie Arten der Gruppen des R. acris L. und des R. bulbosus L., Bot. Helvetica, 91, 61-74. Bartolucci, F., L. Peruzzi, G. Galasso, A. Alessandri- ni, N. Ardenghi, G.L. Bacchetta, E. Banfi, G. Barberis, L. Bernardo, D. Bouvet, M. Bovio, G. Calvia, M. Castello, L. Cecchi, E. Guacchio, G.A. Domina, S. Fascetti, L. Gallo, G. Gottschlich, F. Conti (2024): A second update to the checklist of the vascular flora native to Italy. Plant Biosystems, 158, 219-296. Bergfeld, D. (2018): Ergänzungen zur Orchideen- flora der italianischen Regionen Abruzzen und Molise. Jour. Europ. Orch. 50, 273-298. Blasi, C., R. Di Pietro & G. Pelino (2006): The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy), Plant Biosystems, 139(3), 357-385. Bongiorni, L., De Vivo R., Fori S., Romano V.A.& R. Romolini (2005): Considerazioni sulle popolazioni di Epipactis purpurata J.E. Smith - Epipactis pollinensis B. Baumann & H. Baumann in Italia (Orchidaceae). GIROS notizie, 31, 12-15. Bruschi, P., D. Di Santo, P. Grossoni & C. Tani (2006): Caratterizzazione tassonomica del pino nero della Majella. Atti del Convegno “Biodiversità vegetale delle aree protette in Abruzzo, studi ed esperienze a confronto”. Documenti tecnico-scientifici del Parco Nazionale della Majella 3, 241-251. Celesti-Crapow, L., F. Pretto, E. Carli & C. Blasi (2010): Flora alloctona e invasiva d’Italia. Casa Editrice Università La Sapienza, Roma. Cesati, V. (1872): Piante della Majella e del Morrone e delle loro adiacenze in Abruzzo Citeriore. Stamperia Univ., Napoli. Ciaschetti, G., F. Bartolucci, F. Conti & L. Di Martino (2015): Contributo alla flora del Parco Nazionale della Majella. Micol. Veget. Medit., 30(1), 65-72. Ciaschetti, G. & M. Di Cecco (2023): Ulteriore contributo alla flora vascolare del Parco Nazionale della Maiella e aree limitrofe. Not. Soc. Bot. Ital., 7, 1-6. Ciaschetti, G., M. Di Cecco & M. Biagioli (2019): Il raduno GIROS a Palena (Abruzzo, 31 maggio – 3 giugno 2018). GIROS Orch. Spont. Eur., 1, 250-255. Conti, F. (1987): Contributo alla conoscenza della flora della Majella. Archivio Botanico e Biogeografico Italiano, 63(1/2), 7-99. Conti, F., A. Manzi & F. Pedrotti (1997): Liste Rosse Regionali delle Piante d’Italia. WWF Italia, Società Bo- tanica Italiana, Roma. Conti, F., P. Guarrera & F. Tammaro (1986): Segn. Fl. Ital.: 395. Inform. Bot. Ital., 18(1-3), 200. Conti, F., F. Pedrotti & G. Pirone (1990): Su alcune piante notevoli rinvenute in Abruzzo, Molise e Basilica- ta. Arch. Bot. Ital., 66 (3-4), 182-196. Conti, F. (1992): Note floristiche per l’Italia cen- tro-meridionale. Arch. Bot. Ital., 68 (1/2), 26-34. Conti, F. (1997): Sulla distribuzione in Italia di Alopecurus aequalis Sobol, e Alopecurus geniculatus L. (Gramineae). Webbia, 52(1), 129-135. Conti, F. (1998): Flora d’Abruzzo. Bocconea, 10, Palermo. Conti, F., F. Bartolucci, G. Ciaschetti, A. Manzi & L. Di Martino (2020): Flora del Parco Nazionale della Majella. San Giovanni Teatino (CH). Conti, F., F. Bartolucci, M. Ciocchi & D. Tinti (2011): Atlas of the pteridological knowledge of Abruzzo (Cen- tral Italy). Webbia, 66(2), 251-305. Conti, F., G. Ciaschetti, L. Di Martino & F. Bartoluc- ci (2019): An annotaded chck-list of the vascular flora of Majella National Park (Central Italy). Phytotaxa, 412, 1-90. Conti, F., P. Guarrera, A. Manzi & M. Pellegrini (1986): Nuove stazioni di Juniperus sabina L. per la Majella e Parco Nazionale d’Abruzzo, sua distribuzione nell’Italia Centrale e impieghi tradizionali. Inform. Bot. Ital., 18, 117-122 Conti, F. & M. Pellegrini (1988): Secondo contributo alla flora della Majella. Archivio Botanico e Biogeografi- co Italiano, 64(1/2), 34-42. Conti, F. & M. Pellegrini (1990): Orchidee spontanee d’Abruzzo. Edizioni Cogecstre, Penne (PE). Conti, F. & D. Uzunov (2011): Crepis magellensis F. Conti & Uzunov (Asteraceae), a new species from Central Apennine (Abruzzo, Italy). Candollea, 66(1), 81-86. Daiss, H. & H. Daiss (1996): Orchideen um die Majella, (Abruzzen, Italien). Jour. Eur. Orch., 28, 603- 640. Di Fabrizio, A. (2006): Vegetazione d’alta quota del- la Majella: ampliamento delle conoscenze nel settore sud orientale. Tesi di Laurea. Università Politecnica delle Marche, Facoltà di Agraria, Ancona. Di Renzo, A. (2004): Ricerca floristica nel Vallone d’Izzo (Massiccio della Majella Orientale). Tesi di lau- rea. Università degli Studi di Padova. Facoltà di Scienze fisiche, matematiche e naturali. Anno Accademico 2003-2004. Feoli Chiapella, L. (1981): Contributo alla cono- scenza della flora della Majella. Delpinoa, n.s., 21-22 (1979-1980), 97-133. Feoli Chiapella, L. (1982): Contributo alla conoscen- za della flora della Majella. II. Alcuni Hieracium rari o nuovi per l’Appennino. Archivio Botanico e Biogeogra- fico Italiano, 58(3/4), 140-154. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 379 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Frizzi, G. (2012): A passeggio tra le più suggestive gole rupestri d’Abruzzo tra storia e natura. Natura e Montagna 2, 15-23. Galasso, G., F. Conti, L. Peruzzi, A. Alessandrini, N.M.G. Ardenghi, G. Bacchetta, E. Banfi, G. Barberis, L. Bernardo, D. Bouvet, M. Bovio, M. Castello, L. Cec- chi, E. Del Guacchio, G. Domina, S. Fascetti, L. Gallo, R. Guarino, L. Gubellini, A. Guiggi, N. Hofmann, M. Iberite, P. Jiménez-Mejías, D. Longo, D. Marchetti, F. Martini, R.R. Masin, P. Medagli, C.M. Musarella, S. Peccenini, L. Podda, F. Prosser, F. Roma-Marzio, L. Rosati, A. Santangelo, A. Scoppola, A. Selvaggi, F. Selvi, A. Soldano, A. Stinca, R. P. Wagensommer, T. Wilhalm & F. Bartolucci (2024): A second update to the checklist of the vascular flora alien to Italy. Plant Biosystems, 158(2), 297-340. Galetti, G. (1995): Fiori della Majella, D’Abruzzo Libri, Ed. Menabò. Ortona (Ch). Galetti, G. (2002): Osservazioni floristiche. In AA. VV.: Guida all’alta via della Majella. Natura e presenza umana in un ambiente estremo. Pescara. Galetti, G. (2002): Osservazioni floristiche. In Co- mitato Scientifico “Filippo Di Donato del club Alpino di Pescara (a cura), Guida all’Alta Via della Majella. Natura e presenza umana in un ambiente estremo. Carsa Ed., Pescara, pagg.72-99. Gallo, L. (2012): Sempervivum ×luisae Gallo (Crassulaceae) hybr. nov., endemico dell’Italia centrale. Annali dei Musei Civici-Rovereto. Sezione Archeologia, Storia, Scienze Naturali, 27, 287-296. Giardino Botanico Daniela Brescia di Sant’Eufemia a Majella (Pe) Italy (2022-24): Index seminum 2012, 2013, 2014, 2015, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024. https://www.parcomajella.it/In- dex-seminum.htm. Giardino Botanico Michele Tenore Lama dei Peligni (Ch) Italy (2012-2024): Index seminum 2012, 2013, 2014, 2015, 2016, 2018, 2020, 2022, 2023, 2024. https://www.parcomajella.it/Index-seminum.htm. GIROS, (a cura) (2016): Orchidee d’Italia: guida alle orchidee spontanee. Ed. Il Castello, Cornaredo (Mi). Gottschlich, G. (2009): Die gattung Hieracium (Compositae) in die Region Abruzzen (Italien). Stapsia, 89, Linz. Greuter, W., H.M. Burdet & G. Long (1984-1989): Med. Check List I (1984), III (1986), IV (1989). Ed. Con- servatoire et Jardin Botanique de la ville de Geneve. Griebl, N. (2010): Die Orchideen den Abruzzen. Ber. A.H.O., 27(2), 123-170. Hertel, S. & H. Presser (2009): Zur Kenntnis der Italienischen Orchideen. Nachtrag. J. Eur. Orch., 41(1), 195-209. Kalteisen, M. & H.R. Reinhard (1987): Das Areal von Ophrys promontorii O. & E. Danesch. Mitt. AHO Baden-Württ., 19(4), 801-821. Manzi, A. (1993): Note floristiche per le regioni Abruz- zo e Marche. Archivio Botanico Italiano, 68, 173-180. Manzi, A. (1999): Le piante alimentari in Abruzzo. Tinari (Ch). Manzi, A., (2006): Origine e storia delle piante colti- vate in Abruzzo. Lanciano (Ch). Manzi, A. & M. Pellegrini (1992): L’avifauna nidificante nei diversi tipi di vegetazione del piano carsico “Quarto di Santa Chiara” (Abruzzo). Alula, 1(1-2), 96-101. Migliaccio, F. (1966): La vegetazione a Pinus pumilio della Majella. Annali di Botanica (Roma), 28, 539-550. Paolucci, M. (2022): Altre piante della Flora d’A- bruzzo. http://pallano.altervista.org/altre-piante-del- la-flora-d-abruzzo.html. Peruzzi, L., F. Bartolucci, G. Astuti, L. Bernardo & F. Conti (2013): Knautia dinarica (Caprifoliaceae): taxo- nomy, typification and update of the Italian distribution. Phytotaxa, 166, 34-40. Peccenini, S. (2012): The genus Erysimum (Brassica- ceae) in Italy, part I. Ann. Naturhist. Mus. Wien, 114, 95-128. Peccenini, S. & A. Polatschek (2016): The genus Ery- simum (Brassicaceae) in Italy, part III: Key to the species and description of the new species E. apenninum, E. etruscum, E. pignattii. Ann. Naturhist. Mus. Wien, 118, 147-166. Petriccione, B. (1988): Osservazioni sulla distribu- zione e sull’ecologia della vegetazione 1a Pinus mugo sugli Appennini. Arch. Bot. Ital., 64(3-4), 103-141. Pezzetta, A. (1998): Il clima di Palena. Rivista abruz- zese, 4, 351-352. Pezzetta, A. (2001): Variazioni climatiche lungo il versante orientale della Majella. Bollettino della Società Geografica Italiana, 1/2, 219-234. Pezzetta, A. (2010): Gli elementi orientali Appenni- no-Balcanici, Illirici, Pontici e Sud-Est-Europei della flo- ra italiana: origini e distribuzione geografica. Annales, Ser. Hist. Nat., 20(1), 76-88. Pezzetta, A. (2019): Le Orchidaceae del Parco Na- zionale della Maiella. Gortania, 41, 9-30. Pezzetta, A., M. Di Cecco & D. Di Santo (2012): Prodromo della flora di Palena. (Regione Abruzzo, Parco Nazionale delle Majella). Annales, Ser. Hist. Nat., 22, 145-212. Pezzetta, A., M. Paolucci & M. Pellegrini (2022): Le Orchidaceae della Provincia di Chieti (Abruzzo): aggior- namento sistematico e nuove stazioni di presenza. Atti Mus. Civ. Stor. Nat. Trieste, 63, 67-140. Pica, A., D. Berardi & G. Ciaschetti (2023): Prime segnalazioni di Anacamptis berica in Abruzzo e Molise. GIROS Orch. Spont. Eur., 1, 78-85. Pignatti, S., R. Guarino & M. La Rosa (2017-2019): Flora d’Italia, Ed. 2 (voll. 1-4). Edagricole, Bologna. Pirone, G. (2015): Alberi, arbusti e liane d’Abruzzo. Edizioni Cogecstre, Penne (Pe). Poldini, L. (1991): Atlante corologico delle piante vascolari nel Friuli Venezia Giulia. Udine. ANNALES · Ser. hist. nat. · 35 · 2025 · 2 380 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI PALENA (PARCO NAZIONALE DELLA MAJELLA): AGGIORNAMENTO FLORISTICO, 337–380 Ricceri, C., B. Moraldo & G. Pisani (2018): Contri- buto alla conoscenza di Viola L. sect. Melanium Ging. (Violaceae) dell’Appennino centro-meridionale e della Sicilia (Italia). BOLLAG, 51(381), 181-234. Rigo, G. (1877): Relazione botanica del viaggio ese- guito da Porta e Rigo nelle provincie meridionali d’Italia dalla fine di marzo fino a tutto 10 agosto 1875. Nuovo Giorn. Bot. Ital., 9, 283-317. Rivas Martinez, S. (1996): Classification bioclimática de la tierra. Folia Botanica Madritensis, 16, 1-29. Romolini, R. & R. Soca (2011): New species in Ophrys (Orchidaceae) to the Italian and French Florae. J. Eur. Orch., 43(4), 750-784. Romolini, R. & R. Souche (2012): Ophrys d’Italia. Editions Sococor, Saint Martin de Londres. Simeone, M.C., R. Bellarosa, G. Tucci & B. Schirone (2006): Indagini preliminari sulla diversità genetica presente negli ecosistemi forestali del Parco Nazionale della Majella. Atti del Convegno “Biodiversità vegetale delle aree protette in Abruzzo, studi ed esperienze a confronto”. Documenti tecnico-scientifici del Parco Nazionale della Majella, 3, 225-240. Soca, R. (2017a): Inventory of Ophrys (Orchidaceae) hybrids of Italy. J. Eur. Orch., 49(3-4), 565-642. Soca, R. (2017b): Ophrys molisana in Abruzzo and Latium (Central Italy). J. Eur. Orch., 49(2), 361-386. Souche, R. (2022): Inventaire des Hybrides du genre Ophrys (Orchidaceae). Editions Sococor, Saint Martin de Londres. Stanisci, A., G. Pelino & A. Guisan (2006): Cam- biamenti climatici ed effetti sulla flora d’alta quota nel Parco Nazionale della Majella. In: La Biodiversità vege- tale nelle aree protette in Abruzzo: studi ed esperienze a confronto. Botolini, Rocca S. Giovanni (Ch). Tammaro, F. (1971): Su alcune entità di Monte Sirente di particolare interesse fitogeografico. Biogeo- graphia, 2, 89-106. Tammaro, F. (1986a): Documenti per la conoscen- za naturalistica della Majella: repertorio sistematico della flora. Regione Abruzzo, Centro Servizi Culturali, Chieti. Tammaro, F. (1986b): Systematic and biometrie study on Gentiana gr. orbicularis (Gentianaceae) from the Centrai Apenines (ltaly). Arch. Bot. Biogeogr. Ital., 62(1-2), 51-68. Tammaro, F. (1998): Il paesaggio vegetale dell’A- bruzzo. Cogecstre Ed. Penne (Pe). Tammaro, F. & L. Veri (1975): Un’escursione sulla Majella. Natura e Montagna, 3, 55-64. Tandè, A. (2012): A la découverte des orchidées de l’Italie du sud, fin mai 2009: Massifs du Cilento, du Pollino et des Abruzzes. Orchidophile, 193, 97-107. Tenore, M. (1832): Relazione del viaggio fatto in alcuni luoghi di Abruzzo Citeriore nella state del 1831. Napoli. Villani, A. (1921): Primo contributo allo studio della Flora della Provincia di Chieti. Nuovo Giorn. Bot. Ital., 28, 69-111. Wagensommer, R.P., R. Di Pietro & F. Conti (2011): Notulae alla checklist della flora vascolare italiana 10. 1726. Informatore Botanico Italiano, 42, 524. SITOGRAFIA ASPETTANDO L’EVENTO. PALENA (CH) Raduno GIROS 2018 31 MAGGIO – 3 GIUGNO Evento «Nel paese delle orchidee III edizione» 1-3 GIUGNO 2017. www: Naturgucker. De. DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS ANNALES · Ser. hist. nat. · 35 · 2025 · 2 383 REVIVING LANDSCAPES, CONNECTING SPECIES: LESSONS FROM THE RECO PROJECT The ReCo project (Interreg Central Europe 2021–2027) demonstrates how coordinated ecosys- tem restoration and enhanced ecological coopera- tion can foster recovery of biodiversity along the European Green Belt. This unique corridor, span- ning over 12,500 km and connecting 24 countries along the former Iron Curtain, represents a remark- able natural and cultural heritage. Serving as the backbone of the Pan-European Ecological Network, the Green Belt significantly contributes to Europe’s green infrastructure. The area encompasses 40 na- tional parks, and within a 50-km buffer on either side, over 3,200 protected areas which collectively cover almost all European biogeographical regions. Building on six transboundary pilot actions, the ReCo project applied geo-information tools, data-driven management, and community-based approaches to counteract the degradation of key habitats and species. Its pilots demonstrate how res- toration actions can be successfully transferred to other regions facing similar ecological challenges. The project also developed practical guidance for practitioners, prepared regional restoration plans, and supported policy integration, thereby contrib- uting to the EU Biodiversity Strategy for 2030 and reinforcing the European Green Belt as a backbone for ecological coherence across the continent. The project’s significance and broader policy relevance were highlighted at the final ReCo conference, held on 5th of November 2025 at the European Parliament in Brussels. The event brought together Members of the European Parliament, rep- resentatives of the European Commission, national ministries, project partners, and NGOs from across Europe. Hosted by MEP Prof. dr. Danuše Nerudová, the conference emphasized the Green Belt as both a biodiversity corridor and a symbol of European cooperation. In her opening remarks, she described it as a connecting element of natural and cultural heritage, and a testament to the EU’s commitment to nature conservation and restoration. The presenta- tion of the ReCo results showcased the importance of cross-border collaboration, habitat restoration, and species conservation across the six pilot regions in Poland, the Czech Republic, Germany, Austria, Italy, and Slovenia. A high-level panel discussion explored the Green Belt’s role in shaping EU bio- diversity policy, the practical challenges of restora- tion, and opportunities for future cooperation and sustainable development. The conference provided a comprehensive overview of project achievements, facilitated knowledge exchange and offered strate- gic insights on strengthening the Green Belt as a model for transnational ecosystem restoration. The ReCo pilot actions provide practical ex- amples of ecosystem restoration and connectivity enhancement. In Poland, Federacja Zielonych GAJA together with the West Pomeranian Nature Society strengthened the free-ranging European bison (Bos bonasus) population in the Ińsko Lakeland through long-term management, including breeding, rein- troductions, GPS monitoring, winter feeding, vet- erinary care, and conflict mitigation. In Germany, BUND (Friends of the Earth Germany, Bavarian branch) and in the Czech Republic, Ametyst NGO, restored habitats for the freshwater pearl mussel (Margaritifera margaritifera) and the marsh fritil- lary butterfly (Euphydryas aurinia) by dismantling drainage infrastructure, removing non-native afforestation, rewetting wetlands and improving ReCo ANNALES · Ser. hist. nat. · 35 · 2025 · 2 384 water quality and gravel-bed conditions, while also re-establishing the host plant Succisa pratensis. Along the Austrian–Czech border, Nationalpark Thayatal and Národní park Podyjí carried out a controlled reintroduction of the European wildcat (Felis silvestris), supported by camera trapping, ge- netic sampling, and GPS telemetry of two released individuals, complemented by the creation of na- tive shrub corridors and stepping-stone habitats to facilitate safe movements. In Slovenia, BSC Kranj cooperated with local farmers to revitalise species- rich alpine meadows around Mount Golica by adapting mowing regimes, removing invasive shrub encroachment and reseeding with native species, while also engaging the public through innova- tive AR/VR tools and volunteer-based traditional land-management activities. On the Pian del Grisa Plateau in Italy, WWF Italy restored degraded karst heathland and dry grassland by manually remov- ing invasive shrubs, propagating native species in local nurseries and replanting them to enhance habitat continuity. Across all pilots, the combina- tion of scientific monitoring, local knowledge and cross-border cooperation has proven essential for building resilient ecosystems and strengthening ecological connectivity throughout the Green Belt. First professional excursion of the ReCo project in the Czech Republic (photo: Sonia Pytkowska). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 385 Based on this transnational framework, the pilot action implemented at the Škocjanski zatok Nature Reserve further demonstrates how climate-adaptive restoration can strengthen ecological resilience in coastal wetlands. Škocjanski zatok is a brackish nature reserve shaped by the dynamic interaction of marine and terrestrial habitats, making it highly sensitive to climate-induced sea-level rise and altered hydrological conditions. These pressures threaten halophytic vegetation, bird-nesting sites and the long-term stability of wetland communi- ties, highlighting the need for adaptive manage- ment. The restoration pilot interventions focused on creating new habitats and enhancing ecosystem functionality. Two shallow mudflats in the central part of the lagoon were established in 2023, us- ing redistributed sediment, which supported the expansion of halophytic vegetation and provided secure nesting sites for waterbirds, especially colonial-nesting terns. Initial monitoring has produced promising results: within one year, new breeding colonies of the common tern (Sterna hirundo) and the little tern (Sternula albifrons) formed on the newly created islands, while vegetation surveys confirmed the expected development of halophytic communities. These outcomes demonstrate that targeted micro- topographic interventions can effectively strengthen the ecological functionality and climate resilience of brackish lagoons. The pilot demonstrates the transferability of methods such as artificial mudflat creation using locally sourced sediment, microhabi- tat shaping and adaptive water level management to other Mediterranean brackish wetlands. Technical approaches, such as sediment relocation with float- ing excavators, and integration of community sci- ence and public awareness activities are especially applicable to protected coastal zones. The project also provides a legal and procedural blueprint for restoration within protected areas, including As part of the ReCo project, two new mudflats were created in the brackish lagoon of Škocjanski zatok (photo: Archive ŠZNR). ANNALES · Ser. hist. nat. · 35 · 2025 · 2 386 obtaining conservation consents and collaborating with municipal and port authorities. Most importantly, the ReCo project fostered opportunities for expertise to be intertwined with relationships across multiple European borders, demonstrating that restoring ecosystems and re- connecting habitats is most successful when built on shared knowledge, cross-border cooperation and evidence-based practice. The pilot actions, from large herbivore conservation, wetland res- toration, species reintroduction, alpine meadow revitalisation to karst landscape management, show how locally implemented interventions can contribute to a coherent ecological network stretching across Europe. By integrating scientific monitoring, traditional land-management knowl- edge, community engagement and innovative tools, the project created a set of practical models that can be replicated well beyond the Green Belt. Research co-financed by the "ReCo – Restoring degraded ecosystems along the Green Belt to improve and enhance biodiversity and ecological connectivity" (CE0100098) project, supported by the Interreg Central Europe Programme with co-financing from the European Regional Devel- opment Fund 2021–2027. Bojana Lipej DOPPS-BirdLife Slovenia IN MEMORIAM ANNALES · Ser. hist. nat. · 35 · 2025 · 2 389 IN MEMORIAM V SPOMIN MARJANU RICHTERJU (1935 - 2025) Vem za vrt pod morjem Lep in molčeč Tvoja zibelka in grob (Pesem iz Markeških otokov) Na začetku poletja nas je zapustil starosta slo- venskega podvodnega filma in podvodne fotografije Marjan Richter. Marjan je bil eden zadnjih pionirjev slovenske potapljaške zgodovine, če odmislimo že zdavnaj preminule Račane, pravzaprav zadnji. Kot mlademu fantu so mu bili Račani vzor in navdih, zato se jim je v rani mladosti tudi sam pridružil in se od njih marsikaj naučil. Njegovi sopotniki, kot so bili tisti, ki so se udeležili prve slovenske odprave na arhipelag Dahlak v Rdečem morju so tudi že prah, ki je potonil in se zlil v neskončno modrino. In zdaj se jim je pridružil tudi Marjan, kot zadnji med njimi. Spet so združeni in spet se bodo lahko skupaj odpravili raziskovat neznane globine in vse kar je tam živega. Marjana sem spoznal kmalu po tistem, ko sem se kot biolog in potapljač začel zanimati za podvodno fotografijo. Marjan je o njej vedel vse, a še več, čeprav brez formalne izobrazbe in akademskih naslovov, je vedel o morski biologiji. Med biologi je imel veliko znancev in prijateljev, tako da to nje- govo znanje pravzaprav ni bilo tako presenetljivo in rad ga je delil tudi z nami mlajšimi. Spomnim se dolgih pogovorov, ko sva se nekaj poletij zapored z mojim avtom skupaj vozila na krajše potapljaške tabore v Žrnovnico pri Sv. Juraju pod Velebitom. Tam so znamenite vrulje, kjer je tudi sam z Račani začenjal svoje podmorske izlete. Podvodni izviri sladke vode, ki ustvarjajo posebno okolje z bogatim življenjem, so ga privlačili tudi kasneje in o njih in tamkajšnjem življenju sva veliko razpravljala. Marjan mi je tudi odprl nova obzorja, zanimanje za zelo majhne organizme, plankton in tudi alge, ki jih je še posebno radovedno preučeval. Pa tudi o bogatem življenju pod in med obrežnimi kamni, kar večina potapljačev v iskanju »večjih zverin« skoraj vedno spregleda. Marjan je najraje raziskoval in fotografiral kar na domačem dvorišču ob njemu ljubi Piranski punti. Leta so minevala in Marjan je prispeval tudi pomembno poglavje in fotografije o algah in morskih cvetnicah v moji knjigi Pod gladi- no Mediterana (2007). Ne dolgo tega sem ga prav v zvezi s tem hotel poklicati, ker pripravljam novo iz- dajo in sem ga hotel povabiti k sodelovanju, čeprav sem se zavedal, da mu leta ne prizanašajo. Te knjige žal ne bova napisala skupaj, bosta pa njegova de- diščina in izročilo vidna tudi tokrat. Še prej sva se kar nekajkrat pogovarjala o njegovih načrtih, kajti želel je napisati knjigo o koraligenski biocenozi, tej najbolj pestri in vrstno bogati biocenozi Sredo- zemskega morja. Te načrte mu je prekrižala starost in je idejo kasneje opustil. Tudi kasneje pa se je še kako dobro zavedal nevarnosti, ki preti tej krhki združbi, zlasti zaradi segrevanja morja, kajti dviga temperature v njej živeči organizmi dolgoročno ne prenesejo. Prav naravovarstvena problematika je bila tudi velikokrat tema najinih pogovorov. V teh pogovorih je pogosto izrazil skrb kaj se dogaja z morjem, saj se je še dobro spominjal časov, ko je bilo morje in življenje v njem precej drugačno kakor je danes. Marjan je imel obsežen arhiv svojih pod- vodnih posnetkov, večinoma v obliki diapozitivov, v zadnjem obdobju, ko je še zahajal v podmorje, pa je svoje doživljaje in morske organizme beležil tudi z digitalnim fotoaparatom. Tako se je v desetletjih nabralo ogromno gradiva, ki ga bo v dogovoru z njegovo hčerko prevzelo Prirodoslovno društvo. Tako bosta njegova fotografska dediščina in arhiv podvodne fotografije ohranjena in na razpolago vsem, ki bi jih to zanimalo ali bi želeli določene posnetke uporabiti. Marjan Richter (foto: Borut Furlan) ANNALES · Ser. hist. nat. · 35 · 2025 · 2 390 Marjan je bil dolgo časa zaposlen na RTV in verjetno prvi, ki je snemal pod vodo. Njegovo znanje o filmu in podvodni fotografiji je bilo za tiste čase pionirsko in hkrati edinstveno. V knjigi Podmorski svet in mi je zapisal tudi tole: «Ob tihih in mirnih večerih ali pa ko je burja zavijala mimo skal, smo vedno obujali podmorska doživetja preteklega dne. Ugotovil sem, da nisem edini, ki sem se spraševal …in želel, da bi iz morja ponesli s seboj za spomin še kaj več kot samo izsušene ali v formalinu konzervirane živali. Menili smo, da bi nejevernim Tomažem najlaže dopovedali, kakšna je podmorska pokrajina, če bi naša doživetja posneli na film« Kasneje je veliko teh doživetij prelil na film in še več na fotografski film, na koncu pa celo na digitalne kartice. Marjan je bil tudi eden od pobudnikov in protagonistov fotolova, tekmovanj v podvodni fotografiji, katerega namen je bil na film ujeti čim več vrst rib. Skupaj s »Pirančani«, kot sta Tine Valentinčič in tudi že pokojni Milan Orožen Adamič, so bili prvi pobudniki teh tekmovanj, ki so se kasneje razvila in uveljavila tudi drugod po Sredozemlju. Marjanovo vodilo je bilo, da ribo na posnetku lahko prodaš večkrat, na krožniku le enkrat. To je bil tudi razlog, da si s podvodnimi ribiči, ki jih je imenoval »ribopičniki«, nikoli ni bil prav blizu. Svoja doživetja je širil tudi skozi različne zapise in predavanja, bil je dejaven v Prirodoslovnem društvu, dolga leta je bil član ure- dniškega odbora Proteusa, za katerega je napisal številne članke s podmorsko tematiko. Bil je tudi avtor oziroma soavtor nekaj knjig o življenju v morju, najbolj znano njegovo delo je Naše Morje, kjer opisuje živi svet Tržaškega zaliva (2005), v katerega se je vedno rad vračal. Marjan je bil tudi eden glavnih protagonistov dokumentarnega filma »Lovci teme« (2008), v katerem smo predstavili vso zgodovino potapljanja v Sloveniji. Marjana sem poznal kot tihega in mirnega člove- ka, ki pa se je razvnel ob vsakem pogovoru o morju. Morje je imel v sebi in morje ima zdaj Marjana. Naj njegova duša mirno plava v tihi modrini in občudu- je tisto, kar živi ne moremo videti. Tom Turk Univerza v Ljubljani 391 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 KAZALO K SLIKAM NA OVITKU SLIKA NA NASLOVNICI: Sprehajalčki (družina Tripterygiidae) so bližnji sorodniki babic (Blenniidae), od katerih se ločijo predvsem po tem, da imajo hrbtno plavut razdeljeno na tri dele. Sredozemske vrste so tudi bolj pisane od večine babic. To velja tudi za pritlikavega sprehajalčka (Tripterygium melanurus). (Foto: Tihomir Makovec) Sl. 1: Ker je za mnoge babice značilen kriptobentoški način življenja, jih najpogosteje odkrivamo in beležimo z vizualnimi metodami popisa, bodisi s potapljanjem na vdih bodisi z avtonomnim potapljanjem. Starševsko skrb navadno prevzamejo samci, ki pripravijo gnezda in privabljajo samice, da jih obiščejo in vanje odložijo jajca. Takšen vzorec je značilen tudi za rdečepikasto babico (Microlipophrys canevae). (Foto: Tihomir Makovec) Sl. 2: Večina populacij navadnega morskega biča (Dasyatis pastinaca) v Sredozemskem morju močno upada in jim grozi veliko tveganje izumrtja. Čeprav morski bič navadno ni tarča komercialnega ribolova, se pogosto ulovi kot prilov v vlečne in zabodne mreže ter v parangale. (Foto: Borut Mavrič) Sl. 3: Kot uspešen primer podnebju prilagojene obnove obalnega mokrišča, izvedene v okviru projekta ReCo, Škocjanski zatok dokazuje, da lahko s ciljnim ustvarjanjem habitatov in prilagodljivim upravljanjem okrepimo odpornost brakičnih lagun. (Foto: Bojana Lipej) Sl. 4: Velika babica (Parablennius gattorugine) je precej pogosta riba plitvih obalnih skalnatih habitatov. Je zelo teritorialna in vztrajno brani svoje gnezdo in zavetje, ki se nahaja v razpoki v skalnatem grebenu. (Foto: Tihomir Makovec) Sl. 5: Morski kelih, Calyx nicaeensis (Risso, 1826), je endemična sredozemska vrsta čašaste kremenaste spužve, ki velja za redko vrsto s potrebo po ohranjanju. Med letoma 2023 in 2025 je bilo na skalnatih osamelcih v Tržaškem zalivu prvič opaženih več primerkov te vrste. (Foto: Borut Mavrič) Sl. 6: Čreda prostoživečih zobrov (Bison bonasus) v Zahodnem Pomorjanskem. Čreda predstavlja eno ključnih populacij, ki prispevajo k obnavljanju evropskega bizona v severozahodni Poljski. (Foto: Aneta Kozłowska) INDEX TO PICTURES ON THE COVER FRONT COVER: Triplefin blennies (family Tripterygiidae) are close relatives of combtooth blennies (Blenniidae), differing mainly in having a tripartite dorsal fin. The Mediterranean species are also more colorful than most blennies. This is also true of the small triplefin blenny (Tripterygion melanurus). (Photo: Tihomir Makovec) Fig. 1: Since many blennies have a cryptobenthic lifestyle, they are detected and recorded mainly through visual census methods, either by snorkeling or by diving. They generally exhibit male parental care, with males preparing nests and attracting females to visit and lay their eggs. This pattern is also characteristic of Caneva’s Blenny (Microlipophrys canevae). (Photo: Tihomir Makovec) Fig. 2: Most populations of the common stingray (Dasyatis pastinaca) in the Mediterranean Sea are in serious decline and face a high risk of extinction. Although stingrays are generally not targeted by commercial fisheries, they are frequently caught as bycatch in bottom trawls, gillnets, and longlines. (Photo: Borut Mavrič) Fig. 3:  As a successful example of climate-adaptive coastal wetland restoration carried out within the ReCo project, Škocjanski zatok demonstrates that targeted habitat creation and adaptive management can strengthen the resilience of brackish lagoons.  (Photo: Bojana Lipej) Fig. 4: The tompot blenny (Parablennius gattorugine) is a fairly common fish in shallow littoral rocky habitats. It is highly territorial and tenaciously defends its nest and shelter, which is typically located in a crevice in the rocky reef. (Photo: Tihomir Makovec) Fig. 5: The cup-shaped demosponge, Calyx nicaeensis (Risso, 1826), is an endemic Mediterranean species, classified as rare. Between 2023 and 2025, many specimens were recorded for the first time on the rocky outcrops in the Gulf of Trieste. (Photo: Borut Mavrič) Fig. 6: A herd of free-living European bison (Bison europaeus) in Western Pomerania. The herd represents one of the key populations contributing to the ongoing restoration of the European bison in northwestern Poland. (Photo: Aneta Kozłowska) 392 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 35, Koper 2025 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2025(1) BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Okan AKYOL, Oğuzhan TAKICAK & Hasan TARUN A Fugitive Lessepsian Fish in a Sea-Cage Farm in the Aegean Sea: Stephanolepis diaspros (Monacanthidae) ................................ Ubežni lesepski migrant iz ribogojnice v Egejskem morju: Stephanolepis diaspros (Monacanthidae) Nicola BETTOSO, Lisa FARESI, Valentina TORBOLI & Jose A. CUESTA Additional Record of the Pea Crab Pinnotheres bicristatus (Brachyura: Pinnotheridae) in the Adriatic Sea .................... Dodatni zapis o pojavljanju stražne rakovice vrste Pinnotheres bicristatus (Brachyura: Pinnotheridae) v Jadranskem morju Alan DEIDUN, Sarah BAUMANN, Bruno ZAVA & Maria CORSINI-FOKA Confirming the Occurrence of the Non-Indigenous Pteragogus trispilus (Actinopterygii: Labridae) within Maltese Waters ................................................ Potrditev pojavljanja tujerodne ustnače vrste Pteragogus trispilus (Actinopterygii: Labridae) znotraj malteških voda Deniz ERGÜDEN, Yusuf Kenan BAYHAN, Sibel ALAGÖZ ERGÜDEN & Deniz AYAS A New Ichthyological Record and Distributional Update for Epigonus denticulatus Dieuzeide, 1950 in Turkish Mediterranean Waters ........................... Nov ihtiološki zapis in podatki o razširjenosti rjavega veleokca, Epigonus denticulatus Dieuzeide, 1950 v turških sredozemskih vodah Sara LADOUL, Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ On the Occurrence of Cornish Blackfish Schedophilus medusophagus (Osteichthyes: Centrolophidae) from the Maghreb Shore (Southwestern Mediterranean Sea) ................... Potrjena prisotnost meduzojeda Schedophilus medusophagus (Osteichthyes: Centrolophidae) z magrebske obale (jugozahodno Sredozemsko morje) Christina MICHAIL & Francesco TIRALONGO First Occurrence of Ariidae in Cypriot Waters – a Major Contribution to Biodiversity ............................. Prvo pojavljanje predstavnikov iz družine Ariidae v ciprskih vodah – velik prispevek k biodiverziteti SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Lovrenc LIPEJ, Riccardo BATTISTELLA, Borut MAVRIČ & Danijel IVAJNŠIČ An Insight into the Diet of the Bull Ray, Aetomylaeus bovinus (Geoffroy Saint-Hilaire, 1817) in the Northern Adriatic Sea ...................................... Vpogled v prehranjevalne navade kljunatega morskega goloba, Aetomylaeus bovinus (Geoffroy Saint-Hilaire, 1817) v severnem Jadranu Cem ÇEVİK, Deniz ERGÜDEN & Deniz AYAS A New Capture Record of Alopias superciliosus Lowe, 1841 from the Turkish Coast (Northeastern Mediterranean) ...... Nov ulov velikooke morske lisice Alopias superciliosus Lowe, 1841 iz turške obale (severovzhodno Sredozemlje) 1 7 13 21 35 27 43 55 393 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 Cem DALYAN, N. Bikem KESİCİ, Elif YÜCEDAĞ BAKIR, Yunus GÖNÜL & Hakan KABASAKAL No Longer as Common as its Name: a Review of the Occurrence of Torpedo torpedo (Linnaeus, 1758) (Chondrichthyes: Elasmobranchii) in Turkish Waters, with Photographic Evidence ............................. Ni več tako pogost kot njegovo ime: pregled pojavljanja okatega električnega skata Torpedo torpedo (Linnaeus, 1758) (Chondrichthyes: Elasmobranchii) v turških vodah s fotografskimi dokazi Deniz ERGÜDEN, Cemal TURAN, Servet Ahmet DOĞDU & Deniz AYAS Disc Deformity in a Juvenile Female Brown Ray, Raja miraletus (Family: Rajidae), from Northeastern Mediterranean (Türkiye) ................. Deformacija diska pri juvenilni samici modropege raže, Raja miraletus (družina: Rajidae), iz severovzhodnega Sredozemskega morja (Turčija) Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ On an Old Record of the Smalltooth Sand Tiger Shark Odontaspis ferox (Chondrichthyes: Odontaspididae) from the Algerian Coast (Southwestern Mediterranean Sea) ........................ O starem zapisu o drobnozobem morskem biku Odontaspis ferox (Chondrichthyes: Odontaspididae) z alžirske obale (jugozahodno Sredozemsko morje) Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Plastic Debris-Induced Fin Damage in the Smoothhound, Mustelus mustelus .............. Poškodbe plavuti pri navadnem morskem psu, Mustelus mustelus, zaradi plastičnih odpadkov Nicolas ZIANI, Florane TONDU, Rémi BRU, Chloé MOSNIER, Sarah FOXONET, Ruben Bao GALLIEN, Mathias POULY, Modan Lou TONIETTO, Lucille VERDON, Eloïse DEYSSON, Alessandro DE MADDALENA & Hakan KABASAKAL Bite Marks Observed on a Large Female White Shark Carcharodon carcharias Off Camargue, France Provide Potential Insights into the Reproduction of the Mediterranean Population ................................ Sledovi ugrizov na veliki samici belega morskega volka Carcharodon carcharias pri Camargu (Francija) kažejo na možno razmnoževanje sredozemske populacije MORSKA FAVNA FAUNA MARINA MARINE FAUNA Sihem RAFRAFI-NOUIRA, RIMEL BENMESSAOUD, Mourad CHÉRIF, Christian REYNAUD & Christian CAPAPÉ Morphological Deformities in a Common Two-Banded Sea Bream, Diplodus vulgaris (Osteichthyes: Sparidae), from Northern Tunisian Waters (Central Mediterranean Sea) ............................ Morfološke deformacije pri fratru, Diplodus vulgaris (Osteichthyes: Sparidae), iz severnih tunizijskih vod (osrednje Sredozemsko morje) Abdelkarim DERBALI, Aymen HADJ TAIEB & Wassim KAMMOUN The Current Status of Polititapes aureus (Mollusca: Bivalvia) in the Coastal Zone of Sfax, Tunisia (Central Mediterranean) .................................... Trenutno stanje vrste Polititapes aureus (Mollusca: Bivalvia) na obalnem območju Sfaxa v Tuniziji (osrednje Sredozemlje) Neža LEBAN & Valentina PITACCO Current Knowledge on the Distribution of the Poorly Known Echiurid Species Maxmuelleria gigas (M. Müller, 1852) in the Slovenian Sea ......................................... Trenutno poznavanje prostorske razporeditve manj poznane vrste zvezdaša Maxmuelleria gigas (M. Müller, 1852) v slovenskem morju Jan MALEJ, Tjaša KOGOVŠEK, Martin VODOPIVEC, Janja FRANCÉ, Patricija MOZETIČ, Matevž MALEJ & Alenka MALEJ Long-Term Study of Zooplankton Biomass in the Gulf of Trieste (Adriatic Sea) ...... Dolgoročna študija zooplanktonske biomase v Tržaškem zalivu (Jadransko morje) Sihem RAFRAFI-NOUIRA, Rimel BENMESSAOUD, Mourad CHÉRIF, Christian REYNAUD & Christian CAPAPÉ Occurrence of the Longjaw Snake Eel, Ophisurus serpens (Ophichthidae), in Tunisian Waters (Central Mediterranean Sea) ..... Pojavljanje zobate jegulje, Ophisurus serpens (Ophichthidae), iz tunizijskih voda (osrednje Sredozemsko morje) 83 73 91 65 125 117 109 133 145 97 394 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 FLORA FLORA FLORA Martina ORLANDO-BONACA, Artur BONACA, Diego BONACA & Ana ROTTER Seagrasses: a Promising Source of Bioactive Compounds for Human Health Applications .......................................... Morske cvetnice: obetaven vir bioaktivnih spojin za uporabo v zdravstvu OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Shin-ichi Uye Book review: Mirrors of the Sea: When Science and Art Meet. 30 Years of the Unesco Intergovernmental Oceanographic Commission in Slovenia ................................... Kazalo k slikam na ovitku ................................... Index to images on the cover ............................ 153 167 169 169 395 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 VSEBINA / INDICE GENERALE / CONTENTS 2025(2) SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Hakan KABASAKAL Analysis of Confirmed Shark Attacks in the Eastern Mediterranean Sea and the Sea of Marmara (1827–2025) ...................... Analiza potrjenih napadov morskih psov v vzhodnem Sredozemskem morju in Marmarskem morju (1827–2025) Alen SOLDO Observations of a Juvenile Basking Shark Cetorhinus maximus in the Adriatic Sea Support the Hypothesis of a Distinct Mediterranean Population ............................... Opazovanja mladega morskega psa orjaka (Cetorhinus maximus) v Jadranskem morju podpirajo hipotezo o ločeni sredozemski populaciji Jacopo BERNARDI, Pero UGARKOVIĆ & Ilija ĆETKOVIĆ An Unusual Encounter with a Juvenile Kitefin Shark, Dalatias licha, in Shallow Coastal Waters of Montenegro (Adriatic Sea) ................. Nenavadno srečanje z mladim primerkom klinoplavutega morskega psa, Dalatias licha, v plitvih obalnih vodah Črne gore (Jadransko morje) Cemal TURAN, Alen SOLDO, Servet A. DOĞDU, Funda TURAN, Ayşegül ERGENLER & Ali UYAN Identification of a Potential Nursery Ground of the Spiny Butterfly Ray, Gymnura altavela, in the Northeastern Mediterranean Sea, Türkiye ..... Identifikacija potencialnih jaslic za metuljastega skata, Gymnura altavela, v severovzhodnem Sredozemskem morju, Turčija Alen SOLDO, Eleonora DE SABATA & Simona CLO Recent Records of Critically Endangered Common Guitarfish Rhinobatos rhinobatos (Linnaeus, 1758) in the Northern Mediterranean ................................................. Nedavni zapiski o pojavljanju kritično ogroženega navadnega goslaša Rhinobatos rhinobatos (Linnaeus, 1758) v severnem Sredozemlju Hakan KABASAKAL & F. Saadet KARAKULAK Demersal Elasmobranchs of the Sea of Marmara: Updated Inventory, Taxonomic Issues and Environmental Implications ................................ Pridnene hrustančnice v Marmarskem morju: posodobljena inventarizacija, taksonomska vprašanja in okoljske posledice IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Jamila RIZGALLA, Amani FITORI, Francesco TIRALONGO & Abdalh BEN ABDALAH First Records of Blennies (Suborder Blennioidea) off the Coast of Libya ................... Prvi zapisi o pojavljanju babic (podred Blennioidea) ob libijski obali Farid HEMIDA, Sara LADOUL, Christian REYNAUD & Christian CAPAPÉ Confirmed Occurrence of the Mediterranean Spearfish Tetrapturus belone (Osteichthyes: Istiophoridae) from the Algerian Coast (Southwestern Mediterranean Sea) .................... Potrjeno pojavljanje sredozemske jadrovnice, Tetrapturus belone (Osteichthyes: Istiophoridae) iz alžirske obale (jugovzhodno Sredozemsko morje) 169 187 197 205 221 213 245 257 UDK 5 Letnik 35, Koper 2025 ISSN 1408-53 3X e-ISSN 2591-1783 396 ANNALES · Ser. hist. nat. · 35 · 2025 · 2 Lana KHREMA, Adib SAAD & Christian CAPAPÉ First Substantiated Record of Blackfish Centrolophus niger (Centrolophidae) from the Syrian Coast (Eastern Mediterranean Sea) ............................................ Prvi potrjen zapis črnuha, Centrolophus niger (Centrolophidae), s sirske obale (vzhodno Sredozemsko morje) Amir IBRAHIM, Chirine HUSSEIN, Firas ALSHAWY & Alaa ALCHEIKH AHMAD Marine Fishes (Teleostei / Osteichthyes) of Syria (Eastern Mediterranean): an Updated Checklist ....................................... Morske ribe (Teleostei / Osteichthyes) Sirije (vzhodno Sredozemsko morje): posodobljeni seznam vrst BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Paola LEOTTA, Rocco CICCIARELLA, Ruben GARRANO, Enrico LA SPINA, Daniele TIBULLO & Francesco TIRALONGO Cassiopea andromeda at the Southernmost Tip of Italy: a Recent Arrival or an Overlooked Resident? ...................................... Tujerodni klobučnjak Cassiopea andromeda na najjužnejši konici Italije: nedavni prišlek ali spregledan prebivalec? Mourad CHÉRIF, Rimel BENMESSAOUD, Sihem RAFRAFI-NOUIRA, Mohamed Nouri AYADI & Christian CAPAPÉ First Substantiated Record of the Golden-Banded Goatfish Upeneus moluccensis (Osteichthyes: Mullidae) from the Coast of Tunisia (Central Mediterranean Sea) .............................. Prvi potrjen zapis o zlatoprogem bradaču Upeneus moluccensis (Osteichthyes: Mullidae) z obale Tunizije (osrednje Sredozemsko morje) Nikola DJORDJEVIĆ, Slavica PETOVIĆ, Ilija ĆETKOVIĆ, Borut MAVRIČ & Lovrenc LIPEJ New Record of the Long-Jawed Squirrelfish, Holocentrus adscensionis (Osbeck, 1765), in the Adriatic Sea ............................................ Novi zapis o pojavljanju veveričjaka vrste Holocentrus adscensionis (Osbeck, 1765) v Jadranskem morju MORSKA FAVNA FAUNA MARINA MARINE FAUNA Nicola BETTOSO, Lisa FARESI, Saul CIRIACO, Marco FANTIN & Marco SEGARICH New Findings of the Cup-Shaped Demosponge Calyx nicaeensis (Risso, 1826) on the Rocky Outcrops in the Gulf of Trieste (Northern Adriatic Sea) ....................................... Nove najdbe morskega keliha Calyx nicaensis (Risso, 1826) na skalnih osamelcih v Tržaškem zalivu (severno Jadransko morje) Aleksandra V. BORODINA & Yuri O. VELYAEV Features of Lipid Accumulation in Striped Venus Clam Chamelea gallina in the Sublittoral Zone of the Crimean Coast (Black Sea) ................. Značilnosti kopičenja lipidov v navadni venerici (Chamelea gallina) v obrežnem pasu krimske obale (Črno morje) Okan AKYOL & Oğuzhan TAKICAK Recent Observations on Monachus monachus (Phocidae) at Sea-Cage Fish Farms in Izmir (Turkish Aegean Sea) ........................................ Nedavna opažanja primerkov Monachus monachus (Phocidae) v ribogojnicah z morskimi kletkami v Izmirju (turško Egejsko morje) FLORA FLORA FLORA Amelio PEZZETTA & Marco PAOLUCCI La Flora di Palena (Parco Nazionale della Majella): Aggiornamento Floristico .................... Flora Palene (Nacionalni park Majella): floristična posodobitev DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Bojana LIPEJ Reviving Landscapes, Connecting Species: Lessons from the ReCo Project ............................ IN MEMORIAM Tom TURK V spomin Marjanu Richterju (1935–2025) ......... Kazalo k slikam na ovitku ................................... Index to images on the cover ............................. 287 269 295 263 319 311 383 337 389 303 329 391 391 397 ANNALES · Ser. hist. nat. · 35 · 2025 · 2