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Abstract

In this paper we study intersections of quadrics, components of the hypersurface in the
Grassmannian Gr(3,C™) introduced by S. Sawada, S. Settepanella and S. Yamagata in
2017. This lead to an alternative statement and proof of Pappus’s Theorem retrieving Pap-
pus’s and Hesse configurations of lines as special points in the complex projective Grass-
mannian. This new connection is obtained through a third purely combinatorial object, the
intersection lattice of Discriminantal arrangement.
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1 Introduction

Pappus’s hexagon Theorem, proved by Pappus of Alexandria in the fourth century A.D.,
began a long development in algebraic geometry.

In its changing expressions one can see reflected the changing concerns of the
field, from synthetic geometry to projective plane curves to Riemann surfaces
to the modern development of schemes and duality.

(D. Eisenbud, M. Green and J. Harris [4])

There are several knowns proofs of Pappus’s Theorem including its generalizations such
as Cayley Bacharach Theorem (see Chapter 1 of [9] for a collection of proofs of Pappus’s
Theorem and [4] for proofs and conjectures in higher dimension).

In this paper, by mean of recent results in [6] and [10], we connect Pappus’s hexagon
configuration to intersections of well defined quadrics in the Grassmannian providing a
new statement and proof of Pappus’s Theorem as an original result on dependency condi-
tions for defining polynomials of those quadrics. This result enlightens a new connection

*The second named author was supported by JSPS Kakenhi Grant Number 26610001.
E-mail addresses: b.lemon329 @gmail.com (Sumire Sawada), s.settepanella@math.sci.hokudai.ac.jp
(Simona Settepanella), so.yamagata.math@gmail.com (So Yamagata)

©@@® This work is licensed under https://creativecommons.org/licenses/by/4.0/



258 Ars Math. Contemp. 16 (2019) 257-276

between special configurations of points (lines) in the projective plane and hypersurfaces
in the projective Grassmannian Gr(3,C™). This connection is made through a third com-
binatorial object, the intersection lattice of the Discriminantal arrangement. Introduced by
Manin and Schechtman in 1989, it is an arrangement of hyperplanes generalizing classical
braid arrangement (cf. [7, p. 209]). Fixed a generic arrangement A = {HY,..., H’} in
C*, the Discriminantal arrangement B(n, k, A), n, k € N for k > 2 (k = 1 corresponds to
Braid arrangement), consists of parallel translates H fl, ooy Hin (ty,... t,) € C*, of A
which fail to form a generic arrangement in C*. The combinatorics of B(n, k, A) is known
in the case of very generic arrangements, i.e. A belongs to an open Zariski set Z in the
space of generic arrangements HZ-O, t=1,...,n (see [7], [1] and [2]), but still almost un-
known for A ¢ Z. In 2016, Libgober and Settepanella (cf. [6]) gave a sufficient geometric
condition for an arrangement .A not to be very generic, i.e. A ¢ Z. In particular in the case
k = 3, their result shows that multiplicity 3 codimension 2 intersections of hyperplanes
in B(n, 3,.A) appears if and only if collinearity conditions for points at infinity of lines,
intersections of certain planes in .4, are satisfied (Theorem 3.8 in [6]). More recently (see
[10]) authors applied this result to show that points in a specific degree 2 hypersurface in
the Grassmannian Gr(3,C") correspond to generic arrangements of n hyperplanes in C?
with associated discriminantal arrangement having intersections of multiplicity 3 in codi-
mension 2 (Theorem 5.4 in [10]). In this paper we look at Pappus’s configuration (see
Figure 1) as a generic arrangement of 6 lines in P? which intersection points satisfy certain
collinearity conditions (see Figure 2). This allows us to apply results on [6] and [10] to
restate and re-prove Pappus’s Theorem.

More in details, let A be a generic arrangement in C3 and A, the arrangement of lines
in H,, ~ P? directions at infinity of planes in .A. The space of generic arrangements of n
lines in (P?)™ is Zariski open set U in the space of all arrangements of n lines in (P2)". On
the other hand in Gr(3,C"™) there is open set U’ consisting of 3-spaces intersecting each
coordinate hyperplane transversally (i.e. having dimension of intersection equal 2). One
has also one set U in Hom(C3, C™) consisting of embeddings with image transversal to
coordinate hyperplanes and U/ GL(3) = U’ and U /(C*)"® = U. Hence generic arrange-
ments in C3 can be regarded as points in Gr(3,C"). Let {s; < --- < s6} C {1,...,n}
be a set of indices of a generic arrangement A = {H?,..., H}} in C3, a; the normal
vectors of HZO’S and B;;; = det(a;,a;, ). For any permutation o € Sg denote by
lo] = {{i1,i2},{i3,9a},{i5,i6}}. i; = $5(;). and by Q, the quadric in Gr(3,C") of
equation 3;,ii, Bisisic — BigisisBivisic = 0. The following theorem, equivalent to the
Pappus’s hexagon Theorem, holds.

Theorem 5.3 (Pappus’s Theorem). For any disjoint classes [01] and 03], there exists a
unique class [o3] disjoint from [o1] and [o3] such that {Qs,, Qo,, Qos } is a Pappus con-
figuration, i.e.

3
Qo'il m Qo'i2 = ﬂ Qo’i
i=1

forany {i1,i2} C [3].

In the rest of the paper, we retrieve the Hesse configuration of lines studying inter-
sections of six quadrics of the form Q, for opportunely chosen [o]. This lead to a better
understanding of differences in the combinatorics of Discriminantal arrangement in the
complex and real case. Indeed it turns out that this difference is connected with existence
of the Hesse arrangement (see [8]) in P?(C), but not in P?(R).
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From above results it seems very likely that a deeper understanding of combinatorics of
Discriminantal arrangements arising from non very generic arrangements of hyperplanes
in C* (i.e. A ¢ Z), could lead to new connections between higher dimensional special
configurations of hyperplanes (points) in the projective space and Grassmannian. Vice
versa, known results in algebraic geometry could help in understanding the combinatorics
of Discriminantal arrangements in the non very generic case. Moreover we conjecture
that regularity in the geometry of Discriminantal arrangement could lead to results on hy-
perplanes arrangements with high multiplicity intersections, e.g., in the case k = 3, line
arrangements in P2 with high number of triple points (see Remark 6.6). This will be object
of further studies.

The content of the paper is the following. In Section 2 we recall definition of Discrim-
inantal arrangement from [7], basic notions on Grassmannian, and definitions and results
from [10]. In Section 3 we provide an example of the case of 6 hyperplanes in C3. In
Section 4 we define and study Pappus hypersurface. Section 5 contains Pappus’s theorem
in Gr(3,C") and its proof. In the last section we study intersections of higher numbers of
quadrics and Hesse configuration.

2 Preliminaries
2.1 Discriminantal arrangement

Let H?,i = 1,...,nbe a generic arrangement in C¥, k < n i.e. a collection of hyperplanes
such that codim ;¢ ¢ | |, HY = p. Space of parallel translates (HY, ..., H?) (or simply
when dependence on HY is clear or not essential) is the space of n-tuples Hy, ..., H, such
that either H; N HY = ( or H; = HY forany i = 1,...,n. One can identify with n-
dimensional affine space C™ in such a way that (H?, ..., H?) corresponds to the origin. In
particular, an ordering of hyperplanes in A determines the coordinate system in (see [6]).

We will use the compactification of C* viewing it as P*(C) \ H, endowed with collec-
tion of hyperplanes H? which are projecive closures of affine hyperplanes H?. Condition
of genericity is equivalent to | J, HY? being a normal crossing divisor in P¥(C).

Given a generic arrangement A in C* formed by hyperplanes H;,i = 1,. .., n the trace
at infinity, denoted by A, is the arrangement formed by hyperplanes H.. ; = HY N Ho,
in the space H, ~ P*~1(C). The trace A, of an arrangement .A determines the space of
parallel translates S (as a subspace in the space of n-tuples of hyperplanes in P¥).

Fixed a generic arrangement .4, consider the closed subset of S formed by those collec-
tions which fail to form a generic arrangement. This subset of S is a union of hyperplanes
Dy, C S (see [7]). Each hyperplane Dy, corresponds to a subset L = {i1,...,ix4+1} C
[n] == {1,...,n} and it consists of n-tuples of translates of hyperplanes HY, ..., H) in
which translates of H,?1 Yoo 7H?k+1 fail to form a general position arrangement. The ar-
rangement B(n, k, A) of hyperplanes Dy, is called Discriminantal arrangement and has
been introduced by Manin and Schechtman in [7]. Notice that B(n, k, .A) depends on the
trace at infinity .4, hence it is sometimes more properly denoted by B(n, k, A, ).

2.2 Good 3s-partitions

Given s > 2 and n > 3s, a good 3s-partition (see [10]) is aset T = {L;, Lo, L3}, with
L; subsets of [n] such that |L;| = 2s, [L; N L;| = s (i # j), LiNnLyNLg = 0 (in
particular | ULll = 38), ie. L1 = {il, AN 7i25},L2 = {i17 e ,is,i23+1, N ,’ngs}7 L3 =
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{isq1,... 035}

Notice that given a generic arrangement .4 in C25~1, subsets L; define hyperplanes
Dy, in the Discriminantal arrangement B(n,2s — 1, A). In this paper we are mainly
interested in the case s = 2 corresponding to generic arrangements in C3.

2.3 Matrices A(Ax) and Ar(Ax)
Let a; = (a1, - - -, a;x) be the normal vectors of hyperplanes H;, 1 < i < n, in the generic

arrangement A in C*. Normal here is intended with respect to the usual dot product

(a1y...,ak) - (v1,...,vk) :Zaivi.
i

Then the normal vectors to hyperplanes Dy, L = {s1 < --+ < sp11} C [n]inS ~ C™ are
nonzero vectors of the form

k+1
ap = Z(fl)i det(ous,, .y Oyynnny iy ey, 2.1

i=1

where {e; }1<;<n is the standard basis of C™ (cf. [2]).
Let Pr1+1([n]) = {L C [n] | |L| = k + 1} be the set of cardinality k + 1 subsets of [n].
Following [10] we denote by

A(.Aoo) = (aL)LEPk+1([n])

the matrix having in each row the entries of vectors a;;, normal to hyperplanes D, and by
Ar(As) the submatrix of A(As) withrows ar,, L € T, T C Pj41([n]). In this paper we
are mainly interested in the matrix At(Ay) in the case of T good 6-partition.

2.4 Grassmannian Gr(k,C"™)

Let Gr(k,C™) be the Grassmannian of k-dimensional subspaces of C" and

k
v: Gr(k,C") = P(/\C")
<U1,...,’Uk> — [’Ul/\"'/\’l}k,]7

the Pliicker embedding. Then [z] € P(A" C™) is in y(Gr(k,C")) if and only if the map

k+1
g C" — /\ cn
(e VAN
has kernel of dimension k, i.e. ker ¢, = (v1,...,vg). If e1,..., e, is a basis of C" then
er = e, Ao ANe, I = {in,...,ig} C [n],i1 < -+ < iy, is a basis for A" C" and

T € /\k C™ can be written uniquely as

T = Z Brer = Z Biy...ir, (€0 N+ Neiy)

IC[n] 1<i1 < <ir<n
=k
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where homogeneous coordinates 3; are the Pliicker coordinates on IP( /\k C") ~ p(i)-1 (©
associated to the ordered basis eq, . . . , e, of C™. With this choice of basis for C™ the matrix
M, associated to ¢, is a ( ) x n matrix with rows indexed by subsets I = {i1,...,ix} C
[n] and entries

n
k+1

b — (—D)'8nygy ifj=ael,
" 0 otherwise.

Pliicker relations, i.e. conditions for dim(ker ¢,) = k, are vanishing conditions of all
(n—k+41) x (n—k+1) minors of M. It is well known (see for instance [5]) that Pliicker
relations are degree 2 relations and they can also be written as

k

Z(il)lﬁplmpk—lmqum(il»--q}c =0 (2.2)

=0
for any 2k-tuple (plu -y Pk—1,40,- - - 7%)-

Remark 2.1. Notice that vectors oy, in the equation (2.1) normal to hyperplanes Dy, cor-
respond to rows indexed by L in the Pliicker matrix M, that is

A(Ax) = M,,
up to permutation of rows. Notice that, in particular, det(as, ..., d,, ..., a, ) is the
Pliicker coordinate 8y, I = {s1,$2,...,Sk+1} \ {s:i}-

2.5 Relation between intersections of lines in .4, and quadrics in Gr(3,C"™)

Let A = {H?,..., HJ} be a generic arrangement in C3. If there exist L1, Lo, L3 C [n]
subsets of indices of cardinality 4, such that codimension of Dy, N Dy, N Dy, is 2 then A
is non very generic arrangement (see [2]).

Let T = {Li, Lo, L3} be a good 6-partition of indices {si,...,s6} C [n]. In [6],
authors proved that the codimension of Dy, N Dy, N Dy, is 2 if and only if points

mteLlﬁLz Heot, mteLlﬁLg He ¢ and mteLQng Heo

are collinear in H, ([6, Lemma 3.1]).

Since «p,; is vector normal to Dy,,, the codimension of Dy, N Dy, N Dy, is 2 if and
only if rank Ar(Aw) = 2, i.e. all 3 x 3 minors of At(Aw) vanish. In [10] authors proved
the following Lemma.

Lemma 2.2 ([10, Lemma 5.3]). Let A be an arrangement of n hyperplanes in C3 and
O-T = {{ila 7;27 i37 i4}7 {7;17 i27 i57 7;6}7 {237 i47 7;57 ZG}}
a good 6-partition of indices s1 < --- < sg € [n| such that i; = s4(;), 0 permutation in

S¢. Then rank A, 1(Ax) = 2 if and only if A is a point in the quadric of Grassmannian
Gr(3,C™) of equation

5i1i3i4/8i2i5i6 - /Bi2i3i45i1i5i6 = O (2'3)
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As consequence of above results, we obtain correspondence between points

T = Z ﬁ]efa 61#07

IC[n]
V=

in the quadric of equation (2.3) and generic arrangements of n hyperplanes A in C? such
that Hoo 5, N Hooiyy Hoo iy N Hoo iy and Hg 4 N Ho, ;, are collinear in H . Notice that
condition By # 0 is direct consequence of A being generic arrangement.

3 Motivating example of Pappus’s Theorem for quadrics in Gr (3, C™)

In classical projective geometry the following theorem is known as Pappus’s theorem or
Pappus’s hexagon theorem.

Theorem 3.1 (Pappus). On a projective plane, consider two lines 1, and ls, and a couple
of triple points A, B,C and A’, B',C" which are on 1 and 5 respectively. Let X,Y, Z be
points of AB' N A’B, AC' N A’C and BC' N B’C respectively. Then there exists a line l3
passing through the three points X,Y, Z (see Figure 1).

Figure 1: Original Pappus’s Theorem.

This theorem was originally stated by Pappus of Alexandria around 290-350 A.D.

In this section, we restate this classical theorem in terms of quadrics in the Grassman-
nian. Indeed the six lines AB’, A’'B, BC', B'C, AC’, A'C € P?(C) correspond to lines in
the trace at infinity A, of a generic arrangement A in C* and lines /1, [ and I3 correspond
to collinearity conditions for intersection points of lines in A.

Consider a generic arrangement A = {Hy,..., Hg} of 6 hyperplanes in C3, A, its
trace at infinity and T = {L;, Lo, L3} the good 6-partition defined by L; = {1,2, 3,4},
Lo ={1,2,5,6}, Ly = {3,4,5,6}. By Lemma 2.2 we get that the triple points

Nierinr, HiNHooo  Nicp,nps Hi NV Hooo  Mier,nr, Hi N Hoo
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are collinear if and only if A is a point of the quadric

Q1 B1348256 — B23aB156 = 0
in Gr(3,C").
Analogously if
T = {L,1> /27 é}’ Lll = {4767275}’ Ll2 = {4763 173}7 Lé = {275a 173}
and
T = {L,1/7 LIQ/’ Lg}v Lll/ = {2v47 176}5 L/QI = {274a 3, 5}a Lg = {L 6,3, 5}
are different good 6-partitions then triple points
_ _ .
ﬂieL’lmL; HiN He, nieL’lng HiN He, mieL;ng Hi* N Hoo
and - B B
ﬂieL’l’ng H; " Hoo, ﬂiEL’l/ﬂLé’ H; N Hoo, ﬂieLgng H; M Heo

are collinear if and only if A is, respectively, a point of quadrics

Q2 Ba2sBs13 — Pe25B413 = 0 and
Q3: B216B435 — Ba165235 = 0.

With above remarks and notations we can restate Pappus’s Theorem as follows (see Fig-
ure 2).

Theorem 3.2 (Pappus’s Theorem). Let A = {Hy,...,Hg} be a generic arrangement
of hyperplanes in C3. If A is a point of two of three quadrics Qy,Qs and Qs in the
Grassmannian Gr(3,C®), then A is also a point of the third. In other words

3
Qil inz = n Qi7 {i177;2} C [3]

i=1
We develop this argument in the following sections providing in Theorem 5.3 a general

statement on quadrics in the Grassmannian which implies Pappus hexagon Theorem in the
projective plane.

4 Pappus Variety

In this section, we consider a generic arrangement {H, ..., H,} in C3 (n > 6). Let’s
introduce basic notations that we will use in the rest of the paper.

Notation. Let {s1,...,s¢} be a subset of indices {1,...,n} and T = {Ly, Lo, L3} be the
good 6-partition given by

Ly = {s1,892,83,84}, Lo = {s1, $2, 85,86} and Ls = {ss, S4, S5, S6}

Then for any permutation o € Sg we denote by 0.T = {0.L1,0.La,0.L3} the good 6-
partition given by subsets

o.Ly = {i1,12,13,14}, 0.La = {i1,42,15,i6} and 0.L3 = {i3,i4, 15,76}
with ij = 84(;). Accordingly, we denote by Q, the quadric in Gr(3,C") of equation

Qo : BivigiaBinisic — BisigiaBinigis = 0.
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Figure 2: Trace at infinity of A € ﬂle Q;. In the figure ¢j denotes Hoo ; N Hoo 5.

The following lemma holds.

Lemma 4.1. Let 0,0’ € S¢ be distinct permutations, then Q, = Q- if and only if there
exists T € Sz such that 0.L; No.Lj = o' Ly No' Ly (1 <i<j<3).

Proof. By definition of good 6-partition we have that

Ly = (LiNLy)U(Ly N L3),
Ly = (LaNLy)U(Ly N Ly),
L3 = (L3 N Ll) @] (L3 N Lg)

Then there exists 7 € S3 such that o and ¢’ satisfy 0.L; N o.L; = o'.L;;y N o'.L.(
(1 <i<j<3ifandonlyifo.l; = o'.Lyq forl = 1,2,3, that is A, 7(Ax) is
obtained by permuting rows of A, (A ). It follows that rank A, 1(A) = 2 if and only
if rank A,/ 7(As) = 2 and hence by Lemma 2.2 this is equivalent to Qs N Ny, . s, =
Qo N Ny, ... 55, Where

Ngy.se = {2 = Z Brer | Br # 0 forany I C {s1,...,86}}

1<)

[7]=3
Since Ny, . s, is dense open set in y(Gr(3,C™)), Qs N Ny, ss = Qor N Niy 56
~~~~ ss = Qor N Ny, . s, then any
generic arrangement A corresponding to a point in Q, N Ny, . s, corresponds to a point
in Qys N Ny, .. s that is rank A, 7(Aw) = 2 if and only if rank A,/ p(As) = 2. It
follows that A, 1(Ax) and Ay 1( A ) are submatrices of A(Ay,) defined by the same
three rows, i.e. 0.L; = o'. L, forl = 1,2, 3. O

Definition 4.2. For any 6 fixed indices T = {s1,...,86} C [n] the Pappus Variety is the
hypersurface in Gr(3,C") given by

Pr = U Q0~

o€Ss
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Notice that all the content of this section and the following section is based on the
choice of six indices {s1 < -+ < sg} C [n]. This is related to result in Theorem 3.8 in
[6] and, consequently, Lemma 5.3 in [10] (Lemma 2.2 in this paper). Indeed Theorem 3.8
in [6] states that in order to study special configurations of n lines in P2, that is non very
generic arrangements of n lines in P2, it is sufficient to study subsets of six lines out of
n. On the other hand since Pappus Variety can be defined inside Gr(3,C"), we decided
to keep the discussion more general picking six indices {s1 < -+ < sg} C [n] instead of
simply study the case Gr (3, C%) (see also Remark 6.7).

For 0,0’ € Sg we define the equivalence relation 0. T ~ ¢’.T corresponding to Q, =
Q. as following:

0.T ~¢'.T < 37 € S3suchthat 0.L; N oL; = U/~L7(i) N O'/.LT(j) (1 <i<j< 3)

We denote by [o] the equivalence class containing ¢.T and by Q,, the corresponding quadric
(notice that o in the notation Q,, can be any representative of [o]). By Lemma 4.1 [o] only
depends on couples L; N L; hence for each class [o] we can choice a representative

5. To = {{j1,J2, J3. ja}> {41, d2.Js, e}, {Js: ja, jss je} }

such that 71 < jo, 73 < j4, J5 < je and j1 < j3 < js and we can equivalently define
o] = {{j1. 52}, {s.da}, {5, de}}-
; ; < GE)E)
Since the number of choices of [o] is ~2~5-2
quadrics. Finally remark that

lo] = {{j1, 42}, {Js.Ja}, {Js.J6}} and

o) = {41 2} {3, gats {35, 563}
are disjoint, i.e. [o] N [0'] = 0, if and only if {jo—1,ju} # {jby 1,45} for any
1<1,I<3.

= 15, Pappus Variety is composed by 15

Definition 4.3 (Pappus configuration). Let [01], [02] and [o3] be disjoint classes, a Pappus
configuration is a set {Qo,, Qu,, Qo } Of quadrics in Gr(3, C™) such that

3
QUil m QO’i2 = ﬂ Qo’i
i=1

for any {i1,i2} C [3].

Quadrics Q,,, Qs , Qs are said to be in Pappus configuration if {Q,, , Qu,, Qo } is a
Pappus configuration.

Remark 4.4. Fixed a class of good 6-partition [0] = {{j1,j2}, {j3,1}, {J5.J6}}. we
shall count the number of disjoint classes.

First let’s count the number of classes [0'] = {{j1, j3}, {44, 74}, {4k, j6}} not disjoint
and distinct from [o]. Since [o] and [0’] are distinct, only one couple {j;, j; ., } is contained
in [o]. Without lost of generality we can assume {ji, j;.+1} = {41, j5} ( is either 1,3 or 5)
then pairs {j4, j4 } and {j, ji} are not in the same set, i.e. we have two possibilities:

{43, 45} and {j}, j} € [o],
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or

{43, 46} and {j}, js} € [o].
Hence there are 2 - 3 + 1 = 7 not disjoint classes from [o] and, since the number of all
classes is 15, we get that any fixed [o] admits exactly 15 — 7 = 8 disjoint classes.

5 Pappus’s Theorem

In this section we restate Pappus’s Theorem for quadrics in Gr(3,C™) by using notation
introduced in the previous section. For a fixed class [0] = {{jl, Jot, {43,794}, {Jss jﬁ}}
let’s denote by G|, the free group generated by permutations of elements in each subset of
[o], that is

Glo] = ((Jar—1 ju) € Se | 1 =1,2,3),

and, for any class, [0”] let’s define the set
orbitg,, ([o']) = {rlo'] | T € G}
where 7 acts naturally as permutation of entries of each set in [o”].

Remark 5.1. The action of G/,) on class [0’] disjoint from [o] is faithful. Indeed let
7,7" € G|y be such that 7[o’] = 7/[0”] then 77 17'[¢'] = [0'],i.e. 77'7" € G|,/). Thus we
get 717" € Gy} N Gpv). Since [o] and [0”] are disjoint, G[,] N G|y = {e}, ie., 7 = 7.
Remark that | orbitg,, ([0'])| = |G|s)| = 8 and T[o] = [o] for any 7 € G|,).

Lemma 5.2. Let [0] and [0'] be disjoint classes, then
orbite,, ([o']) = {[o"] | [o] N [o"] = 0}.
Proof. First we prove that orbite_, ([0']) € {[0”] | [o] N [0”] = 0}. Let
[o] = {{j1, 72}, {Js.ja}, {Js.J6}} and
o) = {412} s gat {35, 563}
be disjoint, then |{j21—1, j21} N {j%m_1,J2m | < 1. Since 7 € G|, permutes only jo;_1
and j; then 7[o’]N[o] = 0, that is 7[o’] is disjoint from [0], i.e. 7[0”] € {[0"] | [¢]N[¢”] =

0}. Since Gy, is faithful, | orbitg,,,([0'])] = 8 and, by calculations in the Remark 4.4,
[{[o"] | [o]n]o"] = 0}] = 8, it follows that orbite, ([0]) = {[o"] | [o]N[o"] = 0}. O

The following theorem holds.

Theorem 5.3 (Pappus’s Theorem). For any disjoint classes o] and [c'], there exists a
unique class [0"'] disjoint from [c] and [0'] such that {Qs, Qs’, Qp } is a Pappus configu-
ration.

Remark 5.4. Let [01] and [03], [03] = {{j1,i, 2.6}, {Js,i,Ja4}, {Us.i:Je,it} i =1,2be
classes of indices in {1, ..., 6}. Recall the following facts (see Section 2 and Lemma 2.2):
i) If
z=Y Brer, B #0

1Cl6]
11]=3
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is a point in Q,, then any arrangement A € C3 such that A(A) = M, is an
arrangement of 6 planes in general position in C? with lines in A, such that points

HOO,jl,i N HOOJQ,i? HOOJ?,,i N HOOJ4,1' and HOOJ5,1‘ N HOO,je,i

are collinear.
ii) Vice versa if A is an arrangement of 6 lines in general position in C* with the inter-
section points

HOOJl,i N HOOva,i’ HOOij,i N H007j4,i and HOOij,i NHe

,J6,i

collinear, then any point

T = Z Brer

1C6]
|1]=3

such that M, = A(A.) verifies 5y # 0 and z € Q,,.

From ii) it follows that if 4., is an arrangement of 6 lines in general position in P? such
that
HDO,jl,z: N HOO,jz,m HOO,j's.,q: n H007j4‘71 and HOOJM n HOOJe,i

are collinear for s = 1, 2, then any point

T = Z Brer

IC[6]
|I]=3

such that M,, = A(A) belongs to Q,, NQ,,. Moreover [01] and [o2] are disjoint classes.
By Theorem 5.3 there exists a third class

lo3] = {{j1,3, 72,3}, {J3.3,J4.3}, {J5,3:J6,3}

such that {Q,,, Qo,, Qo } is a Pappus configuration. Then = € [, ., .3 Qo,, Which im-
plies, by i) that also o

HOO,jl,z N HOOJQ,S? HOC’js,s N H007J'4,3 and H007j5,3 NHe

,J6,3

have to be collinear. That is Theorem 5.3 implies Pappus hexagon Theorem in the plane
(see Figure 2).

Notice that Theorem 5.3 is slightly more general than Pappus hexagon Theorem since
it also applies to the case in which some 3y = 0.

Proof of Theorem 5.3. Following example in Section 3, for any class

[wi] = {{71. 42}, {3, s}, {56} }

let’s consider disjoint classes

[wa] = {{j1, 3}, {42,375}, {Jarde}} and
ws] = {{i1,d6}, {2,374}, {Us:35}}-
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The corresponding quadrics have equations:

Qur * BjrjsiaBizjsie — BizdsjaBirisie = 05
Qu, : ﬁjuzjsﬂjeﬁjs - ﬁjejﬂsﬁjmms =0,
Qwa : Bjsj1j66j3j2j4 - ﬂj3j1j66j5j2j4 =0.

By definition of 3;;1, equations of Q., and Q.,, can equivalently be written as
Qus * Binjajs Birisis T BingsieBirisis = 05
Qus * BjrjsioBizisis T BivisieBiajags = O-

If we denote left side of defining equations of Q,,, by P, then

ng_Pwlz-nga

that is zeros of any two polynomials P, , P, are zeros of P, , {i1,72,i3} = {1,2,3}.
We get

3
Qw’il ﬁ qujz = ﬂ Qwi
i=1

for any {i1,i2} C [3],i.e. Qu,, Qu, and Q. are in Pappus configuration.
By Lemma 5.2, since [w;] N [ws] = 0, the set of disjoint classes from [w; ] is given by

{loo] | lwa] Nfoo] = 0} = {7olwa] | 70 € Gy}

Then if [¢'] is disjoint from [w;], there exists a unique element 7 € G|,,] such that
[0'] = T[ws]. That is, for a generic class [w;], any disjoint couple ([w:], [0']) is of the
form ([w1], T[w2]) = (T]w1], T[w=]) and we have

Quy = Qrur  Br(in)r(Gs)r(ia) Br(ia)(is)7(Gs) — Br(ia)r(is)r(ia) Br(in)r(Gs)r(Gs) = 05
Qo' = Qrws t Br(ja)r(ia)r(is) Brie) ()7 (s) — Bre)r(Ga)r(is) BrGa)r (i) r(js) = 0

By antisymmetric property of indices of 3, if we denote by P,,, and P, the left side of
above equations, i.e.

Py = Br(j)r(is)r(54) Br(j2)m(s)m(Gs) — Br(ia) ()7 (ia) Br ()7 (s )7 (o)
Por = Br(ja)r(i2)r(s) Br ) (1) Gs) — Bre)r(G2)Gis) Br(ia)(a)r (s)

then

FPorri= Por — Poy = Br(js)r(1)7(6) Br(is)r(i2)r(Ga) — Br(is)r(31)7(G6) Pr(is) 7 (2)7(ja)

is the defining polynomial of Q. That is [0”'] is uniquely determined by disjoint couple

([wr], [o"))- 0

From proof of Theorem 5.3 we get that for any class

wi] = {{j1, 42}, {3, ja}s {5, d6}}
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if we denote

[wa] = {{j1, 75}, {jo.ds}, {ja.js}} and

[ws] = {{j1,d6}, {do,da}, {Js.d5}},
then all Pappus configurations are of the form {Q:w,, Qrwss Qrws}> T € Gw,) and the
following Corollary holds.

Notice that the proof of Theorem 5.3 only uses equations of quadrics 3, and hence
provides alternative proof to Pappus hexagon Theorem. In particular it is also alternative
to classical proof based on Grassmann-Pliicker relations. Indeed the latter proof uses the
fact that points in Pappus configurations verify the Grassmann-Pliicker relations while, in
our cases, quadrics QQ, are proper quadrics in the Grassmannian, i.e. equations of quadrics
Q, are not Grassmann-Pliicker relations.

Corollary 5.5. The number of Pappus configurations {Q,, Qo’, Qo } in Gr(3,C5) is 20.

Proof. By Remark 4.4 the number of [0] is 15 and by Lemma 5.2 each fixed class [o] admits
8 disjoint classes. By Theorem 5.3 if [o] and [0”] are fixed, [¢"] is uniquely determined,
thus the number of the sets {[0], [0'], [0”]} is 15 x 8/3! = 20. O

Corollary 5.5 establishes that for any given 6 lines in P? there are 20 possible com-
binations of their intersections that give rise to a Pappus’s configuration like the one in
Figure 2.

6 Intersections of quadrics

In this section we study intersections of quadrics in Gr(3,C™). In particular we are inter-
ested in the intersection of sets

Q. =QoN{z= Z Brer | Br #0forany I C {s1,...,s6}}

IC[n]
[I]=3

of points in quadrics Q, that correspond to arrangements of lines in P2(C) with subar-
rangement {Hy,, ..., Hy, } generic. The following lemma holds.

Lemma 6.1. If [01], [02], [03] are distinct and pairwise not disjoint classes then
Qy, NQy, NQs, =0.
Proof. 1f [01], [02], [o3] are not disjoint then either
(1) |[e1] No2] N[os]| =1or
(2) HCTil] n [0i2]| =1 (1 S il < iQ § 3) and [O’ﬂ N [02] n [0'3} = @

(1) Assume [0'1} n [0'2} n [0’3] = {il,ig}. Let [0’1] = {{il,ig},{i3,i4}, {i5,i6}},
[0'2} = {{il, ig}, {i3, i5}, {i4, i6}}, and [0’3] = {{il, ig}, {7:3, iﬁ}, {’i4, 25}} then we obtain
the following quadrics

Qo : 57:17:31:45@27:57:6 - 51‘21‘31‘451:11:51‘6 =0,
Qoy : Bivisis Binisis — BinisisBivisic = 0,
QG’3: 6i1i3i6ﬂi2i4i5 - /3i2i3i6/8i1i4i5 = O
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Any point z € Qg, N Qg, belongs to Gr(3,C"), that is x satisfies Pliicker relations in
(2.2). In particular x € Pl; N Pls where Pl and Pls are the quadrics:

P11: 5i1i3i2ﬁi4i5i6 - ﬁi1i3i45i2i5i6 + /Bili3i5ﬂi2i4i6 - ﬂi1i3i55i2i4i5 = 07
Ply: 51'21'31'151'41'51'6 - /8i2i3i45i1i5i6 + 5i2i3isﬂi1i4ie - Bi2i3i66ili4i5 =0.

Notice that Pl; and Ply can be obtained from equations in (2.2) considering the 6-tuples
(1, P2, 40, G1, 2, 43) = (i1, 13, 12, %4, i5, %) and (i2, 3, i1, %4, i5, i) respectively. We get
Qoy = Qoy = Ply + Ply: BiigisBiziais — BivisieBiviais + 2(BiriziaBisisis) = 0-
Since B;,iyis # 0 and B, 7 0 then B;,4,: Bisisis 7 0 and hence

BiviicBiiais — BisigicBirisis 7 0,
thatisz € Qg .

(2) Assume [0'1] N [0'2} = {il,ig}, [0'1} N [0'3] = {ig, i4} and [0’2} N [0'3] = {i5, 2.6} and
name Py = {iy,i2}, P> = {i3,ia}, P3 = {i5,i6}. Toany pointz € Qg N Qg, N Qg
corresponds the existence of an arrangement with a generic sub-arrangement indexed by
{i1,...,i6} which trace at infinity {Hoo 4,, - .., Hoo s} satisfyies collinearity conditions
as in Figure 3. That is there exist couples Py € [01], Ps € [02] and Ps € [o3] that cor-

respond, respectively, to intersection points py, ps and pg of lines in {Ho 4, - - -, Hoo ig }
(see Figure 3).

Gy
\
o
o \ ] Q
_____ 1= {1, 02} s X 03
QG’l _____ e p 2
v T Sheengil
] -
\ L7 2= {la, 4}
\
\ 7z
\ e
® 7’
Ps \ ’
r4
\ Pa.
\ ’
AY d
\ Pis
\ ’
\ 4
T
v
X pa= (is, i)
AR
’ \
e
P, \
, \

Figure 3: Case (2) trace at infinity of A € ﬂle o.» 14,7} corresponds to Hoo ; N Heg 5.

By definition of P;, P, and Ps we have
Py = {i5,i¢} € ({11, .6} \ P1) N ({i1,.. d6} \ P2).

On the other hand, if P, is different from P, and P, in Qg then Py = ({il, ce iG}\Pl) N
({il, cooig )\ Pg). Thus we get P; = P, and, similarly, Ps = P, and Ps = Py, that is
o, = Qg, = Qg which contradict hypothesis. O

o1 T o3
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Lemma 6.2. For any three pairwise disjoint classes [01], [02], [03], either {Qs,, Qoys Qo
is a Pappus configuration or

3
na:, =o.
i=1
Proof. By Pappus’s Theorem, for any two disjoint classes [o;], [0;], there exists [o;;] such
that {Qo,, Qo;, Qo } is Pappus configuration. If [o;;] = [o}] for some k € [3], then
{Qos,,Qos, Qs ) is a Pappus configuration. Thus assume all [0;] # [oy] for any k =
1,2,3. Moreover [012], [013], [023] are distinct since if [0;;] = [o4%] then [0;] = [o%].

If [0‘12] N [0’13} 75 @, [0'12] n [0‘23] 75 @ and [0'13] n [0’23] 7é @, then

ﬂ leIZQ - @

1<l;<12<3
by Lemma 6.1 and
3 3
Ne.=a)nt N Q.=
i=1 i=1 1<l <12<3
Otherwise assume [o12] N [o13] = 0, we get a new Pappus configuration. Since the

number of disjoint classes is finite, iterating the process, we will eventually get 3 classes
[o1,], [01,], [015] pairwise not disjoint and
3

3
ﬂQ i:(ngi)mQ;zlnglzﬂQgg = 0. O

=1 =1

q o

Lemma 6.3. If [01],[02], 03] are distinct classes such that [o1] N [o2] # 0 and

[0:] N [o3) =0 fori=1,2, then
3
na:, =o.
i=1

Proof. Since [01],[o3] and [o2], [o3] are disjoint, there exist [04] and [o5] such that
{ Qo1 Qoss Qoy } and {Qo,, Qos, Qo } are Pappus configurations and

(o] Nos] # 0, [o2]N[oa] #0, [o4] N[o5] # 0.

Indeed if one of them is empty, we obtain 3 disjoint classes not in Pappus configuration and

by Lemma 6.2, it follows
3 5
i=1 i=1
Since [o1] N [o2] # 0, we can assume {i1, {2} = [01] N [02] and we can set

[o1] = {{i1,i2}, {is,ia}, {i5,i6}},
[oo] = {{in, 2}, {is, 4}, {35, 06} ),
los] = {{j1, 42}, {3, s}, {Us.d6}}
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To any point

3
ze()Qg #0

i=1
corresponds an arrangement A with generic subarrangement {H;,, . .., H;, } with trace at
infinity {Ho 4, , - - -, Hoo i } intersecting as in Figures 4 and 5 (up to rename). It follows

Figure 4: Each j, j' is j; or jo.

that {j4, jo} € [04] and since {js, j5} = {i1,42} € [01] and [01] N [o4] = O (see Figure 4),
there are two possibilities:

[0a] = {{Ja,Je}, {1,738}, {J2:ds}}

[04] = {{Ja, J6}, {J1,Js}, {Ja,ds}}-

Analogously (see Figure 5) class [o5] is of the form
[o5] = {{Ja, Je}, {J1, s} {J2, Js } }

or

[o5] = {{Ja Je}, {d1, s} {j2, Ja} }-

Since [o1] N [05] # D and [o5] # {3, js} = {i1, i2}, we deduce that {js, j6} = {is,ia}
or {is, %6}, which is not possible by [o1] N [¢4] = (). Hence

3
Qs =0 O

i=1
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Figure 6: Hesse arrangement with Ho;,, . . ., Hooi, and ﬂle o, #0.
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Notice that the Hesse arrangement in P?(C) (see Figure 6) can be regarded as a generic
arrangement of 6 lines which intersection points satisfy 6 collinearity conditions.

Definition 6.4 (Hesse configuration). Let [0;], 1 < ¢ < 6 be distinct classes, we call Hesse
configuration a set {Qy,, . . ., Qo } Of quadrics in Gr(3,C™) such that there exist disjoint
sets 1,.J C [6], |I| = |J| = 3 such that {Q,, }ic1,{Qo, } jes are Pappus configurations
and [o;] N [o;] # O foranyi € I, 5 € J.

With above notations, the following classification Theorem holds.

Theorem 6.5. For any choice of indices {s1,...,s6} C [n] sets Q%, o € S, in the
Grassmannian Gr(3,C"™) intersect as follows.

(1) For any disjoint classes [o1] and [o3], there exist [o3],...,[06] such that
{Qsys- - Qog } is an Hesse configuration for I = {1,2,3}, J = {4,5,6} and

3

2 4 6
ﬂ ;ﬂ;ﬂ";

1 i=1

(2) For any not disjoint classes [o1] and [02), there exist [03],...,[06] such that
{Qoys -+ Qog} is an Hesse configuration for I = {1, 3,4}, J = {2,5,6} and

2 3 6
Nes2MNa, =Na. 2N 20

All other intersections are empty.

Remark 6.6. Notice that, since Hesse configuration only exists in the complex case, in
Gr(3,C™) we can find 6 quadrics {Q,,, ..., Qs } such that

Qs 2

=1

=

)

<.

while in Gr(3,R™),

jeJC[6]
|J|>4
It follows that in the real case, for any choice of indices {s1,...,86} C [n], we have at
most 4 collinearity conditions (see Figure 7) corresponding to 15 hyperplanes in the Dis-
criminantal arrangement with 4 multiplicity 3 intersections in codimension 2 (see Figure 8).
While in the complex case Hesse configuration (see Figure 6) gives rise to a Discriminantal
arrangement containing 15 hyperplanes intersecting in 6 multiplicity 3 spaces in codimen-
sion 2.

This remark allows a better understanding of differences in the combinatorics of Dis-
criminantal arrangement in the real and complex cases. Indeed the existence of a discrimi-
nantal arrangement of 15 hyperplanes intersecting in 6 multiplicity 3 spaces in codimension
2 in C but not in R implies that there exist combinatorics of Discriminantal arrangements
that cannot be realised in any field. This is especially interesting since in the case known
until now, i.e. in the case of very generic arrangements .A, the combinatorics of Discrimi-
nantal arrangement B(n, k, A) is independent from the field (see [1]).
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Figure 7: Generic arrangement A in R? containing 6 lines satisfying 4 collinearity condi-

tions.

Figure 8: Codimension 2 intersections of 15 hyperplanes in B(n,3, A, ) indexed in
{s1,...,8} C [n] with 4 multiplicity 3 points A corresponding to intersections

3 3 3 3 ] . :
i1 Do.ris ;=1 Dor.1is Ni—q Do, and (\;_y Do 1., 0,0",0", 06" as in Figure 7.
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Remark 6.7. Finally Theorem 6.5 implies that the maximum number of intersections of
multiplicity 3 in codimension 2 in the complex case is strictly higher than the one in the
real case. This agrees with results on maximum number of triple points in an arrangement
of lines in P2 (see [3] for a discussion on line arrangements with maximal number of triple
points over arbitrary fields). Those observations suggest that special configurations of lines
in the projective plane intersecting in a big number of triple points could be understood
by studying Discriminantal arrangements with maximum number of multiplicity 3 inter-
sections in codimension 2. Indeed each multiplicity 3 intersection in codimension 2 of
B(n,3, Ax) corresponds to a collinearity condition for lines in A, which is equivalent
to the possibility to add a line that gives rise to “higher” number of triple points. It seems
hence interesting to study exact number of intersections of type (1) and (2) in Theorem 6.5
in the Grassmannian Gr(3,C™). This will be object of further studies.
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