Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 35, 2025, 1 UDK 5 Annales, Ser. hist. nat., 35, 2025, 1, pp. 1-170, Koper 2025 ISSN 1408-533X KOPER 2025 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 35, 2025, 1 UDK 5 ISSN 1408-533X e-ISSN 2591-1783 ANNALES · Ser. hist. nat. · 35 · 2025 · 1 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 35, leto 2025 številka 1 e-ISSN 2591-1783 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capape (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Edy Fantinato (IT), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Hakan Kabasakal (TR), Mitja Kaligarič, Marcelo Kovačič (HR), Petar Kružić (HR), Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Borut Mavrič, Patricija Mozetič, Martina Orlando-Bonaca, Michael Stachowitsch (AT), Francesco Tiralongo (IT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Izdajatelja/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della società, cultura e ambiente© Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 20. 06. 2025. Sofinancirajo/Supporto finanziario/ Financially supported by: Javna agencija za znanstveno-raziskovalno in inovacijsko dejavnost Republike Slovenije (ARIS) Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL); Directory of Open Access Journals (DOAJ). To delo je objavljeno pod licenco / Quest’opera è distribuita con Licenza / This work is licensed under a Creative Commons BY 4.0. Navodila avtorjem in vse znanstvene revije in članki so brezplačno dostopni na spletni strani https://zdjp.si/en/p/annalesshn/ The submission guidelines and all scientific journals and articles are available free of charge on the website https://zdjp.si/en/p/annalesshn/ Le norme redazionali e tutti le riviste scientifiche e gli articoli sono disponibili gratuitamente sul sito https://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 35 · 2025 · 1 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 35, Koper 2025, številka 1 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Okan AKYOL, Oğuzhan TAKICAK & Hasan TARUN A Fugitive Lessepsian Fish in a Sea-Cage Farm in the Aegean Sea: Stephanolepis diaspros (Monacanthidae) ................................ Ubežni lesepski migrant iz ribogojnice v Egejskem morju: Stephanolepis diaspros (Monacanthidae) Nicola BETTOSO, Lisa FARESI, Valentina TORBOLI & Jose A. CUESTA Additional Record of the Pea Crab Pinnotheres bicristatus (Brachyura: Pinnotheridae) in the Adriatic Sea .................... Dodatni zapis o pojavljanju stražne rakovice vrste Pinnotheres bicristatus (Brachyura: Pinnotheridae) v Jadranskem morju Alan DEIDUN, Sarah BAUMANN, Bruno ZAVA & Maria CORSINI-FOKA Confirming the Occurrence of the Non-Indigenous Pteragogus trispilus (Actinopterygii: Labridae) within Maltese Waters ................................................ Potrditev pojavljanja tujerodne ustnače vrste Pteragogus trispilus (Actinopterygii: Labridae) znotraj malteških voda Deniz ERGÜDEN, Yusuf Kenan BAYHAN, Sibel ALAGÖZ ERGÜDEN & Deniz AYAS A New Ichthyological Record and Distributional Update for Epigonus denticulatus Dieuzeide, 1950 in Turkish Mediterranean Waters ........................... Nov ihtiološki zapis in podatki o razširjenosti rjavega veleokca, Epigonus denticulatus Dieuzeide, 1950 v turških sredozemskih vodah Sara LADOUL, Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ On the Occurrence of Cornish Blackfish Schedophilus medusophagus (Osteichthyes: Centrolophidae) from the Maghreb Shore (Southwestern Mediterranean Sea) ................... Potrjena prisotnost meduzojeda Schedophilus medusophagus (Osteichthyes: Centrolophidae) z magrebske obale (jugozahodno Sredozemsko morje) Christina MICHAIL & Francesco TIRALONGO First Occurrence of Ariidae in Cypriot Waters – a Major Contribution to Biodiversity ............................. Prvo pojavljanje predstavnikov iz družine Ariidae v ciprskih vodah – velik prispevek k biodiverziteti SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Lovrenc LIPEJ, Riccardo BATTISTELLA, Borut MAVRIČ & Danijel IVAJNŠIČ An Insight into the Diet of the Bull Ray, Aetomylaeus bovinus (Geoffroy Saint-Hilaire, 1817) in the Northern Adriatic Sea ...................................... Vpogled v prehranjevalne navade kljunatega morskega goloba, Aetomylaeus bovinus (Geoffroy Saint-Hilaire, 1817) v severnem Jadranu Cem ÇEVİK, Deniz ERGÜDEN & Deniz AYAS A New Capture Record of Alopias superciliosus Lowe, 1841 from the Turkish Coast (Northeastern Mediterranean) ...... Nov ulov velikooke morske lisice Alopias superciliosus Lowe, 1841 iz turške obale (severovzhodno Sredozemlje) 1 7 13 21 35 27 43 55 ANNALES · Ser. hist. nat. · 35 · 2025 · 1 Cem DALYAN, N. Bikem KESİCİ, Elif YÜCEDAĞ BAKIR, Yunus GÖNÜL & Hakan KABASAKAL No Longer as Common as its Name: a Review of the Occurrence of Torpedo torpedo (Linnaeus, 1758) (Chondrichthyes: Elasmobranchii) in Turkish Waters, with Photographic Evidence ............................. Ni več tako pogost kot njegovo ime: pregled pojavljanja okatega električnega skata Torpedo torpedo (Linnaeus, 1758) (Chondrichthyes: Elasmobranchii) v turških vodah s fotografskimi dokazi Deniz ERGÜDEN, Cemal TURAN, Servet Ahmet DOĞDU & Deniz AYAS Disc Deformity in a Juvenile Female Brown Ray, Raja miraletus (Family: Rajidae), from Northeastern Mediterranean (Türkiye) ................. Deformacija diska pri juvenilni samici modropege raže, Raja miraletus (družina: Rajidae), iz severovzhodnega Sredozemskega morja (Turčija) Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ On an Old Record of the Smalltooth Sand Tiger Shark Odontaspis ferox (Chondrichthyes: Odontaspididae) from the Algerian Coast (Southwestern Mediterranean Sea) ........................ O starem zapisu o drobnozobem morskem biku Odontaspis ferox (Chondrichthyes: Odontaspididae) z alžirske obale (jugozahodno Sredozemsko morje) Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Plastic Debris-Induced Fin Damage in the Smoothhound, Mustelus mustelus .............. Poškodbe plavuti pri navadnem morskem psu, Mustelus mustelus, zaradi plastičnih odpadkov Nicolas ZIANI, Florane TONDU, Rémi BRU, Chloé MOSNIER, Sarah FOXONET, Ruben Bao GALLIEN, Mathias POULY, Modan Lou TONIETTO, Lucille VERDON, Eloïse DEYSSON, Alessandro DE MADDALENA & Hakan KABASAKAL Bite Marks Observed on a Large Female White Shark Carcharodon carcharias Off Camargue, France Provide Potential Insights into the Reproduction of the Mediterranean Population ................................ Sledovi ugrizov na veliki samici belega morskega volka Carcharodon carcharias pri Camargu (Francija) kažejo na možno razmnoževanje sredozemske populacije MORSKA FAVNA FAUNA MARINA MARINE FAUNA Sihem RAFRAFI-NOUIRA, RIMEL BENMESSAOUD, Mourad CHÉRIF, Christian REYNAUD & Christian CAPAPÉ Morphological Deformities in a Common Two-Banded Sea Bream, Diplodus vulgaris (Osteichthyes: Sparidae), from Northern Tunisian Waters (Central Mediterranean Sea) ............................ Morfološke deformacije pri fratru, Diplodus vulgaris (Osteichthyes: Sparidae), iz severnih tunizijskih vod (osrednje Sredozemsko morje) Abdelkarim DERBALI, Aymen HADJ TAIEB & Wassim KAMMOUN The Current Status of Polititapes aureus (Mollusca: Bivalvia) in the Coastal Zone of Sfax, Tunisia (Central Mediterranean) .................................... Trenutno stanje vrste Polititapes aureus (Mollusca: Bivalvia) na obalnem območju Sfaxa v Tuniziji (osrednje Sredozemlje) Neža LEBAN & Valentina PITACCO Current Knowledge on the Distribution of the Poorly Known Echiurid Species Maxmuelleria gigas (M. Müller, 1852) in the Slovenian Sea ......................................... Trenutno poznavanje prostorske razporeditve manj poznane vrste zvezdaša Maxmuelleria gigas (M. Müller, 1852) v slovenskem morju Jan MALEJ, Tjaša KOGOVŠEK, Martin VODOPIVEC, Janja FRANCÉ, Patricija MOZETIČ, Matevž MALEJ & Alenka MALEJ Long-Term Study of Zooplankton Biomass in the Gulf of Trieste (Adriatic Sea) ...... Dolgoročna študija zooplanktonske biomase v Tržaškem zalivu (Jadransko morje) Sihem RAFRAFI-NOUIRA, Rimel BENMESSAOUD, Mourad CHÉRIF, Christian REYNAUD & Christian CAPAPÉ Occurrence of the Longjaw Snake Eel, Ophisurus serpens (Ophichthidae), in Tunisian Waters (Central Mediterranean Sea) ..... Pojavljanje zobate jegulje, Ophisurus serpens (Ophichthidae), iz tunizijskih voda (osrednje Sredozemsko morje) 83 73 91 65 125 117 109 133 145 97 ANNALES · Ser. hist. nat. · 35 · 2025 · 1 FLORA FLORA FLORA Martina ORLANDO-BONACA, Artur BONACA, Diego BONACA & Ana ROTTER Seagrasses: a Promising Source of Bioactive Compounds for Human Health Applications .......................................... Morske cvetnice: obetaven vir bioaktivnih spojin za uporabo v zdravstvu OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Shin-ichi Uye Book review: Mirrors of the Sea: When Science and Art Meet. 30 Years of the Unesco Intergovernmental Oceanographic Commission in Slovenia ................................... Kazalo k slikam na ovitku ................................... Index to images on the cover ............................ 153 167 169 169 ANNALES · Ser. hist. nat. · 35 · 2025 · 1 153 received: 2025-04-15 DOI 10.19233/ASHN.2025.19 SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS Martina ORLANDO-BONACA Marine Biology Station Piran, National Institute of Biology, SI-6330 Piran, Fornače 41, Slovenia E-mail: martina.orlando@nib.si Artur BONACA & Diego BONACA Ulica Vena Pilona 5, SI-6000 Koper, Slovenia Ana ROTTER Marine Biology Station Piran, National Institute of Biology, SI-6330 Piran, Fornače 41, Slovenia ABSTRACT Seagrasses are unique marine flowering plants that provide critical ecological services and can serve as valuable reservoirs of bioactive compounds with potential health benefits. This review explores the bioactive metabolites found in four seagrass species native to European marine waters: Cymodocea nodosa, Posido- nia oceanica, Zostera marina, and Nanozostera noltei. These species exhibit diverse chemical properties, including antioxidants, antimicrobials, and anti-inflammatory agents, making them promising candidates for pharmaceutical, nutraceutical, and cosmetic applications. Despite their promising applications in biotechnol- ogy, their full potential remains underexplored due to research and technological limitations. Future studies should focus on optimizing extraction methods, exploring synergistic interactions, and ensuring sustainable utilization of these valuable marine resources. Key words: seagrasses, European marine waters, bioactive compounds, human health applications FANEROGAME MARINE: UNA PROMETTENTE FONTE DI COMPOSTI BIOATTIVI PER APPLICAZIONI NEL CAMPO DELLA SALUTE UMANA SINTESI Le fanerogame sono piante marine che forniscono servizi ecologici critici e possono servire come preziosi serbatoi di composti bioattivi con potenziali benefici per la salute. Questa rassegna esplora i metaboliti bioattivi trovati in quattro specie di fanerogame native delle acque marine europee: Cymodocea nodosa, Posidonia oceanica, Zostera marina e Nanozostera noltei. Queste specie presentano diverse proprietà chimiche, tra cui antiossidanti, antimicrobici e agenti antinfiammatori, che le rendono promettenti candidati per applicazioni farmaceutiche, nutraceutiche e cosmetiche. Nonostante le loro promettenti applicazioni in biotecnologia, il loro pieno potenziale rimane poco esplorato a causa delle limitazioni tecnologiche. Gli studi futuri dovrebbero concentrarsi sull’ottimizzazione dei metodi di estrazione, sull’esplorazione delle interazioni sinergiche e sull’u- tilizzo sostenibile di queste preziose risorse marine. Parole chiave: fanerogame, acque marine europee, composti bioattivi, applicazioni per la salute umana ANNALES · Ser. hist. nat. · 35 · 2025 · 1 154 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 INTRODUCTION Seagrasses are the only group of marine flower- ing plants, uniquely adapted to thrive in underwater environments. Their morphological, physiological, ecological, and genetic adaptations facilitate survival in these habitats, including underwater pollination, internal gas transport, and the presence of epidermal chloroplasts (Hemminga & Duarte, 2000). Originat- ing from terrestrial species, seagrasses have transi- tioned to marine habitats, forming vast meadows in shallow waters (Papenbrock, 2012). These meadows provide essential ecosystem services, serving as key feeding and breeding grounds for marine organisms (Ruiz-Frau et al., 2017). Referred to as the “lungs of the sea,” seagrasses contribute significantly to oxy- gen production and carbon sequestration, mitigating climate change through the blue carbon storage (Papenbrock, 2012; Bedulli et al., 2020; James et al., 2023). Indeed, seagrass ecosystems are estimated to sequester approximately 140 megagrams of organic carbon (Corg) per hectare within the top meter of soil (Fourqurean et al., 2012). This accumulation occurs over centennial to millennial time scales, making seagrass up to 40 times more effective at capturing organic carbon compared to terrestrial forest soils. (Serrano et al., 2021). Additionally, they stabilize sediments, filter pollutants, and enhance water quality (Reynolds et al., 2016; Bonanno & Orlando- Bonaca, 2017). As a result, seagrass meadows are recognized as one of the priority habitats in Europe within the EU Habitat Directive (HD, 92/43/EEC) and the evaluation of their status is crucial for the im- plementation of the EU Water Framework Directive (WFD), and the Marine Strategy Framework Directive (MSFD) (Orlando-Bonaca et al., 2015). Moreover, they are among the least conserved marine ecosys- tems (Hu et al., 2021). Beyond their ecological significance, seagrasses are gaining attention for their rich diversity of bioac- tive compound with antioxidant, anti-inflammatory, cytotoxic and antimicrobial activities (Ameen et al., 2024). Despite increasing interest in marine-derived bioactives, research on seagrasses remains limited, presenting an opportunity for further exploration (Ribas-Taberner et al., 2025). In recent years, there has been growing interest in seagrass-derived bioac- tive compounds for biotechnological applications (Rotter et al., 2021, 2023). However, challenges such as preservation of their ecological stability and technological limitations hinder their full integration into biotechnology (Rotter et al., 2021; Gono et al., 2022). This review provides an in-depth examination of the bioactive compounds of biotechnological relevance in the biomedical field, isolated and characterized from four native seagrass species in European marine waters: Cymodocea nodosa (Ucria) Ascherson, Posidonia oceanica (Linnaeus) Delile, Zostera marina Linnaeus, and Nanozostera noltei (Hornemann) Tomlinson & Posluszny. The paper also highlights some areas for future research on these seagrass species that could improve their use for hu- man health while maintaining sustainable practices. MATERIAL AND METHODS A systematic literature review was conducted to gain insights into the breadth of studies published on the bioactive compounds of the four European seagrass species and their potential benefits. The lit- erature search, covering 2004–2025, was performed in Scopus Advanced search, VOSviewer and Google Scholar, focusing on peer-reviewed articles and ex- cluding grey literature. The keywords employed in the search included seagrass, Cymodocea nodosa, Posidonia oceanica, Zostera marina and Nanozostera noltei, biotechnology, bioactive compounds, bioac- tive molecules, bioactive potential, health, pharma and biomedicine. RESULTS AND DISCUSSION Bioactive compounds in Cymodocea nodosa Cymodocea nodosa (commonly known as Lesser Neptune grass) is the most common species in shal- low, sheltered to semi-exposed Mediterranean sites, forming meadows that can be either mono-specific or mixed with N. noltei (Buia et al., 1985). This species has its origins in tropical regions and is cur- rently confined to the Mediterranean Sea and some areas in the North Atlantic, extending from southern Portugal and Spain to Senegal, including the Canary Islands and Madeira (OSPAR, 2010). It can be found in coastal waters, coastal lagoons, inlets and estuar- ies and other sheltered and semi-exposed habitats (Ivajnšič et al., 2022). It is recognized as a pioneer species, adept at rapidly colonizing bare patches of the sea floor, since its rhizome can grow several meters annually (Boudouresque et al., 1994). C. nodosa contains several bioactive metabo- lites with potential pharmaceutical applications (Tab. 1; Fig. 1). Among them, diarylheptanoids and terpenoids have demonstrated antibacterial activ- ity, particularly against mycobacterial strains and methicillin-resistant strains of Staphylococcus aureus (MRSA) (Kontiza et al., 2008). The relatively simple structures of these metabolites also suggest they could be targets for further chemical modification to enhance their antibacterial properties (Kontiza et al., 2008). In addition, diarylheptanoids, especially cymodienol, have shown strong cytotoxicity (Kontiza et al., 2005). ANNALES · Ser. hist. nat. · 35 · 2025 · 1 155 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Furthermore, sulfated polysaccharides derived from C. nodosa exhibit a diverse range of bioac- tive properties, including significant antioxidant, antimicrobial, cytotoxic, antihypertensive activity, anti-obesity and anti-diabetic properties (Kolsi et al., 2015, 2016, 2017a; Perumal et al., 2021; Ribas-Taberner et al., 2025; see Tab. 1). Sulfated polysaccharides derived from C. nodosa warrant special attention also for treating male infertility and enhancing sperm quality due to their antioxi- dant capabilities (Kolsi et al., 2018; Ribas-Taberner et al., 2025). Among phenolic compounds, the chicoric acid, that was found to be abundant in C. nodosa, has high potential for management of metabolic alterations, thus representing a target for treatment of diabetes and its complications (De Leo et al, 2025). The hy- droalcoholic extract of C. nodosa containing phe- nolic compounds exhibits significant antioxidant activity, which may protect against oxidative stress and be applied for managing metabolic disorders, particularly diabetes, by enhancing insulin secre- tion and reducing hyperglycemia and lipid levels in the blood (Kolsi et al., 2017b). More recently, Chabbani et al. (2024) identified additional phe- nolic compounds in C. nodosa, including sinapic acid, myricetin, and quercetin-3-O-rutinoside, which demonstrate potential therapeutic properties, aimed at combating oxidative stress and inflamma- tion. The extract’s safety profile, with no cytotoxic effects observed, further supports its application in skincare products (Chabbani et al., 2024). Tab. 1: Bioactive compounds extracted from the four European marine seagrasses and their reported bioactivities. CN = Cymodocea nodosa; ZM = Zostera marina; PO = Posidonia oceanica; NN= Nanozostera noltei. Tab. 1: Bioaktivne spojine, pridobljene iz štirih evropskih morskih cvetnic, in njihove potrjene bioaktivnosti. CN = Cymodocea nodosa; ZM = Zostera marina; PO = Posidonia oceanica; NN = Nanozostera noltei. Compound Bioactivity Seagrass species References Terpenoids Antibacterial CN Kontiza et al. (2008) Diarylheptanoids Antibacterial, anticancer/ cytotoxic CN, ZM Kontiza et al. (2005); Kontiza et al. (2008); Li et al. (2021); Cacciola et al. (2024) Polysaccharides Antioxidant, antimicrobial, cytotoxic, antihypertensive, anti- obesity, antidiabetic CN, PO, ZM Kolenchenko et al. (2005); Berfad & Alnour (2014); Kolsi et al. (2015, 2016, 2017a, 2017b, 2018); Benito-Gonzalez et al. (2019); Perumal et al. (2021); Ribas-Taberner et al. (2025) Phenolics Antidiabetic, anti-inflammatory, antioxidant, analgesic, antihypertensive, antirheumatic, anti-arthritic, antimicrobial, anticancer/ cytotoxic CN, PO, ZM, NN Rees et al. (2008); Choi et al., (2009); Subhashini et al. (2013); Berfad & Alnour (2014); Barletta et al. (2015); Custódio et al. (2015); Grignon-Dubois et al. (2015); Kolsi et al. (2017b); Manck et al. (2017); Styshova et al. (2017); Farid et al. (2018); Leri et al. (2018); Benito-Gonzalez et al. (2019); Sevimli-Gur & Yesil-Celiktas (2019); Vasarri et al. (2020); Ammar et al. (2021); Mechchate et al. (2021); Vasarri et al. (2021); Razgonova et al. (2022); Abruscato et al. (2023); Grignon- Dubois & Rezzonico (2023); Vasarri et al. (2023); Chabbani et al. (2024); Kevrekidou et al. (2024); Micheli et al. (2024); De Leo et al. (2025) Proteins and peptides Antioxidant, antimicrobial PO Berfad & Alnour (2014); Benito-Gonzalez et al. (2019); Punginelli et al. (2023) ANNALES · Ser. hist. nat. · 35 · 2025 · 1 156 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Bioactive compounds in Posidonia oceanica Posidonia oceanica (the Neptune grass) is the most important Mediterranean endemic seagrass species, that forms meadows extending from the surface to depths of 40–45 m (Telesca et al., 2015). These meadows provide multiple ecosystem ser- vices, including protection of coastlines from ero- sion, provision of breeding and nesting habitats for economically important species, and serving as a vital source of oxygen while facilitating high carbon sequestration within the matte (consisting of intertwined remnants of roots, rhizomes, and leaves, which effectively trap sediment and or- ganic carbon, creating stable substrates) (Pergent- Martini et al., 2021). The widespread distribution of P. oceanica in the Mediterranean Sea suggests that these meadows are the product of ecological and evolutionary processes that have unfolded over centuries (Giakoumi et al., 2013; Telesca et al., 2015). Extracts of P. oceanica have shown anti-diabet- ic, antioxidant, vasoprotective and antimicrobial activities (Gokce & Haznedaroglu, 2008; Ozbil et al., 2024). Phenolic compounds, such as chicoric, gentisic, ferulic and caftaric acid have potential analgesic, anti-inflammatory, antirheumatic, anti-arthritic and anticarcinogenic activities (Grignon-Dubois & Rezzonico, 2015; Mechchate et al., 2021; Micheli et al., 2024), see Tab. 1. These were also observed in C. nodosa and such phenolic similarities between P. oceanica and C. nodosa imply a possible evolutionary connec- tion that may suggest that these families possess adaptive traits developed in response to compa- rable environmental pressures (Grignon-Dubois & Rezzonico, 2015). Polyphenols including gal- lic acid, catechin, epicatechin and chlorogenic acid that were isolated in P. oceanica extracts were able to inhibit the expression and activ- ity of gelatinases MMP-2 and MMP-9 (enzymes that break down the extracellular matrix), which are associated with cancer cell invasion and metastasis (Barletta et al., 2015). Additionally, Leri et al. (2018) highlighted the significant anti- oxidant properties of these bioactive metabolites, with potential use in therapeutic applications against malignancies and other chronic condi- tions due to their ability to impair malignant cell migration through autophagy modulation. Furthermore, the (hydro)alcoholic extracts of P. oceanica leaves containing phenols has potential anticancer applications, given their antioxidant, anti-inflammatory and anti-glycation properties (Farid et al., 2018; Sevimli-Gur & Yesil-Celiktas, 2019; Abrsucato et al., 2023; Vassari et al., 2023; Kevrekidou et al., 2024) Cornara et al. (2018) reported that the extract of P. oceanica, rich in CA, exhibits significant radical scavenging activity and lipolytic activity. Regard- ing skin protection, the polyphenols of P. oceanica have potential therapeutic applications in treating conditions like psoriatic skin inflammation, indi- cating its potential use in complementary medi- cine for inflammatory skin diseases (Micheli et al., 2024). Messina et al. (2021) concluded that the phenolic compounds found in P. oceanica are also promising candidates for applications particularly in cosmeceuticals and as protective agents against oxidative stress and UV-induced damage. They highlighted that the dried leaves of P. oceanica demonstrated significantly higher antioxidant ac- tivity that fresh leaves. P. oceanica butanol extract containing phenolic acids and flavonoids, encapsulated in gelatin nano- particles, as a promising and effective antidiabetic therapy (Ammar et al., 2021). Additionally, the extract from P. oceanica egagropiles (round-shaped conglomerations created by the progressive disinte- gration of fibrous material sourced from its foliage and transported to nearby coastal areas by waves) showed a moderate inhibition against H5N1 virus (Farid et al., 2018). P. oceanica extracts containing phenols and flavonoids exhibit anti-inflammatory activities (Vasarri et al., 2020), while those containing polyphenols, polysaccharides and proteins exhibit antioxidant and antimicrobial activities (Berfad & Alnour, 2014; Benito-Gonzalez et al., 2019). The main polysaccharide known from angiosperm land plants in the cell walls is cellulose; however, it is currently lacking biotechnologically relevant bio- logical activity properties for biomedical purposes (Pfeifer & Classen, 2020). The polysaccharides identified in P. oceanica that have bioactive quali- ties include galacturonic acid and xylose, which are components of pectin and hemicellulose. These polysaccharides contribute to the antioxidant, antifungal, and antiviral properties of the extracts, making them potential candidates for use in food and pharmaceutical applications (Benito-Gonzalez et al., 2019). Bioactive compounds in Zostera marina Zostera marina (commonly known as Eelgrass) is one of the world’s most widespread marine phan- erogams, predominantly found along the temperate and cold coasts of the Northern Hemisphere, but it is also present in the Mediterranean Sea, where its distribution is more limited. The species fulfils im- portant roles as an ecosystem engineer in estuarine and coastal waters, enhancing biodiversity, contrib- uting to sediment stability, and carbon and nutrient ANNALES · Ser. hist. nat. · 35 · 2025 · 1 157 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 storage (Duarte et al., 2013; Blok et al., 2018). Dis- tinct life history strategies and a wide tolerance to a range of salinity and temperature conditions allow this seagrass species to exploit areas from brackish estuaries to open oceans over a large geographical range (Nejrup & Pedersen 2008). Z. marina leaves decay very slowly and indeed, extracts from this seagrass exhibited antimicro- bial and antioxidant activities (Zheng et al., 2014). Polysaccharides from Z. marina exhibit significant antioxidant activities (see Tab. 1). An example is zosterin, a low-etherified pectin with potential in reducing lipid peroxidation products, suggesting its use in therapeutic applications for oxidative stress-related conditions (Kolenchenko et al., 2005). Additionally, zosterin has been associated with various pharmacological effects, including hypocholesterolemic, antibacterial, antiviral, and immunomodulating properties, indicating its broad potential in medical applications (Kolenchenko et al., 2005). Phenolics, such as zosteric acid and others, have shown potential as antimicrobial agents (Rees et al., 2008; Choi et al., 2009). Rosmarinic acid (RA) from Z. marina was also recognized for its antioxidant properties (Custódio et al., 2016). Rosmarinic acid and flavonoids extracted from Z. marina have also evidenced therapeutic potential in the treatment of type 2 diabetes and hyperlipi- demia, due to their antioxidant, anti-inflamma- tory, and immunomodulatory activities (Styshova et al., 2017). Several polyphenols from Z. ma- rina (chicoric, p-coumaric, rosmarinic, benzoic, ferulic and caffeic acids) exhibited significant cytotoxic effects against various cancer cell lines, indicating their potential use as chemotherapeu- tic agents in cancer treatment and as preventive supplements in oncology (Sevimli-Gur & Yesil- Celiktas, 2019). Z. marina polyphenols also have potential applications in pharmaceutical industry due to their antioxidant and anti-inflammatory properties (Grignon-Dubois & Rezzonico, 2023; Razgonova et al., 2022). Diarylheptanoids extracted from Z. marina ex- hibited selective cytotoxic effects and significant inhibition of the HCT116 colon cancer cell line and potential for reducing tumor growth in vivo (Li et al., 2021; Cacciola et al., 2024). Fig. 1: Potential bioactive properties of the four European marine seagrasses (photos: Tihomir Makovec). Sl. 1: Potencialne bioaktivne lastnosti štirih evropskih morskih cvetnic (slike: Tihomir Makovec). ANNALES · Ser. hist. nat. · 35 · 2025 · 1 158 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Bioactive compounds in Nanozostera noltei Nanozostera noltei (the dwarf eelgrass) is widely distributed along the northeastern Atlantic coasts, from Norway to Mauritania, and in the Mediterranean and Black Seas (Short et al., 2007). This species frequently thrives in meadows of C. nodosa in the infralittoral belt, but it can be found in a variety of habitat types with variable salinity. In lagoonal systems, it establishes a narrow band within the mediolittoral zone, demonstrating its ability to endure partial desiccation (Lipej et al., 2006). Only in recent decades several studies have examined the phenolic profile of this species (see Tab. 1), with rosmarinic, caffeic and zosteric acids having antioxidant properties (Grignon-Dubois et al., 2012; Subhashini et al., 2013). Phenolic compounds, flavons and flavonoids from N. noltei suggest potential applications in pharmaceuticals (Manck et al., 2017). Extracts of N. noltei are notable for their ability to chelate both copper and iron ions, potentially aiding in the reduction of oxidative stress and as- sociated conditions (Custódio et al., 2016). This seagrass has demonstrated significant toxicity to various cell lines, suggesting promising applica- tions in cancer research, particularly in targeting hepatocarcinoma cells, and may also contribute to alleviating Alzheimer’s disease (Custódio et al., 2016). Sourcing and extraction of biotechnologically relevant bioactive compounds Despite the ample evidence that indicates seagrasses as a resource for novel health and pharmaceutical formulations, it is important to highlight that seagrasses provide an excellent sub- stratum for epiphytic organisms (such as bacteria, fungi, protozoa and algae), making these organ- isms an integral component of seagrass ecosystems (Borowitzka et al., 2006). In addition, distinct microbial communities within the seagrass leaves, roots, flowers, fruits, seeds and the rhizosphere are likely involved in ecologically important pro- cesses that benefit plants (Tarquinio et al., 2021). These microbial communities may be promoting the production or might be the main source of biotechnologically relevant secondary metabolites (Panno et al., 2013; Rotter et al., 2021). When bio- prospecting for novel compounds, it is therefore important to sterilize the seagrass surfaces (target- ing epiphytes) and conduct molecular analyses to assess the presence of microbial genetic markers. This can identify the producer organism of the biotechnologically relevant compound. Regardless of the source of the main biological activities, it is important to again highlight that seagrass ecosystems are now recognized as criti- cal habitats supporting biodiversity and ecosystem services (Duarte et al., 2025). Hence, when con- firming the bioactivity and target sector for com- pounds from seagrasses, sustainable sourcing of the biomass and supply of biomolecules must be considered to maintain the ecological stability of these fragile communities (Rotter et al., 2020, 2021). In the case of seagrasses, research can rely on harvesting or beach wrack, provided that their harvesting is sustainable and does not affect the ecosystem balance in coastal areas (Rudovica et al., 2021). Wherever possible, harvesting can also be substituted/complemented by modern biotech- nology approaches including systems biology and metabolic engineering (Rotter et al., 2024). Finally, to contribute to environmental sustainability to an even higher degree, besides sourcing, extraction methods should be improved by means of greener methodologies avoiding the use of toxic organic solvents (Benito-González et al., 2019). CONCLUSIONS Seagrass meadows are among the most essential and productive yet threatened benthic habitats, war- ranting significant scientific attention, particularly in the field of biotechnology. The bioactive metabo- lites found in marine plants have been shown to address various human health concerns, including several diseases, and hold promise for developing new natural-based therapeutic products. The bioactive compounds found in the re- viewed seagrass species exhibit a diverse array of health-promoting properties, positioning them as significant resources for the development of novel therapeutic drugs. Their bioactive potential highlights their ability to act as inhibitors of vari- ous harmful pathogens within the pharmaceutical sector. These compounds also show promise in treating metabolic disorders and cancers. Never- theless, this review does not cover the literature on human clinical trials involving bioactive mol- ecules derived from seagrasses or the sustainable production of drugs, considering the yield, main- tenance of ecological balance or the use of green extraction processes, as this represents a separate and extensive area of research. Many bioactive metabolites from seagrasses remain unidentified, and ongoing research aims to uncover all relevant compounds that contribute to human well-being. Future research should focus on environmentally and economically sustainable extraction methods for metabolites with significant therapeutic po- tential. ANNALES · Ser. hist. nat. · 35 · 2025 · 1 159 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Further studies should investigate the long-term stability and shelf life of seagrass extracts and their use in various formulations. Additionally, future research should explore the potential synergistic effects of various seagrass bioactive compounds, both among themselves and in combination with other ingredients, to enhance product effectiveness. Finally, as the extraction of bioactive compounds from marine resources continues to expand glob- ally, it is crucial to assess the environmental impact of harvesting seagrass meadows. This will ensure that sustainable practices are upheld while utilizing this valuable resource. Hence, extraction from sea- grasses or their epiphytes should be complemented by using metabolic engineering and chemical syn- thesis. ANNALES · Ser. hist. nat. · 35 · 2025 · 1 160 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 MORSKE CVETNICE: OBETAVEN VIR BIOAKTIVNIH SPOJIN ZA UPORABO V ZDRAVSTVU Martina ORLANDO-BONACA Morska biološka postaja Piran, Nacionalni inštitut za biologijo, SI-6330 Piran, Fornače 41, Slovenija E-mail: martina.orlando@nib.si Artur BONACA & Diego BONACA Ulica Vena Pilona 5, SI-6000 Koper, Slovenija Ana ROTTER Morska biološka postaja Piran, Nacionalni inštitut za biologijo, SI-6330 Piran, Fornače 41, Slovenija POVZETEK Morske cvetnice so edinstvene morske rastline, ki zagotavljajo ključne ekološke storitve in lahko služijo kot dragoceni viri bioaktivnih spojin s potencialnimi koristmi za zdravje ljudi. Ta pregled obravnava bioaktivne me- tabolite, prisotne v štirih vrstah morskih trav, ki so domorodne v evropskih morskih vodah: Cymodocea nodosa, Posidonia oceanica, Zostera marina in Nanozostera noltei. Te vrste izkazujejo raznolike kemijske lastnosti, vključno z antioksidativnim, protimikrobnim in protivnetnim delovanjem, zaradi česar so obetavne za uporabo v farmacevtski, nutracevtski in kozmetični industriji. Kljub njihovemu potencialu v biotehnologiji pa ta ostaja premalo raziskan zaradi raziskovalnih in tehnoloških omejitev. Prihodnje študije bi se morale osredotočiti na optimizacijo metod ekstrakcije, raziskovanje sinergijskih učinkov ter zagotavljanje trajnostne uporabe teh dragocenih morskih virov. Ključne besede: morske trave, evropske morske vode, bioaktivne spojine, uporaba za zdravje ljudi ANNALES · Ser. hist. nat. · 35 · 2025 · 1 161 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 REFERENCES Abruscato, G., R. Chiarelli, V. Lazzara, D. Punginelli, S. Sugár, M. Mauro, M. Librizzi, V. Di Ste- fano, V. Arizza, A. Vizzini, M. Vazzana & C. Luparello (2023): In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. Biology, 12, 616. https://doi.org/10.3390/biology12040616. Ameen, H.M., A. Jayadev, G. Prasad & D.I. Nair (2024): Seagrass Meadows: Prospective Candidates for Bioactive Molecules. Molecules, 29, 4596. https://doi.org/10.3390/molecules29194596. Ammar, N.M., H.A. Hassan, M.A. Mohammed, A. Serag, S.H. Abd El-Alim, H. Elmotasem, M. El Raey, A.N. El Gendy, M. Sobeh & A.Z. Abdel-Hamid (2021): Metabolomic profiling to reveal the thera- peutic potency of Posidonia oceanica nanoparticles in diabetic rats. RSC Adv., 11, 8398-8410. Barletta, E., M. Ramazzotti, F. Fratianni, D. Pessani & D. Degl’Innocenti (2015): Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion. Cell Adhes. Migr., 9, 422-431. Bedulli, C., P.S. Lavery, M. Harvey, C.M. Duarte & O. Serrano (2020): Contribution of Seagrass Blue Carbon Toward Carbon Neutral Policies in a Touristic and Environmentally-Friendly Island. Front. Mar. Sci., 7, 1. doi: 10.3389/fmars.2020.00001. Benito-Gonzalez, I., A. Lopez-Rubio, A. Martinez- Abad, A.R. Ballester, I. Falco, L. Gonzalez-Candelas, G. Sanchez, J. Lozano-Sanchez, I. Borras-Linares, A. Segura-Carretero & M. Martínez-Sanz (2019): In-Depth Characterization of Bioactive Extracts from Posidonia oceanica Waste Biomass. Mar. Drugs, 17, 409. Berfad, M. & T. Alnour (2014): Phytochemical analysis and Antibacterial activity of the 5 different extract from the seagrasses Posidonia oceanica. J. Med. Plants Stud., 4, 15-18. Blok, S.E., B. Olesen & D. Krause-Jensen (2018): Life history events of eelgrass Zostera marina L. populations across gradients of latitude and tempera- ture. Mar. Ecol. Prog. Ser., 590, 79-93. https://doi. org/10.3354/meps12479. Bonanno, G. & M. Orlando-Bonaca (2017): Trace elements in Mediterranean seagrasses: accumula- tion, tolerance and biomonitoring. A review. Marine Pollution Bulletin, 125, 8-18. Borowitzka, M.A., P.S. Lavery & M. van Keulen (2006): Epiphytes of seagrasses. In: Seagrasses: Biology, Ecology and Conservation. Larkum. A.W.D., R.J. Orth & C.M. Duarte (Eds.); pp.441- 462, Springer. DOI: https://doi.org/10.1007/978- 1-4020-2983-7_19. Boudouresque, C.F., A. Meinesz, M. Ledoyer 6 P. Vitiello (1994). Les herbiers à phanérogames marines. In: Bellan-Santini, D., Lacaze, J., Poizat, C. (Eds.), Les biocénoses marines et littorales de Méediterranée, synthèse, menaces et perspectives. Muséum National d’Histoire Naturelle publ, pp. 98-118. Buia, M., G. Russo & L. Mazzella (1985): Inter- relazioni Tra Cymodocea nodosa (Ucria) Aschers. e Zostera noltii Hornem. in Un Prato Misto Super- ficiale Dell’isola d’Ischia. Nova Thalass., 7, 406- 408. Cacciola, N.A., P. De Cicco, R. Amico, F. Sepe, Y. Li, L. Grauso, M.F. Nan., S. Scarpato, C. Zidorn, A. Mangoni & F. Borrelli (2024): Zosterabisphenone B, a new diarylheptanoid heterodimer from the sea- grass Zostera marina, induces apoptosis cell death in colon cancer cells and reduces tumour growth in mice. Phytother. Res., 38, 4168-4176. Choi, H.-G., J.-H. Lee, H.-H. Park & F. Sayegh (2009). Antioxidant and Antimicrobial Activity of Zostera marina L. Extract. Algae, 24, 179-184. Custódio, L., S. Laukaityte, A.H. Engelen, M.J. Rodrigues, H. Pereira, C. Vizetto-Duarte, L. Bar- reira, H. Rodriguez, F. Albericio & J. Varela (2016): A comparative evaluation of biological activities and bioactive compounds of the seagrasses Zostera marina and Zostera noltei from southern Portugal. Nat. Prod. Res., 30, 724-728. De Leo, M., L. Ciccone, V. Menicagli, E. Balestri, A. Braca, P. Nieri, L. Testai (2025): Cymodocea nodosa, a Promising Seagrass of Nutraceutical In- terest: Overview of Phytochemical Constituents and Potential Therapeutic Uses. Nutrients, 17, 1236. https://doi.org/10.3390/nu17071236. Duarte, C.M., I.J. Losada, I.E. Hendriks, I. Mazarrasa & N. Marbà (2013): The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang., 3, 961-968. Duarte, C.M., E.T., Apostolaki, O. Serrano, A. Steckbauer & R.K.F. Unsworth (2025): Conserving seagrass ecosystems to meet global biodiversity and climate goals. Nat. Rev. Biodivers., 1, 150-165. https://doi.org/10.1038/s44358-025-00028-x. Farid, M., M. Marzouk, S. Hussein, A. Elkhateeb & E.-S. Saleh (2018): Comparative study of Posi- donia oceanica L.: LC/ESI/MS analysis, cytotoxic activity and chemosystematic significance. J. Mater. Environ. Sci., 9, 1676-1682. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery & O. Serrano (2012): Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci., 5, 505-509. https://doi.org/10.1038/ngeo1477. ANNALES · Ser. hist. nat. · 35 · 2025 · 1 162 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Giakoumi, S., M. Sini, V. Gerovasileiou, T. Mazor, J. Beher, H.P. Possingham, A. Abdulla, M.E. Cinar, P. Dendrinos, A.C. Gucu, A.A. Karamanlidis, P. Rodic, P. Panayotidis, E. Taskin, A. Jaklin, E. Voultsiadou, C. Web- ster, A. Zenetos & S. Katsanevakis (2013): Ecoregion- based conservation planning in the mediterranean: dealing with large-scale heterogeneity. PloS One, 8(10), e76449. 10.1371/journal.pone.0076449. Gokce, G. & M.Z. Haznedaroglu (2008): Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. Journal of Ethnophar- macology, 115(1), 122-130. https://doi.org/10.1016/j. jep.2007.09.016. Gono, C.M.P., P. Ahmadi, T. Hertiani, E. Septiana, M.Y Putra & G.A. Chianese (2022): Comprehensive Up- date on the Bioactive Compounds from Seagrasses. Mar. Drugs, 20, 406. https://doi.org/10.3390/md20070406. Grignon-Dubois, M., B. Rezzonico & T. Alcoverro (2012): Regional scale patterns in seagrass defences: Phenolic acid content in Zostera noltii. Estuarine, Coastal and Shelf Science, 114, 18-22. https://doi.org/10.1016/j. ecss.2011.09.010. Grignon-Dubois, M. & B. Rezzonico (2015): Phe- nolic fingerprint of the seagrass Posidonia oceanica from four locations in the Mediterranean Sea: First evidence for the large predominance of chicoric acid. Bot. Mar., 58, 379-391. Grignon-Dubois, M. & B. Rezzonico (2023): Phe- nolic chemistry of the seagrass Zostera marina Linnaeus: First assessment of geographic variability among popu- lations on a broad spatial scale. Phytochemistry, 213, 113788. Hemminga, M.A. & C.M. Duarte (2000): Seagrass ecology. Cambridge University Press. https://doi. org/10.1017/CBO9780511525551. Hu, W., D. Zhang, B. Chen, X. Liu, X. Ye, Q. Jiang, X. Zheng, J. Du & S. Chen (2021): Mapping the seagrass conservation and restoration priorities: Coupling habitat suitability and anthropogenic pressures. Ecological Indicators, 129, 107960. https://doi.org/10.1016/j. ecolind.2021.107960. Ivajnšič, D., M. Orlando-Bonaca, D. Donša, V.J. Grujić, D. Trkov, B. Mavrič & L. Lipej (2022): Evaluating Seagrass Meadow Dynamics by Integrating Field-Based and Remote Sensing Techniques. Plants, 11, 1196. https://doi.org/10.3390/plants11091196. James, R.K., L.M. Keyzer, S.J. van de Velde, P.M.J. Herman, M.M. van Katwijk, & T.J. Bouma (2023): Climate Change Mitigation by Coral Reefs and Seagrass Beds at Risk: How Global Change Compromises Coastal Ecosystem Services. Sci. Total Environ., 857(3), 159576. https://doi.org/10.1016/j.scitotenv.2022.159576. Kevrekidou, A., A.N. Assimopoulou, V. Trachana, D. Stagos & P. Malea (2024): Antioxidant Activity, Inhibi- tion of Intestinal Cancer Cell Growth and Polyphenolic Compounds of the Seagrass Posidonia oceanica’s Extracts from Living Plants and Beach Casts. Mar. Drugs, 22, 130. Kolenchenko, E.A., L.N. Sonina & Y.S. Khotim- chenko (2005): Comparative in vitro Assessment of Antioxidant Activities of Low-Etherified Pectin from the Eelgrass Zostera marina and Antioxidative Medicines. Russ. J. Mar. Biol., 31, 331-334. Kolsi, R.B.A., A. Ben Gara, R. Chaaben, A. El Feki, F.P. Patti, L. El Feki & K. Belghith (2015): Anti-obesity and lipid lowering effects of Cymo- docea nodosa sulphated polysaccharide on high cholesterol-fed-rats. Arch. Physiol. Biochem., 121, 210-217. Kolsi, R.B.A., J. Fakhfakh, F. Krichen, I. Jribi, A. Chiarore, F.P. Patti, C. Blecker, N. Allouche, H. Belghith & K. Belghith (2016): Structural charac- terization and functional properties of antihyperten- sive Cymodocea nodosa sulfated polysaccharide. Carbohydr. Polym., 151, 511-522. Kolsi, R.B.A., B. Gargouri, S. Sassi, D. Frikha, S. Lassoued & K. Belghith (2017a): In vitro biological properties and health benefits of a novel sulfated polysaccharide isolated from Cymodocea nodosa. Lipids Health Dis., 16, 252. Kolsi, R.B.A., H. Ben Salah, N. Jardak, R. Chaa- ben, A. El Feki, T. Rebai, K. Jamoussi, N. Allouche, H. Belghith & K. Belghith (2017b): Effects of Cymo- docea nodosa extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. Biomed. Pharmacother., 89, 257-267. Kolsi, R., F.B. Abdallah, M. Elleuch, B. Kolsi, A.E. Feki & K.S. Belghith (2018): Antioxidant and fertil- ity potentials of a marine sulfated polysaccharide. JIM Sfax, 28, 36-44. Kontiza, I., C. Vagias, J. Jakupovic, D. Moreau, C. Roussakis & V. Roussis (2005): Cymodienol and cymodiene: new cytotoxic diarylheptanoids from the sea grass Cymodocea nodosa. Tetrahe- dron Letters, 46(16), 2845-2847. doi: 10.1016/j. tetlet.2005.02.123. Kontiza, I., M. Stavri, M. Zloh, C. Vagias, S. Gibbons & V. Roussis (2008): New metabolites with antibacterial activity from the marine an- giosperm Cymodocea nodosa. Tetrahedron, 64, 1696-1702. Leri, M., M. Ramazzotti, M. Vasarri, S. Peri, E. Barletta, C. Pretti & D. Degl’Innocenti (2018): Bioactive Compounds from Posidonia oceanica (L.) Delile Impair Malignant Cell Migration through Autophagy Modulation. Mar. Drugs, 16, 137. Li, Y., L. Grauso, S. Scarpato, C.N.A. Cacciola, F. Borrelli, C. Zidorn & A. Mangoni (2021): Stable Catechol Keto Tautomers in Cytotoxic Heterodi- meric Cyclic Diarylheptanoids from the Seagrass Zostera marina. Org. Lett., 23, 7134-7138. Lipej, L., R. Turk & T. Makovec (2006): Ogrožene vrste in habitatni tipi v slovenskem morju = Endan- gered Species and Habitat Types in the Slovenian Sea. Zavod RS za varstvo narave, Ljubljana, 264 pp. ANNALES · Ser. hist. nat. · 35 · 2025 · 1 163 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Manck, L., E. Quintana, R. Suárez, F.G. Brunb, I. Hernández, M.J. Ortega & E. Zubia (2017): Profiling of Phenolic Natural Products in the Seagrass Zostera noltei by UPLC-MS. Nat Prod Commun., 12(5), 687-690. Mechchate, H., I. Es-Safi, O. Mohamed Al Kamaly & D. Bousta (2021): Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Mol- ecules, 26(7), 1932. doi: 10.3390/molecules26071932. Messina, C.M., R. Arena, S. Manuguerra, Y. Pericot, E. Curcuraci, F. Kerninon, G. Renda, C. Hellio & A. Santulli (2021): Antioxidant Bioactivity of Extracts from Beach Cast Leaves of Posidonia oceanica (L.) Delile. Mar. Drugs, 19, 560. Micheli, L., M. Vasarri, D. Degl’Innocenti, L. Di Cesare Mannelli, C. Ghelardini, A. Emiliano, A. Verdelli, M. Caproni & E. Barletta (2024): Posidonia oceanica (L.) Delile Is a Promising Marine Source Able to Alleviate Imiquimod-Induced Psoriatic Skin Inflammation. Mar. Drugs, 22, 300. Nejrup, L.B. & M.F. Pedersen (2008): Effects of salin- ity and water temperature on the ecological performance of Zostera marina. Aquat Bot, 88, 239-246. Orlando-Bonaca, M., J. Francé, B. Mavrič, M. Grego, L. Lipej, V. Flander-Putrle, M. Šiško & A. Falace (2015): A new index (MediSkew) for the assessment of the Cymodocea nodosa (Ucria) Ascherson meadow’s status. Mar. Environ. Res., 110, 132-141. OSPAR Commission (2010): Background Document for Cymodocea Meadows. OSPAR Commission, Lon- don, 30 pp., 487/2010. Ozbil, E., M. Ilktac, S. Ogmen, O. Isbilen, J.M. Du- ran Ramirez, J. Gomez, J.N. Walker, E. Volkan (2024): In vitro antibacterial, antibiofilm activities, and phyto- chemical properties of Posidonia oceanica (L.) Delile: An endemic Mediterranean seagrass. Heliyon, 10(15), e35592. Panno, L., M. Bruno, S. Voyron, A. Anastasi, G. Gnavi, L. Miserere & G.C. Varese (2013): Diversity, eco- logical role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnology, 30(6), 685-694. https:// doi.org/10.1016/j.nbt.2013.01.010. Papenbrock, J. (2012): Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special? International Scholarly Re- search Network, ISRN Botany, Article ID 103892, doi:10.5402/2012/103892. Pergent-Martini, C., G. Pergent, B. Monnier, C.-F. Boudouresque, C. Mori & A. Valette-Sansevin (2021): Contribution of Posidonia oceanica meadows in the context of climate change mitigation in the Mediterra- nean Sea. Mar. Environ. Res., 165, 105236. https://doi. org/10.1016/j.marenvres.2020.105236. Perumal, P., U. Arthanari & S.A. Elumalai (2021): A Review on Pharmaceutically Potent Bioactive Metabo- lites of Seagrass Cymodoceaceae Family. Curr. Trends Biotechnol. Pharm., 15, 436-446. Pfeifer, L. & B. Classen B (2020): The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research. Front. Plant Sci., 11, 588754. doi: 10.3389/fpls.2020.588754. Razgonova, M.P., L.A. Tekutyeva, A.B. Podvolotskaya, V.D. Stepochkina, A.M. Zakharenko & K. Golokhvast (2022): Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations, 9, 182. Rees, C.R., J.M. Costin, R.C. Fink, M. McMichael, K.A. Fontaine, S. Isern & S.F. Michael (2008): In vitro inhibition of dengue virus entry by p-sulfoxy-cinnamic acid and structurally related combinatorial chemistries. Antivir. Res., 80, 135-142. Reynolds, L.K., M. Waycott, K.J. McGlathery & R.J. Orth (2016): Ecosystem Services Returned through Seagrass Restoration. Restoration Ecology, 24, 583-588. https://doi.org/10.1111/rec.12360. Ribas-Taberner, M.d.M., P.M. Mir-Rossello, L. Gil, A. Sureda & X. Capó (2025): Potential Use of Marine Plants as a Source of Bioactive Compounds. Molecules, 30, 485. https://doi.org/10.3390/molecules30030485. Rotter, A., A. Bacu, M. Barbier, F. Bertoni, A.M. Bones, M.L. Cancela, J. Carlsson, M. F. Carvalho, M. Cegłowska, M.C. Dalay, T. Dailianis, I. Deniz, D. Dra- kulovic, A. Dubnika, H. Einarsson, A. Erdogan, O.T. Er- oldogan, D. Ezra, S. Fazi, R.J. FitzGerald, L.M. Gargan, S.P. Gaudêncio, N. Ivošević DeNardis, D. Joksimović, M. Kataržyte, J. Kotta, M. Mandalakis, I. Matijošyte, H. Mazur-Marzec, A. Massa-Gallucci, M. Mehiri, S.L. Nielsen, L. Novoveská, D. Overlinge, M.E. Portman, K. Pyrc, C. Rebours, T. Reinsch, F. Reyes, B. Rinkevich, J. Robbens, V. Rudovica, J. Sabotič, I. Safarik, S. Talve, D. Tasdemir, X.T. Schneider, O.P. Thomas, A. Torunska- Sitarz, G.C. Varese & M.I. Vasquez (2020): A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Front. Mar. Sci., 7, 278. doi: 10.3389/fmars.2020.00278. Rotter, A., M. Barbier, F. Bertoni, A.M. Bones, M.L. Cancela, J. Carlsson, M.F. Carvalho, M. Cegłowska, J. Chirivella-Martorell, M. Conk Dalay, M. Cueto, T. Dailianis, I. Deniz, A.R. Díaz-Marrero, D. Drakulovic, A. Dubnika, C. Edwards, H. Einarsson, A. Erdogan, O.T. Eroldoan, D. Ezra, S. Fazi, R.J. FitzGerald, L.M. Gar- gan, S.P. Gaudêncio, M. Gligora Udovič, N. Ivošević DeNardis, R. Jónsdóttir, M. Kataržyte, K. Klun, J. Kotta, L. Ktari, Z. Ljubešić, L. Lukić Bilela, M. Mandalakis, A. Massa-Gallucci, I. Matijošyte,˙H. Mazur-Marzec, M. Mehiri, S.L. Nielsen, L. Novoveská, D. Overlinge, G. Perale, P. Ramasamy, C. Rebours, T. Reinsch, F. Reyes, B. Rinkevich, J. Robbens, E. Röttinger, V. Rudovica, J. Sabotič, I. Safarik, S. Talve, D. Tasdemir, X. Theodotou Schneider, O.P. Thomas, A. Torunska-Sitarz, G.C. Va- rese & M.I. Vasquez (2021): The Essentials of Marine Biotechnology. Front. Mar. Sci. 8:629629. doi: 10.3389/ fmars.2021.629629. ANNALES · Ser. hist. nat. · 35 · 2025 · 1 164 Martina ORLANDO-BONACA et al.: SEAGRASSES: A PROMISING SOURCE OF BIOACTIVE COMPOUNDS FOR HUMAN HEALTH APPLICATIONS, 153–164 Rotter, A., A. Giannakourou, J.E. Argente García, G.M. Quero, C. Auregan, G. Triantaphyllidis, A. Venetsanopoulou, R. De Carolis, C. Efstratiou, M. Aboal, M.Á.E. Abad, E. Grigalionyte-Bembič, Y. Kot- zamanis, M. Kovač, M. Ljubić Čmelar, G.M. Luna, C. Aguilera, F.G. Acién Fernández, J.L. Gómez Pinchetti, S. Manzo, I. Milašinčić, A. Nadarmija, L. Parrella, M. Pinat, E. Roussos, C. Ruel, E. Salvatori, F.J. Sánchez Vázquez, M. Semitiel García, A.F. Skarmeta Gómez, J. Ulčar & C. Chiavetta (2023): Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region. Marine Drugs, 21(7), 416. https://doi.org/10.3390/md21070416. Rotter, A., D. Varamogianni-Mamatsi, A. Zvonar Po- birk, M. Gosenca Matjaž, M. Cueto, A.R. Diaz-Marrero, R. Jonsdottir, K. Sveinsdottir, T.S. Catalá, G. Romano, B.A. Guler, E. Atak, M. Berden Zrimec, D. Bosch, I. Deniz, S. P. Gaudencio, E. Grigalionyte-Bembič, K. Klun, L. Zidar, A. Coll Rius, Š. Baebler, L. Lukić Bilela, B. Rinkevich & M. Mandalakis (2024): Marine cosmet- ics and the blue bioeconomy: From sourcing to success stories. iScience, 27(12), 111339. Rudovica, V., A. Rotter, S.P. Gaudêncio, L. Novo- veská, F. Akgül, L.K. Akslen-Hoel, D.A.M. Alexandrino, O. Anne, L. Arbidans, M. Atanassova, M. Bełdowska, J. Bełdowski, A. Bhatnagar, O. Bikovens, V. Bisters, M.F. Carvalho, T.S. Catalá, A. Dubnika, A. Erdogan, L. Ferrans, B.Z. Haznedaroglu, R. Hendroko Setyobudi, B. Graca, I. Grinfelde, W. Hogland, E. Ioannou, Y. Jani, M. Kataržyte, S. Kikionis, K. Klun, J. Kotta, M. Kriipsalu, J. Labidi, L. Lukić Bilela, M. Martínez-Sanz, J. Oliveira, R. Ozola-Davidane, J. Pilecka-Ulcugaceva, K. Pospiskova, C. Rebours, V. Roussis, A. López-Rubio, I. Safarik, F. Schmieder, K. Stankevica, T. Tamm, D. Tasdemir, C. Torres, G.C. Varese, Z. Vincevica-Gaile, I. Zekker & J. Burlakovs (2021): Valorization of Ma- rine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Front. Mar. Sci., 8, 723333. doi: 10.3389/ fmars.2021.723333. Ruiz-Frau, A., S. Gelcich, I.E. Hendriks, C.M. Duarte & N. Marbà (2017): Current State of Seagrass Ecosystem Services: Research and Policy Integration. Ocean Coast. Manag., 149, 107-115. https://doi. org/10.1016/j.ocecoaman.2017.10.004. Serrano, O., D.I. Gómez-López, L. Sánchez-Valencia, A. Acosta-Chaparro, R. Navas-Camacho, J. González- Corredor, C. Salinas, P. Masque, C.A. Bernal & N. Marbà (2021): Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Sci Rep 11, 11067. https:// doi.org/10.1038/s41598-021-90544-5. Sevimli-Gur, C. & O. Yesil-Celiktas (2019): Cytotoxic- ity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Mol. Biol. Rep., 46, 3691-3699. Short, F., T. Carruthers, W. Dennison & M. Waycott (2007): Global seagrass distribution and diversity: A biore- gional model. J. Exp. Mar. Biol. Ecol., 350, 3-20. Styshova, O.N., A.M. Popov, A.A. Artyukov & A.A. Kli- movich (2017): Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med., 13, 1651-1659. Subhashini, P., E. Dilipan, T. Thangaradjou & J. Papenbrock (2013): Bioactive natural products from marine angiosperms: abundance and functions. Nat. Prod. Bioprospect., 3, 129-136. https://doi.org/10.1007/s13659- 013-0043-6. Tarquinio, F., O. Attlan, M.A. Vanderklift, O. Berry & A. Bissett (2021): Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front. Microbiol., 12, 703014. doi: 10.3389/fmicb.2021.703014. Telesca, L., A. Belluscio, A. Criscoli, G. Ardizzone, E.T. Apostolaki, S. Fraschetti, M. Gristina, L. Knittweis, C.S. Martin, G. Pergent, A. Alagna, F. Badalamenti, G. Ga- rofalo, V. Gerakaris, M.L. Pace, C. Pergent-Martini & M. Salomidi (2015). Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci Rep 5, 12505. https://doi.org/10.1038/srep12505. Vasarri, M., E. Barletta, M. Stio, M.C. Bergonzi, A. Galli & D. Degl’Innocenti (2023): Ameliorative Effect of Posidonia oceanica on High Glucose-Related Stress in Hu- man Hepatoma HepG2 Cells. Int. J. Mol. Sci., 24, 5203. https://doi.org/10.3390/ijms24065203. Vasarri, M., M. Leri, E. Barletta, M. Ramazzotti, R. Marzocchini, D. Degl’Innocenti (2020): Anti-inflamma- tory properties of the marine plant Posidonia oceanica (L.) Delile. Journal of Ethnopharmacology, 247, 112252. https://doi.org/10.1016/j.jep.2019.112252. Zheng, H., X. Sun, N. Guo & R. Li (2014): New insight on antioxidants and anti-obesity properties of two seagrass- es Thalassia hemprichii and Zostera marina: an integrated molecular docking simulation with in vitro study. AJMR, 8(23), 2315-2321. Doi: 10.5897/AJMR2014.6790.