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Abstract

In this paper we study intersections of quadrics, components of the hypersurface in the
Grassmannian Gr(3,Cn) introduced by S. Sawada, S. Settepanella and S. Yamagata in
2017. This lead to an alternative statement and proof of Pappus’s Theorem retrieving Pap-
pus’s and Hesse configurations of lines as special points in the complex projective Grass-
mannian. This new connection is obtained through a third purely combinatorial object, the
intersection lattice of Discriminantal arrangement.
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1 Introduction
Pappus’s hexagon Theorem, proved by Pappus of Alexandria in the fourth century A.D.,
began a long development in algebraic geometry.

In its changing expressions one can see reflected the changing concerns of the
field, from synthetic geometry to projective plane curves to Riemann surfaces
to the modern development of schemes and duality.

(D. Eisenbud, M. Green and J. Harris [4])

There are several knowns proofs of Pappus’s Theorem including its generalizations such
as Cayley Bacharach Theorem (see Chapter 1 of [9] for a collection of proofs of Pappus’s
Theorem and [4] for proofs and conjectures in higher dimension).

In this paper, by mean of recent results in [6] and [10], we connect Pappus’s hexagon
configuration to intersections of well defined quadrics in the Grassmannian providing a
new statement and proof of Pappus’s Theorem as an original result on dependency condi-
tions for defining polynomials of those quadrics. This result enlightens a new connection
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between special configurations of points (lines) in the projective plane and hypersurfaces
in the projective Grassmannian Gr(3,Cn). This connection is made through a third com-
binatorial object, the intersection lattice of the Discriminantal arrangement. Introduced by
Manin and Schechtman in 1989, it is an arrangement of hyperplanes generalizing classical
braid arrangement (cf. [7, p. 209]). Fixed a generic arrangement A = {H0

1 , . . . ,H
0
n} in

Ck, the Discriminantal arrangement B(n, k,A), n, k ∈ N for k ≥ 2 (k = 1 corresponds to
Braid arrangement), consists of parallel translates Ht1

1 , . . . ,H
tn
n , (t1, . . . , tn) ∈ Cn, of A

which fail to form a generic arrangement in Ck. The combinatorics of B(n, k,A) is known
in the case of very generic arrangements, i.e. A belongs to an open Zariski set Z in the
space of generic arrangements H0

i , i = 1, . . . , n (see [7], [1] and [2]), but still almost un-
known for A 6∈ Z . In 2016, Libgober and Settepanella (cf. [6]) gave a sufficient geometric
condition for an arrangementA not to be very generic, i.e.A 6∈ Z . In particular in the case
k = 3, their result shows that multiplicity 3 codimension 2 intersections of hyperplanes
in B(n, 3,A) appears if and only if collinearity conditions for points at infinity of lines,
intersections of certain planes in A, are satisfied (Theorem 3.8 in [6]). More recently (see
[10]) authors applied this result to show that points in a specific degree 2 hypersurface in
the Grassmannian Gr(3,Cn) correspond to generic arrangements of n hyperplanes in C3

with associated discriminantal arrangement having intersections of multiplicity 3 in codi-
mension 2 (Theorem 5.4 in [10]). In this paper we look at Pappus’s configuration (see
Figure 1) as a generic arrangement of 6 lines in P2 which intersection points satisfy certain
collinearity conditions (see Figure 2). This allows us to apply results on [6] and [10] to
restate and re-prove Pappus’s Theorem.

More in details, letA be a generic arrangement in C3 andA∞ the arrangement of lines
in H∞ ' P2 directions at infinity of planes in A. The space of generic arrangements of n
lines in (P2)n is Zariski open set U in the space of all arrangements of n lines in (P2)n. On
the other hand in Gr(3,Cn) there is open set U ′ consisting of 3-spaces intersecting each
coordinate hyperplane transversally (i.e. having dimension of intersection equal 2). One
has also one set Ũ in Hom(C3,Cn) consisting of embeddings with image transversal to
coordinate hyperplanes and Ũ/GL(3) = U ′ and Ũ/(C∗)n = U . Hence generic arrange-
ments in C3 can be regarded as points in Gr(3,Cn). Let {s1 < · · · < s6} ⊂ {1, . . . , n}
be a set of indices of a generic arrangement A = {H0

1 , . . . ,H
0
n} in C3, αi the normal

vectors of H0
i ’s and βijl = det(αi, αj , αl). For any permutation σ ∈ S6 denote by

[σ] = {{i1, i2}, {i3, i4}, {i5, i6}}, ij = sσ(j), and by Qσ the quadric in Gr(3,Cn) of
equation βi1i3i4βi2i5i6 − βi2i3i4βi1i5i6 = 0. The following theorem, equivalent to the
Pappus’s hexagon Theorem, holds.

Theorem 5.3 (Pappus’s Theorem). For any disjoint classes [σ1] and [σ2], there exists a
unique class [σ3] disjoint from [σ1] and [σ2] such that {Qσ1

, Qσ2
,Qσ3

} is a Pappus con-
figuration, i.e.

Qσi1
∩Qσi2

=

3⋂
i=1

Qσi

for any {i1, i2} ⊂ [3].

In the rest of the paper, we retrieve the Hesse configuration of lines studying inter-
sections of six quadrics of the form Qσ for opportunely chosen [σ]. This lead to a better
understanding of differences in the combinatorics of Discriminantal arrangement in the
complex and real case. Indeed it turns out that this difference is connected with existence
of the Hesse arrangement (see [8]) in P2(C), but not in P2(R).
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From above results it seems very likely that a deeper understanding of combinatorics of
Discriminantal arrangements arising from non very generic arrangements of hyperplanes
in Ck (i.e. A /∈ Z), could lead to new connections between higher dimensional special
configurations of hyperplanes (points) in the projective space and Grassmannian. Vice
versa, known results in algebraic geometry could help in understanding the combinatorics
of Discriminantal arrangements in the non very generic case. Moreover we conjecture
that regularity in the geometry of Discriminantal arrangement could lead to results on hy-
perplanes arrangements with high multiplicity intersections, e.g., in the case k = 3, line
arrangements in P2 with high number of triple points (see Remark 6.6). This will be object
of further studies.

The content of the paper is the following. In Section 2 we recall definition of Discrim-
inantal arrangement from [7], basic notions on Grassmannian, and definitions and results
from [10]. In Section 3 we provide an example of the case of 6 hyperplanes in C3. In
Section 4 we define and study Pappus hypersurface. Section 5 contains Pappus’s theorem
in Gr(3,Cn) and its proof. In the last section we study intersections of higher numbers of
quadrics and Hesse configuration.

2 Preliminaries
2.1 Discriminantal arrangement

LetH0
i , i = 1, . . . , n be a generic arrangement in Ck, k < n i.e. a collection of hyperplanes

such that codim
⋂
i∈K,|K|=pH

0
i = p. Space of parallel translates (H0

1 , . . . ,H
0
n) (or simply

when dependence on H0
i is clear or not essential) is the space of n-tuples H1, . . . ,Hn such

that either Hi ∩ H0
i = ∅ or Hi = H0

i for any i = 1, . . . , n. One can identify with n-
dimensional affine space Cn in such a way that (H0

1 , . . . ,H
0
n) corresponds to the origin. In

particular, an ordering of hyperplanes in A determines the coordinate system in (see [6]).
We will use the compactification of Ck viewing it as Pk(C)\H∞ endowed with collec-

tion of hyperplanes H̄0
i which are projecive closures of affine hyperplanes H0

i . Condition
of genericity is equivalent to

⋃
i H̄

0
i being a normal crossing divisor in Pk(C).

Given a generic arrangementA in Ck formed by hyperplanesHi, i = 1, . . . , n the trace
at infinity, denoted by A∞, is the arrangement formed by hyperplanes H∞,i = H̄0

i ∩H∞
in the space H∞ ' Pk−1(C). The trace A∞ of an arrangement A determines the space of
parallel translates S (as a subspace in the space of n-tuples of hyperplanes in Pk).

Fixed a generic arrangementA, consider the closed subset of S formed by those collec-
tions which fail to form a generic arrangement. This subset of S is a union of hyperplanes
DL ⊂ S (see [7]). Each hyperplane DL corresponds to a subset L = {i1, . . . , ik+1} ⊂
[n] := {1, . . . , n} and it consists of n-tuples of translates of hyperplanes H0

1 , . . . ,H
0
n in

which translates of H0
i1
, . . . ,H0

ik+1
fail to form a general position arrangement. The ar-

rangement B(n, k,A) of hyperplanes DL is called Discriminantal arrangement and has
been introduced by Manin and Schechtman in [7]. Notice that B(n, k,A) depends on the
trace at infinity A∞ hence it is sometimes more properly denoted by B(n, k,A∞).

2.2 Good 3s-partitions

Given s ≥ 2 and n ≥ 3s, a good 3s-partition (see [10]) is a set T = {L1, L2, L3}, with
Li subsets of [n] such that |Li| = 2s, |Li ∩ Lj | = s (i 6= j), L1 ∩ L2 ∩ L3 = ∅ (in
particular |

⋃
Li| = 3s), i.e. L1 = {i1, . . . , i2s}, L2 = {i1, . . . , is, i2s+1, . . . , i3s}, L3 =



260 Ars Math. Contemp. 16 (2019) 257–276

{is+1, . . . , i3s}.
Notice that given a generic arrangement A in C2s−1, subsets Li define hyperplanes

DLi in the Discriminantal arrangement B(n, 2s − 1,A∞). In this paper we are mainly
interested in the case s = 2 corresponding to generic arrangements in C3.

2.3 Matrices A(A∞) and AT(A∞)

Let αi = (ai1, . . . , aik) be the normal vectors of hyperplanesHi, 1 ≤ i ≤ n, in the generic
arrangement A in Ck. Normal here is intended with respect to the usual dot product

(a1, . . . , ak) · (v1, . . . , vk) =
∑
i

aivi.

Then the normal vectors to hyperplanes DL, L = {s1 < · · · < sk+1} ⊂ [n] in S ' Cn are
nonzero vectors of the form

αL =

k+1∑
i=1

(−1)i det(αs1 , . . . , α̂si , . . . , αsk+1
)esi , (2.1)

where {ej}1≤j≤n is the standard basis of Cn (cf. [2]).
Let Pk+1([n]) = {L ⊂ [n] | |L| = k+ 1} be the set of cardinality k+ 1 subsets of [n].

Following [10] we denote by

A(A∞) = (αL)L∈Pk+1([n])

the matrix having in each row the entries of vectors αL normal to hyperplanes DL and by
AT(A∞) the submatrix of A(A∞) with rows αL, L ∈ T, T ⊂ Pk+1([n]). In this paper we
are mainly interested in the matrix AT(A∞) in the case of T good 6-partition.

2.4 Grassmannian Gr(k,Cn)

Let Gr(k,Cn) be the Grassmannian of k-dimensional subspaces of Cn and

γ : Gr(k,Cn)→ P(

k∧
Cn)

〈v1, . . . , vk〉 7→ [v1 ∧ · · · ∧ vk],

the Plücker embedding. Then [x] ∈ P(
∧k Cn) is in γ(Gr(k,Cn)) if and only if the map

ϕx : Cn →
k+1∧

Cn

v 7→ x ∧ v

has kernel of dimension k, i.e. kerϕx = 〈v1, . . . , vk〉. If e1, . . . , en is a basis of Cn then
eI = ei1 ∧ · · · ∧ eik , I = {i1, . . . , ik} ⊂ [n], i1 < · · · < ik, is a basis for

∧k Cn and
x ∈

∧k Cn can be written uniquely as

x =
∑
I⊆[n]
|I|=k

βIeI =
∑

1≤i1<···<ik≤n

βi1...ik(ei1 ∧ · · · ∧ eik)
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where homogeneous coordinates βI are the Plücker coordinates on P(
∧k Cn) ' P(nk)−1(C)

associated to the ordered basis e1, . . . , en of Cn. With this choice of basis for Cn the matrix
Mx associated to ϕx is a

(
n
k+1

)
×nmatrix with rows indexed by subsets I = {i1, . . . , ik} ⊂

[n] and entries

bij =

{
(−1)lβI\{j} if j = il ∈ I,
0 otherwise.

Plücker relations, i.e. conditions for dim(kerϕx) = k, are vanishing conditions of all
(n−k+1)× (n−k+1) minors ofMx. It is well known (see for instance [5]) that Plücker
relations are degree 2 relations and they can also be written as

k∑
l=0

(−1)lβp1...pk−1qlβq0...q̂l...qk = 0 (2.2)

for any 2k-tuple (p1, . . . , pk−1, q0, . . . , qk).

Remark 2.1. Notice that vectors αL in the equation (2.1) normal to hyperplanes DL cor-
respond to rows indexed by L in the Plücker matrix Mx, that is

A(A∞) = Mx,

up to permutation of rows. Notice that, in particular, det(αs1 , . . . , α̂si , . . . , αsk+1
) is the

Plücker coordinate βI , I = {s1, s2, . . . , sk+1} \ {si}.

2.5 Relation between intersections of lines in A∞ and quadrics in Gr(3,Cn)

Let A = {H0
1 , . . . ,H

0
n} be a generic arrangement in C3. If there exist L1, L2, L3 ⊂ [n]

subsets of indices of cardinality 4, such that codimension of DL1
∩DL2

∩DL3
is 2 thenA

is non very generic arrangement (see [2]).
Let T = {L1, L2, L3} be a good 6-partition of indices {s1, . . . , s6} ⊂ [n]. In [6],

authors proved that the codimension of DL1
∩DL2

∩DL3
is 2 if and only if points⋂

t∈L1∩L2
H∞,t,

⋂
t∈L1∩L3

H∞,t and
⋂
t∈L2∩L3

H∞,t

are collinear in H∞ ([6, Lemma 3.1]).
Since αLi is vector normal to DLi , the codimension of DL1 ∩DL2 ∩DL3 is 2 if and

only if rankAT(A∞) = 2, i.e. all 3× 3 minors of AT(A∞) vanish. In [10] authors proved
the following Lemma.

Lemma 2.2 ([10, Lemma 5.3]). Let A be an arrangement of n hyperplanes in C3 and

σ.T = {{i1, i2, i3, i4}, {i1, i2, i5, i6}, {i3, i4, i5, i6}}

a good 6-partition of indices s1 < · · · < s6 ∈ [n] such that ij = sσ(j), σ permutation in
S6. Then rankAσ.T(A∞) = 2 if and only if A is a point in the quadric of Grassmannian
Gr(3,Cn) of equation

βi1i3i4βi2i5i6 − βi2i3i4βi1i5i6 = 0. (2.3)
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As consequence of above results, we obtain correspondence between points

x =
∑
I⊂[n]
|I|=3

βIeI , βI 6= 0,

in the quadric of equation (2.3) and generic arrangements of n hyperplanes A in C3 such
that H∞,i1 ∩H∞,i2 , H∞,i3 ∩H∞,i4 and H∞,i5 ∩H∞,i6 are collinear in H∞. Notice that
condition βI 6= 0 is direct consequence of A being generic arrangement.

3 Motivating example of Pappus’s Theorem for quadrics in Gr(3,Cn)

In classical projective geometry the following theorem is known as Pappus’s theorem or
Pappus’s hexagon theorem.

Theorem 3.1 (Pappus). On a projective plane, consider two lines l1 and l2, and a couple
of triple points A,B,C and A′, B′, C ′ which are on l1 and l2 respectively. Let X,Y, Z be
points of AB′ ∩A′B, AC ′ ∩A′C and BC ′ ∩B′C respectively. Then there exists a line l3
passing through the three points X,Y, Z (see Figure 1).

Figure 1: Original Pappus’s Theorem.

This theorem was originally stated by Pappus of Alexandria around 290–350 A.D.
In this section, we restate this classical theorem in terms of quadrics in the Grassman-

nian. Indeed the six lines AB′, A′B, BC ′, B′C, AC ′, A′C ∈ P2(C) correspond to lines in
the trace at infinityA∞ of a generic arrangementA in C3 and lines l1, l2 and l3 correspond
to collinearity conditions for intersection points of lines in A∞.

Consider a generic arrangement A = {H1, . . . ,H6} of 6 hyperplanes in C3, A∞ its
trace at infinity and T = {L1, L2, L3} the good 6-partition defined by L1 = {1, 2, 3, 4},
L2 = {1, 2, 5, 6}, L3 = {3, 4, 5, 6}. By Lemma 2.2 we get that the triple points⋂

i∈L1∩L2
H̄i ∩H∞,

⋂
i∈L1∩L3

H̄i ∩H∞,
⋂
i∈L2∩L3

H̄i ∩H∞
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are collinear if and only if A is a point of the quadric

Q1 : β134β256 − β234β156 = 0

in Gr(3,C6).
Analogously if

T′ = {L′1, L′2, L′3}, L′1 = {4, 6, 2, 5}, L′2 = {4, 6, 1, 3}, L′3 = {2, 5, 1, 3}

and

T′′ = {L′′1 , L′′2 , L′′3}, L′′1 = {2, 4, 1, 6}, L′′2 = {2, 4, 3, 5}, L′′3 = {1, 6, 3, 5}

are different good 6-partitions then triple points⋂
i∈L′1∩L′2

H̄i ∩H∞,
⋂
i∈L′1∩L′3

H̄i ∩H∞,
⋂
i∈L′2∩L′3

H̄ti
i ∩H∞

and ⋂
i∈L′′1∩L′′2

H̄i ∩H∞,
⋂
i∈L′′1∩L′′3

H̄i ∩H∞,
⋂
i∈L′′2∩L′′3

H̄i ∩H∞
are collinear if and only if A is, respectively, a point of quadrics

Q2 : β425β613 − β625β413 = 0 and
Q3 : β216β435 − β416β235 = 0.

With above remarks and notations we can restate Pappus’s Theorem as follows (see Fig-
ure 2).

Theorem 3.2 (Pappus’s Theorem). Let A = {H1, . . . ,H6} be a generic arrangement
of hyperplanes in C3. If A is a point of two of three quadrics Q1,Q2 and Q3 in the
Grassmannian Gr(3,C6), then A is also a point of the third. In other words

Qi1 ∩Qi2 =

3⋂
i=1

Qi, {i1, i2} ⊂ [3].

We develop this argument in the following sections providing in Theorem 5.3 a general
statement on quadrics in the Grassmannian which implies Pappus hexagon Theorem in the
projective plane.

4 Pappus Variety
In this section, we consider a generic arrangement {H1, . . . ,Hn} in C3 (n ≥ 6). Let’s
introduce basic notations that we will use in the rest of the paper.

Notation. Let {s1, . . . , s6} be a subset of indices {1, . . . , n} and T = {L1, L2, L3} be the
good 6-partition given by

L1 = {s1, s2, s3, s4}, L2 = {s1, s2, s5, s6} and L3 = {s3, s4, s5, s6}.

Then for any permutation σ ∈ S6 we denote by σ.T = {σ.L1, σ.L2, σ.L3} the good 6-
partition given by subsets

σ.L1 = {i1, i2, i3, i4}, σ.L2 = {i1, i2, i5, i6} and σ.L3 = {i3, i4, i5, i6}

with ij = sσ(j). Accordingly, we denote by Qσ the quadric in Gr(3,Cn) of equation

Qσ : βi1i3i4βi2i5i6 − βi2i3i4βi1i5i6 = 0.
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Figure 2: Trace at infinity of A ∈
⋂3
i=1 Qi. In the figure ij denotes H∞,i ∩H∞,j .

The following lemma holds.

Lemma 4.1. Let σ, σ′ ∈ S6 be distinct permutations, then Qσ = Qσ′ if and only if there
exists τ ∈ S3 such that σ.Li ∩ σ.Lj = σ′.Lτ(i) ∩ σ′.Lτ(j) (1 ≤ i < j ≤ 3).

Proof. By definition of good 6-partition we have that

L1 = (L1 ∩ L2) ∪ (L1 ∩ L3),

L2 = (L2 ∩ L1) ∪ (L2 ∩ L3),

L3 = (L3 ∩ L1) ∪ (L3 ∩ L2).

Then there exists τ ∈ S3 such that σ and σ′ satisfy σ.Li ∩ σ.Lj = σ′.Lτ(i) ∩ σ′.Lτ(j)
(1 ≤ i < j ≤ 3) if and only if σ.Ll = σ′.Lτ(l) for l = 1, 2, 3, that is Aσ′.T(A∞) is
obtained by permuting rows of Aσ.T(A∞). It follows that rankAσ.T(A∞) = 2 if and only
if rankAσ′.T(A∞) = 2 and hence by Lemma 2.2 this is equivalent to Qσ ∩ Ns1,...,s6 =
Qσ′ ∩Ns1,...,s6 , where

Ns1,...,s6 = {x =
∑
I⊆[n]
|I|=3

βIeI | βI 6= 0 for any I ⊂ {s1, . . . , s6}}.

Since Ns1,...,s6 is dense open set in γ(Gr(3,Cn)), Qσ ∩ Ns1,...,s6 = Qσ′ ∩ Ns1,...,s6
if and only if Qσ = Qσ′ . Vice versa if Qσ ∩ Ns1,...,s6 = Qσ′ ∩ Ns1,...,s6 , then any
generic arrangement A corresponding to a point in Qσ ∩ Ns1,...,s6 corresponds to a point
in Qσ′ ∩ Ns1,...,s6 , that is rankAσ.T(A∞) = 2 if and only if rankAσ′.T(A∞) = 2. It
follows that Aσ.T(A∞) and Aσ′.T(A∞) are submatrices of A(A∞) defined by the same
three rows, i.e. σ.Ll = σ′.Lτ(l) for l = 1, 2, 3.

Definition 4.2. For any 6 fixed indices T = {s1, . . . , s6} ⊂ [n] the Pappus Variety is the
hypersurface in Gr(3,Cn) given by

PT =
⋃
σ∈S6

Qσ.
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Notice that all the content of this section and the following section is based on the
choice of six indices {s1 < · · · < s6} ⊂ [n]. This is related to result in Theorem 3.8 in
[6] and, consequently, Lemma 5.3 in [10] (Lemma 2.2 in this paper). Indeed Theorem 3.8
in [6] states that in order to study special configurations of n lines in P2, that is non very
generic arrangements of n lines in P2, it is sufficient to study subsets of six lines out of
n. On the other hand since Pappus Variety can be defined inside Gr(3,Cn), we decided
to keep the discussion more general picking six indices {s1 < · · · < s6} ⊂ [n] instead of
simply study the case Gr(3,C6) (see also Remark 6.7).

For σ, σ′ ∈ S6 we define the equivalence relation σ.T ∼ σ′.T corresponding to Qσ =
Qσ′ as following:

σ.T ∼ σ′.T⇔ ∃ τ ∈ S3 such that σ.Li ∩ σ.Lj = σ′.Lτ(i) ∩ σ′.Lτ(j) (1 ≤ i < j ≤ 3).

We denote by [σ] the equivalence class containing σ.T and by Qσ the corresponding quadric
(notice that σ in the notation Qσ can be any representative of [σ]). By Lemma 4.1 [σ] only
depends on couples Li ∩ Lj hence for each class [σ] we can choice a representative

σ̃.T0 =
{
{j1, j2, j3, j4}, {j1, j2, j5, j6}, {j3, j4, j5, j6}

}
such that j1 < j2, j3 < j4, j5 < j6 and j1 < j3 < j5 and we can equivalently define

[σ] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
.

Since the number of choices of [σ] is (6
2)(

4
2)(

2
2)

3! = 15, Pappus Variety is composed by 15
quadrics. Finally remark that

[σ] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
and

[σ′] =
{
{j′1, j′2}, {j′3, j′4}, {j′5, j′6}

}
are disjoint , i.e. [σ] ∩ [σ′] = ∅, if and only if {j2l−1, j2l} 6= {j′2l′−1, j′2l′} for any
1 ≤ l, l′ ≤ 3.

Definition 4.3 (Pappus configuration). Let [σ1], [σ2] and [σ3] be disjoint classes, a Pappus
configuration is a set {Qσ1 ,Qσ2 ,Qσ3} of quadrics in Gr(3,Cn) such that

Qσi1
∩Qσi2

=

3⋂
i=1

Qσi

for any {i1, i2} ⊂ [3].

Quadrics Qσ1
,Qσ2

,Qσ3
are said to be in Pappus configuration if {Qσ1

,Qσ2
,Qσ3

} is a
Pappus configuration.

Remark 4.4. Fixed a class of good 6-partition [σ] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
, we

shall count the number of disjoint classes.
First let’s count the number of classes [σ′] =

{
{j′1, j′2}, {j′3, j′4}, {j′5, j′6}

}
not disjoint

and distinct from [σ]. Since [σ] and [σ′] are distinct, only one couple {j′l , j′l+1} is contained
in [σ]. Without lost of generality we can assume {jl, jl+1} = {j′1, j′2} (l is either 1, 3 or 5)
then pairs {j′3, j′4} and {j′5, j′6} are not in the same set, i.e. we have two possibilities:

{j′3, j′5} and {j′4, j′6} ∈ [σ],
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or
{j′3, j′6} and {j′4, j′5} ∈ [σ].

Hence there are 2 · 3 + 1 = 7 not disjoint classes from [σ] and, since the number of all
classes is 15, we get that any fixed [σ] admits exactly 15− 7 = 8 disjoint classes.

5 Pappus’s Theorem
In this section we restate Pappus’s Theorem for quadrics in Gr(3,Cn) by using notation
introduced in the previous section. For a fixed class [σ] =

{
{j1, j2}, {j3, j4}, {j5, j6}

}
let’s denote by G[σ] the free group generated by permutations of elements in each subset of
[σ], that is

G[σ] =
〈
(j2l−1 j2l) ∈ S6 | l = 1, 2, 3

〉
,

and, for any class, [σ′] let’s define the set

orbitG[σ]
([σ′]) =

{
τ [σ′] | τ ∈ G[σ]

}
where τ acts naturally as permutation of entries of each set in [σ′].

Remark 5.1. The action of G[σ] on class [σ′] disjoint from [σ] is faithful. Indeed let
τ, τ ′ ∈ G[σ] be such that τ [σ′] = τ ′[σ′] then τ−1τ ′[σ′] = [σ′], i.e. τ−1τ ′ ∈ G[σ′]. Thus we
get τ−1τ ′ ∈ G[σ] ∩G[σ′]. Since [σ] and [σ′] are disjoint, G[σ] ∩G[σ′] = {e}, i.e., τ = τ ′.
Remark that | orbitG[σ]

([σ′])| = |G[σ]| = 8 and τ [σ] = [σ] for any τ ∈ G[σ].

Lemma 5.2. Let [σ] and [σ′] be disjoint classes, then

orbitG[σ]
([σ′]) =

{
[σ′′] | [σ] ∩ [σ′′] = ∅

}
.

Proof. First we prove that orbitG[σ]
([σ′]) ⊂

{
[σ′′] | [σ] ∩ [σ′′] = ∅

}
. Let

[σ] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
and

[σ′] =
{
{j′1, j′2}, {j′3, j′4}, {j′5, j′6}

}
be disjoint, then |{j2l−1, j2l} ∩ {j′2m−1, j′2m}| ≤ 1. Since τ ∈ G[σ] permutes only j2l−1
and j2l then τ [σ′]∩[σ] = ∅, that is τ [σ′] is disjoint from [σ], i.e. τ [σ′] ∈

{
[σ′′] | [σ]∩[σ′′] =

∅
}

. Since G[σ] is faithful, | orbitG[σ]
([σ′])| = 8 and, by calculations in the Remark 4.4,

|
{

[σ′′] | [σ]∩ [σ′′] = ∅
}
| = 8, it follows that orbitG[σ]

([σ′]) =
{

[σ′′] | [σ]∩ [σ′′] = ∅
}

.

The following theorem holds.

Theorem 5.3 (Pappus’s Theorem). For any disjoint classes [σ] and [σ′], there exists a
unique class [σ′′] disjoint from [σ] and [σ′] such that {Qσ , Qσ′ ,Qσ′′} is a Pappus configu-
ration.

Remark 5.4. Let [σ1] and [σ2], [σi] = {{j1,i, j2,i}, {j3,i, j4,i}, {j5,i, j6,i}}, i = 1, 2 be
classes of indices in {1, . . . , 6}. Recall the following facts (see Section 2 and Lemma 2.2):

i) If
x =

∑
I⊆[6]
|I|=3

βIeI , βI 6= 0
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is a point in Qσi then any arrangement A ∈ C3 such that A(A∞) = Mx is an
arrangement of 6 planes in general position in C3 with lines in A∞ such that points

H∞,j1,i ∩H∞,j2,i , H∞,j3,i ∩H∞,j4,i and H∞,j5,i ∩H∞,j6,i

are collinear.

ii) Vice versa if A is an arrangement of 6 lines in general position in C3 with the inter-
section points

H∞,j1,i ∩H∞,j2,i , H∞,j3,i ∩H∞,j4,i and H∞,j5,i ∩H∞,j6,i

collinear, then any point
x =

∑
I⊆[6]
|I|=3

βIeI

such that Mx = A(A∞) verifies βI 6= 0 and x ∈ Qσi .

From ii) it follows that if A∞ is an arrangement of 6 lines in general position in P2 such
that

H∞,j1,i ∩H∞,j2,i , H∞,j3,i ∩H∞,j4,i and H∞,j5,i ∩H∞,j6,i
are collinear for i = 1, 2, then any point

x =
∑
I⊆[6]
|I|=3

βIeI

such thatMx = A(A∞) belongs to Qσ1
∩Qσ2

. Moreover [σ1] and [σ2] are disjoint classes.
By Theorem 5.3 there exists a third class

[σ3] = {{j1,3, j2,3}, {j3,3, j4,3}, {j5,3, j6,3}

such that {Qσ1
, Qσ2

,Qσ3
} is a Pappus configuration. Then x ∈

⋂
1≤i≤3 Qσi which im-

plies, by i) that also

H∞,j1,3 ∩H∞,j2,3 , H∞,j3,3 ∩H∞,j4,3 and H∞,j5,3 ∩H∞,j6,3

have to be collinear. That is Theorem 5.3 implies Pappus hexagon Theorem in the plane
(see Figure 2).

Notice that Theorem 5.3 is slightly more general than Pappus hexagon Theorem since
it also applies to the case in which some βI = 0.

Proof of Theorem 5.3. Following example in Section 3, for any class

[ω1] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
let’s consider disjoint classes

[ω2] =
{
{j1, j3}, {j2, j5}, {j4, j6}

}
and

[ω3] =
{
{j1, j6}, {j2, j4}, {j3, j5}

}
.
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The corresponding quadrics have equations:

Qω1
: βj1j3j4βj2j5j6 − βj2j3j4βj1j5j6 = 0,

Qω2
: βj4j2j5βj6j1j3 − βj6j2j5βj4j1j3 = 0,

Qω3
: βj5j1j6βj3j2j4 − βj3j1j6βj5j2j4 = 0.

By definition of βijk, equations of Qω2
and Qω3

can equivalently be written as

Qω2
: βj2j4j5βj1j3j6 + βj2j5j6βj1j3j4 = 0,

Qω3
: βj1j5j6βj2j3j4 + βj1j3j6βj2j4j5 = 0.

If we denote left side of defining equations of Qωi by Pωi then

Pω2 − Pω1 = Pω3 ,

that is zeros of any two polynomials Pωi1 , Pωi2 are zeros of Pωi3 , {i1, i2, i3} = {1, 2, 3}.
We get

Qωi1
∩Qωi2

=

3⋂
i=1

Qωi

for any {i1, i2} ⊂ [3], i.e. Qω1 ,Qω2 and Qω3 are in Pappus configuration.
By Lemma 5.2, since [ω1] ∩ [ω2] = ∅, the set of disjoint classes from [ω1] is given by{

[σ0] | [ω1] ∩ [σ0] = ∅
}

=
{
τ0[ω2] | τ0 ∈ G[ω1]

}
.

Then if [σ′] is disjoint from [ω1], there exists a unique element τ ∈ G[ω1] such that
[σ′] = τ [ω2]. That is, for a generic class [ω1], any disjoint couple ([ω1], [σ′]) is of the
form ([ω1], τ [ω2]) = (τ [ω1], τ [ω2]) and we have

Qω1
= Qτω1

: βτ(j1)τ(j3)τ(j4)βτ(j2)τ(j5)τ(j6) − βτ(j2)τ(j3)τ(j4)βτ(j1)τ(j5)τ(j6) = 0,

Qσ′ = Qτω2
: βτ(j4)τ(j2)τ(j5)βτ(j6)τ(j1)τ(j3) − βτ(j6)τ(j2)τ(j5)βτ(j4)τ(j1)τ(j3) = 0.

By antisymmetric property of indices of βijk, if we denote by Pω1
and Pσ′ the left side of

above equations, i.e.

Pω1 = βτ(j1)τ(j3)τ(j4)βτ(j2)τ(j5)τ(j6) − βτ(j2)τ(j3)τ(j4)βτ(j1)τ(j5)τ(j6),
Pσ′ = βτ(j4)τ(j2)τ(j5)βτ(j6)τ(j1)τ(j3) − βτ(j6)τ(j2)τ(j5)βτ(j4)τ(j1)τ(j3)

then

Pσ′′ := Pσ′ − Pω1
= βτ(j5)τ(j1)τ(j6)βτ(j3)τ(j2)τ(j4) − βτ(j3)τ(j1)τ(j6)βτ(j5)τ(j2)τ(j4)

is the defining polynomial of Qτω3
. That is [σ′′] is uniquely determined by disjoint couple

([ω1], [σ′]).

From proof of Theorem 5.3 we get that for any class

[ω1] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
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if we denote

[ω2] =
{
{j1, j3}, {j2, j5}, {j4, j6}

}
and

[ω3] =
{
{j1, j6}, {j2, j4}, {j3, j5}

}
,

then all Pappus configurations are of the form {Qτω1
,Qτω2

,Qτω3
}, τ ∈ G[ω1] and the

following Corollary holds.
Notice that the proof of Theorem 5.3 only uses equations of quadrics Qσ and hence

provides alternative proof to Pappus hexagon Theorem. In particular it is also alternative
to classical proof based on Grassmann-Plücker relations. Indeed the latter proof uses the
fact that points in Pappus configurations verify the Grassmann-Plücker relations while, in
our cases, quadrics Qσ are proper quadrics in the Grassmannian, i.e. equations of quadrics
Qσ are not Grassmann-Plücker relations.

Corollary 5.5. The number of Pappus configurations {Qσ,Qσ′ ,Qσ′′} in Gr(3,C6) is 20.

Proof. By Remark 4.4 the number of [σ] is 15 and by Lemma 5.2 each fixed class [σ] admits
8 disjoint classes. By Theorem 5.3 if [σ] and [σ′] are fixed, [σ′′] is uniquely determined,
thus the number of the sets

{
[σ], [σ′], [σ′′]

}
is 15× 8/3! = 20.

Corollary 5.5 establishes that for any given 6 lines in P2 there are 20 possible com-
binations of their intersections that give rise to a Pappus’s configuration like the one in
Figure 2.

6 Intersections of quadrics
In this section we study intersections of quadrics in Gr(3,Cn). In particular we are inter-
ested in the intersection of sets

Q◦σ = Qσ ∩
{
x =

∑
I⊂[n]
|I|=3

βIeI | βI 6= 0 for any I ⊂ {s1, . . . , s6}
}

of points in quadrics Qσ that correspond to arrangements of lines in P2(C) with subar-
rangement {Hs1 , . . . ,Hs6} generic. The following lemma holds.

Lemma 6.1. If [σ1], [σ2], [σ3] are distinct and pairwise not disjoint classes then

Q◦σ1
∩Q◦σ2

∩Q◦σ3
= ∅.

Proof. If [σ1], [σ2], [σ3] are not disjoint then either

(1) |[σ1] ∩ [σ2] ∩ [σ3]| = 1 or

(2) |[σi1 ] ∩ [σi2 ]| = 1 (1 ≤ i1 < i2 ≤ 3) and [σ1] ∩ [σ2] ∩ [σ3] = ∅.

(1) Assume [σ1] ∩ [σ2] ∩ [σ3] = {i1, i2}. Let [σ1] =
{
{i1, i2}, {i3, i4}, {i5, i6}

}
,

[σ2] =
{
{i1, i2}, {i3, i5}, {i4, i6}}, and [σ3] =

{
{i1, i2}, {i3, i6}, {i4, i5}

}
then we obtain

the following quadrics

Qσ1
: βi1i3i4βi2i5i6 − βi2i3i4βi1i5i6 = 0,

Qσ2
: βi1i3i5βi2i4i6 − βi2i3i5βi1i4i6 = 0,

Qσ3
: βi1i3i6βi2i4i5 − βi2i3i6βi1i4i5 = 0.



270 Ars Math. Contemp. 16 (2019) 257–276

Any point x ∈ Q◦σ1
∩ Q◦σ2

belongs to Gr(3,Cn), that is x satisfies Plücker relations in
(2.2). In particular x ∈ Pl1 ∩ Pl2 where Pl1 and Pl2 are the quadrics:

Pl1 : βi1i3i2βi4i5i6 − βi1i3i4βi2i5i6 + βi1i3i5βi2i4i6 − βi1i3i6βi2i4i5 = 0,

Pl2 : βi2i3i1βi4i5i6 − βi2i3i4βi1i5i6 + βi2i3i5βi1i4i6 − βi2i3i6βi1i4i5 = 0.

Notice that Pl1 and Pl2 can be obtained from equations in (2.2) considering the 6-tuples
(p1, p2, q0, q1, q2, q3) = (i1, i3, i2, i4, i5, i6) and (i2, i3, i1, i4, i5, i6) respectively. We get

Qσ2
−Qσ1

− Pl1 + Pl2 : βi1i3i6βi2i4i5 − βi2i3i6βi1i4i5 + 2(βi1i2i3βi4i5i6) = 0.

Since βi1i2i3 6= 0 and βi4i5i6 6= 0 then βi1i2i3βi4i5i6 6= 0 and hence

βi1i3i6βi2i4i5 − βi2i3i6βi1i4i5 6= 0,

that is x 6∈ Q◦σ3
.

(2) Assume [σ1]∩ [σ2] = {i1, i2}, [σ1]∩ [σ3] = {i3, i4} and [σ2]∩ [σ3] = {i5, i6} and
name P1 = {i1, i2}, P2 = {i3, i4}, P3 = {i5, i6}. To any point x ∈ Q◦σ1

∩ Q◦σ2
∩ Q◦σ3

corresponds the existence of an arrangement with a generic sub-arrangement indexed by
{i1, . . . , i6} which trace at infinity {H∞,i1 , . . . ,H∞,i6} satisfyies collinearity conditions
as in Figure 3. That is there exist couples P4 ∈ [σ1], P5 ∈ [σ2] and P6 ∈ [σ3] that cor-
respond, respectively, to intersection points p4, p5 and p6 of lines in {H∞,i1 , . . . ,H∞,i6}
(see Figure 3).

Figure 3: Case (2) trace at infinity of A ∈
⋂3
i=1 Q◦σi , {i, j} corresponds to H∞,i ∩H∞,j .

By definition of P1, P2 and P3 we have

P3 = {i5, i6} ∈
(
{i1, . . . , i6} \ P1

)
∩
(
{i1, . . . , i6} \ P2

)
.

On the other hand, if P4 is different from P1 and P2 in Q◦σ1
then P4 =

(
{i1, . . . , i6}\P1

)
∩(

{i1, . . . , i6} \ P2

)
. Thus we get P3 = P4 and, similarly, P5 = P2 and P6 = P1, that is

Q◦σ1
= Q◦σ2

= Q◦σ3
which contradict hypothesis.
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Lemma 6.2. For any three pairwise disjoint classes [σ1], [σ2], [σ3], either {Qσ1 ,Qσ2 ,Qσ3}
is a Pappus configuration or

3⋂
i=1

Q◦σi = ∅.

Proof. By Pappus’s Theorem, for any two disjoint classes [σi], [σj ], there exists [σij ] such
that {Qσi ,Qσj ,Qσij} is Pappus configuration. If [σij ] = [σk] for some k ∈ [3], then
{Qσ1

,Qσ2
,Qσ3

} is a Pappus configuration. Thus assume all [σij ] 6= [σk] for any k =
1, 2, 3. Moreover [σ12], [σ13], [σ23] are distinct since if [σij ] = [σik] then [σj ] = [σk].

If [σ12] ∩ [σ13] 6= ∅, [σ12] ∩ [σ23] 6= ∅ and [σ13] ∩ [σ23] 6= ∅, then⋂
1≤l1<l2≤3

Q◦σl1l2
= ∅

by Lemma 6.1 and

3⋂
i=1

Q◦σi = (

3⋂
i=1

Q◦σi) ∩ (
⋂

1≤l1<l2≤3

Q◦σl1l2
) = ∅.

Otherwise assume [σ12] ∩ [σ13] = ∅, we get a new Pappus configuration. Since the
number of disjoint classes is finite, iterating the process, we will eventually get 3 classes
[σl1 ], [σl2 ], [σl3 ] pairwise not disjoint and

3⋂
i=1

Q◦σi = (

3⋂
i=1

Q◦σi) ∩Q◦σl1
∩Q◦σl2

∩Q◦σl3
= ∅.

Lemma 6.3. If [σ1], [σ2], [σ3] are distinct classes such that [σ1] ∩ [σ2] 6= ∅ and
[σi] ∩ [σ3] = ∅ for i = 1, 2, then

3⋂
i=1

Q◦σi = ∅.

Proof. Since [σ1], [σ3] and [σ2], [σ3] are disjoint, there exist [σ4] and [σ5] such that
{Qσ1 ,Qσ3 ,Qσ4} and {Qσ2 ,Qσ3 ,Qσ5} are Pappus configurations and

[σ1] ∩ [σ5] 6= ∅, [σ2] ∩ [σ4] 6= ∅, [σ4] ∩ [σ5] 6= ∅.

Indeed if one of them is empty, we obtain 3 disjoint classes not in Pappus configuration and
by Lemma 6.2, it follows

3⋂
i=1

Q◦σi =

5⋂
i=1

Q◦σi = ∅.

Since [σ1] ∩ [σ2] 6= ∅, we can assume {i1, i2} = [σ1] ∩ [σ2] and we can set

[σ1] =
{
{i1, i2}, {i3, i4}, {i5, i6}

}
,

[σ2] =
{
{i1, i2}, {i′3, i′4}, {i′5, i′6}

}
,

[σ3] =
{
{j1, j2}, {j3, j4}, {j5, j6}

}
.
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To any point

x ∈
3⋂
i=1

Q◦σi 6= ∅

corresponds an arrangement A with generic subarrangement {Hi1 , . . . ,Hi6} with trace at
infinity {H∞,i1 , . . . ,H∞,i6} intersecting as in Figures 4 and 5 (up to rename). It follows

Figure 4: Each j, j′ is j1 or j2.

that {j4, j6} ∈ [σ4] and since {j3, j5} = {i1, i2} ∈ [σ1] and [σ1]∩ [σ4] = ∅ (see Figure 4),
there are two possibilities:

[σ4] =
{
{j4, j6}, {j1, j3}, {j2, j5}

}
or

[σ4] =
{
{j4, j6}, {j1, j5}, {j2, j3}

}
.

Analogously (see Figure 5) class [σ5] is of the form

[σ5] =
{
{j4, j6}, {j1, j3}, {j2, j5}

}
or

[σ5] =
{
{j4, j6}, {j1, j5}, {j2, j3}

}
.

Since [σ1] ∩ [σ5] 6= ∅ and [σ5] 63 {j3, j5} = {i1, i2}, we deduce that {j4, j6} = {i3, i4}
or {i5, i6}, which is not possible by [σ1] ∩ [σ4] = ∅. Hence

3⋂
i=1

Q◦σi = ∅.
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Figure 5: Each j, j′ is j1 or j2.

Figure 6: Hesse arrangement with H∞i1 , . . . ,H∞i6 and
⋂6
i=1 Q◦σi 6= ∅.
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Notice that the Hesse arrangement in P2(C) (see Figure 6) can be regarded as a generic
arrangement of 6 lines which intersection points satisfy 6 collinearity conditions.

Definition 6.4 (Hesse configuration). Let [σi], 1 ≤ i ≤ 6 be distinct classes, we call Hesse
configuration a set {Qσ1

, . . . ,Qσ6
} of quadrics in Gr(3,Cn) such that there exist disjoint

sets I, J ⊂ [6], |I| = |J | = 3 such that {Qσi}i∈I , {Qσj}j∈J are Pappus configurations
and [σi] ∩ [σj ] 6= ∅ for any i ∈ I , j ∈ J .

With above notations, the following classification Theorem holds.

Theorem 6.5. For any choice of indices {s1, . . . , s6} ⊂ [n] sets Q◦σ , σ ∈ S6, in the
Grassmannian Gr(3,Cn) intersect as follows.

(1) For any disjoint classes [σ1] and [σ2], there exist [σ3], . . . , [σ6] such that
{Qσ1

, . . . ,Qσ6
} is an Hesse configuration for I = {1, 2, 3}, J = {4, 5, 6} and

2⋂
i=1

Q◦σi =

3⋂
i=1

Q◦σi )
4⋂
i=1

Q◦σi )
6⋂
i=1

Q◦σi ) ∅.

(2) For any not disjoint classes [σ1] and [σ2], there exist [σ3], . . . , [σ6] such that
{Qσ1 , . . . ,Qσ6} is an Hesse configuration for I = {1, 3, 4}, J = {2, 5, 6} and

2⋂
i=1

Q◦σi )
3⋂
i=1

Q◦σi =

4⋂
i=1

Q◦σi )
6⋂
i=1

Q◦σi ) ∅.

All other intersections are empty.

Remark 6.6. Notice that, since Hesse configuration only exists in the complex case, in
Gr(3,Cn) we can find 6 quadrics {Qσ1

, . . . ,Qσ6
} such that

6⋂
i=1

Q◦σi ) ∅,

while in Gr(3,Rn), ⋂
j∈J⊂[6]
|J|>4

Q◦σj = ∅.

It follows that in the real case, for any choice of indices {s1, . . . , s6} ⊂ [n], we have at
most 4 collinearity conditions (see Figure 7) corresponding to 15 hyperplanes in the Dis-
criminantal arrangement with 4 multiplicity 3 intersections in codimension 2 (see Figure 8).
While in the complex case Hesse configuration (see Figure 6) gives rise to a Discriminantal
arrangement containing 15 hyperplanes intersecting in 6 multiplicity 3 spaces in codimen-
sion 2.

This remark allows a better understanding of differences in the combinatorics of Dis-
criminantal arrangement in the real and complex cases. Indeed the existence of a discrimi-
nantal arrangement of 15 hyperplanes intersecting in 6 multiplicity 3 spaces in codimension
2 in C but not in R implies that there exist combinatorics of Discriminantal arrangements
that cannot be realised in any field. This is especially interesting since in the case known
until now, i.e. in the case of very generic arrangements A, the combinatorics of Discrimi-
nantal arrangement B(n, k,A) is independent from the field (see [1]).
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Figure 7: Generic arrangement A in R3 containing 6 lines satisfying 4 collinearity condi-
tions.

Figure 8: Codimension 2 intersections of 15 hyperplanes in B(n, 3,A∞) indexed in
{s1, . . . , s6} ⊂ [n] with 4 multiplicity 3 points N corresponding to intersections⋂3
i=1Dσ.Li ,

⋂3
i=1Dσ′.Li ,

⋂3
i=1Dσ′′.Li and

⋂3
i=1Dσ′′′.Li , σ, σ

′, σ′′, σ′′′ as in Figure 7.
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Remark 6.7. Finally Theorem 6.5 implies that the maximum number of intersections of
multiplicity 3 in codimension 2 in the complex case is strictly higher than the one in the
real case. This agrees with results on maximum number of triple points in an arrangement
of lines in P2 (see [3] for a discussion on line arrangements with maximal number of triple
points over arbitrary fields). Those observations suggest that special configurations of lines
in the projective plane intersecting in a big number of triple points could be understood
by studying Discriminantal arrangements with maximum number of multiplicity 3 inter-
sections in codimension 2. Indeed each multiplicity 3 intersection in codimension 2 of
B(n, 3,A∞) corresponds to a collinearity condition for lines in A∞ which is equivalent
to the possibility to add a line that gives rise to “higher” number of triple points. It seems
hence interesting to study exact number of intersections of type (1) and (2) in Theorem 6.5
in the Grassmannian Gr(3,Cn). This will be object of further studies.
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