
 

29 

Advances in Production Engineering & Management ISSN 1854-6250 
Volume 20 | Number 1 | March 2025 | pp 29–42 Journal home: apem-journal.org 
https://doi.org/10.14743/apem2025.1.525 Original scientific paper 

Closed-loop simulation of workload control: 
Integrating input-output regulation with feedback 
Oliveira, A.F.a, Sagawa, J.K.a, Mušič, G.b,* 
aFederal University of São Carlos, Department of Production Engineering, Rodovia Washington Luís, São Carlos, Brazil 
bUniversity of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia 

A B S T R A C T A R T I C L E   I N F O 
When responsiveness to demand fluctuations is a key performance factor, 
continuous dynamic models can advantageously replace discrete event simu-
lation, often employed in Workload Control (WLC) studies. Nonetheless, dy-
namic modelling tools and feedback control are scarcely applied to WLC or 
other shop floor control systems. To fill this gap, this paper presents a closed-
loop model of WLC incorporating feedback control and shop floor input-
output control. The bond graphs’ dynamic modelling technique is employed. 
The model is implemented in Simulink® and its behaviour in face of disturb-
ances is analysed. The load of the machines and of the job pool of WLC is 
considered to adjust order release (input control). The capacity of each ma-
chine (output control) is altered in function of the level of its preceding buffer. 
The machines’ processing rates stabilize and the reference levels for the buff-
ers are reached when a step disturbance in order entry is simulated. Also, the 
system responded with a maximum capacity increment of 15 % when cyclic 
demand is simulated. This novel approach of a smart production control sys-
tem can help managers to better control shop floor load in response to dis-
turbances.  
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1. Introduction
The Production Planning and Control (PPC) can be seen as a determinant factor to the perfor-
mance of an organization, thus, the choice of adequate PPC Systems remains as a key point. 
Some classic PPC approaches cannot be well applied to production systems that are not based on 
demand forecasts, like make-to-order (MTO) systems, due to the fact that these approaches fo-
cus on large systems within a repetitive production environment [1]. The Workload Control 
(WLC) is an alternative to MTO systems with a job shop production flow. It balances the load of 
the workstations, allowing only controlled releases to the shop floor, reducing the variability in 
the order entry level [2]. The term load refers to the capacity required in a production system.  

The production in job shops lead to queues of orders/work-in-process (WIP) competing for 
the workstation’s capacity. The Workload Control concept seeks to achieve small and stable 
queues, i.e., to establish low and stable direct load levels [3]. 
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The Workload Control rules apply to the discrete domain, i.e. to systems with discrete pro-
duction orders. Most studies in the literature model and test this approach by means of discrete 
event simulation, with order arrival, due dates and processing times defined by probability dis-
tributions [4]. Other approaches from the dynamic modelling field are a relevant alternative to 
discrete event simulation (DES), since they allow a more analytical understanding of the funda-
mental dynamics of the system allow to automatically adjust WLC parameters in response to 
dynamic changes and other disturbances. While the discrete event simulation is a trial-and-error 
method [5], if used alone, the dynamic modelling allows the use of feedback loops, i.e., automatic 
control, generating smart closed loop models, i.e. models that yield prescriptive guidelines for 
WLC operation.  

Different approaches for dynamic modelling and control can be used, such as transfer func-
tions, difference equations, optimal control, etc. In [6], the author uses bond graphs (BG) and 
proposes the representation of production stations based upon analogies with electrical compo-
nents like resistor, capacitor and source of effort. This representation can also be found in [7], 
and can be applied to Workload Control simulation.  

This paper aims to model a Workload Control system as a continuous dynamic system with 
feedback loop (i.e., a closed-loop system), and analyse the behaviour of this system in face of 
demand disturbances. The proposed model is smart in the sense that the WLC parameters are 
automatically changed in function of the current state of the shop floor; this parameterisation is 
responsive to disturbances. In the extant WLC models, the parameterisation is done by means of 
a set of experiments with open-loop systems (the DES systems proposed in the extant literature 
are open-loop systems, i.e., systems without feedback loop). 

The proposition of a closed-loop model (automatically controlled by a controller) is an unu-
sual approach for WLC simulations. It provides intelligence to the production planning system. 
Currently, smart production planning and scheduling [8, 9] are relevant research trends. An ad-
ditional gap in the Workload Control literature refers to research that deals, simultaneously, 
with input and output control. Input control in WLC is about restraining order release, while 
output control corresponds to adjustments in the capacity of the machines. The vast majority of 
WLC studies focus on input control; publications related to output control are scarce, and even 
scarcer is the research related to the simultaneous application of both (e.g. [10]). The proposed 
model also addresses this gap by proposing control rules for the application of both input and 
output controls. 

Thus, the novelty and contributions of this research are summarized as follows: 
• A novel closed-loop continuous model for WLC simulation is proposed; 
• Input and output control are simultaneously operating in the same model, expanding the 

extant literature; 
• The input-output control adjustments are given by a single continuous simulation run (for 

a given scenario) in contrast to prior research where the usual approach is to determine 
the control adjustments by multiple experiments; 

• The resulting capacity increments are gradual, based on continuous curves, in contrast to 
fixed-step increments proposed in the literature (see Section 2). 

2. Literature review 
A search for papers presenting any type of relationship between Control Theory and Workload 
Control was conducted as theoretical base for this research. No closed-loop models (i.e. models 
with a controller and a feedback loop) of WLC systems were found. In [11], capacity adjustments 
of the stations are performed in function of the shop floor current state; however, the model 
does not present a controller. Instead, pre-defined rules are used to perform the adjustments, 
with constant values as increments/decrements. A few WLC papers with multi-agent systems 
were found. Moreover, the review included papers with the simultaneous application of input 
and output control in WLC. These two groups of papers will be discussed as follows.  
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 In [12], a system with 3 agents is proposed for WLC implementation: order entry agent 
(OEA), job agent (JA), and machine agent (MA). The due date settings and customers’ enquiries 
are performed by the OEA. The JA defines the job routings and the MA allocates the jobs in each 
machine queue. 
 A similar approach is presented by [13] using 4 agents. The first agent (OEA) demands infor-
mation of current shop status and communicates with the JRA, which operates the job release 
using a continuous aggregate loading (CAGG) mechanism: jobs are continuously released to the 
shop if the workload is below the norm. The JRA communicates with the RSA to calculate the 
current workload [13]. The RSA encompasses job agents (JA) and machine agents (MA), with the 
same functions as in [12]. The fourth agent, IFA, estimates the average lateness, used by the OEA 
for decision-making [13]. 
 The authors in [14] propose a WLC dynamic model based upon product agents and planning 
agents. The job pool agent (JPA) keeps data regarding products waiting in the job pool. The shop 
floor assessment agent (SAA) collects shop floor data about orders already released, and com-
putes the shop floor simulation. The results are sent to the JRA, together with the information 
from the pool. The JRA assesses the impact of each potential order release and makes continuous 
release decisions. 
 The discussed multi-agent systems present similarities. Both [13] and [14] use a job release 
agent (JRA) for the release decision-making, and the job routing and sequencing agent (RSA) has 
mostly the same responsibilities as the shop floor assessment agent (SAA). However, in [13], 
CAGG is the job release mechanism, while [14] use priority indexes, defined to each product 
agent, for order sequencing and release. 
 The second branch of this review contains the papers that discuss WLC approaches with sim-
ultaneous control of input (order release) and output (capacity adjustment). 
 The authors in [15] present a conceptual view of different approaches in WLC. Fig. 1a por-
trays the input control, where the released work quantity is based on the shop floor queues. This 
is the most common approach in workload control research. Fig. 1b shows output control; the 
released work quantity is uncontrolled and the work centre capacities are controlled with the 
aim of keeping the queues at a constant level. Figs. 1c and 1d show possibilities for sim-
ultaneous input/output control. In the approach shown in Fig. 1c, both order release and work 
centre capacities are controlled on the basis of shop floor load. In Fig. 1d, only the order release 
is controlled based on the shop floor load while the work centre capacities are controlled ac-
cording to the pool level. 

In [11], the authors analyse the effects of input-output control in a pure job shop. Urgent and 
non-urgent jobs are organised in the pool according to different rules. The release is based on 
the LUMS COR method, which is periodic but has a trigger against station starvation. This repre-
sents the input control of the system. The capacity adjustments (output control) are based on 
three parameters: the size of the increment (α), the load threshold that triggers the capacity ad-
justment (upper limit of utilisation, β) and the load reduction threshold that triggers the adjust-
ment setting (γ). The authors perform simulations with 5 levels for α (0, 10, 20, 30 or 40 %), 3 
levels for β (85, 90 and 95th percentile) and 3 levels for γ (0, 5 and 10 %). 
 

 
Fig. 1 Representation of the concepts of input-output control: a) input control; b) output control; 

                     c) and d): approaches for simultaneous input and output control [15] 

a) b) 
 
d) c) 
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 The aforementioned study is based on discrete event simulation (DES), and constant capacity 
increments, chosen from a finite set of values, are applied. When utilization reaches a defined 
threshold (β), e.g. 85 %, a step-shaped increment (α) is applied; the extra capacity is deactivated 
after the utilization reduces a certain amount (γ). The representation of a WLC system as a con-
tinuous dynamic system (using bond graphs) allows the application of automatic controllers, 
yielding a closed-loop model. In this way, the WLC parameters, i.e. order release level and size of 
capacity increments, can be defined as continuous curves, based on the instantaneous shop floor 
load, instead of being defined as fixed/constant values based on experiments.  
 There is a paucity of research investigating the simultaneous application of WLC input and 
output control, as mentioned. The proposed closed-loop model and simulations serve as proof of 
concept for the alternatives presented in [15] and shown in Fig. 1, also complementing the 
(scant) existing input-output control research. 
 Considering a wider view, other advanced methods of production control were analysed in 
[16]. Model-based production control was proposed in combination with computational intelli-
gence and data-based modelling methods. Among those, evolving model identification has been 
successfully applied to production systems with non-linear process behaviour [17] and com-
bined with design of experiments [18]. A data-driven modelling approach has been successfully 
applied to energy consumption optimization in steel production [19]. 
 The application of reinforcement learning (RL) to production control is also a recent research 
trend. Most models found in the literature that consider work-in-process (WIP) or workload 
control employ the CONWIP (Constant Work in Process) policy, such as [20-22], and not WLC. 
CONWIP is simpler than WLC, because only the total workload of the system matters, instead of 
the workload of each machine. In CONWIP, a new order or amount of work is released only 
when an order or amount of work outputs the system, keeping the total work-in-process con-
stant. A fixed number of cards or containers is used to limit the WIP. In the aforementioned 
works, an agent that learns by reinforcement is coupled to a DES system representing the shop 
floor. The agent observes the current state of the system and modifies the amount of cards in it, 
i.e., it adjusts the total WIP allowed in the system dynamically, influencing the system’s through-
put. This production control policy is simpler than WLC or than other production control sys-
tems because there is just one parameter to be adjusted. No works specifically applying rein-
forcement learning to WLC were found. 
 A similar framework (i.e., combining DES and decision-making algorithms) is employed by 
[23] to a system ruled by the Make-To-Availability (MTA) policy. With MTA, for a given product, 
the orders are released and sequenced according to the difference between the established tar-
get level for the buffer of that product and the actual inventory on hand. The bigger this differ-
ence is, the higher is the priority of the order. In [23], the target level of the buffers is adjusted 
considering the current state of the plant, which is influenced by demand fluctuations and varia-
bility of the processing times, among others.  
 A literature search in Scopus database with the string (“artificial intelligence” OR “machine 
learning” OR “reinforcement learning”) AND “workload control” was carried out, returning 10 
papers. The string was applied to the field “Title, Abstract and Keywords”. Among these 10 pa-
pers: two were from other areas (i.e., used the term “workload” within other contexts); one [20] 
applied reinforcement learning to CONWIP, and not to WLC; six investigated specific parame-
ters/aspects of WLC but not related to machine learning (ML) or artificial intelligence (AI), and 
one treated about WLC software development. This reinforces the existence of a relevant gap to 
be tackled, concerning the dynamic parameterisation of WLC and the incorporation of AI and ML 
techniques into WLC research. 

3. Modelling and simulation 
The system simulated in this paper was presented by [4]. Jobs and material are provided by the 
source S01-pool, which is connected to the job pool, i.e. the queue of jobs/orders awaiting release. 
The shop floor has four workstations (Fig. 2), representing a general flow production [24]. This 
means that there are different product families with different production routings, without re-
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entrant flows (the flow is directional). Earlier studies on output control, such as [11], considered 
pure job shops and not general flow shops. Using the data on product families, routings and de-
mand (Table 1, taken from [4]), the percentage of material that must flow into each branch of the 
system can be calculated (Fig. 2). 
 

Table 1 Production routings and demand rates for the unidirectional job shop 
 Station 1 Station 2 Station 3 Station 4 Demand rate 

(units/day) 
Family 1 X X   1.5 
Family 2 X X  X 1.25 
Family 3   X  1.3 
Family 4   X X 1.1 

 

 
Fig. 2 Schematics of the modelled WLC system 

 

 A modelling approach based on bond graphs is chosen for the development of a mathematical 
model of the production system. Bond graphs capture the power and energy exchange between 
the model elements. The graphical representation of these elements and their interconnections 
can be translated into equations that form a mathematical model. 
 To represent a shop floor with bond graphs requires some adaptations of the standard bond 
graph formalism. A corresponding bond graph model for a production station, based on analo-
gies to capacitor, resistor and source of effort, was proposed in [6]. The representation focuses 
on fluidised, continuous material flow (f), which can also be interpreted as the amount of work 
per unit of time. The approach in [6] assumes an unlimited buffer capacity, which allows the 
output flow of the i-th production station to be expressed as: 

𝑓𝑓𝑖𝑖 = 𝑈𝑈𝑖𝑖 min(1, 𝑞𝑞𝑖𝑖), (1) 
 

where Ui is the processing frequency of the station (i.e. the reciprocal of a processing time) and 
qi is the amount of material stored in the i-th buffer. These variables are dependent on time, e.g. 
f(t), but the time dependence is not explicitly shown in the equations for simplicity. An analogy 
is assumed between the material flow rate of a machine and the electric current through a resis-
tor, where 𝑈𝑈𝑖𝑖  is the reciprocal of the resistance (Ui = 1/Ri). The expression min(1, 𝑞𝑞𝑖𝑖) stands for 
the effort (analogue to voltage), which gradually decreases with a small amount of material stor-
age. Further details on this modelling approach can be found in [6]. 
 The material quantity rate in the station buffer (𝑞̇𝑞𝑖𝑖) depends on the balance between the ma-
terial input rate and material consumption rate, which is expressed by the difference between 
material input and material output flows of the station. This leads to equation: 
 

𝑞̇𝑞𝑖𝑖 =  𝑓𝑓𝑒𝑒𝑒𝑒 −  𝑈𝑈𝑖𝑖 min(1, 𝑞𝑞𝑖𝑖), (2) 
where 𝑓𝑓𝑒𝑒𝑒𝑒 is the material input flow of station 𝑖𝑖 while 𝑈𝑈𝑖𝑖  and 𝑞𝑞𝑖𝑖 have the same meaning as in (1). 
The use of these equations for modelling multiproduct manufacturing systems is presented in [7, 
25, 26]. In the simulated model, the controlled variables are the levels of the buffers (𝑞𝑞𝑖𝑖, 𝑖𝑖 =
1,2,3,4) and of the job pool (𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), and the manipulated variables are the processing frequencies 
of the machines (𝑈𝑈𝑖𝑖 , with 𝑖𝑖 = 1,2,3,4), and the release frequency of the job pool (𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). The most 
important variables are summarised here: 
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• 𝑞̇𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: change rate of waiting orders/materials in the pool; 
• 𝑞̇𝑞𝑖𝑖: rate of change of the material quantity in buffer i; 
• 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: quantity of orders waiting to be released;  
• 𝑞𝑞𝑖𝑖 : quantity of material in machine buffer i, where i = 1,2,3,4; 
• 𝑈𝑈01𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: rate/frequency of orders/materials entering the job pool;  
• 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : release frequency. In the model, the release is considered an operation and the pool 

operates similarly to a work centre; 
• 𝑈𝑈𝑖𝑖  : processing frequency of machine i, with i = 1,2,3,4. 

 The products’ demand rates (Table 1), which can be modified or modelled as curves to repre-
sent volatile demand, are the main parameters of the system. The model is also parameterized 
by m1 and m2, which will be described later. 
 Applying (2) to the pool and buffer of station 2 gives: 
 

𝑞̇𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑈𝑈01𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 min(1, 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (3) 
 

𝑞̇𝑞2 =  𝑈𝑈1min (1,𝑞𝑞1) −𝑈𝑈2 min(1,𝑞𝑞2). (4) 
 

 Stations 1 and 2 are connected in series, so that the input of station 2 in (4) is replaced by the 
output of station 1. 
 Convergent and divergent junctions conduct parts of the flow to different stations, according 
to the production routings shown in Fig. 2. Convergent junctions establish the flow conservation 
and are represented as a 1-junction in bond graphs, leading to: 
 

𝑓𝑓𝑠𝑠𝑠𝑠 =  �𝑓𝑓𝑒𝑒𝑒𝑒,

𝑃𝑃

𝑝𝑝=1

 (5) 
 

in which 𝑓𝑓𝑠𝑠𝑠𝑠 represents the output flow of a i-th convergent junction, and 𝑓𝑓𝑒𝑒𝑒𝑒, p = 1,2, ..., P, repre-
sent the branches of incoming flow. The divergent junctions can be represented as transformers 
in bond graphs. The q-th transformer with module 𝑚𝑚𝑞𝑞 receives an input flow 𝑓𝑓𝑒𝑒𝑒𝑒 and converts it 
into an output flow 𝑓𝑓𝑠𝑠𝑠𝑠: 
 

𝑓𝑓𝑠𝑠𝑠𝑠 =  𝑚𝑚𝑞𝑞𝑓𝑓𝑒𝑒𝑒𝑒, (6) 

with ∑ 𝑚𝑚𝑞𝑞 = 1𝑄𝑄
𝑞𝑞  and q = 1,2, ..., Q, where Q is the total number of diverging branches [4]. 

 The proposed model has modules m1 and m2, which describe how the material flow is dis-
tributed between the two processing branches coming from the pool (see the first junction of 
Fig. 2). The application of (6) to this junction and of (2) to station 1 and station 3 yields: 
 

𝑞̇𝑞1 =  𝑚𝑚1𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 min(1, 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) −  𝑈𝑈1min (1,𝑞𝑞1) (7) 
 

𝑞̇𝑞3 =  𝑚𝑚2𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 min�1, 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑈𝑈3 min(1, 𝑞𝑞3). (8) 
 

 In the case considered, the parameters were set to m1 = 0.53398 and m2 = 0.46602 to obtain 
the desired production mix. The application of (5) and of (6) considering the percentages of split 
shown in Fig. 2 yields: 
 

𝑓𝑓𝑒𝑒4 =  𝑓𝑓24 + 𝑓𝑓34  (9) 
 

𝑓𝑓24 =  0.4545𝑈𝑈2 min(1, 𝑞𝑞2) (10) 
 

𝑓𝑓34 = 0.4583𝑈𝑈3 min(1, 𝑞𝑞3) (11) 
 

𝑞̇𝑞4 =  0.4545𝑈𝑈2 min(1, 𝑞𝑞2) + 0.4545𝑈𝑈3 min(1,𝑞𝑞3) − 𝑈𝑈4 min(1, 𝑞𝑞4). (12) 
 

 The instantaneous WIP in the shop floor (𝑞𝑞𝑖𝑖) is calculated by the integral of the rates of mate-
rial storage or consumption in the buffers, and the amount of orders waiting in the pool (𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
is obtained by the integral of the release rate of orders/material in the pool. These are the state 
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variables of the system (𝑞𝑞𝑖𝑖, 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). The algebraic manipulation of (3), (4), (7), (8), and (12) yields 
the state model: 
 

⎣
⎢
⎢
⎢
⎡
𝑞̇𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑞̇𝑞1
𝑞̇𝑞2
𝑞̇𝑞3
𝑞̇𝑞4 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−1 0 0
𝑚𝑚1 −1 0
0
𝑚𝑚2
0

1
0
0

−1
0

0.4545

0 0 1
0 0 0
0
−1

0.4583

0
0
−1

0
0
0⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 (1,𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  
𝑈𝑈1𝑚𝑚𝑚𝑚𝑚𝑚 (1,𝑞𝑞1)  
𝑈𝑈2𝑚𝑚𝑚𝑚𝑚𝑚 (1,𝑞𝑞2)  
𝑈𝑈3𝑚𝑚𝑚𝑚𝑚𝑚 (1,𝑞𝑞3)  
𝑈𝑈4𝑚𝑚𝑚𝑚𝑚𝑚 (1,𝑞𝑞4)  

𝑈𝑈01𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (13) 

Details about this modelling, the development of the equations, and the variables and param-
eters can be obtained in [4, 25, 26]. 
 In WLC, input control refers to the release of orders, which corresponds to the control of the 
processing frequency of the job pool, Upool. Output control refers to the control of the processing 
frequencies of each machine, U1 to U4, which correspond to capacity adjustments. These controls 
are simultaneously executed in the proposed model. Release decisions are made in function of 
the shop floor load and the pool’s load. Since all the production routings start either in station 1 
or station 3 (Fig. 2), the buffer level of these stations is considered as a measure of the shop floor 
load. The load of the pool is measured based on the level of its own buffer of orders, qpool. The 
level of the buffer upstream the i-th machine is assessed to define the capacity adjustment of the 
respective machine. As an analogy to Fig. 1, Fig. 3 represents the input and output control ap-
proaches used in all the simulations. 
 The approach adopted is similar to the one of Fig. 1c, with the releases based on the shop 
floor load and the capacity adjustments based on the machines’ preceding buffers. However, in 
the proposed model, the releases also rely on the job pool load, differing from [15] and from 
other WLC studies. Moreover, in none of the works reviewed in Section 2, input and output con-
trol of Fig. 1c is implemented as a dynamic closed-loop system. To implement this system, a con-
troller is attributed to each machine and to the pool. Fig. 4 shows the information that is used by 
each controller to adjust the processing frequencies Upool and Ui. 

Three different simulations were carried out. In all of them, the reference values for the buff-
er levels are: qpool_c = q1c = q2c = q3c = 7 and q4c = 6. In simulation A, the system starts with empty 
buffers, to verify if stable operation would be achieved. Simulations B and C aimed to verify the 
system’s behaviour in face of disturbances in the order entry level (which represents external 
demand). In both simulations, the buffer levels (WIP) start at the reference values, to check how 
the disturbances impact a system initially in balance. For Simulation B a step signal was chosen 
to represent the disturbances, and for Simulation C, a sinusoidal signal. Reference processing 
frequencies (Uip) for the machines and for the sources were calculated based on (13) and on the 
demand rates shown in Fig. 2. These processing frequencies (U01pool_p = 5.15, Upool_p = 5.15, U1p = 
2.75, U2p = 2.75, U3p = 2.4, U4p = 2.35) lead to the attendance of the demand in the medium term 
(in steady state) and are used as parameters for the control of the machines and the pool. 
 

 
Fig. 3 Representation of simultaneous input and output control applied (analogy with Fig. 1) 
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Fig. 4 signals sent to the controllers to implement the control rules (right side) 

4. Results and discussions 
4.1 Implementation 

The model was implemented in Matlab and Simulink® (Fig. 5). The blue box represents the pro-
portional integral (PI) controllers added to the system, which will define the processing fre-
quencies of the pool and of each machine (Upool and Ui). These instantaneous processing frequen-
cies fluctuate around the steady state processing frequencies presented at the end of Section 3 
(i.e. the output of the controllers are used as relative values to modify the steady state frequen-
cies). The components highlighted in green represent the arrival of data for the controllers. The 
pool’s controller receives 3 signals: the error from its own buffer, and the error from buffer lev-
els 1 and 3. The controller of each machine receives only error signal of its preceding buffer. This 
implementation is aligned to the proposed control rules (Fig. 4). 

The control signals of the system will be inputs for the production function, represented by 
the yellow box. This function calculates the rates of production or consumption of material 
(𝑞̇𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑞̇𝑞𝑖𝑖) according to the state equation (13). In this block, there is also an integrator to 
convert the rates into work in process (WIP) stored in the pool and in the buffers. These values 
are, then, fed back into the system – as represented by the purple lines – and compared with the 
reference values in (red box). This comparison defines the error, which will serve as input for 
the controllers, closing the loop. 

 
Fig. 5 Simulink® representation of the proposed model. 
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4.2 Results 

The results of simulation A are shown in Figs. 6a and 7a. The controller of the pool receives sig-
nals from the buffers 1 and 3 that lead to the increase of the order release frequency, since the 
levels of both buffers are below the reference. A signal in the opposite direction comes from the 
pool itself. Since the level of orders in the pool is also below the reference, it induces a reduction 
in the release frequency, to clog the orders. The signals coming from the buffers 1 and 3 have a 
stronger influence on the control at the initial moments, and the order release frequency 
(U_pool) increases: the pool release frequency starts at 200 % of the release frequency in the 
steady state. This value decreases gradually as the levels of the buffers 1 and 3 increase and get 
closer to the reference (Fig. 7a). The inflection point of the release frequency curve occurs when 
machines 2 and 4 start processing, stimulating an increase in the flow through the whole system 
(i.e. the release frequency starts to increase again). After the transient period, the WIP stabilize 
at the reference values, showing that the control rules are effective. 
 In simulations B and C, the initial buffer levels match the reference levels. In Simulation B, 
there is a 20 % step-shaped increase in the order’s arrival until the sixtieth day. In response to 
that, the release frequency of the pool increases due to the high levels of orders on wait. Next, 
there is an increase in the processing frequencies of the machines immediately downstream 
(machines 1 and 3). Finally, the reaction reaches the machines 2 and 4 (Fig. 6b). 
 The variations of the work in process in the buffers is not accentuated, showing that even 
with the disturbances – almost 20 % increase on the entry signal – the system did not suffer 
great penalties related to the buffers’ levels (Fig. 7b). This behaviour results from the coordinat-
ed increase in the release frequency and in the processing frequencies of the machines (capacity 
adjustments). 

 
Fig. 6 Relative processing frequencies of the release and of the machines for: 

                                        a) Simulation A; b)Simulation B; c) Simulation C 

a) b) 

c) 
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 With the return to the standard demand/input values (sixtieth day), the processing frequen-
cies decrease and there is an undershoot before the system returns to operate at its regular ca-
pacity. This also reflects in an undershoot in the buffer levels. After that, they are led to the ref-
erence values again. 
 In Simulation C, the entry signal presents a sinusoidal variation of 10 % of the nominal value 
during the simulation (see curve of Urel01 in Fig. 6c).  
 The system regulates itself. The reaction begins with a higher release in the pool, and more 
material flows downstream with the increase of the processing capacity of the machines. A small 
delay in the reactions can be seen. The amplitude of the oscillations also gradually increases 
downstream. The last machine of the routings (Machine 4) has the higher peak and valley, with 
amplitude of almost 15 % of the nominal value. Meanwhile, the pool, the element most up-
stream, has the smallest variation, of 10 % (Fig. 6c).  
 The general behaviour of the system follows the behaviour of the entry signal, with a certain 
delay and with some amplification of the disturbance. The downstream stations are more affect-
ed. The system responds to the cyclic demand variations with a maximum 15 % of capacity vari-
ation (Fig. 6c). 
 The system reaches the steady state and the reference values for the buffers are achieved 
(simulations A and B). In simulation C, even with an increase of almost 20 % in the entry signal 
(demand signal), the WIP does not variate excessively (Fig. 7c). These are positive results, con-
sidering that the goal of WLC is to obtain a more stable and predictable shop floor. From the 
managerial point of view, it means that the system reacted to the demand increase without a 
strong increase the throughput time. This was only possible due to the increase in the pro-
cessing frequencies (capacity adjustments). Managers, however, must analyse the viability of 
implementing the suggested increases in the machine’s capacity.  

 
Fig. 7 Buffer levels for: a) Simulation A; b) Simulation B; c) Simulation C 

  
 The model developed presents a prescriptive characteristic. The results of simulation of the 
closed-loop model (i.e., with an automatic controller) point out when and with which amount 
adjustment actions must be taken to attend the demand fluctuations. Based on that, managers 

a) b) 

c) 
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can define actions to implement the capacity increase or decrease, such as the reallocation of 
personnel, application of extra shifts, or the reduction of working hours of determined resources 
(i.e. defining programmed pauses in the schedule of the machines), when demand falls. 

4.3 Discussions and model extensions 

The applicability of the model in practice as well as extensions for its application to real and 
more complex shop floors and to supply chains are discussed as follows. 
 In the real manufacturing environment, the model could be implemented relatively easily 
from a technical point of view if the manufacturing environment is already supported by infor-
mation systems, e.g. a Manufacturing Execution System (MES). Such a system collects data that 
can be used to align model states with the real environment and also offers options for adjusting 
capacities. More challenging is the underlying organisational change that would redefine the 
established concepts of production control. Transition to Industry 4.0 brings increasing de-
mands of digitalisation of production processes in smart factories, e.g. through the use of Digital 
Twins and digital agents [27] in production control-related decision-making processes. This 
increases also the opportunities for incorporating advanced feedback control concepts such as 
the one proposed here. 
 Capacity adjustments can be implemented, in practice, in different ways. Small increments 
are usually implemented by means of overtime; substantial increments require long term mana-
gerial actions, as extra shifts, subcontracting or plant expansion. In the simulated scenarios, the 
capacity adjustments do not exceed 30 % (i.e. relative processing frequencies of 1.3 times the 
usual frequency, as shown in Fig. 6). Hence, they can be implemented by means of overtime and 
are associated only to variable costs, that is, it is supposed that extra fixed costs are negligible. 
Then, if a constant line y = 1 is drawn in the graphs of the relative processing frequencies, the 
cost of capacity adjustments can be related to the areas limited by the curves of processing fre-
quencies and this reference line. For capacity increments, the areas above the line can be multi-
plied by a unitary cost of 1.5, if the overtime costs 50 % more than the normal work hour. Capac-
ity decrements (or machines’ downtime) also represent costs, because there are regular fixed 
costs related to the overall structure even when the machine is idle. So, the areas below the line 
y = 1 can be multiplied by a unitary cost (e.g., of 0.7) to estimate the cost of capacity decrements. 
These costs of gradual/continuous capacity adjustments can be compared to the costs of other 
policies, based on fixed adjustments, as the policy proposed by [11]. 
 The advantage of dynamic models compared to discrete event simulation (DES) as a decision-
making aid lies in the significantly lower model complexity. The probabilistic nature of DES 
models requires lengthy simulations before appropriate conclusions can be drawn. The dynamic 
model represents an aggregation of the complex DES dynamics. This comes at the cost of lower 
model accuracy, but the reduced complexity enables very fast simulation and even optimisation 
in real time, e.g. in the context of model predictive control. The lower model accuracy is compen-
sated by the robustness of the feedback loop with the correctly tuned controller. Furthermore, 
aggregated dynamic models can also be used much more efficiently for sensitivity analyses and 
parameter calibration compared to DES. In contrast, DES models offer more flexibility and accu-
racy in simulating real emergency scenarios, such as machine failures and emergencies on the 
supply and/or demand side. 
 The model can be scaled to more complex shop floor configurations due to the modularity of 
the bond graphs’ modelling technique. There is a bond graph model to a production station, with 
corresponding constitutive equations, derived from bond graphs’ ideal elements, and there is a 
unique/fixed correspondence between an element of BG and its mathematical equation. The 
stations are linked by means of 1-junctions or transformer elements, as presented in Section 3. 
These elements allow representing different production routings, using different machine com-
binations. Thus, to represent shop floor configurations with much more machines and intricate 
flow, the modeller should add the machines and junctions into the bond graph pictorial repre-
sentation, and then add the equations, corresponding to each element, into the mathematical 
model. After that, adequate algebraic manipulation leads to the matrix representation of the 
system. There is software, as 20-sim [28], that can automatically generate the mathemati-
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cal/simulation model when the user elaborates the BG model by selecting the pictorial elements 
from a specific library. A real system in the textile industry with 11 machines and 9 different 
product routings was modelled by [7], showing that it is possible to scale the model. In the cited 
work, however, the shop floor control does not follow the principles of Workload Control. Since 
the goal is not to find an optimal solution to the models, but to simulate them with feedback con-
trol, the curse of dimensionality does not apply, i.e. the models are tractable and it is possible to 
simulate models with big dimensions using the computational capacity currently available. 
 External factors such as supply chain disruptions can affect the supply of raw materials to the 
system. The effect of these factors could be observed by simulating the temporary interruption 
of the flow coming from the source S01-pool; i.e., the lack of raw material would prevent the entry 
of orders on the shop floor. If the suppliers take a significant time to recover from the disruption, 
the situation is similar to the one of simulation A, where the system has to start from the begin-
ning, with empty buffers. The reference levels for the buffers is reached but with an overshoot, 
as seen in Fig. 7a. Another way to simulate supply chain disruptions would be to explicitly repre-
sent suppliers and customers as production stations linked to the plant already modelled. A de-
lay in the output flow of the supplier’s station can be added to represent the transportation and 
logistics times between the links; a delay in the output flow of the modelled plant can be also 
added to represent the logistics times needed to deliver the goods to the next or final customer. 
Other dynamic modelling tools such as block diagrams and transfer functions have been widely 
used to study the supply chain dynamics. For a review of these models, [29] can be consulted. 

5. Conclusion 
Simulations of WLC in the literature are based on open-loop discrete models. An alternative ap-
proach is presented in this paper: a continuous and closed-loop dynamic model for simultaneous 
application of input and output control in WLC. A closed-loop model includes automatic control, 
so that the job release and the capacity adjustments of the machines are defined in a dynamic 
way (as function of the shop floor real-time state) and vary in a continuous way. 
 Three simulations were carried with a control rule that applies input and output control sim-
ultaneously (simultaneous release and capacity adjustments). Simulation A is conducted to 
study the transient response of the system. Simulations B and C include fluctuations in order 
entry/demand according to a step and a sinusoidal signal.  
 The implemented feedback control leads the buffer levels to achieve the defined targets and 
the processing frequencies to stabilize in simulations A and B. In Simulation C, the system re-
sponded to the cyclic variations of demand with a maximum 15 % variation of capacity. Even 
with an increase of almost 20 % in the order entry signal, the WIP did not increase significantly. 
This means shorter throughput times and a balanced and predictable shop floor, reactive to dis-
turbances. In the proposed closed-loop model, the adjustments are a function of the real-time 
state of the system.  
 The first contribution of this paper is the proposition of a prescriptive model that indicates 
when to release orders and to which amount to adjust the system’s capacity. A managerial anal-
ysis should define how these adjustments shall be implemented, and its viability. Another rele-
vant contribution is the simultaneous application of input and output control in WLC, consider-
ing that this kind of study is scarce in the literature.  
 In the literature review, no model of WLC that applies the concept of feedback control – as 
seen in Control Theory – was found. Thus, there is still space for the implementation of continu-
ous and closed-loop simulations of Workload Control, bringing relevant information about the 
dynamic behaviour of the system. Interdisciplinary models based on the integration of Control 
Theory and Operations Management can lead to smart production control systems, and expands 
the range of tools to be used in Production Engineering and Manufacturing research.  
 For future research, the proposition of different scenarios (changes in the initial/reference 
values, use of different signal shapes for the order entry) and the development and simulation of 
different control rules for both input and output control are suggested. This will allow studying 
the system’s behaviour when the controllers have a more global view of the system. This paper 
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is a proof of concept of the closed-loop simulation of WLC. Thus, future studies could apply this 
model to more complex real systems. Another suggestion is the implementation of feedback 
loops to models based on discrete event simulation (DES). This is not trivial to be developed. 
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