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 ABSTRACT

The  osmotic coefficient and the excess free energy have been calculated for a
polyelectrolyte solution with mixtures of mono and divalent counterions. The results
have been obtained by applying the cylindrical cell model in the Poisson-Boltzmann
approximation. The short-range interaction between polyion and counterions, described
by a square-well potential, has also been taken into account. The results of osmotic
coefficient are presented as functions of the equivalent fraction of monovalent
counterions for different values of ionic radii, depth of the potential well, and
concentration.

INTRODUCTION

The cylindrical  cell model which considers the electrostatic interactions among

ions has usually been applied for the interpretation of thermodynamic properties of

polyelectrolyte solutions with a fair success. Several times it appears, however, that the
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discrepancy between experimental results and theoretical calculations is rather large

[1,2,3] and consequently, it has stimulated some attempts [4,5,6] in order to improve

the calculations by introducing the non-Coulombic, short-range interaction into the

model.

In the present study we are interested in a polyelectrolyte solution containing a

mixture of mono and divalent counterions. The first theoretical approach to this

problem has been published long ago [7] followed by an experimental verification

[8,9,10]. The same system has also been treated by applying the line charge model [11].

In both cases the electrostatic interaction has only been taken into account. In this

contribution the influence of short-range interactions between polyion and counterions,

represented by a square-well potential, on the osmotic coefficient and excess free

energy will be presented.

THE MODEL AND THE POTENTIAL

The polyelectrolyte solution is represented as an ensemble of cylindrical cells

with radius R and length h (h >> R). In the axis of each cell is fixed a

cylindrical polyion of radius a and length  h = νb, where b is the lenght

of the monomer unit. The charge of the polyion is −ν ο� , supposed to be

spread uniformly over its surface. In the free volume of the cell is a mixture of mono

and z-valent counterions with the total charge equal in number but opposite in sign to

the charge  of the polyion. By denoting the radius of monovalent counterions with ��

and z-valent with �� , it follows for the distances of closest approach � � �� �= +  and

� � �� �= + . The short-range interactions of the non-Coulombic type are represented by

a square-well potential ���  for monovalent counterion:
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and for z-valent counterions:
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where r is the cylindrical coordinate and ��  and ��  are positive quantities. By

supposing the additivity of Coulombic and non-Coulombic potential and by denoting

η� �= �
� ��� and η�

�= �
� ��� (3)

the Poisson-Boltzmann equation for this system reads
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with the boundary conditions
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The values of the parameters η� and η�  are given in equations (1) and (2). In

equations above ø is the electrostatic potential, k the Boltzmann constant, T the

absolute temperature, �ο  the elementary charge, εο  the vacuum and ε εο  the solvent

permittivity, ��
ο  and  � 	

ο  the number density of mono and z-valent counterions at

ψ = � .

To simplify the notation the dimensionless quantities are introduced
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The parameter λ  is proportional to the linear charge density of the polyion which is the

basic property of each polyelectrolyte. Furthermore, we introduce the equivalent

fractions !�
ο  and !	

ο  in the place where ψ = �  and their average values !�  and !	
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The Poisson-Boltzmann equation and the boundary conditions now read
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The average values  !�  and !	  may be obtained from
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Within the integration interval, � ≤ ≤� γ , each of the parameters η�  and  η�  assumes

three different values as indicated in equations (1) and (2). Let us repeat this condition

in the new notation
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Because equation (8) cannot be solved analytically we applied the Runge-Kutta

method of the third order for numerical computation. The values of  !�
ο  and !	

ο  were

chosen arbitrarily and the parameter ξ   was found by an appropriate iteration

procedure.

THE FREE ENERGY AND THE OSMOTIC COEFFICIENT

The excess free energy %��  of a polyelectrolyte has three contributions

% & & �'�� �� � ��= + − (11)

where &��  is the non-Coulombic contribution, &�  the Coulombic contribution and

'�� is the configurational entropy [12]. &��  was calculated from
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The final expression is
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where  � � �� = π �  is the volume of the monomer unit. The Columbic contribution

&�  was calculated in two different ways, according to equations (14) and (15), giving

different but equivalent expressions
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where ρ is the local volume charge density and σ  is the charge density on the surface

of the polyion. The configurational entropy '��  due to nonuniform distribution of

counterions within the cell was calculated from

' � � � � � 	��� � � � �
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where � �  is the local concentration of mono and z-valent counterions and � �  its

average value.

From equation (14) it follows
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and from equation (15)
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In both integrals of equation (17) the condition (10) has to be taken into account. The

expression for '��  is too long and for that reason it is not reproduced here.

The calculation of % ��  is a very long procedure and it will not be presented

here. Therefore, we give only the final expression of the excess free energy per

monomer unit by introducing equation (14) into equation (11)

%

��
� !

!

!

!

�

!

!

� � � � 	� � � � � � 	�

�� 	 	

	

�
 �

� 	
	  �

ν ξ ξ

η ηο
γ

ο
γ







 = + + +

++ +∫ ∫

�

�
�
�

�

�

� �
�

�

�
�

�

�

�
�# $ �� ��

(19)



117

and equation (15) into equation (11)
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In equations (19) and (20) the fraction # $ # $� � � �
� �� � � �� �γ γ− −  was approximated

by 1 which simplifies the writing and does not make an appreciable error. By

multiplying equation (19) by 2 and substracting equation (20) from it, we obtain the

simple expression
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very suitable for numerical evaluation.

The osmotic coefficient can be obtained from the partial derivative of % ��  with

respect to volume [13]. The most convenient expression [12], adapted for this case is

Φ = +
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RESULTS AND DISCUSSION

All equations in the previous section were developed for the general case of

mono and z-valent counterions. The numerical calculations have been made, however,

for mixtures of mono and divalent counterions which are more frequently encountered

in biological and industrial systems.  For all calculations the following values of the
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parameters characterizing the polyion were applied: a = 0.8 nm, b = 0.252 nm, and  λ =

2.84. For counterions the following values of ionic radii were taken:  ��= 0.33 nm (e.

g. ()+ ) which gives ��  = 1.13 nm, and  ��  = 0.46 nm (e. g. ���+ ) [14] which gives

�� = 1.26 nm. In Figure 3 we have for comparison ��  = 0.8 nm; 1.0 nm; 1.13 nm and

��  = 0.8 nm; 1.1 nm; 1.26 nm. The relation between the concentration parameter γ

and concentration *�  in moles of monomer units per liter is

( )γ = = − −�� �� ��
�

�
! � *� � �

�

�
��

�

�

� , (24)

where !�  is the Avogadro number. Thus, we have γ = 1.5 (*� = 0.163 mol/l),

γ = 2 (*� = 0.06 mol/l), γ = 3 (*� = 0.00812 mol/l),  and γ = 4 (*� = 0.0011

mol/l). For almost all calculations the value γ = 2 was applied. The range of the short-

range interaction, �� = 1.4 nm and ��= 1.6 nm, was the same in all cases.
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FIGURE 1.  The influence of the short-range interaction on the osmotic coefficient.
       Counterions are point charges.
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FIGURE 2.  The influence of the short-range interaction on the osmotic coefficient. Radii of
                     counterions are r1 = 0.33 nm and r2 = 0.46 nm.

The greater part of the figures presented in this article is devoted to the osmotic

coefficient because, it can be obtained directly from the experiment, and gives an

approximate information about the distribution of counterions inside the cell. The

concentration of counterions at the border of the cell is decisive for the value of the

osmotic coefficient, as shown in equation (22). A low value of Φ  signifies that

counterions are gathering around the polyion and, as a result, a decrease of

concentration is produced at the border of the cell. A comparison of Figures 1 and 2

reveals that a lower depth of the potential well ( higher values of  η� and  η� ) gives

rise to a stronger attraction of counterions to the polyion, irrespective of the ionic size

and the value of !�. Furthermore, larger counterions are less attracted by the polyion

causing a higher value of Φ , as seen in Figure 3. The dependence of the osmotic

coefficient on concentration is presented in Figure 4 and 5 for two different cases. For

lower concentrations (higher values of the parameter γ ) the well expressed maxima

appear what has been confirmed by the experiments [8].
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FIGURE 3. The influence of radii of counterions on the osmotic coefficient.
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FIGURE 4. Dependence of the osmotic coefficient on concentration in the absence of the short-range
                    interaction.
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FIGURE 5.  Dependence of the osmotic coefficient on concentration in the presence of the short-range
        interaction.

In Figures 6 and 7 the excess free energy is plotted against !�  for different

values of γ and of the parameters η�and η� . In this case, a simple interpretation which

would be analogous to that applied with osmotic coefficient is not possible.
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FIGURE 6.  Dependence of Aex /íkT on concentration.
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FIGURE 7.  The influence of short-range interaction on Aex /íkT.
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POVZETEK
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