original scientific article UDC 574.3:581.9(497.4) received: 2005-09-07 IS VARIETY OF SPECIES-RICH SEMI-NATURAL MESOBROMION GRASSLANDS DETECTABLE WITH FUNCTIONAL APPROACH" Mitja KALIGARIČ Department of Biology, Pedagogical Faculty, University of Maribor, SI-2000 Maribor, Koroška 160 and University of Primorska, Science and Research Centre of Koper, Institute for biodiversity studies, SI-6000 Koper, Garibaldijeva 1 E-mail: mitja.kaligaric@uni-mb.si Nina ŠAJNA & Sonja ŠKORNIK Department of Biology, Pedagogical Faculty, University of Maribor, SI-2000 Maribor, Koroška 160 ABSTRACT The aim of the study was to compare how the relevés of species-rich dry grasslands (classis Festuco-Brometea) in Central and Eastern Slovenia differ among each other on the basis of floristic composition and of 11 Plant Functional Traits (PFTs). On the basis of floristic structure and cover values, the relevés were classified in three well separated clusters. In the PCA ordination, the first axes suggested a gradient of soil pH, while the second, floristically based gradient, was interpreted as soil humidity. On the basis of selected traits, 3 PFTs were clustered, but not clearly interpreted. Despite differences in environmental parameters across Slovenia (climate, geographical position, altitude, soil conditions) and variety of land use disturbances - drivers of floristic variety, no discernible difference in vegetation structure in terms of selected plant traits were perceived by PCA ordination. It could be concluded that secondary dry grasslands share rather uniform functional types with not clearly detectable structural differences among them. Key words: dry grasslands, plant functional traits, plant functional types, Festuco-Brometea, land use, Slovenia, PCA, vegetation LA VARIETÀ DEI PASCOLI ARIDI SEMI-NATURALI RICCHI DI SPECIE MESOBROMION E DISTINGUIBILE CON L'APPROCCIO FUNZIONALE? SINTESI Lo scopo del presente studio era quello di confrontare le differenze in composizione floristica e 11 caratteristiche funzionali della pianta (PTFs) di rilievi di pascoli aridi ricchi di specie (classi Festuco-Brometea) nella Slovenia centrale ed orientale. Sulla base della struttura floristica e dei valori di copertura i rilievi sono stati classificati in tre gruppi ben separati. Nell'ordinamento PCA il primo asse propone un gradiente del pH del suolo, mentre il secondo gradiente floristico viene interpretato come umidita del suolo. Tre PFTs sono stati inoltre raggruppati in base alle caratteristiche selezionate, ma non sono stati chiaramente interpretati. Nonostante le differenze nei parametri ambientali da un capo all'altro della Slovenia (clima, posizione geografica, altitudine, condizioni del suolo), e la varieta di disturbi legati all'impiego del suolo - piloti della varieta floristica, l'ordinamento PCA non ha percepito differenze discernibili nella struttura della vegetazione in termini di caratteristiche funzionali della pianta selezionate. Gli autori concludono che i pascoli aridi secondari condividono tipi funzionali della pianta uniformi che tra loro non presen-tano differenze strutturali chiaramente visibili. Parole chiave: pascoli aridi, caratteristiche funzionali della pianta, tipi funzionali della pianta, Festuco-Brometea, impiego del suolo, Slovenia, PCA, vegetazione INTRODUCTION Vegetation science has been essentially based on species composition, which has been needed for vegetation description, but this view has been criticized (e.g. Grime, 1979; Ghiselin, 1987). There has been an increasing interest in using non-phylogenetic based classifications when predicting the dynamics of vegetation rather than their taxonomic identity (Gitay, 1999; Cor-nelissen et al., 2003). On a large scale, predictions based on plant species are geographically bound (Woodward & Cramer, 1996). On a small scale, species are in some instances so broad and variable that by describing communities by species composition we may not perceive relevant patterns of vegetation occurring below the resolving power of species (Diaz et al., 1992). Classifying plant species according to their taxonomy has strong limitations when it comes to answering important ecological questions at the scale of ecosystems, landscapes or biomes (Woodward & Diament, 1991; Keddy, 1992; Korner, 1993). These questions include those on responses of vegetation to environmental variation or changes, notably in climate, atmospheric chemistry, land use and natural disturbance regimes. A promising way for answering such questions (and many other ecological questions) is by classifying plant species on functional grounds (Diaz et al., 2002). These alternative classes are often referred to as plant functional types (PTFs) or groups (Grime et al., 1988; Leishman & Wes-toby, 1992; Gitay & Noble, 1997). Classifying plants according to morphology and reproductive attributes has a long history in botany and plant geography (Kleyer, 1999). Functional classifications of species were already searched for by natural philosophers and ecologists. Theophrastus (ca. 300 B.C.) classified plants into trees, shrub, and herbs (Morton, 1981). This and some other classifications used in the past may be viewed as predecessors of what are now called plant functional types (Kleyer, 1999). An example still in practice is the life-form approach of Raunkiaer (1934), modified and improved by Ellenberg & Mueller-Dombois (1974). Although introduced long time ago (Raunkiaer, 1934; Grime, 1977; Noble & Slatyer, 1980; Box, 1981, 1996), the concept of PFTs has received new attentions as a possible framework for predicting ecosystem response to human-induced changes at a global scale (Diaz & Cabido, 1997). The aim of the study was to test if the territory of Slovenia, covering only 21,000 km2 (here even excluding the Alps and the sub-Mediterranean), is enough variable to support different functional types consisting secondary dry grasslands. Environmental conditions (climate, phytogeographic position, altitude and soil parameters) are quite different across Slovenia, and Slovenian vegetation is considered one of the most diverse in the world outside the tropics in terms of species numbers (Watts, 2004). In this paper we aim to identify main types of Slovenian secondary semi-dry grasslands of Bromion erecti alliance (class Festuco-Brometea) on the basis of floristic composition and 11 plant functional traits. The data set includes 67 relevés of Central and Eastern Slovenian semi-dry grasslands and matrix with 11 traits recorded on 155 plant species. Our main objectives were: (1) to search for 11 selected plant functional traits (PFTs) for plant species occurring on semi-dry grasslands of Meso-bromion alliance in Central and Eastern Slovenia, using the literature and herbaria sources; (2) to identify PFTs in Slovenian semi-dry grasslands on the basis of selected traits; (3) to compare community types derived from plant functional classification based on traits and classification based on species. Plant functional types are non-phylogenetic groupings of species and can be defined as groups of plant species sharing similar functioning at the organismic level, similar responses to environmental factors (e.g. temperature, water availability, nutrients, fire and grazing), and/or similar roles in (or effects on) ecosystems or biomes (e.g. productivity, nutrient cycling, flammability and resilience) (Walker, 1992; Chapin et al., 1996; Nobble & Gitay, 1996; Diaz & Cabido, 1997; Lavorel et al., 1997; Grime, 2001). Species comprising a functional type share a set of key functional traits. According to Allen & Starr (1982), the functional type is a multi-species level of organization, lying above the population but below the community (cit. Hunt et al., 2004). They could also be characterized as plant strategies, which can be defined as groupings of similar or analogous genetic characteristics, which recur widely among species or populations and cause them to exhibit similarities in ecology (Grime, 2002). The first step in defining PFTs is to choose a list of key traits that are believed to be important for both understanding and prediction of phenomena relevant for our research. The sets of traits or types differ among applications (Woodward & Cramer, 1996). The traits must be observable expressions of forms or behaviours defining plant types that are responsive, in terms of occurrence or performance, to changes in ecosystem conditions. Plant traits can be obtained by measurements in the filed, laboratory, or from the literature. They usually refer to life-history (life span, life-cycle), morphology (plant height, lateral spread, life form, spinescence, specific leaf area (SLA), leaf size ...), and regeneration (e.g. seed characters - size and mass, recruitment frequency, dispersal mode, ability to reproduce vegetative, flowering period ...). MATERIAL AND METHODS Material Slovenia, situated at ca. 46"N, 14"E in the contact area of the Alps, Dinarids, Mediterranean and Panno-nian plain, has a relief consisting of plains, hilly regions, highlands, mountains etc. 40% of the land is underlain by carbonate rocks, mainly well karstified and doloma-tised (Watts, 2004). We analysed 10 published (Skornik, 2003) and 57 unpublished (Skornik, 2000) vegetation relevés of Bromion erecti dry and semi-dry grassland (order Brome-talia erecti, class Festuco-Brometea). Relevés were collected in Central, Eastern, South- and North-eastern Slovenia using standard procedure of the Braun-Blanquet approach (Braun-Blanquet, 1964; Westhoff & van der Maarel, 1973; Dierschke, 1994). For analysis of plant traits, we selected all the species, which were present in at least 5% of the relevés. The total number of species considered was 155. Plant traits selection In choosing key traits we followed different literature sources (Hodgson et al., 1999; Kahmen et al., 2002; Cornelissen et al., 2003). For the purpose of this study we compiled a data-base of 11 morphological, life-history and regeneration traits, measurable at the individual plant level, using the literature data, data from herbaria and supplemented by our own observations. The scale of measurement of plant traits was originally continuous or categorical, but they were all transformed into categorical scales for analyses (Tab. 1). The list of traits with description of classes in matrix and the source of information are presented in Table 1. The procedure of this study was to classify the species of Slovenian species rich semi-natural Mesobro-mion grasslands into species groups of similar functional traits by using multivariate statistics. Data analysis To identify the main dry grassland types, we built a 155 species x 67 relevés matrix (all matrices available by authors on request). This matrix was then subjected to standard multivariate classification (agglomerative cluster analysis) and ordination techniques (PCA) (software SYN-TAX 2000 (Podani, 2001)). The scales of measurements of plant attributes were originally continuous, categorical or binary, but they were all transformed into categorical or binary scales prior to the analysis. In order to identify groups of species with similar traits, we built an 11 traits x 155 species matrix. We submitted the matrix to a Principal Component Analysis (PCA) based on correlation matrix Tab. 1: Plant traits, recorded on 155 vascular plant species of dry and semi-dry grasslands from Central, South, North-eastern and Eastern Slovenia with description of classes in matrix. Scales of measurement were originally categorical (cat), continuous (cont) or binary (bin). Tab. 1: Rastlinski znaki, zbrani za 155 rastlinskih vrst suhih in polsuhih travišč iz osrednje, južne, severovzhodne in vzhodne Slovenije z opisi razredov v matriki. Originalni podatki so v obliki kategorij (cat), zvezni (cont) ali binarni (bin). Trait Classes in the matrix 1 = Chamaephytes 2 = Geophytes Life form 3' * cat 3 = Hemicryptophytes 4 = Phanerophytes 5 = Therophytes 1 = Annual Life cycle 3' * cat 2 = Biennial 3 = Perennial 1 = Tussocks Growth form 3' 5' * cat 2 = Rosette 3 = Leafy stem 4 = Rosette and leafy stem 1 = < 5 cm 2 = 5 - 25 cm Plant height 1 4 *** cont 3 = 25 - 75 cm 4 = 75 - 125 cm 5 = 125 - 150 cm 6 >150 cm Stolons 1' 3' 5' * bin 0 = Absent 1 = Present Rhizomes 1 3' 5' * bin 0 = Absent 1 = Present 1 = Absent Storage organs 1 3 cat 2 = Tubers 3 = Bulbs 4 = Rhizomes Spinescence 1 4' ** bin 1 = None 1 = Present 1 = No Hairiness 1 3' 4 cat 2 = Low 3 = High 1 = in March or earlier 2 = in April 3 = in May Flowering start 1 4' *** cat 4 = in June 5 = in July 6 = in August or later or before leaves in spring Potential bin 0 = Absent allelochemicals 1 2 1 = Present Data source for traits: 'Hegi (1958, 1963, 1964, 1965, 1966, 1987a, 1987b); 2Petauer (1993); 3Martini et a/. (1999); "Poldini (1991); 5Rothmaler (1995); 6Heywood (1995); 7Heywood et a/. (1980, 1972, 1968, 1964); 8Lauber & Wagner (1998); 'Wraber & Seliskar (1986); 10Wraber (1990); "Grey-Wilson (1998) References for classis formation in matrix: * Kahmen et a/. (2002) ** Cornelissen et a/. (2003) '" Hodgson et a/. (1999) Fig. 1: Dendrogram: the result of the hierarchical clustering of 67 relevés of Mesobromion erecti dry grasslands, collected in the territory of Central, Eastern, South- and North-eastern Slovenia. Numbers on dendrogram represent the following relevés from the original tables: No. 1-27: Škornik (2000): Tab. 11, relevés No. 3, 4, 6, 7, 8, 15, 30, 33, 37, 40, 43, 46, 47, 49, 51, 52, 53, 55, 59, 64, 75, 77, 80, 81, 84, 85 and 86; No. 28-37: Škornik (2000): Tab. 6, relevés No. 6, 10, 12, 14, 15, 16, 17, 20, 25 and 26; No. 38-47: Škornik (2003): Tab. 2, relevés No. 7, 8, 9, 10, 11, 12, 13, 23, 24 and 25; No. 48-67: Škornik (2000): Tab. 1, relevés No. 13, 21, 22, 24, 39, 40, 43, 54, 55, 56, 63, 64, 72, 73, 83, 84, 90, 96, 102 and 103. Cluster numbers are indicated on the dendrogram. Sl. 1: Dendrogram: rezultat hierarhične klasifikacije 67 popisov suhih travišč iz zveze Mesobromion erecti, zbranih na območju osrednje, vzhodne, južne in severovzhodne Slovenije. Številke v dendrogramu predstavljajo naslednje popise v originalnih tabelah: Št. 1-27: Škornik (2000): Tab. 11, popisi št. 3, 4, 6, 7, 8, 15, 30, 33, 37, 40, 43, 46, 47, 49, 51, 52, 53, 55, 59, 64, 75, 77, 80, 81, 84, 85 in 86; Št. 28-37: Škornik (2000): Tab. 6, popisi št. 6, 10, 12, 14, 15, 16, 17, 20, 25 in 26; Št. 38-47: Škornik (2003): Tab. 2, popisi št. 7, 8, 9, 10, 11, 12, 13, 23, 24 in 25; Št. 48-67: Škornik (2000): Tab. 1, popisi št. 13, 21, 22, 24, 39, 40, 43, 54, 55, 56, 63, 64, 72, 73, 83, 84, 90, 96, 102 in 103. Številke klastrov so označene na dendrogramu. of variables, in which data are cantered and standardized by standard deviation, which is considered appropriate for mixed data (Jongman et al., 1987). The species cluster was assumed to represent PFTs at the species level (Keddy, 1992; Garcia Mora et a!., 1999). In order to identify the predominant plant traits for Slovenian semi-dry grassland vegetation, the matrix of 11 traits by 155 species was multiplied by the matrix of 155 species x 67 relevés. The result was a matrix of 11 traits x 67 relevés that was analysed by means of PCA. Nomenclature Taxonomic nomenclature follows Martincic et al. (1999), while syntaxonomic nomenclature follows Mu-cina & Kolbek (1993). RESULTS AND DISCUSSION Floristic analysis Figure 1 shows the results of the hierarchical clustering of 67 relevés of dry and semi-dry grasslands. Through the analysis of the species x sites matrix, the main types of dry and semi-dry grasslands could be distinguished. Cluster 1: 23 relevés of grasslands collected on very shallow Rendzinas and Chromic Cambisols on Limestone mainly from Dinaric, Predinaric and pre-Alpine regions at higher altitudes. These grasslands occur on very shallow and warm soils with basic pH. Characteristic species of the cluster are Carex humilis, Plantago holosteum, Polygala chamaebuxus, Gentiana verna subsp. tergestina, Knautia illyrica, Tragopogon tomma-sinii, Pseudolysimachion barrelieri subsp. barrelieri, Anthericum ramosum, etc. Cluster 2: 20 relevés of semi-dry grasslands on Eutric Cambisols on tertiary bedrock (limestone or flysch). These soils represent eutrophic (mesic) sites, rich with nutrients due to the deeper profile, containing more humidity and having basic to slightly acid pH. Favourable conditions result high and dense grassland stands with some dominant grass species (e.g. Bromus erectus agg., Briza media, Dactylis glomerata, Koeleria pyramidata, ...). Other indicator species are Onobrychis viciifolia, Arrhenatherum elatius, Daucus acrota, Galium mollugo, Trisetum flavescens, Poa angustifolia, Medicago lupu-lina, Viccia cracca, Lathyrus pratensis and many other species of more fertile and moist grasslands are frequent. Cluster 3: 24 relevés of grassland stands on acid soils. First 14 relevés present stands on acid and leached soils on calcareous substrate (limestone, dolomite) from the central part of Dolenjska region and from Bela krajina. Last 10 relevés were collected on sandstone hilly area of Goricko (NE Slovenia), where they occur on acid soils (mainly Ranker and Pseudogleys) developed on non-carbonate substrate. Species, which are characteristic for these relevés, are typical acidophilus species like Agrostis tenuis, Festuca filiformis, Carex pallescens, Lu-zula campestris, Hieracium pilosella, Cynosurus crista-tus, Potentilla erecta and Danthonia decumbens. ln the PCA ordination, the three clusters appeared well separated (Fig. 2). Dispersion of relevés along the first axis of the PCA (PCA1) suggested a gradient of soil pH, while the second floristically based gradient along PCA2 axis was interpreted as soil humidity. Most clearly separated group of relevés is located at the left extreme of the first gradient (diamonds) and represents dry grasslands from the Goricko region, which occupies very acid and dry sites. Above the middle of the PCA-ordination there are grassland stands from the second cluster (squares), which are characteristic of moderately humid and mainly neutral soils. The third group of relevés could represent the mixture of relevés from clusters 1 and 3 (circles, diamonds). At the right extreme of the first PCA axis, we found stands with the most basic and moderately humid conditions. Fig. 2: PCA: ordination of 155 species x 67 sites matrix. Numbers correspond to the relevé numbers in figurel. Legend: circles = 1st cluster; squares = 2nd cluster, diamonds = 3rd cluster. Sl. 2: PCA: ordinacija matrike 155 vrst x 67 popisov. Številke se ujemajo s številkami popisov na sliki 1. Legenda: krogec = klaster št. 1, kvadrat = klaster št. 2, karo = klaster št. 3. It could be concluded that the studied dry grasslands differ according to their floristic composition as the consequence of different environmental parameters (climate, geographical position, altitude, soil conditions...) and disturbance of land use. Plant functional types We distinguished three groups (clusters) of plant species on the basis of the hierarchical classification of the traits x species. Detailed analysis of clusters is presented in Table 2. First group included 100 species. They were mostly perennial species (91%) and hemicryptophytes (74%). In comparison with the other two groups, there was the highest percentage of chamaephytes (14%). More than half of the plants had leafy stem and almost a quarter (24%) were tussock-forming species, which indicates that this group was rich in grasses (e.g. Anthoxan-thum odoratum, Arrhenatherum elatius/ Avenula pubes-cens/ Briza media, Danthonia decumbens, Festuca pra-tensis™). Half of them were of medium height, namely 25-75 cm (52%). 75% of the species had no stolons and no rhizomes (82%). They were mostly without storage organs (88% ), spineless (95%) and started to flower in early summer (May, June). The second group (16 species) had the highest portion of therophytes and consequently the main part of annuals. In the second group, the major part of biennials (31.3%) were also classified. Species had mainly leafy stem, they were all without stolons and more than half of them had rhizomes (e.g. Campanula patula, Cirsium pannonicum, Crepis biennis, Daucus carota, Leucan-themum vulgare...). All the species from the second group started to flower in May or June. They often contained potential allelochemical compounds (62.5%). All the species from the third group (39) were hemicrypto-phytes, perennial and without stolons. In comparison with the 1st and 2nd groups, this group had the highest proportion of species with rosette (61.5%), species with rhizomes (79.5%), and species with high hairiness (66.7%).The traits storage organs and spinescence exhibited no evident differences between clusters of species. Therefore we could summarize our PFTs analysis with conclusion that there are no clear PFTs distinguished on the basis of the classification of the traits x species matrix. This indicates that for the species occur- Tab. 2: PFT analysis for three groups (clusters) of plant species, defined by the hierarchical classification of the traits x species matrix. Values represent the proportion (in %) of species within the cluster. Tab. 2: Analiza po znakih za 3 skupine (klastre) rastlinskih vrst, dobljenih na podlagi hierarhične klasifikacije matrike znaki x vrste. Številke predstavljajo deleže (v %) vrst v posameznem klastru. Trait Cluster 1 Cluster 2 Cluster 3 Life form Chamaephytes 14 12.5 0 Geophytes 7 12.5 0 Hemicryptophytes 74 56.3 100 Phanerophytes 0 0 0 Therophytes 5 18.8 0 Life cycle Annual 5 18.8 0 Biennial 4 31.3 0 Perennial 91 50 100 Growth form Tussocks 24 0 15.4 Rosette 5 0 35.9 Leafy stem 51 75 23.1 Rosette and leafy stem 20 25 25.6 Plant height < 5 cm 0 0 2.6 5 - 25 cm 46 31.3 28.2 25 - 75 cm 52 43.8 59 75 - 125 cm 2 25 10.3 125 - 150 cm 0 0 0 >150 cm 0 0 0 Stolons Absent 75 100 100 Present 25 0 0 Rhizomes Absent 18 68.8 79.5 Present 82 31.3 20.5 Storage organs Absent 88 87.5 82.1 Tubers 7 0 0 Bulbs 2 0 0 Rhizomes 3 12.5 18 Spinescence None 95 93.8 97.4 Present 5 6.3 2.6 Hairiness No 45 31.3 20.5 Low 21 43.8 12.8 High 34 25 66.7 Flowering Start in March or earlier 5 0 10.3 in April 13 0 12.8 in May 39 50 35.9 in June 36 50 23.1 in July 6 0 15.4 in August or later or before leaves in spring 1 0 2.6 Potential allelochemicals Absent 55 37.5 35.9 Present 45 62.5 64.1 No. of species in cluster 100 16 39 ring on the studied semi-dry grasslands no easy-interpreting groupings of species on the basis of selected traits could be noted. PCA ordination of 11 traits x 67 relevés matrix (Fig. 3) is confirming the conclusion given above. Floristically well separated relevés (marked with different colours on figure 1) are scattered irregularly in this PCA ordination. Groups of morphologically (func- tionally) similar relevés could not be recognized. Since there was no discernible difference in vegetation structure in terms of measured plant traits, it could be concluded that secondary dry grasslands share rather uniform functional types. This may be due to the lack of strong species turnover (Diaz et al., 1999), which may mask structural differences. 1 CM 6 0 CL -1 -2 -8 -7 -6 -5-4-3-2-10123 5 _PCA 1_ Fig. 3: PCA: ordination of 11 traits x 67 relevés matrix. Numbers correspond to the relevé numbers in figurel. Legend: circles = 1st cluster, squares = 2nd cluster, diamond = 3rd cluster. Sl. 3: PCA: ordinacija matrike 11 znakov x 67 popisov. Številke se ujemajo s številkami popisov na sliki 1. Legenda: krogec = klaster št. 1, kvadrat = klaster št. 2, karo = klaster št. 3. ALI JE RAZNOLIKOST POLSUHIH VRSTNO BOGATIH TRAVIŠČ ZVEZE MESOBROMION MOGOČE ZAZNATI S FUNKCIONALNIM PRISTOPOM? Mitja KALIGARIČ Univerza v Mariboru, Pedagoška fakulteta, Oddelek za biologijo, SI-2000 Maribor, Koroška 160 in Univerza na Primorskem, Znanstveno-raziskovalno središče Koper, Inštitut za biodiverzitetne študije, SI-6000 Koper, Garibaldijeva 1 E-mail: mitja.kaligaric@uni-mb.si Nina ŠAJNA & Sonja ŠKORNIK Univerza v Mariboru, Pedagoška fakulteta, Oddelek za biologijo, SI-2000 Maribor, Koroška 160 POVZETEK Cilj avtorjev tega članka je bil ugotoviti osnovne tipe slovenskih sekundarnih polsuhih travišč iz zveze Mesobro-mion erecti (razred Festuco-Brometea) na osnovi floristične sestave in 11 rastlinskih funkcionalnih potez (znakov). Analizirane podatke predstavljata matrika s 67 objavljenimi in neobjavljenimi fitocenološkimi popisi polsuhih travišč iz območij osrednje in vzhodne Slovenije ter matrika z 11 funkcionalnimi potezami, ki smo jih zbrali za 155 rastlinskih vrst teh polsuhih travišč. Podatke smo obdelali s standardnimi multivariatnimi metodami - metodo hierarhične klasifikacije ter ordinacijsko metodo glavnih komponent (PCA). Na osnovi floristične strukture in vrednosti za pokrovnost so se popisi klasificirali v tri dobro ločene skupine (klastre). Tudi v PCA ordinacijskem diagramu so bile te tri skupine lepo prepoznavne. Sklepali smo, da predstavlja prva ordinacijska os (x os) gradient pH tal, druga PCA os (y os) pa gradient vlažnosti. Za določitev značilnih rastlinskih znakov vrst polsuhih travišč smo matriko znaki x vrste pomnožili z matriko vrste x popisi. Kot rezultat smo dobili matriko znaki x popisi, ki smo jo nato analizirali z ordinacijsko metodo glavnih komponent (PCA analiza). Na osnovi zbranih znakov so se rastlinske vrste klasificirale v tri skupine, ki pa jih je bilo težko interpretirati v smislu funkcionalnih tipov. Tako smo ugotovili, da kljub razlikam v okoljskih parametrih (podnebje, geografska lega, nadmorska višina, tip tal, inp.) in njihovi različni rabi na podlagi izbranih rastlinskih znakov ter s pomočjo ordinacijske metode ni bilo mogoče zaznati razločnih razlik v strukturi vegetacije. Zaključili smo, da se na preučevanih polsuhih traviščih pojavljajo precej enotni funkcionalni tipi s težko določljivimi razlikovalnimi znaki. Ključne besede: suha travišča, rastlinski funkcionalni znaki, rastlinski funkcionalni tipi, Festuco-Brometea, raba tal, Slovenija, PCA, vegetacija REFERENCES Allen, T. F. H. & R. B. Starr (1982): Hierarchy: perspectives for ecological complexity: University of Chicago Press, Chicago. Box, E. O. (1981): Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Dr. W. Junk Publishers, The Hague. Box, E. O. (1996): Plant functional types in climate at the global scale. J. Veget. Sci., 7, 591-600. Braun-Blanquet, J. (1964): Pflanzensoziologie. Grundzuge der Vegetationskunde. Springer Verlag, Wien. Chapin, F. S. I., M. S. Bret-Harte, S. E. Hobbie & H. Zhong (1996): Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veget. Sci., 7, 347-358. Cornelissen, J. H. C., S. Lavorel, E. Gernier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas & H. Poorter (2003): A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380. Diaz, S., A. Acosta & M. Cabido (1992): Morphological analysis of herbaceous communities under different grazing regimes. J. Veget. Sci., 3, 689-696. Diaz, S. & M. Cabido (1997): Plant functional types and ecosystem function in relation to global change. J. Veget. Sci., 8, 63-474. Diaz, S., M. Cabido, M. Zak, Z. Martinez, E. Carretero & J. Aranibar (1999): Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J. Veget. Sci., 10, 651-660. Diaz, S., S. Mclntyre, S. Lavorel & J. G. Pausas (2002): Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytol., 154, 7-9. Dierschke, H. (1994): Pflanzensoziologie: Grundlage und Methode. Ulmer, Stuttgart. Ellenberg, H. & D. Mueller-Dumbois (1974): Aims and methods of vegetation ecology. Wiley & Sons, New York. Garcia Mora, M. R., J. B.,Gallego-Fernadez & F. Garcia-Novo (1999): Plant functional types in coastal foredunes in relation to environmental stress and disturbance. J. Veget. Sci., 10, 27-34. Ghiselin, M. T. (1987): Species concepts, individuality, and Objectivity. Biol. & Philos., 2, 127-143. Gitay, H. (1999): Deriving functional types for rainforest trees. J. Veget. Sci., 10, 641-650. Gitay, H. & I. R. Noble (1997): What are plant functional types and how should we seek them? In: Smith, T. M, H. H.Shugart & F. I.Woodwart (eds.): Plant functional types. Cambridge University Press, Cambridge, p. 3-19. Grey-Wilson, C. (1998): Mediterranean wild flowers. Herper Collins, London. Grime, J. P. (1977): Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat., 111, 1169-1194. Grime, J. P. (1979): Plant strategies and vegetation processes. John Wiley and Sons, Chichester. Grime, J. P. (2001): Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, Chichester. Grime, J. P. (2002): Declining plant diversity: empty niches or functional shifts" J. Veget. Sci., 13, 457-460. Grime, J. P., J. G. Hodgson & R. Hunt (1988): Comparative plant ecology: a functional approach to common British species. Unwin Hyman Ltd., London. Hegi, G. (1958): Illustrierte Flora von Mittel-Europa, Band IV, 1. Teil. Carl Hanser Verlag, München. Hegi, G. (1963): Illustrierte Flora von Mittel-Europa, Band III, 1. Teil. Carl Hanser Verlag, München. Hegi, G. (1964): Illustrierte Flora von Mittel-Europa, Band V, 4. Teil. Paul Parey Verlag, Berlin - Hamburg. Hegi, G. (1965): Illustrierte Flora von Mittel-Europa, Band I. Carl Hanser Verlag, München. Hegi, G. (1966): Illustrierte Flora von Mittel-Europa, Band IV, 2. Teil. Carl Hanser Verlag, München. Hegi, G. (1987a): Illustrierte Flora von Mittel-Europa, Band VI, 3. Teil. Paul Parey Verlag, Berlin - Hamburg. Hegi, G. (1987b): Illustrierte Flora von Mittel-Europa, Band VI, 4. Teil. Paul Parey Verlag, Berlin - Hamburg. Heywood, V. H. (1995): Cvetnice: Kritosemenke sveta. DZS, Ljubljana. Hodgson, J. G., P. J. Wilson, R. Hunt, J. P. Grime & K. Thompson (1999): Allocating C-S-R plant functional types: a soft approach to a hard problem. OIKOS, 85, 282-294. Hunt, R., J. G.Hodgson, K. Thompson, P. Bungener, N. P. Dunnett & A. P. Askew (2004): A new practical tool for deriving a functional signature for herbaceous vegetation. Appl. Veg. Sci., 7, 163-170. Jongman, R. H., C. J. F. ter Braak & O. F. R. van Tongeren (1987): Data analysis in community and landscape ecology. Pudoc, Wageningen. Kahmen, S., P. Poschlod & K. Schreiber (2002): Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol. Conserv., 104, 319-328. Keddy, P. A. (1992): A pragmatic approach to functional ecology. Funct. Ecol., 6, 621-626. Kleyer, M. (1999): Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. J. Veget. Sci., 10, 697-708. Körner, C. (1993): Scaling from species to vegetation: the usefulness of functional groups. In: Schulze, E. D. & H. A. Mooney (eds.): Biodiversity and Ecosystem Function. Ecological Studies. Springer Verlag, Berlin, p. 116140. Lauber, K. & G. Wagner (1998): Flora Helvetica. Paul Haupt, Bern. Lavorel, S., S. Mclntyre, J. Landsberg & T. D. A. Forbes (1997): Plant functional classification: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol., 12, 474-478. Leishman, M. R. & M. Westoby (1992) Classifying plants into groups on the basis of associations of individual traits - evidence from Australian semi-arid woodlands. J. Ecol., 80, 417-424. Martincic, A., T. Wraber, N. Jogan, V. Ravnik, A. Podobnik, B. Turk & B. Vreš (1999): Mala flora Slovenije. Kjuč za določanje praprotnic in semenk. Tehniška založba Slovenije, Ljubljana. Morton, A. G. (1981): History of botanical science. Academic Press, London. Mucina, L. & J. Kolbek (1993): Festuco-Brometea. In: Mucina, L., G. Grabherr & T. Ellmauer (eds.): Die Pflanzengesellschaften Österreichs. Teil I. Gustav Fischer Verlag, Jena, p. 420-492. Noble, l. R. & H. Gitay (1996): A functional classification for predicting the dynamics of landscapes. J. Veget. Sci., 7, 329-336. Noble, l. R. & R. O. Slatyer (1980): The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio, 43, 5-21. Petauer, T. (1993): Leksikon rastlinskih bogastev. Tehniška založba Slovenije, Ljubljana. Podani, J. (2001): SYN-TAX 2000. Computer Programs for data analysis in ecology and systematics. Budapest. Poldini, L. (1991): Atlante corologico delle pinate va-scolari nel Friuli-Venezia Giulia: inventario floristico regionale. Udine. Raunkiaer, C. (1934): The life forms of plants and statistical plant geography. Clarendon Press, Oxford. Rothmaler, W. (1995): Exkursionsflora von Deutschland. Gustav Fischer Verlag, Jena - Stuttgart. Seliškar, A. & T. Wraber (1986): Travniške rastline na Slovenskem: Sto pogostih vrst. Prešernova družba, Ljubljana. Skornik, S. (2000): Suha in polsuha travišča reda Bro-metalia erecti Koch 1926 v Sloveniji. Doktorska disertacija. Univerza v Ljubljani, Ljubljana. Skornik, S. (2003): Suha travišča reda Brometalia erecti Koch 1926 na Goričkem (SV Slovenija). Hacquetia, 2, 71-90. Tutin, T. G., V. H. Heywood, N. Burges, D. M. Moore, D. Valentine, S. Walter & D. Webb, (1964): Flora Eu-ropaea. I. Lycopodiaceae to Plantanaceae. Cambridge University Press, Cambridge. Tutin, T. G., V. H. Heywood, N. Burges, D. M. Moore, D. Valentine, S. Walter & D. Webb (1968): Flora Eu-ropaea. II. Rosaceae to Umbelliferae. Cambridge University Press, Cambridge. Tutin, T. G., V. H. Heywood, N. Burges, D. M. Moore, D. Valentine, S. Walter & D. Webb (1972): Flora Eu-ropaea. III. Diapensiaceae to Myoporaceae. Cambridge University Press, Cambridge. Tutin, T. G., V. H. Heywood, N. Burges, D. M. Moore, D. Valentine, S. Walter & D. Webb (1980): Flora Eu-ropaea. V. Alismataceae to Orchidaceae. Cambridge University Press, Cambridge. Walker, B. H. (1992): Biodiversity and ecological redundancy. Conserv. Biol., 6, 18-23. Watts, D. (2004): Quaternary biotic interactions in Slovenia and adjacent regions: the vegetation. In: Griffiths, H. I., B. Kryštufek & J. M.Reed (eds): Balkan biodiversity. Pattern and process in the European hotspots. Kluwer, Dordrecht, p. 69-78. Westhoff, V. & E. van der Maarel (1973): The Braun-Blanquet approach. Handb.Veg. Sci., 5, 156-172. Woodward, F. I. & W. Cramer (1996): Plant functional types and climatic changes: Introduction. J. Veget. Sci., 7, 306-308. Woodward, F. I. & A. D. Diament (1991): Functional approaches to predicting the ecological effects of global change. Funct. Ecol., 5, 202-212. Wraber, T. (1990): Sto znamenitih rastlin na Slovenskem. Prešernova družba, Ljubljana.